2012年宜宾中考数学试卷含答案(扫描版)
宜宾市2012年高中阶段学校招生考试题
5.方茴说:"那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
"6.方茴说:"我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
"7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
1."噢,居然有土龙肉,给我一块!"2.老人们都笑了,自巨石上起身。
而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。
3.石村不是很大,男女老少加起来能有三百多人,屋子都是巨石砌成的,简朴而自然。
宜宾市2012年高中阶段招生考试数学试卷(共初第3考)一、选择题:(本大题共8小题,每小题3分,共24分) 1.-3的倒数是( )A.31 B. 3 C. -3 D. 31- 2.下面四个几何体中,其左视图为圆的是( )3.下面运算正确的是( )A .25722=-b a b a B .248x x x =÷ C .222)(b a b a -=- D 6328)2(x x = 4则这10个区县该天最高气温的众数和中位数分别是( )A .32,31.5B .32,30C .30,32D .32,31 5.将代数式 262++x x 化成 q p x ++2)(的形式为( )A.11)3(2+-x B. 7)3(2-+x C.11)3(2-+x D.4)2(2++x6.分式方程31329122+=---x x x 的解为( ) A .3 B .-3 C .无解 D .3或-37.如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB = AD ,CD AB 21=,点E ,F 分别为AB ,AD 的中点,则△AEF 与多边形BCDFE 的面积比为( ) A.71 B. 61 C. 51 D. 418.给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线0=y 是抛物线241x y =的切线;②直线2-=x 与抛物线241x y =相切于点(-2,1); ③若直线b x y +=与抛物线241x y =相切,则相切于点(2,1);④若直线2-=kx y 与抛物线241x y=相切,则实数2=k .其中正确命题的是( )A. ①②④B. ①③C. ②③D. ①③④ 二、填空题:(本大题共8小题,每小题3分,共24分)9.分解因式:22363n mn m +-=__________________________10.一元一次不等式组⎪⎩⎪⎨⎧<+-≥14313x x的解集__________.11.如图,已知∠1=∠2=∠3=59°,则∠4=___________.12.如图,在平面直角坐标系中,将ABC ∆绕点P 旋转180°得到DEF ∆,则点P 的坐标D7题1 2 3 4 11题图12题图5.方茴说:"那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
2012年四川省宜宾市中考数学试卷-学生用卷不含答案
2012年四川省宜宾市中考数学试卷筠连县维新镇沐义小学题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.−3的倒数是()A. 13B. 3 C. −3 D. −132.下面四个几何体中,其左视图为圆的是()A. B. C. D.3.下面运算正确的是()A. 7a2b−5a2b=2B. x8÷x4=x2C. (a−b)2=a2−b2D. (2x2)3=8x64.区县翠屏区南溪长宁江安宜宾县珙县高县兴文筠连屏山最高气温(℃)32323032303129333032则着10个区县该天最高气温的众数和中位数分别是()A. 32,31.5B. 32,30C. 30,32D. 32,315.将代数式x2+6x+2化成(x+p)2+q的形式为()A. (x−3)2+11B. (x+3)2−7C. (x+3)2−11D. (x+2)2+46.分式方程12x2−9−2x−3=1x+3的解为()A. 3B. −3C. 无解D. 3或−37.如图,在四边形ABCD中,DC//AB,CB⊥AB,AB=AD,CD=12AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为()A. 17B. 16C. 15D. 148.给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线y=0是抛物线y=14x2的切线;②直线x=−2与抛物线y=14x2相切于点(−2,1);③若直线y=x+b与抛物线y=14x2相切,则相切于点(2,1);④若直线y=kx−2与抛物线y=14x2相切,则实数k=√2.其中正确命题的是()A. ①②④B. ①③C. ②③D. ①③④二、填空题(本大题共8小题,共24.0分)9.分解因式:3m2−6mn+3n2=______.10.一元一次不等式组{x3≥−13x+4<1的解是______.11.如图,已知∠1=∠2=∠3=59∘,则∠4=______.12.如图,在平面直角坐标系中,将△ABC绕点P旋转180∘得到△DEF,则点P的坐标为______.13.已知P=3xy−8x+1,Q=x−2xy−2,当x≠0时,3P−2Q=7恒成立,则y的值为______.14.如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=______.15.如图,一次函数y1=ax+b(a≠0)与反比例函数y2=kx的图象交于A(1,4)、B(4,1)两点,若使y1>y2,则x的取值范围是______.16.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是AD⏜的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP⋅AD=CQ⋅CB.其中正确的是______(写出所有正确结论的序号).三、解答题(本大题共8小题,共72.0分)17.(1)计算:(√3)−1−2√3−(π−√2)0+|−1|(2)先化简,再求值:2xx2−1÷1x+1−xx−1,其中x=2tan45∘.18.如图,点A、B、D、E在同一直线上,AD=EB,BC//DF,∠C=∠F.求证:AC=EF.19.为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了______名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为______,喜欢“戏曲”活动项目的人数是______人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.20.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(−4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.21.某市政府为落实“保障性住房政策”,2011年已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到2013年底,将累计投入10.5亿元资金用于保障性住房建设.(1)求到2013年底,这两年中投入资金的平均年增长率(只需列出方程);(2)设(1)中方程的两根分别为x1,x2,且mx12−4m2x1x2+mx22的值为12,求m的值.22.如图,抛物线y=x2−2x+c的顶点A在直线l:y=x−5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.23.如图,⊙O1、⊙O2相交于P、Q两点,其中⊙O1的半径r1=2,⊙O2的半径r2=√2.过点Q作CD⊥PQ,分别交⊙O1和⊙O2于点C、D,连接CP、DP,过点Q任作一直线AB交⊙O1和⊙O2于点A、B,连接AP、BP、AC、DB,且AC与DB的延长线交于点E.=√2;(1)求证:PAPB(2)若PQ=2,试求∠E度数.24.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.。
2012年云南省中考数学试题
2012年云南省中考数学试题一、选择题1.(2012•乌鲁木齐)关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根是0,则实数a 的值为()A.-1 B.0 C.1 D.-1或11.A1.解:把x=0代入方程得:|a|-1=0,∴a=±1,∵a-1≠0,∴a=-1.故选A.2.(2012•荆门)用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是()A.(x-1)2=4 B.(x+1)2=4 C.(x-1)2=16 D.(x+1)2=162.A3.(2012•宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x-3)2+11 B.(x+3)2-7 C.(x+3)2-11 D.(x+2)2+43.B.4.(2012•莆田)方程(x-1)(x+2)=0的两根分别为()A.x1=-1,x2=2 B.x1=1,x2=2C.x1=-1,x2=-2 D.x1=1,x2=-24.D5.(2012•淮安)方程x2-3x=0的解为()A.x=0 B.x=3 C.x1=0,x2=-3 D.x1=0,x2=35.D6.(2012•南昌)已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是()A.1 B.-1 C.D.-6.B.7.(2012•常德)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A.m≤-1 B.m≤1 C.m≤4 D.m≤7.B8.(2012•泰州)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1-x)2=36-25 B.36(1-2x)=25C.36(1-x)2=25 D.36(1-x2)=258.C.9.(2012•河池)一元二次方程x2+2x+2=0的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.无实数根考点:根的判别式。
2012年四川省宜宾市中考数学试卷解析
2012年四川省宜宾市中考数学试卷解析一.选择题(共8小题)1.(2012宜宾)﹣3的倒数是()A.B. 3 C.﹣3 D.﹣考点:倒数。
解答:解:根据倒数的定义得:﹣3×(﹣)=1,因此倒数是﹣.故选:D.2.(2012宜宾)下面四个几何体中,其左视图为圆的是()A.B.C.D.考点:简单几何体的三视图。
解答:解:A.圆柱的左视图是矩形,不符合题意;B.三棱锥的左视图是三角形,不符合题意;C.球的左视图是圆,符合题意;D.长方体的左视图是矩形,不符合题意.故选C.3.(2012宜宾)下面运算正确的是()A. 7a2b﹣5a2b=2 B. x8÷x4=x2C.(a﹣b)2=a2﹣b2D.(2x2)3=8x6考点:完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法。
解答:解:A.7a2b﹣5a2b=2a2b,故本选项错误;B.x8÷x4=x4,故本选项错误;C.(a﹣b)2=a2﹣2ab+b2,故本选项错误;D.(2x2)3=8x6,故本选项正确.故选D.4.(2012宜宾)宜宾今年5月某天各区县的最高气温如下表:区县翠屏区南溪长宁江安宜宾县珙县高县兴文筠连屏山最高气温(℃)32 32 30 32 30 31 29 33 30 32A.32,31.5 B.32,30 C.30,32 D.32,31考点:众数;中位数。
解答:解:在这一组数据中32是出现次数最多的,故众数是32;按大小排列后,处于这组数据中间位置的数是31、32,那么由中位数的定义可知,这组数据的中位数是31.5.故选:A.5.(2012宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x﹣3)2+11 B.(x+3)2﹣7 C.(x+3)2﹣11 D.(x+2)2+4 考点:配方法的应用。
解答:解:x2+6x+2=x2+6x+9﹣9+2=(x+3)2﹣7.故选B.6.(2012宜宾)分式方程的解为()A. 3 B.﹣3 C.无解D. 3或﹣3考点:解分式方程。
2012年四川省宜宾市中考真题及答案
宜宾市2012年高中阶段学校招生考试数学试卷注意事项:1.答题前,请务必将学校名称、姓名和考号填写在密封线内相应位置. 2.直接在试卷上作答,不得将答案写到密封线内,不得加附页. 一、选择题:(本大题共8个小题,每小题3分,共24分)以下每个小题均给出了代号为A 、B 、C 、D 的四个答案,其中只有一个答案是正确的,请将正确答案的代号直接填在题后的括号中.1.3-的倒数是( ) (A )13 (B )3 (C )3- (D )13- 2.下面四个几何体中,其左视图为圆的是( )3.下面运算正确的是( )(A )22752a b a b -= (B )842x x x ÷=(C )()222a b a b -=- (D )()32628xx =4.宜宾今年5月某天各区县的最高气温如下表:则这10个区县该天最高气温的众数和中位数分别是( )(A )32,31.5 (B )32,30 (C )30,32 (D )32,31 5.将代数式262x x ++化成2()x p q ++的形式为( )(A )2(3)11x -+ (B )2(3)7x +- (C )2(3)11x +- (D )2(2)4x ++6.分式方程21221933x x x -=--+的解为( ) (A )3 (B )3- (C )无解 (D )3或3-7.如图,在四边形ABCD 中,DC AB CB AB AB AD AD AB ⊥=1∥,,,=2,点E 、F 分别为AB 、AD 的中点,则AEF △与多边形BCDFE 的面积比为( ) (A )17 (B )16 (C )15 (D )148.给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线0y =是抛物线214y x =的切线; ②直线2x =-与抛物线214y x =相切于点(2-,1);③若直线y x b =+与抛物线214y x =相切,则相切于点(2,1);④若直线2y kx =-与抛物线214y x =相切,则实数k =其中正确命题的是( )(A )①②④ (B )①③ (C )②③ (D )①③④二、填空题(本大题共8个小题,每小题3分,共24分)请把答案直接填在题中横线上. 9.分解因式:22363m mn n -+= .10.一元一次不等式组3xx ⎧⎪⎨⎪<⎩≥-13+41的解集是 .11.如图,已知12359∠=∠=∠=°,则4∠= .12.如图,在平面直角坐标系中,将ABC △绕点P 旋转180得到DEF △,则点P 的坐标为_________.13.已知38122P xy x Q x xy =-+=--,,当0x ≠时,327P Q -=恒成立,则y 的值为__________.14.如图,已知正方形ABCD 的边长为1,连结AC 、BD ,CE 平分ACD ∠交BD 于点E ,则DE .15.如图,一次函数1(0)y ax b a=+≠与反比例函数2(0)ky kx=≠的图象交于(14)A,、(41B,)两点,若使12y y>,则x的取值范围是.16.如图,在O⊙中,AB是直径,点D是O⊙上一点,点C是 AD的中点,弦CE AB⊥于点F.过点D的切线交EC的延长线于点G.连结AD,分别交CF、BC于点P、Q,连结AC.给出下列结论:①BAD ABC∠=∠;②GP GD=;③点P是ACQ△的外心;④AP AD CQ CB∙=∙.其中正确的是(写出所有正确结论的序号).三、解答题(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(每小题5分,共10分)(1)计算:1( 1.--π+-(2)先化简,再求值:221111x xx x x÷--+-,其中2tan45.x=18.(本小题6分)如图,点A B D E 、、、在同一直线上,AD EB BC DF =,∥,C F =∠∠.求证:AC EF =.19.(本小题8分)为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了__________名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为__________,喜欢“戏曲”活动项目的人数是________人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目中任选两项成立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.20.(本小题8分)如图,在平面直角坐标系中,已知四边形ABCD 为菱形,且(03)A ,,(40)B -,.(1)求经过点C 的反比例函数的解析式; (2)设P 是(1)中所求函数图象上一点,以点P 、O 、A 为顶点的三角形的面积与COD △的面积相等,求点P 的坐标. 21.(本小题8分)某市政府为落实“保障性住房建设”这一惠民政策,2011年已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到2013年,将累计投入10.5亿元资金用于保障性住房建设.(1)求到2012年底,这两年中投入资金的平均年增长率(只需列出方程);(2)设(1)中方程的两根分别为1x 、2x ,且22211224mx m x x mx -+的值为12,求m 的值.22.(本小题10分)如图,抛物线22y x x c =-+的顶点A 在直线l :5y x =-上.(1)求抛物线顶点A 的坐标;(2)设抛物线与y 轴交于点B ,与x 轴交于点C 、D (C 点在D 点的左侧),试判断ABD△的形状;(3)在直线l 上是否存在一点P ,使以点P A B D 、、、为顶点的四边形是平行四边形,若存在,求点P 的坐标;若不存在,请说明理由.23.(本小题10分)如图,1O ⊙、2O ⊙相交于点P 、Q 两点,其中1O ⊙的半径12r =,2O ⊙的半径2r Q 作CD PQ ⊥.分别交1O ⊙和2O ⊙于点C D 、,边结CP DP 、,过点Q 任作一直线AB 交1O ⊙和2O ⊙于点A B 、,连结AP BP AC DB 、、、,且AC 与DB 的延长线交于点E .(1)求证:PAPB= (2)若2PQ =,试求E ∠的度数.24.(本小题12分)如图,在ABC △中,已知56AB AC BC ===,,且ABC DEF △≌△,将DEF △与ABC △重合在一起,ABC △不动,DEF △运动,并满足:点E 在边BC 上沿B 到C 的方向运动,且DE 始终经过点A ,EF 与AC 交于M 点. (1)求证:ABE ECM △∽△;(2)探究:在DEF △运动过程中,重叠部分能否构成等腰三角形,若能,求出BE 的长;若不能,请说明理由;(3)当线段AM 最短时,求重叠部分的面积.宜宾市2012年高中阶段学校招生考试数学试题答案及评分意见说明:一、本解答给出了一种或几种解法供参考,如果考生的解答与本解答不同,但结果正确,可比照评分意见制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半,如果后继部分的解答有较严重错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.二、填空题(每小题3分,共24分)9.23()m n - 10.31x -<-≤ 11.12112.(11)--,13.2 1 15.0x <或14x << 16.②③④ 三、解答题(本大题共8个题,共72分)17.(1)解:原式11+ ···································································· (4分)=······················································································ (5分) (2)解:原式=21(1)(1)11x x xx x x +∙-+-- ·················································· (1分)=211x xx x --- ··········································································· (2分) =1xx - ······················································································· (3分)当2tan 452x ==时,原式=2 ························································ (5分) 18.证明:AD EB =AD BD EB BD ∴-=-,即AB ED = ················································ (1分)又BC DF CBD FDB ∴= ∥,∠∠ ····················································· (2分)ABC EDF ∴=∠∠ ················································································ (3分)又C F ABC EDF =∴ ∠∠,△≌△ ··················································· (5分)AC EF ∴= ···························································································· (3分)19.(1)50,24%,4 ······························································································ (3分)(2)(用树状图)设舞蹈、乐器、声乐、戏曲的序号依次是①②③④.∴恰好选中“舞蹈、声乐”两项活动的概率是21126= ·································· (8分) (用列表法)∴恰好选中“舞蹈、声乐”两项活动的概率是21126= ·································· (8分) 20.解:(1)由题意知,34OA OB ==,在Rt AOB △中,5AB = 四边形ABCD 为菱形,5AD BC AB ∴===,(45)C ∴--, ············································ (2分)设经过点C 的反比例函数的解析式为5204k ky k x =∴=-=-,, ∴所求的反比例函数的解析式为30y x=··········································· (4分) (2)设()P x y ,53AD AB OA === ,2OD ∴=,12442COD S ∴=⨯⨯=△ 即1884233OA x x x ∙∙=∴==±,, 当83x =时,152y =;当83x =-时,152y =-81532P ⎛⎫∴ ⎪⎝⎭,或81532⎛⎫-- ⎪⎝⎭, ····························································· (8分) 21.解:(1)设到2013年底,这两年中投入资金的平均年增长率为x ,根据题意得:233(1)3(1)10.5x x ++++= ···································· (3分)(2)由(1)得,230.50x x +-= ·························································· (4分) 由根与系数的关系得,12230.5x x x x +=-=-1, ·························· (5分)又2221122412mx m x x mx -+=22121212()2412m x x x x m x x ⎡⎤∴+--=⎣⎦[]2914(0.5)12m m +-∙-=2560m m ∴+-=解得,6m =-或1m = ····································································· (8分)22.解:(1) 顶点A 的横坐标为212x -=-=,且顶点A 在5y x =-上, ∴当1x =时,154y =-=-(14)A ∴-, ··························································································· (2分)(2)ABD △是直角三角形.将(14)A -,代入22y x x c =-+,可得,1243c c -+=-∴=-,. 223(03)y x x B ∴=--∴-,,当0y =时,21223013x x x x --===,-,,(10)(30)C D ∴-,,,,22222222218(43)12(31)420BD OB OD AB AD =+==-+==-+=,,,222BD AB AD ∴+=,90ABD ∴= ∠,即ABD △是直角三角形 ······································ (6分)(3)存在.由题意知:直线5y x =-交y 轴于点(05)E -,,交x 轴于点(5F ,0) 5OE OF ∴==,又3OB OD ==OEF OBD ∴△与△都是等腰直角三角形BD l ∴∥,即PA BD ∥则构成平行四边形只能是PADB 或PABD ,如图,过点P 作y 轴的垂线,过点A 作x 轴的垂线并交于点G .设11(5)P x x -,,则1(15)G x -,,则1111541PG x AG x x =-=--=-,PA BD ==由勾股定理得:22211111(1)(1)1828024x x x x x -+-=--==-,,,(27)P ∴--,或(41)P -,∴存在点(27)P --,或(41)P -,使以点A B D P 、、、为顶点的四边形是平行四边形 ························································································································(10分)23.(1)证明:90CD PQ PQC PQD ⊥∴== ,∠∠ PC PD ∴、分别是12O O ⊙、⊙的直径. ·················································· (2分) 在1O ⊙中,PAB PCD =∠∠,在2O ⊙中,PBA PDC =∠∠,PAB PCD ∴△∽△1222r PA PC PB PD r ∴===; ··································································· (5分) (2)解:在Rt PCQ △中,1242PC r PQ === ,, 1cos 602PQ CPQ CPQ PC ∴==∴= ∠,∠, 在Rt PDQ △中,222PD r PQ === ,sin 452PQ PDQ PDQ PD ∴==∴= ∠∠, ·································· (8分) 6045CAQ CPQ PBQ PDQ ∴==== ∠∠,∠∠,又PD 是2O ⊙的直径,909045PBD ABE PBQ ∴==-=∠,∠∠ 在EAB △中,18075E CAQ ABE ∴=-= ∠-∠∠.·····················(10分) 24.(1)证明:AB AC B C =∴= ,∠∠, 又AEF CEM AEC B BAE +==+ ∠∠∠∠∠,又ABC DEF AEF B ∴=△≌△,∠∠, CBM BAE ABE ECM ∴=∴∠∠,△∽△; ········································· (3分)(2)AEF B C == ∠∠∠,且AME C >∠∠,AME AEF AE AM ∴>∴≠∠∠,; ······················································· (4分)当AE EM =时,则ABE ECM △≌△,51CE AB BE BC EC ∴==∴=-=, ······················································ (6分) 当AM EM =时,MAE MEA ∴=∠∠,MAE BAE MEA CEM ∴+=+∠∠∠∠,即CAB CEA =∠∠. 又CE AC C C CAE CBA AC CB=∴∴= ∠∠,△∽△,, 2252511.6666AC CE BE CB ∴==∴=-=;·············································· (8分) (3)设BE x =,又65CM CE CM x ABE ECM BE AB x ∴=∴= -△∽△,,, 22619(3)5555x CM x x ∴=-+=--+, ·············································(10分) 21165(3)55AM CM x ∴=-=-+∴,当3x =时,AM 最短为165, 又当132BE x BC ===时,∴点E 为BC 的中点,4AE BC AE ∴⊥∴,,此时,125EF AC EM ⊥∴==,. 116129625525AEM S ∴=⨯⨯=△. ···································································(12分) (本小题也可用几何法另解)。
2012年四川省宜宾市中考真题(word版含答案)
宜宾市2012年高中阶段学校招生考试数学试卷注意事项:1.答题前,请务必将学校名称、姓名和考号填写在密封线内相应位置. 2.直接在试卷上作答,不得将答案写到密封线内,不得加附页. 一、选择题:(本大题共8个小题,每小题3分,共24分)以下每个小题均给出了代号为A 、B 、C 、D 的四个答案,其中只有一个答案是正确的,请将正确答案的代号直接填在题后的括号中.1.3-的倒数是( ) (A )13 (B )3 (C )3- (D )13- 2.下面四个几何体中,其左视图为圆的是( )3.下面运算正确的是( )(A )22752a b a b -= (B )842x x x ÷=(C )()222a b a b -=- (D )()32628xx =4.宜宾今年5月某天各区县的最高气温如下表:则这10个区县该天最高气温的众数和中位数分别是( )(A )32,31.5 (B )32,30 (C )30,32 (D )32,31 5.将代数式262x x ++化成2()x p q ++的形式为( )(A )2(3)11x -+ (B )2(3)7x +- (C )2(3)11x +- (D )2(2)4x ++6.分式方程21221933x x x -=--+的解为( ) (A )3 (B )3- (C )无解 (D )3或3-7.如图,在四边形ABCD 中,DC AB CB AB AB AD AD AB ⊥=1∥,,,=2,点E 、F 分别为AB 、AD 的中点,则AEF △与多边形BCDFE 的面积比为( ) (A )17 (B )16 (C )15 (D )148.给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线0y =是抛物线214y x =的切线; ②直线2x =-与抛物线214y x =相切于点(2-,1);③若直线y x b =+与抛物线214y x =相切,则相切于点(2,1);④若直线2y kx =-与抛物线214y x =相切,则实数k =其中正确命题的是( )(A )①②④ (B )①③ (C )②③ (D )①③④二、填空题(本大题共8个小题,每小题3分,共24分)请把答案直接填在题中横线上. 9.分解因式:22363m mn n -+= .10.一元一次不等式组3xx ⎧⎪⎨⎪<⎩≥-13+41的解集是 .11.如图,已知12359∠=∠=∠=°,则4∠= .12.如图,在平面直角坐标系中,将ABC △绕点P 旋转180得到DEF △,则点P 的坐标为_________.13.已知38122P xy x Q x xy =-+=--,,当0x ≠时,327P Q -=恒成立,则y 的值为__________.14.如图,已知正方形ABCD 的边长为1,连结AC 、BD ,CE 平分ACD ∠交BD 于点E ,则DE .15.如图,一次函数1(0)y ax b a=+≠与反比例函数2(0)ky kx=≠的图象交于(14)A,、(41B,)两点,若使12y y>,则x的取值范围是.16.如图,在O⊙中,AB是直径,点D是O⊙上一点,点C是AD的中点,弦CE AB⊥于点F.过点D的切线交EC的延长线于点G.连结AD,分别交CF、BC于点P、Q,连结AC.给出下列结论:①BAD ABC∠=∠;②GP GD=;③点P是ACQ△的外心;④AP AD CQ CB∙=∙.其中正确的是(写出所有正确结论的序号).三、解答题(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(每小题5分,共10分)(1)计算:1( 1.--π+-(2)先化简,再求值:221111x xx x x÷--+-,其中2tan45.x =18.(本小题6分)如图,点A B D E 、、、在同一直线上,AD EB BC DF =,∥,C F =∠∠.求证:AC EF =.19.(本小题8分)为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了__________名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为__________,喜欢“戏曲”活动项目的人数是________人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目中任选两项成立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.20.(本小题8分)如图,在平面直角坐标系中,已知四边形ABCD 为菱形,且(03)A ,,(40)B -,.(1)求经过点的反比例函数的解析式; (2)设P 是(1)中所求函数图象上一点,以点P 、O 、A 为顶点的三角形的面积与COD △的面积相等,求点P 的坐标. 21.(本小题8分)某市政府为落实“保障性住房建设”这一惠民政策,2011年已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到2013年,将累计投入10.5亿元资金用于保障性住房建设.(1)求到2012年底,这两年中投入资金的平均年增长率(只需列出方程);(2)设(1)中方程的两根分别为1x 、2x ,且22211224mx m x x mx -+的值为12,求m 的值.22.(本小题10分)如图,抛物线22y x x c =-+的顶点A 在直线l :5y x =-上.(1)求抛物线顶点A 的坐标;(2)设抛物线与y 轴交于点B ,与x 轴交于点C 、D (C 点在D 点的左侧),试判断ABD△的形状;(3)在直线l 上是否存在一点P ,使以点P A B D 、、、为顶点的四边形是平行四边形,若存在,求点P 的坐标;若不存在,请说明理由.23.(本小题10分)如图,1O ⊙、2O ⊙相交于点P 、Q 两点,其中1O ⊙的半径12r =,2O ⊙的半径2r Q 作CD PQ ⊥.分别交1O ⊙和2O ⊙于点C D 、,边结CP DP 、,过点Q 任作一直线AB 交1O ⊙和2O ⊙于点A B 、,连结AP BP AC DB 、、、,且AC 与DB 的延长线交于点E .(1)求证:PAPB= (2)若2PQ =,试求E ∠的度数.24.(本小题12分)如图,在ABC △中,已知56AB AC BC ===,,且ABC DEF △≌△,将DEF △与ABC △重合在一起,ABC △不动,DEF △运动,并满足:点E 在边BC 上沿B 到C 的方向运动,且DE 始终经过点A ,EF 与AC 交于M 点. (1)求证:ABE ECM △∽△;(2)探究:在DEF △运动过程中,重叠部分能否构成等腰三角形,若能,求出BE 的长;若不能,请说明理由;(3)当线段AM 最短时,求重叠部分的面积.宜宾市2012年高中阶段学校招生考试数学试题答案及评分意见说明:一、本解答给出了一种或几种解法供参考,如果考生的解答与本解答不同,但结果正确,可比照评分意见制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半,如果后继部分的解答有较严重错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.二、填空题(每小题3分,共24分)9.23()m n - 10.31x -<-≤ 11.121 12.(11)--,13.2 1 15.0x <或14x << 16.②③④ 三、解答题(本大题共8个题,共72分)17.(1)解:原式11+ ···································································· (4分)=······················································································ (5分) (2)解:原式=21(1)(1)11x x xx x x +∙-+-- ·················································· (1分)=211x xx x --- ··········································································· (2分) =1xx - ······················································································· (3分)当2tan 452x ==时,原式=2 ························································ (5分) 18.证明:AD EB =AD BD EB BD ∴-=-,即AB ED = ················································ (1分)又BC DF CBD FDB ∴=∥,∠∠ ····················································· (2分)ABC EDF ∴=∠∠ ················································································ (3分)又C F ABC EDF =∴∠∠,△≌△ ··················································· (5分)AC EF ∴= ···························································································· (3分)19.(1)50,24%,4 ······························································································ (3分)(2)(用树状图)设舞蹈、乐器、声乐、戏曲的序号依次是①②③④.∴恰好选中“舞蹈、声乐”两项活动的概率是21126= ·································· (8分) (用列表法)∴恰好选中“舞蹈、声乐”两项活动的概率是21126= ·································· (8分) 20.解:(1)由题意知,34OA OB ==,在Rt AOB △中,5AB =四边形ABCD 为菱形,5AD BC AB ∴===,(45)C ∴--, ············································ (2分)设经过点C 的反比例函数的解析式为5204k ky k x =∴=-=-,, ∴所求的反比例函数的解析式为30y x=··········································· (4分) (2)设()P x y ,53AD AB OA ===,2OD ∴=,12442COD S ∴=⨯⨯=△即1884233OA x x x ∙∙=∴==±,, 当83x =时,152y =;当83x =-时,152y =-81532P ⎛⎫∴ ⎪⎝⎭,或81532⎛⎫-- ⎪⎝⎭, ····························································· (8分) 21.解:(1)设到2013年底,这两年中投入资金的平均年增长率为x ,根据题意得:233(1)3(1)10.5x x ++++= ···································· (3分)(2)由(1)得,230.50x x +-= ·························································· (4分) 由根与系数的关系得,12230.5x x x x +=-=-1, ·························· (5分)又2221122412mx m x x mx -+=22121212()2412m x x x x m x x ⎡⎤∴+--=⎣⎦[]2914(0.5)12m m +-∙-=2560m m ∴+-=解得,6m =-或1m = ····································································· (8分)22.解:(1)顶点A 的横坐标为212x -=-=,且顶点A 在5y x =-上, ∴当1x =时,154y =-=-(14)A ∴-, ··························································································· (2分)(2)ABD △是直角三角形.将(14)A -,代入22y x x c =-+,可得,1243c c -+=-∴=-,. 223(03)y x x B ∴=--∴-,,当0y =时,21223013x x x x --===,-,,(10)(30)C D ∴-,,,,22222222218(43)12(31)420BD OB OD AB AD =+==-+==-+=,,,222BD AB AD ∴+=,90ABD ∴=∠,即ABD △是直角三角形 ······································ (6分)(3)存在.由题意知:直线5y x =-交y 轴于点(05)E -,,交x 轴于点(5F ,0) 5OE OF ∴==,又3OB OD ==OEF OBD ∴△与△都是等腰直角三角形BD l ∴∥,即PA BD ∥则构成平行四边形只能是PADB 或PABD ,如图,过点P 作y 轴的垂线,过点A 作x 轴的垂线并交于点G .设11(5)P x x -,,则1(15)G x -,,则1111541PG x AG x x =-=--=-,PA BD ==由勾股定理得:22211111(1)(1)1828024x x x x x -+-=--==-,,,(27)P ∴--,或(41)P -,∴存在点(27)P --,或(41)P -,使以点A B D P 、、、为顶点的四边形是平行四边形 ························································································································(10分)23.(1)证明:90CD PQ PQC PQD ⊥∴==,∠∠PC PD ∴、分别是12O O ⊙、⊙的直径. ·················································· (2分) 在1O ⊙中,PAB PCD =∠∠,在2O ⊙中,PBA PDC =∠∠,PAB PCD ∴△∽△1222r PA PC PB PD r ∴===; ··································································· (5分) (2)解:在Rt PCQ △中,1242PC r PQ ===,, 1cos 602PQ CPQ CPQ PC ∴==∴=∠,∠, 在Rt PDQ △中,222PD r PQ ===,sin 452PQ PDQ PDQ PD ∴==∴=∠∠, ·································· (8分) 6045CAQ CPQ PBQ PDQ ∴====∠∠,∠∠,又PD 是2O ⊙的直径,909045PBD ABE PBQ ∴==-=∠,∠∠ 在EAB △中,18075E CAQ ABE ∴=-=∠-∠∠.·····················(10分)24.(1)证明:AB AC B C =∴=,∠∠, 又AEF CEM AEC B BAE +==+∠∠∠∠∠,又ABC DEF AEF B ∴=△≌△,∠∠, CBM BAE ABE ECM ∴=∴∠∠,△∽△; ········································· (3分)(2)AEF B C ==∠∠∠,且AME C >∠∠,AME AEF AE AM ∴>∴≠∠∠,; ······················································· (4分)当AE EM =时,则ABE ECM △≌△,51CE AB BE BC EC ∴==∴=-=, ······················································ (6分) 当AM EM =时,MAE MEA ∴=∠∠,MAE BAE MEA CEM ∴+=+∠∠∠∠,即CAB CEA =∠∠. 又CE AC C C CAE CBA AC CB=∴∴=∠∠,△∽△,, 2252511.6666AC CE BE CB ∴==∴=-=;·············································· (8分) (3)设BE x =,又65CM CE CM x ABE ECM BE AB x ∴=∴=-△∽△,,, 22619(3)5555x CM x x ∴=-+=--+, ·············································(10分) 21165(3)55AM CM x ∴=-=-+∴,当3x =时,AM 最短为165, 又当132BE x BC ===时,∴点E 为BC 的中点,4AE BC AE ∴⊥∴,,此时,125EF AC EM ⊥∴==,. 116129625525AEM S ∴=⨯⨯=△. ···································································(12分) (本小题也可用几何法另解)。
2012年宜宾市中考数学试卷(含答案解析)
2012年四川省宜宾市中考数学试卷一.选择题(共8小题)1.(2012宜宾)﹣3的倒数是( ) A .B . 3C . ﹣3D . ﹣2.(2012宜宾)下面四个几何体中,其左视图为圆的是( )A .B .C .D .3.(2012宜宾)下面运算正确的是( ) A . 7a 2b ﹣5a 2b=2B . x 8÷x 4=x 2C . (a ﹣b )2=a 2﹣b 2D . (2x 2)3=8x 64.(2012宜宾)宜宾今年5月某天各区县的最高气温如下表:5.(2012宜宾)将代数式x 2+6x+2化成(x+p )2+q 的形式为( ) A . (x ﹣3)2+11 B . (x+3)2﹣7C . (x+3)2﹣11D . (x+2)2+46.(2012宜宾)分式方程的解为( )A . 3B . ﹣3C . 无解D . 3或﹣37.(2012宜宾)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB.AD的中点,则△AEF与多边形BCDFE的面积之比为()A.B.C.D.8.(2012宜宾)给出定义:设一条直线与一条抛物线只有一个公共点,只这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线y=0是抛物线y=x2的切线②直线x=﹣2与抛物线y=x2相切于点(﹣2,1)③直线y=x+b与抛物线y=x2相切,则相切于点(2,1)④若直线y=kx﹣2与抛物线y=x2相切,则实数k=其中正确命题的是()A.①②④B.①③C.②③D.①③④二.填空题(共8小题)9.(2012宜宾)分解因式:3m2﹣6mn+3n2= .10.(2012宜宾)一元一次不等式组的解是.11.(2012宜宾)如图,已知∠1=∠2=∠3=59°,则∠4= .12.(2012宜宾)如图,在平面直角坐标系中,将△ABC绕点P旋转180°得到△DEF,则点P的坐标为.13.(2012宜宾)已知P=3xy﹣8x+1,Q=x﹣2xy﹣2,当x≠0时,3P﹣2Q=7恒成立,则y的值为.14.(2012宜宾)如图,已知正方形ABCD的边长为1,连接AC.BD,CE平分∠ACD交BD于点E,则DE= .15.(2012宜宾)如图,一次函数y1=ax+b(a≠0)与反比例函数的图象交于A(1,4)、B(4,1)两点,若使y1>y2,则x的取值范围是.16.(2012宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是(写出所有正确结论的序号).三.解答题(共8小题)17.(2012宜宾)(1)计算:(2)先化简,再求值:,其中x=2tan45°.18.(2012宜宾)如图,点A.B.D.E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.19.(2012宜宾)为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为,喜欢“戏曲”活动项目的人数是人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.20.(2012宜宾)如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.21.(2012宜宾)某市政府为落实“保障性住房政策,2011年已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到2013年底,将累计投入10.5亿元资金用于保障性住房建设.(1)求到2013年底,这两年中投入资金的平均年增长率(只需列出方程);(2)设(1)中方程的两根分别为x1,x2,且mx12﹣4m2x1x2+mx22的值为12,求m的值.22.(2012宜宾)如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C.D(C点在D点的左侧),试判断△ABD 的形状;(3)在直线l上是否存在一点P,使以点P、A.B.D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.23.(2012宜宾)如图,⊙O1、⊙O2相交于P、Q两点,其中⊙O1的半径r1=2,⊙O2的半径r2=.过点Q作CD⊥PQ,分别交⊙O1和⊙O2于点C.D,连接CP、DP,过点Q任作一直线AB交⊙O1和⊙O2于点A.B,连接AP、BP、AC.DB,且AC与DB的延长线交于点E.(1)求证:;(2)若PQ=2,试求∠E度数.24.(2012宜宾)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF 与△ABC重合在一起,△ABC不动,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.参考答案一、选这题1、考点:倒数。
2012年宜宾数学中考
宜宾市2012年高中阶段学校招生考试数学试题答案及评分意见说 明:一、本解答给出了一种解法供参考,如果考生的解答与本解答不同,可比照评分意见制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半,如果后继部分的解答有较严重错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一、选择题(每小题3分,共24分)二、填空题(每小题3分,共24分)9.2)(3n m -; 10.13-<≤-x ; 11.︒121; 12.(-1,-1); 13.2; 14.12- ; 15.0<x 或41<<x ; 16.②③④.三、解答题:(本大题共8个题,共72分)17.(1)解:原式=11323+-- ………(4分) =3-………(5分)(2)解:原式=111)1)(1(2--+⋅-+x x x x x x ………(1分)=112---x x x x ………(2分)=1-x x ………(3分)当2=x tan45°2=时 ,原式=2 ………(5分)18.证明: EB AD =BD EB BD AD -=- ,即ED AB = ………(1分)又∵BC ∥DF ,∴FDB CBD ∠=∠ ………(2分)∴EDF ABC ∠=∠ ………(3分) 又∵F C ∠=∠ , ∴ EDF ABC ∆≅∆ ………(5分) ∴EF AC = ………(6分)19. (1). 50, 24%, 4; ………(3分) (2)以下两种方法任选一种(用树状图)设舞蹈、乐器、声乐、戏曲的序号依次是①②③④选第一个项目 ① ② ③ ④选第二个项目 ②③④ ①③④ ① ② ③∴恰好选中“舞蹈”和“声乐”两项活动的概率是61122= ………(8分)(用列表法)∴恰好选中“舞蹈”和“声乐”两项活动的概率是61122= ………(8分)20. 解: (1)由题意知,4,3==OB OA 在Rt AOB ∆中,54322=+=AB ………(2分)设经过点C 的反比例函数的解析式为xk y =∴54-=-k ,20=k∴所求的反比例函数的解析式为xy 20= ………(4分)(2)设 P ),(y x∵四边形ABCD 为菱形,∴5==AB AD ,3=OA ∴2=OD , ∴44221=⨯⨯=∆COD S即421=⋅⋅x OA , ∴38=x ,∴38±=x 当38=x 时,215=y ; 当38-=x 时,215-=y∴P )215,38(或)215,38(--………(8分)21.解:(1)设到2013年底,这两年中投入资金的平均年增长率为x , 根据题意得:5.10)1(3)1(332=++++x x ………(3分)(2)由(1)得, 05.032=-+x x ………(4分) 由根与系数的关系得,321-=+x x ,5.021-=x x ………(5分) 又∵1242221221=+-mx x x m mx∴[]1242)(21221221=--+x x m x x x x m[]12)5.0(4192=-⋅-+m m∴0652=-+m m 解得,6-=m 或1=m ………(8分) 22. 解:(1)∵顶点A 的横坐标为x=122=--,且顶点A 在y=x-5上,∴当x =1时,y =1-5=-4,∴A (1,-4) ………(2分)(2)△ABD 是直角三角形将A (1,-4)代入c x x y +-=22,可得,1-2+c =-4,∴c =-3, ∴322--=x x y ,∴B (0,-3)当y =0时,0322=--x x , ∴11-=x ,32=x , ∴C (-1,0),D (3,0),18222=+=ODOBBD,21)34(222=+-=AB,204)13(222=+-=AD,∴222AD AB BD =+,∴∠ABD =90°,即△ABD 是直角三角形. ………(6分) (3)存在由题意知:直线l :5-=x y 交y 轴于点E (0,-5), 交x 轴于点F (5,0)∴OE=OF=5,又∵OB=OD =3,∴△OEF 与△OBD 都是等腰直角三角形 ∴BD ∥ l ,即PA ∥BD则构成平行四边形只能是PADB 或PABD ,如图,过点P 作y 轴的垂线,过点A 作x 轴的垂线并交于点G , 设)5,(11-x x P ,则11x PG -=,451--=x AG =11x - 23==BD PA由勾股定理得:,18)1()1(2221=-+-x x ,082121=--x x 21-=x ,4∴存在P (-2,-7)或P (4,-1)使以点P 、A 、B 、D 为顶点的四边形是平行四边形………(10分) 另解:直线l :5-=x y 交y 轴于点E (0,-5),交x 轴于点F (5,0) ∴OE=OF=5,又∵OB=OD =3, ∴△OEF 与△OBD 都是等腰直角三角形 ∴BD ∥ l ,即PA ∥BD当点P 在点A 的左侧时,PA =BD , 则四边形PADB 是平行四边形,∴PA =23 又∵△ABE 是等腰直角三角形, ∴AE=AB =2,∴PE=PA-AE =22 ∴P (-2,-7)当点P 在点A 的右侧时, PA =BD=23,则四边形PABD 是矩形,∴PD=AB=2 ∵△PDF 是等腰直角三角形,∴P (4,-1)∴存在P (-2,-7)或P (4,-1)使以点P 、A 、B 、D 为顶点的四边形是平行四边形………(10分)23. (1)证明:∵PQ CD ⊥ ,∴︒=∠=∠90PQD PQC∴PC 、PD 分别是⊙1O 、⊙2O 的直径, ………(2分) 在⊙1O 中, PCD PAB ∠=∠, 在⊙2O 中, ,PDC PBA ∠=∠ ∴△PAB ∽△PCD , ∴22221===r r PDPC PBPA ; ………(5分)(2)解:在R t △PCQ 中,∵421==r PC ,2=PQ , ∴21cos ==∠PCPQ CPQ ,∴︒=∠60CPQ ,在R t △PDQ 中,∵2222==r PD ,2=PQ ,∴22sin ==∠PDPQ DPQ ,∴︒=∠45PDQ , ………(8分)又∵PD 是⊙2O 的直径,∴︒=∠90PBD ,∴︒=∠=∠60CPQ CAQ ,︒=∠=∠45PDQ PBQ ,︒=∠-︒=∠4590PBQ ABE 在△EAB 中, ︒=∠-∠-︒=∠75180ABE CAQ E . ………(10分) 24 .(1)证明:∵AC AB =,∴C B ∠=∠,又∵BAE B CEM AEF ∠+∠=∠+∠,且B AEF ∠=∠,∴BAE CEM ∠=∠,∴△ABE ∽△ECM ; ………(3分) (2)∵ C B AEF ∠=∠=∠,且C AME ∠>∠,∴AEF AME ∠>∠,∴AM AE ≠; ………(4分) 当EM AE =时,则△ABE ≌△ECM ,∴5==AB CE ,∴1=-=EC BC BE当EM AM =时,∴MEA MAE ∠=∠,∴CEM MEA BAE MAE ∠+∠=∠+∠, 即CEA CAB ∠=∠, 又∵C C ∠=∠, ∴△CAE ∽△CBA ,∴CBAC ACCE =,∴6252==CBAC CE ,∴6116256=-=BE ; ………(8分)(3) 设x BE =,又∵△ABE ∽△ECM , ∴ABCE BECM =,∴56x xCM -=,∴59)3(5156522+--=+-=x x xCM , ………(10分)∴516)3(5152+-=-=x CM AM∴当x =3时,AM 最短为516,又当x BE ==3=BC 21时,∴点E 为BC 的中点,∴BC AE ⊥,∴422=-=BEABAE ,此时,AC EF ⊥,∴51222=-=CM CEEM ,∴259651251621=⨯⨯=∆AEM S . ………(12分)。
宜宾中考数学试题卷及答案
宜宾中考数学试题卷及答案第一部分:选择题(共40题,每题2分,共80分)1. 某数的1/4与1/2的和等于它自己,那么这个数是:A. 1B. 2C. 3D. 42. 若x + 4 = 7,则x的值是:A. 5B. -1C. 3D. 113. 以下能构成等腰三角形的是:A. 2 cm、2 cm、3cmB. 3 cm、4 cm、5 cmC. 4 cm、7 cm、8 cmD. 5 cm、5 cm、6 cm4. 一辆汽车以每小时60公里的速度行驶100公里,所需用的时间为:A. 1.5小时B. 2小时C. 1.2小时D. 2.5小时5. 以下哪个数是平方数?A. 49B. 36C. 25D. 166. 某年级有60%的学生参加了足球比赛,参加比赛的男生占全班人数的四分之一,那么参加比赛的男生人数是全班人数的:A. 25%B. 15%C. 20%D. 10%……(以下省略题目)第二部分:解答题(共5题,每题16分,共80分)1. 一个学生乘公交车去学校,上车后花费2元,每公里0.8元。
问他距离学校多远时,总共花费16元?答:设距离学校的公里数为x,根据题目可列方程:2 + 0.8x = 16解方程得:x = 18所以,学生距离学校18公里时,总共花费16元。
2. 甲、乙两人合作做一件工作,甲单独做需要5天完成,乙单独做需要8天完成。
问甲、乙两人合作多少天可以完成该工作?答:甲的单位时间完成工作的量为1/5,乙的单位时间完成工作的量为1/8。
设合作x天完成该工作,根据题目可列方程:x * (1/5 + 1/8) = 1解方程得:x ≈ 2.86所以,甲、乙两人合作约需2.86天才能完成该工作。
……(以下省略题目)附录:答案第一部分:选择题答案1. B2. C3. A4. A5. A6. D7. C8. D9. B 10. D11. A 12. C 13. B 14. D 15. A 16. B 17. C 18. A 19. D 20. B21. C 22. B 23. A 24. D 25. C 26. D 27. B 28. A 29. C 30. D31. B 32. C 33. D 34. A 35. B 36. C 37. A 38. D 39. A 40. B第二部分:解答题答案1. 18公里2. 约2.86天注意,以上仅为示范,实际的数学试题卷及答案将会更加详细且内容复杂。
2012年四川省宜宾市中考数学试卷及解析
2012年四川省宜宾市中考数学试卷及解析一、 填空题(每空2分,共40分) 1、21-的相反数是 ;-2的倒数是 ; 16的算术平方根是 ;-8的立方根是 。
2、不等式组⎩⎨⎧-+2804<>x x 的解集是 。
3、函数y=11-x 自变量x 的取值范围是 。
4、直线y=3x-2一定过(0,-2)和( ,0)两点。
5、样本5,4,3,2,1的方差是 ;标准差是 ;中位数是 。
6、等腰三角形的一个角为︒30,则底角为 。
7、梯形的高为4厘米,中位线长为5厘米,则梯形的面积为 平方厘米。
8、如图PA 切⊙O 于点A ,∠PAB=︒30,∠AOB= ,∠ACB= 。
9、 如图PA 切⊙O 于A 割线PBC 过圆心,交⊙O 于B 、C ,若PA=6;PB=3,则PC= ;⊙O 的半径为 。
10题图9题图ACDB8题图A11题图B10、如图∆ABC 中,∠C=︒90,点D 在BC 上,BD=6,AD=BC ,cos ∠ADC=53,则DC 的长为 。
11、如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则阴影部分既圆环的面积为 。
12、已知Rt ∆ABC 的两直角边AC 、BC 分别是一元二次方程06x 5-x 2=+的两根,则此Rt ∆的外接圆的面积为 。
二、 选择题(每题4分,共20分)13、如果方程0m x 2x 2=++有两个同号的实数根,m 的取值范围是 ( )A 、m <1B 、0<m ≤1C 、0≤m <1D 、m >014、徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元。
则平均每次降低成本的百分率是( )A .8.5% B. 9% C. 9.5% D. 10%15、二次函数c bx ax y 2++=的图像如图所示,则关于此二次函数的下列四个结论①a<0 ②a>0 ③ac 4-b 2>0 ④ab<0中,正确的结论有 ( ) A.1个 B.2个 C.3个 D.4个16题图16、如图:点P 是弦AB 上一点,连OP ,过点P 作PC ⊥OP ,PC 交⊙O ,若AP =4,PB =2,则PC 的长是 ( )A. 2B. 2C. 22D. 317、为了美化城市,建设中的某休闲中心准备用边长相等的正方形和正八边形两种地砖镶嵌地面,在每一个顶点周围,正方形、正八边形地砖的块数分别是( ) A. 1、2 B. 2、1 C. 2、3 D. 3、2 三、 (本题每题5分,共20分) 18、计算1303)2(2514-÷-+⎪⎭⎫⎝⎛+- 19、计算22)145(sin 230tan 3121-︒+︒--20、计算)+()-(+-ab b a ]a b a b b a a [2÷ 21、解方程11-x 1-1-x 22=四、解答题(每题7分,共28分)22、已知关于x 的一元二次方程0)32(22=+-+m x m x 的两个不相等的实数根α、β满足111=+βα,求m 的值。
2012年四川省宜宾市中考数学试卷-学生用卷
2012年四川省宜宾市中考数学试卷一、选择题(本大题共8小题,共24.0分)1.的倒数是A. B. 3 C. D.2.下面四个几何体中,其左视图为圆的是A. B. C. D.3.下面运算正确的是A. B. C. D.4.则着个区县该天最高气温的众数和中位数分别是A. 32,B. 32,30C. 30,32D. 32,315.将代数式化成的形式为A. B. C. D.6.分式方程的解为A. 3B.C. 无解D. 3或7.如图,在四边形ABCD中,,,,,点E、F分别为AB、AD的中点,则与多边形BCDFE的面积之比为A.B.C.D.8.给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线有下列命题:直线是抛物线的切线;直线与抛物线相切于点;若直线与抛物线相切,则相切于点;若直线与抛物线相切,则实数.其中正确命题的是A. B. C. D.二、填空题(本大题共8小题,共24.0分)9.分解因式:______.10.一元一次不等式组的解是______.11.如图,已知,则______.12.如图,在平面直角坐标系中,将绕点P旋转得到,则点P的坐标为______.13.已知,,当时,恒成立,则y的值为______.14.如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分交BD于点E,则______.15.如图,一次函数与反比例函数的图象交于、两点,若使,则x的取值范围是______.16.如图,在中,AB是直径,点D是上一点,点C是的中点,弦于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接给出下列结论:;;点P是的外心;.其中正确的是______写出所有正确结论的序号.三、解答题(本大题共8小题,共72.0分)17.计算:先化简,再求值:,其中.18.如图,点A、B、D、E在同一直线上,,,求证:.19.为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动每人只限一项”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:在这次调查中一共抽查了______名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为______,喜欢“戏曲”活动项目的人数是______人;若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.20.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且、.求经过点C的反比例函数的解析式;设P是中所求函数图象上一点,以P、O、A顶点的三角形的面积与的面积相等求点P的坐标.21.某市政府为落实“保障性住房政策”,2011年已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到2013年底,将累计投入亿元资金用于保障性住房建设.求到2013年底,这两年中投入资金的平均年增长率只需列出方程;设中方程的两根分别为,,且的值为12,求m的值.22.如图,抛物线的顶点A在直线l:上.求抛物线顶点A的坐标;设抛物线与y轴交于点B,与x轴交于点C、点在D点的左侧,试判断的形状;在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.23.如图,、相交于P、Q两点,其中的半径,的半径过点Q作,分别交和于点C、D,连接CP、DP,过点Q任作一直线AB交和于点A、B,连接AP、BP、AC、DB,且AC与DB的延长线交于点E.求证:;若,试求度数.24.如图,在中,已知,,且 ≌ ,将与重合在一起,不动,运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.求证: ∽ ;探究:在运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;当线段AM最短时,求重叠部分的面积.。
2012年宜宾中考数学试题(解析版)
2012年四川省宜宾市中考数学试卷一.选择题(共8小题)1.(2012宜宾)﹣3的倒数是()A.B. 3 C.﹣3 D.﹣考点:倒数。
解答:解:根据倒数的定义得:﹣3×(﹣)=1,因此倒数是﹣.故选:D.2.(2012宜宾)下面四个几何体中,其左视图为圆的是()A.B.C.D.考点:简单几何体的三视图。
解答:解:A.圆柱的左视图是矩形,不符合题意;B.三棱锥的左视图是三角形,不符合题意;C.球的左视图是圆,符合题意;D.长方体的左视图是矩形,不符合题意.故选C.3.(2012宜宾)下面运算正确的是()A.7a2b﹣5a2b=2 B. x8÷x4=x2C.(a﹣b)2=a2﹣b2D.(2x2)3=8x6考点:完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法。
解答:解:A.7a2b﹣5a2b=2a2b,故本选项错误;B.x8÷x4=x4,故本选项错误;C.(a﹣b)2=a2﹣2ab+b2,故本选项错误;D.(2x2)3=8x6,故本选项正确.故选D.A.32,31.5 B.32,30 C.30,32 D.32,31考点:众数;中位数。
解答:解:在这一组数据中32是出现次数最多的,故众数是32;按大小排列后,处于这组数据中间位置的数是31、32,那么由中位数的定义可知,这组数据的中位数是31.5.故选:A.5.(2012宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x﹣3)2+11 B.(x+3)2﹣7 C.(x+3)2﹣11 D.(x+2)2+4考点:配方法的应用。
解答:解:x2+6x+2=x2+6x+9﹣9+2=(x+3)2﹣7.故选B.6.(2012宜宾)分式方程的解为()A. 3 B.﹣3 C.无解D. 3或﹣3 考点:解分式方程。
解答:解:方程的两边同乘(x+3)(x﹣3),得12﹣2(x+3)=x﹣3,解得:x=3.检验:把x=3代入(x+3)(x﹣3)=0,即x=3不是原分式方程的解.故原方程无解.故选C.7.(2012宜宾)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB.AD 的中点,则△AEF与多边形BCDFE的面积之比为()A.B.C.D.考点:相似三角形的判定与性质;三角形的面积;三角形中位线定理。
2013-2019年四川省宜宾市中考数学试题汇编(含参考答案与解析)
【中考数学试题汇编】2013—2019年四川省宜宾市数学试题汇编(含参考答案与解析)1、2013年四川省宜宾市中考数学试题及参考答案与解析 (2)2、2014年四川省宜宾市中考数学试题及参考答案与解析 (20)3、2015年四川省宜宾市中考数学试题及参考答案与解析 (38)4、2016年四川省宜宾市中考数学试题及参考答案与解析 (58)5、2017年四川省宜宾市中考数学试题及参考答案与解析 (79)6、2018年四川省宜宾市中考数学试题及参考答案与解析 (96)7、2019年四川省宜宾市中考数学试题及参考答案与解析 (119)2013年四川省宜宾市中考数学试题及参考答案与解析一.选择题(本大题共8小题,每小题3分,满分24分)1.下列各数中,最小的数是()A.2 B.﹣3 C.13-D.02.据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为()A.3.3×108B.3.3×109C.3.3×107D.0.33×10103.下列水平放置的四个几何体中,主视图与其它三个不相同的是()A.B.C.D.4.要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的()A.方差B.众数C.平均数D.中位数5.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥06.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等7.某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为()A.3 B.5 C.7 D.98.对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2=1;③不等式组()240130xx⎧-⊗-⎪⎨⊗-⎪⎩<<的解集为:﹣1<x<4;④点15,22⎛⎫⎪⎝⎭在函数y=x⊗(﹣1)的图象上.其中正确的是()A.①②③④B.①③C.①②③D.③④二.填空题(本大题共8小题,每小题3分,满分24分)9.分式方程1321x x=+的解为.10.分解因式:am2﹣4an2=.11.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2=.12.某企业五月份的利润是25万元,预计七月份的利润将达到36万元.设平均月增长率为x,根据题意所列方程是.13.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为.14.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.15.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD 的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为.16.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足13CFFD=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠;④S△DEF=其中正确的是(写出所有正确结论的序号).三.解答题(本大题共8小题,满分72分)17.(10分)(1)计算:|﹣﹣4sin45°﹣1﹣2(2)化简:221b a a b a b ⎛⎫÷- ⎪-+⎝⎭. 18.(6分)如图:已知D 、E 分别在AB 、AC 上,AB=AC ,∠B=∠C ,求证:BE=CD .19.(8分)为响应我市“中国梦”•“宜宾梦”主题教育活动,某中学在全校学生中开展了以“中国梦•我的梦”为主题的征文比赛,评选出一、二、三等奖和优秀奖.小明同学根据获奖结果,绘制成如图所示的统计表和数学统计图.请你根据以上图表提供的信息,解答下列问题:(1)a= ,b= ,n= .(2)学校决定在获得一等奖的作者中,随机推荐两名作者代表学校参加市级比赛,其中王梦、李刚都获得一等奖,请用画树状图或列表的方法,求恰好选中这二人的概率.20.(8分)2013年4月20日,我省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?21.(8分)宜宾是国家级历史文化名城,大观楼是标志性建筑之一(如图①).喜爱数学实践活动的小伟查资料得知:大观楼始建于明代(一说是唐代韦皋所建),后毁于兵火,乾隆乙酉年(1765年)重建,它是我国目前现存最高大、最古老的楼阁之一.小伟决定用自己所学习的知识测量大观楼的高度.如图②,他利用测角仪站在B处测得大观楼最高点P的仰角为45°,又前进了12米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算大观楼的高度.(,结果保留整数).22.(10分)如图,直线y=x﹣1与反比例函数kyx的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).(1)求反比例函数的解析式;(2)若点P(n,1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.23.(10分)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是BD的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.24.(12分)如图,抛物线y1=x2﹣1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.(1)请直接写出抛物线y2的解析式;(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.参考答案与解析一.选择题(本大题共8小题,每小题3分,满分24分)1.下列各数中,最小的数是()A.2 B.﹣3 C.13-D.0【知识考点】有理数大小比较.【思路分析】根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,进行比较即可.【解答过程】解:∵﹣3<13-<0<2,∴最小的数是﹣3;故选B.【总结归纳】此题考查了有理数的大小比较,要熟练掌握任意两个有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小.2.据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为()A.3.3×108B.3.3×109C.3.3×107D.0.33×1010【知识考点】科学记数法—表示较大的数.【思路分析】找出所求数字的位数,减去1得到10的指数,表示成科学记数法即可.【解答过程】解:330000000用科学记数法表示为3.3×108.故选A.【总结归纳】此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.。
四川省宜宾市中考真题及答案
宜宾市2012年高中阶段学校招生考试数学试卷注意事项:1.答题前,请务必将学校名称、姓名和考号填写在密封线内相应位置. 2.直接在试卷上作答,不得将答案写到密封线内,不得加附页. 一、选择题:(本大题共8个小题,每小题3分,共24分)以下每个小题均给出了代号为A 、B 、C 、D 的四个答案,其中只有一个答案是正确的,请将正确答案的代号直接填在题后的括号中.1.3-的倒数是( ) (A )13 (B )3 (C )3- (D )13- 2.下面四个几何体中,其左视图为圆的是( )3.下面运算正确的是( )(A )22752a b a b -= (B )842x x x ÷= (C )()222a b a b -=- (D )()32628xx =4.宜宾今年5月某天各区县的最高气温如下表:则这10个区县该天最高气温的众数和中位数分别是( )(A )32,31.5 (B )32,30 (C )30,32 (D )32,315.将代数式262x x ++化成2()x p q ++的形式为( )(A )2(3)11x -+ (B )2(3)7x +- (C )2(3)11x +- (D )2(2)4x ++6.分式方程21221933x x x -=--+的解为( ) (A )3 (B )3- (C )无解 (D )3或3-7.如图,在四边形ABCD 中,DC AB CB AB AB AD AD AB ⊥=1∥,,,=2,点E 、F 分别为AB 、AD 的中点,则AEF △与多边形BCDFE 的面积比为( ) (A )17 (B )16 (C )15 (D )148.给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线0y =是抛物线214y x =的切线; ②直线2x =-与抛物线214y x =相切于点(2-,1);③若直线y x b =+与抛物线214y x =相切,则相切于点(2,1);④若直线2y kx =-与抛物线214y x =相切,则实数k =其中正确命题的是( )(A )①②④ (B )①③ (C )②③ (D )①③④二、填空题(本大题共8个小题,每小题3分,共24分)请把答案直接填在题中横线上. 9.分解因式:22363m mn n -+= .10.一元一次不等式组3xx ⎧⎪⎨⎪<⎩≥-13+41的解集是 .11.如图,已知12359∠=∠=∠=°,则4∠= .12.如图,在平面直角坐标系中,将ABC △绕点P 旋转180o得到DEF △,则点P 的坐标为_________.13.已知38122P xy x Q x xy =-+=--,,当0x ≠时,327P Q -=恒成立,则y 的值为__________.14.如图,已知正方形ABCD 的边长为1,连结AC 、BD ,CE 平分ACD ∠交BD 于点E ,则DE .15.如图,一次函数1(0)y ax b a =+≠与反比例函数2(0)ky k x=≠的图象交于(14)A ,、(41B ,)两点,若使12y y >,则x 的取值范围是 .16.如图,在O ⊙中,AB 是直径,点D 是O ⊙上一点,点C 是»AD 的中点,弦CE AB ⊥于点F .过点D 的切线交EC 的延长线于点G .连结AD ,分别交CF 、BC 于点P 、Q ,连结AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ △的外心;④AP AD CQ CB •=•.其中正确的是 (写出所有正确结论的序号).三、解答题(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤. 17.(每小题5分,共10分)(1)计算:10( 1.---π-+-(2)先化简,再求值:221111x x x x x ÷--+-,其中2tan 45.x =o18.(本小题6分)如图,点A B D E 、、、在同一直线上,AD EB BC DF =,∥,C F =∠∠.求证:AC EF =.19.(本小题8分)为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了__________名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为__________,喜欢“戏曲”活动项目的人数是________人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目中任选两项成立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.20.(本小题8分)如图,在平面直角坐标系中,已知四边形ABCD 为菱形,且(03)A ,,(40)B -,.(1)求经过点的反比例函数的解析式; (2)设P 是(1)中所求函数图象上一点,以点P 、O 、A 为顶点的三角形的面积与COD △的面积相等,求点P 的坐标. 21.(本小题8分)某市政府为落实“保障性住房建设”这一惠民政策,2011年已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到2013年,将累计投入10.5亿元资金用于保障性住房建设.(1)求到2012年底,这两年中投入资金的平均年增长率(只需列出方程);(2)设(1)中方程的两根分别为1x 、2x ,且22211224mx m x x mx -+的值为12,求m 的值.22.(本小题10分)如图,抛物线22y x x c =-+的顶点A 在直线l :5y x =-上.(1)求抛物线顶点A 的坐标;(2)设抛物线与y 轴交于点B ,与x 轴交于点C 、D (C 点在D 点的左侧),试判断ABD △的形状;(3)在直线l 上是否存在一点P ,使以点P A B D 、、、为顶点的四边形是平行四边形,若存在,求点P 的坐标;若不存在,请说明理由.23.(本小题10分)如图,1O ⊙、2O ⊙相交于点P 、Q 两点,其中1O ⊙的半径12r =,2O ⊙的半径2r Q 作CD PQ ⊥.分别交1O ⊙和2O ⊙于点C D 、,边结CP DP 、,过点Q 任作一直线AB 交1O ⊙和2O ⊙于点A B 、,连结AP BP AC DB 、、、,且AC 与DB 的延长线交于点E .(1)求证:PAPB= (2)若2PQ =,试求E ∠的度数.24.(本小题12分)如图,在ABC △中,已知56AB AC BC ===,,且ABC DEF △≌△,将DEF △与ABC △重合在一起,ABC △不动,DEF △运动,并满足:点E 在边BC 上沿B 到C 的方向运动,且DE 始终经过点A ,EF 与AC 交于M 点. (1)求证:ABE ECM △∽△;(2)探究:在DEF △运动过程中,重叠部分能否构成等腰三角形,若能,求出BE 的长;若不能,请说明理由;(3)当线段AM 最短时,求重叠部分的面积.宜宾市2012年高中阶段学校招生考试数学试题答案及评分意见说明:一、本解答给出了一种或几种解法供参考,如果考生的解答与本解答不同,但结果正确,可比照评分意见制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半,如果后继部分的解答有较严重错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.二、填空题(每小题3分,共24分)9.23()m n - 10.31x -<-≤ 11.121o 12.(11)--,13.2 1 15.0x <或14x << 16.②③④ 三、解答题(本大题共8个题,共72分)17.(1)解:原式11+ ······················································ (4分)= ······································································ (5分) (2)解:原式=21(1)(1)11x x xx x x +•-+-- ········································ (1分)=211x xx x --- ···························································· (2分) =1xx - ····································································· (3分)当2tan 452x ==o时,原式=2 ············································· (5分) 18.证明:AD EB =QAD BD EB BD ∴-=-,即AB ED = ······································· (1分) 又BC DF CBD FDB ∴=Q ∥,∠∠ ·········································· (2分) ABC EDF ∴=∠∠ ································································ (3分) 又C F ABC EDF =∴Q ∠∠,△≌△ ········································· (5分) AC EF ∴= ·········································································· (3分) 19.(1)50,24%,4 ··········································································· (3分)(2)(用树状图)设舞蹈、乐器、声乐、戏曲的序号依次是①②③④.∴恰好选中“舞蹈、声乐”两项活动的概率是21126= ··························· (8分) (用列表法)∴恰好选中“舞蹈、声乐”两项活动的概率是21126= ··························· (8分) 20.解:(1)由题意知,34OA OB ==,在Rt AOB △中,5AB == Q 四边形ABCD 为菱形,5AD BC AB ∴===,(45)C ∴--, ··································· (2分) 设经过点C 的反比例函数的解析式为5204k ky k x =∴=-=-,, ∴所求的反比例函数的解析式为30y x=··································· (4分) (2)设()P x y ,53AD AB OA ===Q ,2OD ∴=,12442COD S ∴=⨯⨯=△即1884233OA x x x ••=∴==±,, 当83x =时,152y =;当83x =-时,152y =-81532P ⎛⎫∴ ⎪⎝⎭,或81532⎛⎫-- ⎪⎝⎭, ················································· (8分)21.解:(1)设到2013年底,这两年中投入资金的平均年增长率为x ,根据题意得:233(1)3(1)10.5x x ++++= ····························· (3分)(2)由(1)得,230.50x x +-= ·············································· (4分) 由根与系数的关系得,12230.5x x x x +=-=-1, ····················· (5分)又2221122412mx m x x mx -+=Q22121212()2412m x x x x m x x ⎡⎤∴+--=⎣⎦[]2914(0.5)12m m +-•-=2560m m ∴+-=解得,6m =-或1m = ······················································· (8分)22.解:(1)Q 顶点A 的横坐标为212x -=-=,且顶点A 在5y x =-上, ∴当1x =时,154y =-=-(14)A ∴-, ········································································ (2分) (2)ABD △是直角三角形.将(14)A -,代入22y x x c =-+,可得,1243c c -+=-∴=-,.223(03)y x x B ∴=--∴-,,当0y =时,21223013x x x x --===,-,,(10)(30)C D ∴-,,,,22222222218(43)12(31)420BD OB OD AB AD =+==-+==-+=,,,222BD AB AD ∴+=,90ABD ∴=o ∠,即ABD △是直角三角形 ······························· (6分)(3)存在.由题意知:直线5y x =-交y 轴于点(05)E -,,交x 轴于点(5F ,0) 5OE OF ∴==,又3OB OD ==QOEF OBD ∴△与△都是等腰直角三角形BD l ∴∥,即PA BD ∥则构成平行四边形只能是PADB 或PABD ,如图,过点P 作y 轴的垂线,过点A 作x 轴的垂线并交于点G .设11(5)P x x -,,则1(15)G x -,,则1111541PG x AG x x =-=--=-,PA BD ==由勾股定理得:22211111(1)(1)1828024x x x x x -+-=--==-,,,(27)P ∴--,或(41)P -,∴存在点(27)P --,或(41)P -,使以点A B D P 、、、为顶点的四边形是平行四边形 ······························································································· (10分)23.(1)证明:90CD PQ PQC PQD ⊥∴==Q ,∠∠PC PD ∴、分别是12O O ⊙、⊙的直径. ········································ (2分)在1O ⊙中,PAB PCD =∠∠,在2O ⊙中,PBA PDC =∠∠,PAB PCD ∴△∽△1222r PA PC PB PD r ∴===; ······················································ (5分) (2)解:在Rt PCQ △中,1242PC r PQ ===Q ,,1cos 602PQ CPQ CPQ PC ∴==∴=o ∠,∠, 在Rt PDQ △中,222PD r PQ ===Q ,sin 452PQ PDQ PDQ PD ∴==∴=o ∠∠, ···························· (8分) 6045CAQ CPQ PBQ PDQ ∴====o o ∠∠,∠∠,又PD Q 是2O ⊙的直径,909045PBD ABE PBQ ∴==-=o o o∠,∠∠ 在EAB △中,18075E CAQ ABE ∴=-=o o ∠-∠∠. ··············· (10分)24.(1)证明:AB AC B C =∴=Q ,∠∠,又AEF CEM AEC B BAE +==+Q ∠∠∠∠∠,又ABC DEF AEF B ∴=△≌△,∠∠,CBM BAE ABE ECM ∴=∴∠∠,△∽△; ································· (3分)(2)AEF B C ==Q ∠∠∠,且AME C >∠∠,AME AEF AE AM ∴>∴≠∠∠,; ············································ (4分) 当AE EM =时,则ABE ECM △≌△,51CE AB BE BC EC ∴==∴=-=, ··········································· (6分) 当AM EM =时,MAE MEA ∴=∠∠,MAE BAE MEA CEM ∴+=+∠∠∠∠,即CAB CEA =∠∠. 又CE AC C C CAE CBA AC CB=∴∴=Q ∠∠,△∽△,, 2252511.6666AC CE BE CB ∴==∴=-=;····································· (8分) (3)设BE x =,又65CM CE CM x ABE ECM BE AB x ∴=∴=Q -△∽△,,, 22619(3)5555x CM x x ∴=-+=--+, ··································· (10分) 21165(3)55AM CM x ∴=-=-+∴,当3x =时,AM 最短为165, 又当132BE x BC ===时,∴点E 为BC 的中点,4AE BC AE ∴⊥∴==,,此时,125EF AC EM ⊥∴==,. 116129625525AEM S ∴=⨯⨯=△. ····················································· (12分) (本小题也可用几何法另解)。
四川省宜宾市中考真题
宜宾市2012年高中阶段学校招生考试数学试卷注意事项:1.答题前,请务必将学校名称、姓名和考号填写在密封线内相应位置. 2.直接在试卷上作答,不得将答案写到密封线内,不得加附页. 一、选择题:(本大题共8个小题,每小题3分,共24分)以下每个小题均给出了代号为A 、B 、C 、D 的四个答案,其中只有一个答案是正确的,请将正确答案的代号直接填在题后的括号中.1.3-的倒数是( ) (A )13 (B )3 (C )3- (D )13- 2.下面四个几何体中,其左视图为圆的是( )3.下面运算正确的是( )(A )22752a b a b -= (B )842x x x ÷= (C )()222a b a b -=- (D )()32628xx =4.宜宾今年5月某天各区县的最高气温如下表:则这10个区县该天最高气温的众数和中位数分别是( )(A )32,31.5 (B )32,30 (C )30,32 (D )32,315.将代数式262x x ++化成2()x p q ++的形式为( )(A )2(3)11x -+ (B )2(3)7x +- (C )2(3)11x +- (D )2(2)4x ++6.分式方程21221933x x x -=--+的解为( ) (A )3 (B )3- (C )无解 (D )3或3-7.如图,在四边形ABCD 中,DC AB CB AB AB AD AD AB ⊥=1∥,,,=2,点E 、F 分别为AB 、AD 的中点,则AEF △与多边形BCDFE 的面积比为( ) (A )17 (B )16 (C )15 (D )148.给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线0y=是抛物线214y x=的切线;②直线2x=-与抛物线214y x=相切于点(2-,1);③若直线y x b=+与抛物线214y x=相切,则相切于点(2,1);④若直线2y kx=-与抛物线214y x=相切,则实数k=其中正确命题的是()(A)①②④(B)①③(C)②③(D)①③④二、填空题(本大题共8个小题,每小题3分,共24分)请把答案直接填在题中横线上.9.分解因式:22363m mn n-+=.10.一元一次不等式组3xx⎧⎪⎨⎪<⎩≥-13+41的解集是.11.如图,已知12359∠=∠=∠=°,则4∠=.12.如图,在平面直角坐标系中,将ABC△绕点P旋转180得到DEF△,则点P的坐标为_________.13.已知38122P xy x Q x xy=-+=--,,当0x≠时,327P Q-=恒成立,则y的值为__________.14.如图,已知正方形ABCD的边长为1,连结AC、BD,CE平分ACD∠交BD于点E,则DE.15.如图,一次函数1(0)y ax b a=+≠与反比例函数2(0)ky kx=≠的图象交于(14)A,、(41B,)两点,若使12y y>,则x的取值范围是.16.如图,在O⊙中,AB是直径,点D是O⊙上一点,点C是AD的中点,弦CE AB⊥于点F.过点D的切线交EC的延长线于点G.连结AD,分别交CF、BC于点P、Q,连结AC.给出下列结论:①BAD ABC∠=∠;②GP GD=;③点P是ACQ△的外心;④AP AD CQ CB∙=∙.其中正确的是(写出所有正确结论的序号).三、解答题(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(每小题5分,共10分)(1)计算:1( 1.---π-+-(2)先化简,再求值:221111x xx x x÷--+-,其中2tan45.x =18.(本小题6分)如图,点A B D E 、、、在同一直线上,AD EB BC DF =,∥,C F =∠∠.求证:AC EF =.19.(本小题8分)为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了__________名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为__________,喜欢“戏曲”活动项目的人数是________人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目中任选两项成立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.20.(本小题8分)如图,在平面直角坐标系中,已知四边形ABCD 为菱形,且(03)A ,,(40)B -,.(1)求经过点的反比例函数的解析式; (2)设P 是(1)中所求函数图象上一点,以点P 、O 、A 为顶点的三角形的面积与COD △的面积相等,求点P 的坐标. 21.(本小题8分)某市政府为落实“保障性住房建设”这一惠民政策,2011年已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到2013年,将累计投入10.5亿元资金用于保障性住房建设.(1)求到2012年底,这两年中投入资金的平均年增长率(只需列出方程);(2)设(1)中方程的两根分别为1x 、2x ,且22211224mx m x x mx -+的值为12,求m 的值.22.(本小题10分)如图,抛物线22y x x c =-+的顶点A 在直线l :5y x =-上.(1)求抛物线顶点A 的坐标;(2)设抛物线与y 轴交于点B ,与x 轴交于点C 、D (C 点在D 点的左侧),试判断ABD △的形状;(3)在直线l 上是否存在一点P ,使以点P A B D 、、、为顶点的四边形是平行四边形,若存在,求点P 的坐标;若不存在,请说明理由.23.(本小题10分)如图,1O ⊙、2O ⊙相交于点P 、Q 两点,其中1O ⊙的半径12r =,2O ⊙的半径2r Q 作CD PQ ⊥.分别交1O ⊙和2O ⊙于点C D 、,边结CP DP 、,过点Q 任作一直线AB 交1O ⊙和2O ⊙于点A B 、,连结AP BP AC DB 、、、,且AC 与DB 的延长线交于点E .(1)求证:PAPB=(2)若2PQ =,试求E ∠的度数.24.(本小题12分)如图,在ABC △中,已知56AB AC BC ===,,且ABC DEF △≌△,将DEF △与ABC △重合在一起,ABC △不动,DEF △运动,并满足:点E 在边BC 上沿B 到C 的方向运动,且DE 始终经过点A ,EF 与AC 交于M 点. (1)求证:ABE ECM △∽△;(2)探究:在DEF △运动过程中,重叠部分能否构成等腰三角形,若能,求出BE 的长;若不能,请说明理由;(3)当线段AM 最短时,求重叠部分的面积.。
四川省宜宾市中考数学试卷
2012年四川省宜宾市中考数学试卷解析一.选择题(共8小题)1.(2012宜宾)﹣3的倒数是( )A .B . 3C . ﹣3D . ﹣2.(2012宜宾)下面四个几何体中,其左视图为圆的是( )A .B .C .D .3.(2012宜宾)下面运算正确的是( )A . 7a 2b ﹣5a 2b=2B . x 8÷x 4=x 2C . (a ﹣b )2=a 2﹣b 2D . (2x 2)3=8x 64.(2012宜宾)宜宾今年5月某天各区县的最高气温如下表:5.(2012宜宾)将代数式x 2+6x+2化成(x+p )2+q 的形式为( )A . (x ﹣3)2+11B . (x+3)2﹣7C . (x+3)2﹣11D . (x+2)2+4 6.(2012宜宾)分式方程的解为( )A . 3B . ﹣3C . 无解D . 3或﹣37.(2012宜宾)如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB=AD ,CD=AB ,点E 、F 分别为AB .AD 的中点,则△AEF 与多边形BCDFE 的面积之比为( )A.B.C.D.8.(2012宜宾)给出定义:设一条直线与一条抛物线只有一个公共点,只这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线y=0是抛物线y=x2的切线②直线x=﹣2与抛物线y=x2相切于点(﹣2,1)③直线y=x+b与抛物线y=x2相切,则相切于点(2,1)④若直线y=kx﹣2与抛物线y=x2相切,则实数k=其中正确命题的是()A.①②④B.①③C.②③D.①③④二.填空题(共8小题)9.(2012宜宾)分解因式:3m2﹣6mn+3n2= .10.(2012宜宾)一元一次不等式组的解是.11.(2012宜宾)如图,已知∠1=∠2=∠3=59°,则∠4= .12.(2012宜宾)如图,在平面直角坐标系中,将△ABC绕点P旋转180°得到△DEF,则点P的坐标为.13.(2012宜宾)已知P=3xy﹣8x+1,Q=x﹣2xy﹣2,当x≠0时,3P﹣2Q=7恒成立,则y的值为.14.(2012宜宾)如图,已知正方形ABCD的边长为1,连接AC.BD,CE平分∠ACD交BD于点E,则DE= .15.(2012宜宾)如图,一次函数y1=ax+b(a≠0)与反比例函数的图象交于A(1,4)、B(4,1)两点,若使y1>y2,则x的取值范围是.16.(2012宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是(写出所有正确结论的序号).三.解答题(共8小题)17.(2012宜宾)(1)计算:(2)先化简,再求值:,其中x=2tan45°.18.(2012宜宾)如图,点A.B.D.E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.19.(2012宜宾)为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为,喜欢“戏曲”活动项目的人数是人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.(2)(用树状图)设舞蹈、乐器、声乐、戏曲的序号依次是①②③④,20.(2012宜宾)如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.21.(2012宜宾)某市政府为落实“保障性住房政策,2011年已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到2013年底,将累计投入10.5亿元资金用于保障性住房建设.(1)求到2013年底,这两年中投入资金的平均年增长率(只需列出方程);(2)设(1)中方程的两根分别为x1,x2,且mx12﹣4m2x1x2+mx22的值为12,求m的值.22.(2012宜宾)如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C.D(C点在D点的左侧),试判断△ABD 的形状;(3)在直线l上是否存在一点P,使以点P、A.B.D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.23.(2012宜宾)如图,⊙O1、⊙O2相交于P、Q两点,其中⊙O1的半径r1=2,⊙O2的半径r2=.过点Q作CD⊥PQ,分别交⊙O1和⊙O2于点C.D,连接CP、DP,过点Q任作一直线AB交⊙O1和⊙O2于点A.B,连接AP、BP、AC.DB,且AC与DB的延长线交于点E.(1)求证:;(2)若PQ=2,试求∠E度数.24.(2012宜宾)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF 与△ABC重合在一起,△ABC不动,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年 初中总复习质量检查
数 学 试 题
(满分:150分;考试时间:120分钟)
友情提示:
1.选择题答案用2B 铅笔填涂,非选择题使用黑色签字笔作答,作图或画辅助线等需用签字笔描黑。
2.未注明精确度保留有效数字等的计算问题,结果应为准确数。
3.抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为(-2b a ,
2
44ac b
a
-),对称轴x =-
2b
a
. 一、选择题(共10小题,每小题4分,满分40分.每小题只有一个正确选项,请在答题卡
的相应位置填涂) 1. -3的绝对值是 ( ▲ )
A . 3
B . -3
C . ±3
D .
1
3
2. 反映空气质量的监测数据PM2.5是指大气中直径小于或等于0.0000025米即2.5微米的颗粒物,也称为可入肺颗粒物。
把0.0000025用科学记数法表示,正确为( ▲ ) A .51025.0-⨯ B .5105.2-⨯ C .6105.2-⨯ D .7
1025-⨯ 3. 下列计算正确的是 ( ▲ )
A . 2
2
4
2a a a += B . 22(2)4a a = C .0
1
333-+=- D .42=± 4.若右图是某几何体的三视图,则这个几何体是( ▲ )
A . 长方体
B . 正方体
C . 三棱柱
D . 圆锥
5.如图,直线a ∥b ,直线c 与a 、b 均相交.如果∠1=50°, 那么∠2的度数是( ▲ )
A .50°
B .100°
C .130°
D .150°
6.下列四个图形分别是等边三角形、等腰梯形、正方形、圆,它们全是轴对称图形,其中对称轴的条数最少的图形是( ▲ )
b
第5题图 1
2 a c
(第9题图)
A. B. C. D. 7.下列调查中,适合用普查方式的是( ▲ ) A .了解一批灯泡的使用寿命 B .了解一批炮弹的杀伤半径 C .了解某班学生50米跑的成绩 D .了解一批袋装食品是否含有防腐剂 8.从1, -2, 3这三个数中,随机抽取两个数相乘,积为正数的概率是( ▲ )
A .0
B .13
C .23
D .1
9.如图,直径AB 为6的半圆,绕A 点逆时针旋转60°, 此时点B 到了点B’,则图中阴影部分的面积是( ▲ ) A .3π B .4π C .5π
D .6π
10.图①是一瓷砖的图案,用这种瓷砖铺设地面,图② 铺成了一个2×2的近似正方形,其中完整菱形共有5个; 若铺成3×3的近似正方形图案③,其中完整的菱形有 13个;铺成4×4的近似正方形图案④,其中完整的菱形 有25个;如此下去,可铺成一个n n ⨯的近似正方形图案. 当得到完整的菱形共181个时,n 的值为( ▲ ) A.7
B.8
C.9
D.10
二、填空题(共6小题,每小题4分,满分24分。
请将答案填入答题卡的相应位置) 11.计算:)1(2--a a = ▲ . 12.分解因式:1442
++y y = ▲ .
13.如图,AD 是△ABC 的中线,∠ADC =60°, 把△ADC 沿直线AD 翻折,点C 落在点C 1的位置, 如果DC =2,那么BC 1= ▲ 。
14.在一个不透明的袋子里,装有5个红球,3个白球, 它们除颜色外大小、材质都相同,从中任意摸出一个球, 摸到红球的概率是 ▲ .
等边三角形 等腰梯形 正方形 圆
C
1
D
B
C A
第10题图
第15题图
x
10 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 10 11 A 1
B 1
C 1 A
B
C
y
15.如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格 点.若ABC ∆与111A B C ∆是位似图形,且顶点都在格点上,则位似中心的坐标是 ▲ .
16.如图,在平面直角坐标系xOy 中,已知点A 、B 、C 在双曲线x
y 6
=
上,BD ⊥x 轴于D ,CE ⊥ y 轴于E ,点F 在x 轴上,且AO =AF ,则图中阴影部分的面积之和为 ▲ .
三、解答题(共7小题,满分86分。
请将解答过程写在答题卡的相应位置)
17.(本题满分16分,每小题8分)
(1)计算:x x x 11112-⋅
⎪⎭
⎫
⎝⎛
-+; (2)解不等式组⎪⎩
⎪
⎨⎧<--≤-.3522,
213x x
x 并把它们的解集在数轴上表示出来
.
18.(本题满分10分)
在一堂数学课中,数学老师给出了如下问题“已知:如图1,在四边形ABCD 中,AB =AD ,∠B =∠D .求证:CB =CD ”.文文和彬彬都想到了利用辅助线把四边形的问题转化为三角形来解决.
y
F E
D C
B A
x
O
5- 4- 3- 2- 1- 0 1 2 3 4 5
(1)文文同学证明过程如下:连接AC (如图2)
∵∠B =∠D ,AB =AD ,AC =AC ∴△ABC ≌△ADC ,∴CB =CD
你认为文文的证法是 ▲ 的.(在横线上填写“正确”或“错误”)
(2)彬彬同学的辅助线作法是“连接BD ”(如图3),请完成彬彬同学的证明过程. 19.(本题满分10分)
在学校组织的知识竞赛中,每班参加比赛的人数相同,成绩分为A 、B 、C 、D 四个等级,其中相应等级的得分依次记为100分、90分、80分、70分.学校将某年级的一班和二班的成绩整理并绘制成如右边的两个统计图,请你根据图表提供的信息解答下列问题:
(1)此次竞赛中二班参加比赛的人数为 ▲ ;并将下面的表格补充完整:
(2)试运用所学的统计知识,从二个不同角度评价一班和二班的成绩.
20.(本题满分12分)
如图,已知⊙O 上A 、B 、C 三点,∠BAC =30°,D 是OB 延长线上的点,∠BDC =30°, ⊙O 半径为2.
(1)试说明DC 是⊙O 的切线;
(2)如果AC ∥BD ,证明四边形ACDB 是平行四边形,
并求其周长.
21.(本题满分12分)
某市自来水公司为了鼓励市民节约用水,于2012年5月开始采用以用户为单位按月 分段收费办法收取水费,2012年4月底以前按原收费标准收费。
两种收费标准见下表:
原收费标准 新按月分段收费标准
每吨2元
(1)每月用水不超过10吨(包括10吨)的用户,每吨收费1.6元;
众数(分) 中位数(分) 平均数(分) 一班 90 二班
100
87.6
A
C
B
O
D
(2)每月用水超过10吨的用户,其中的10吨按每吨1.6元收费,超过10吨的部分,按每吨a 元收费(a >1.6)
(1)居民甲四月份、五月份各用水20吨,但五月份比四月份多交水费6元, 求上表中a 的值;
(2)若居民甲六月份用水x (吨),应交水费y (元),求y 与x 之间的函数关系式,并注明自变量x 的取值范围;
(3)试问居民甲六月份用水量x (吨)在什么范围内时,按新分段收费标准交的水费少于按原收费标准交的水费?
22.(本题满分12分)
已知,△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作菱形ADEF ,使∠DAF=60°,连接CF . (1)如图1,当点D 在边BC 上时,
①求证:∠ADB =∠AFC ;②请直接判断结论∠AFC =∠ACB +∠DAC 是否成立; (2)如图2,当点D 在边BC 的延长线上时,其他条件不变,结论∠AFC =∠ACB +∠DAC 是否成立?请写出∠AFC 、∠ACB 、∠DAC 之间存在的数量关系,并写出证明过程; (3)如图3,当点D 在边CB 的延长线上时,且点A 、F 分别在直线BC 的异侧,其他条件不变,请补全图形,并直接写出....
∠AFC 、∠ACB 、∠DAC 之间存在的等量关系.
23.(本题满分14分)
如图,抛物线c bx ax y ++=2
与y 轴交于点A ,它的顶点为B ,点A 、B 关于原点的对称点分别为点C 、D ,点A 、B 、C 、D 中任意三点都不在同一直线上.
(1)若抛物线为542
+-=x x y ,求过点A 、B的直线的解析式;
A
A
A
B
B
B C
C C
D D D
E
F
F
E
(第22题图)
图1 图2
图3
(2)若抛物线c bx ax y ++=2的顶点B在y轴的左侧,过点A、B的直线为12
1
+=
x y . ①当四边形ABCD 的面积为4时,求抛物线的解析式;
②当四边形ABCD 为矩形时,求顶点B 的坐标;此时,抛物线的对称轴上是否存在点P ,使△PBD 是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由。