第一节向量及其线性运算讲解
向量的线性运算
向量的线性运算向量是线性代数中的重要概念,线性运算是对向量进行数学操作的方法。
本文将介绍向量的线性运算包括加法、减法、数乘,以及向量的线性组合。
一、向量的加法向量的加法是指将两个向量相加得到一个新的向量,符号为“+”。
设有向量A和向量B,记作A+B=C,其中C是向量A和向量B的和向量。
向量的加法满足以下几个性质:1. 交换律:A+B=B+A2. 结合律:(A+B)+C=A+(B+C)3. 零向量:对于任意向量A,有A+0=A,其中0是零向量,即所有分量都为0的向量。
二、向量的减法向量的减法是指将一个向量减去另一个向量得到一个新的向量,符号为“-”。
设有向量A和向量B,记作A-B=C,其中C是向量A和向量B的差向量。
向量的减法可以转化为向量的加法,即A-B=A+(-B),其中-表示取反操作。
三、向量的数乘向量的数乘是指将一个向量乘以一个实数得到一个新的向量。
设有向量A和实数k,记作kA=B,其中B是向量A的数乘结果。
向量的数乘满足以下性质:1. 分配律:k(A+B)=kA+kB2. 结合律:(kl)A=k(lA),其中k和l为实数四、向量的线性组合向量的线性组合是指将若干个向量按照一定的权重进行相加得到一个新的向量。
设有向量A1、A2、...、An和实数k1、k2、...、kn,向量的线性组合记作k1A1+k2A2+...+knAn。
向量的线性组合可以看作是向量的加法和数乘运算的组合。
向量的线性运算在向量空间中有着重要的应用。
通过向量的线性组合,我们可以表示出向量空间中的各种线性关系,诸如线性相关性、线性无关性、生成子空间等概念。
在实际问题中,向量的线性运算也有广泛的应用。
例如,物理学中常用向量的线性组合来表示力、速度、加速度等物理量;经济学中则常用向量的线性组合来表示商品的组合、市场的供求关系等。
综上所述,向量的线性运算包括加法、减法、数乘和线性组合。
通过这些运算,我们可以对向量进行各种数学操作,方便地进行向量的运算和分析,也为解决实际问题提供了有力的工具。
10第一节向量及其线性运算
是一个数 , 与 a 的乘积是一个新向量,记作 a .
规定: (1) 0, a与a同向, | a| | a|;
(2) 0,
a
0;
(3) 0, a与a反向,| a| | a| .
总之: | a|| ||a| . a
2a 1 a
2
数与向量的乘积符合下列运算律:
(1) 结合律: (a) ( a) ()a
零向量:模长为0的向量.
记为
0
.
4. 相等向量
若 a与 b的模相等且方向相同, 则称 a与 b相等 ,
记为
a
b
.
a
b
5. 两向量平行
两非零向量
a
与
b的方向相同或相反,
则称
a 与
b
平行
,
记为
a//
b
.
两向量
a与
b
平行
,
则 a与 b夹角为
0或
.
规定:零向量与任何向量平行.
两向量平行 , 又称两向量共线 或线性相关 .
| |
a
,
两式相减,
得
(
)a
0
,|
||
a|
0
,
| a| 0 , | | 0 , , 即是唯一的.
6. 推论
对数轴 Ou 上的任意一点 P , 轴上有向线段 OP
都可唯一的表示为 P 的坐标 u 与轴上单位向量 eu 的乘积 , 即 OP ueu .
例3 在 u 轴上取定一点 O 作为坐标原点. 设 A, B
s a3 a1
a2
向量加法符合下列运算律:
(1)
交换律:
a
b
b
线性代数-向量及其线性运算_图文
必满足
.
证法
进一步:P94 定理2.6
定理 向量组线性相关至少有一个向量可由其 余向量线性表示.
定理 向量组线性无关任何一个向量都不能由 其向量线性表示.
P96 例题9
如果向量组
线性无关,而向量组
线性相关,则α可由A唯一线性表示.
证设
∵A线性无关,而向量组B线性相关, ∴k≠0,(否则与A线性无关矛盾)
为数域 F 上的向量.
2) 运算规律
k ( + ) =k + k , (k + l ) = k + l , k ( l ) = ( kl ) , 1 = , 0 = 0 , (-1) = - , k 0 = 0 . 如果 k 0, 0, 那么
线性代数-向量及其线性运算_图文.ppt
注意:集中精力,仔细理解
一、n维向量(Vector) 1、引入
确定飞机的状态,需 要以下6个参数: 机身的仰角 机翼的转角
机身的水平转角
飞机重心在空间的位置参数P(x,y,z) 所以,确定飞机的状态,会产生一个有序数组
2、定义 n个数
组成的有序数组
称为一个n维向量,其中 称为第 个分量.
x=(c1,c2,…., cn)T
来表示。此时称为方程组的一个解向量。(P78)
五、向量空间
1、定义 设V为n维非空向量组,且满足
①对加法封闭 ②对数乘封闭
那么就称向量组V为向量空间(Vector Space).
例3 n维向量的集合是一个向量空间,记作 .
解 任意两个n维向量的和仍是一个n维向量; 任意n维向量乘以一个数仍是一个n维向量.
2) 运算规律
交换律 + = + . 结合律 + ( + ) = ( + ) + .
《解析几何》知识点总结:第1章-向量代数
第一章向量代数一、向量及其线性运算1.向量及其表示(1)向量:有大小和方向的量。
(2)表示:AB ,A 为向量的起点,B 为向量的重点。
(3)向量的模:||AB 。
(4)向径(半径向量/定位向量):称为P 的向径,简记为P 。
(5)单位向量:模为1,记为|a |aa o =。
(6)零向量:模为0,任意方向,与任何向量共线。
(7)自由向量:可自由平行移动。
(8)相等(相反):大小相等,方向相同(相反)。
(9)共线(平行):平行移动到同一始点,在一条直线上;共面。
(10)共面:平行移动到同一始点,在一个平面上。
2.向量的加法和减法(1)加法:①三角/多边形法则(定义1.1):首尾相连,第一个向量起点到最后一个向量终点;②平行四边形法则(定义1.2):首首相连,平行四边形过起点的对角线;③三角/多边形不等式:|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |。
(2)减法:三角形法则(定义1.3):首首相连,OA OB AB -=。
3.向量的数乘(1)定义1.4:实数λ与向量a 的乘积是一个向量,记为λa。
|λa|=|λ||a|,方向取决于λ。
4.运算律(图形法证明)①交换律:a ±b =b ±a②结合律:(a ±b )±c =a ±(b ±c );λ(μa )=(λμ)a③分配律:(λ+μ)a =λa +μa ;λ(a +b )=λa +λb5.共线及共面向量的判定(1)定理1.1:向量b 与非零向量a 共线⟺∃λ∈R ,使b=λa ;推论1.1:两个向量a ,b 共线⟺∃λ,μ∈R ,且λ,μ不同时为0,使λa +μb =0。
(2)定理1.2:若a ,b 不共线,向量c 与a ,b 共面⟺∃λ,μ∈R ,使c =λa +μb ;推论1.2:三个向量a ,b ,c 共面⟺∃λ,μ,φ∈R ,使λa +μb+φc =0。
第七章第1节向量及其线性运算
定义1
由n个数 a1, a2,…, an 所组成的有序数组
= (a1, a2,…, an)
称为n维向量. 数 a1, a2,… an 称为向量 的分量 (坐标),aj 称为向量 的第 j 个分量(坐标). 一般地,我们用, , 表示向量,a, b, c 或 x, y, z 表示其分量.
线性相关.
定理3. 任意 n+1 个 n 维向量都是线性相关的.
推论3. 若1, 2,… m为 n 维向量.且 m > n
则此向量组 线性相关.
定义3. 设 T 是 n 维向量所组成的向量组.
如果 T 的部分组 1, 2,…,r 满足
(i) 1, 2,…, r 线性无关; (ii) T, 可由1, 2,…, r 线性表出, 即 , 1, 2,…,r 线性相关. 则称向量组1, 2,…, r为向量组T的一个极大线性无 关向量组,也称极大无关组.
0= 1 (1 + 2 )+ 2 (2+ 3 )+ 3(3 + 1 ) = (1+ 3)1 + (1 +2)2 + (2 +3 )3.
1+3 =0, 1+ 2 =0,
2+3 =0.
1+2+ 3=0, 1=2= 3=0. 故 1 , 2 , 3 线性无关. 证毕.
且 1, 2,…, r, 0, …, 0 不全为零,
即1, 2, …, r , r+1 ,…,m 线性相关.
推论1. 若1, 2,…, r 线性无关. 则其部分组 (由1, 2,…, r 中某些向量组成的向量组)
也线性无关.
推论2. 若向量组中含有零向量, 则 此向量组
第一讲向量及其线性运算
a a cos u
a
b
u
a
u
b
u
a a
u
u
例 9 设立方体的一条对角线为OM ,一条棱为OA
OA a 求OA在OM方向上的投影 P rj OA AB M
φ
O
A
二、向量的线性运算
1、向量的加法 2、向量的减法 3、向量与数的乘法
➢运算法则 三角形法则:
特别当b a 时, 有
a
➢运算规律: 三角不等式
二、向量的线性运算
1、向量的加法 2、向量的减法 3、向量与数的乘法
二、向量的线性运算
1、向量的加法 2、向量的减法 3、向量与数的乘法
➢运算法则
是一个数
x1 x2 1
,
y1 y2 1
,
z1 z2 1
定比分点公式
当 1时, 点 M 为 AB 的中点 , M 的坐标 ,
x1
2
x2
,
y1
2
y2
,
z1 z2 2
中点公式
第一讲 向量及其线性运算
一、向量的概念 二、向量的线性运算 三、空间直角坐标系 四、向量线性运算的坐标表示式 五、向量的模、方向角和投影
原点 O(0,0,0) ; 坐标轴上的点 P, Q , R ; 坐标面上的点 A , B , C
三个坐标为零
两个坐标为零 一个坐标为零
z
R(0,0, z)
B(0, y, z)
C(x, o, z)
o
x P(x,0,0)
M y
Q(0, y,0)
A(x, y,0)
坐标轴和坐标面的坐标 特征:
z
坐标轴 :
2).
向量的线性运算
1.4 在共线共面问题上的应用
于是 C 和A, B 共线 AC // AB 存在实数s, 使得AC = s AB
即 OC OA = s (OB OA) 存在实数s, 使得OC = (1s) OA + s OB OC 对OA, OB 可分解, 且分解系数之和为1. 充分性. 设OC = r OA + s OB, 其中r + s = 1, 于是 OC = (1s) OA + s OB, 即 AC = s AB. 因此 AC // AB, 从而 C 和A, B共线.
设又有 = , 则( ) = = 0.
又 0 , 故 = 0 , 即 = .
充分性由平行定义易知.
注: 为方便, 将这里的数 记为
1.3 向量的分解
(2) 存在性. 从同一起点 O 作
OA = , OB = , OC = .
过 C 作 CD // OB, 且与直线 OA 交于 D.
1.4 在共线共面问题上的应用
由于上述结论, 使得向量的线性运算可以用 来解决有关点的共线、共面问题以及线段的 定比分割问题等.
命题1.2 假设O, A, B不共线, 则点C 和A, B共线 的充分必要条件是: 向量OC 对OA, OB 可分解, 并且分解系数之和等于1. 证明: 必要性. 由于O, A, B不共线, 所以OA, OB不平行, 且AB 0.
注: 向量组共线就是其中任何两个向量平行, 向量组共面就是其中任何三个向量共面. 于是判别“两向量是否平行”, “三向量是否共面” 成为基本问题.
1.3 向量的分解
定理1.1 (向量分解定理)
(1) 设 为非零向量, 则 // (与共线) 当且 仅当存在唯一实数, 使得 = . (2) 若向量 , , 共面, 并且 与 不平行, 则 存在唯一的一对实数, 使得 = + .
向量的概念及线性运算
力的合成与分解
力的合成
当有两个或多个力同时作用于一个物 体时,这些力可以合成一个合力,合 力的大小和方向可以通过向量加法得 到。
力的分解
如果已知一个力的大小和方向,那么 这个力可以分解为两个或多个分力, 分力的大小和方向可以通过向量减法 和数乘得到。
速度和加速度的计算
速度
速度是描述物体运动快慢的物理量,可以用向量表示,其大小等于位移的模与时间的比值,方向与物体运动方向 相同。
向量的概念及线性运算
目 录
• 向量的定义与表示 • 向量的线性运算 • 向量的数量积与向量积 • 向量的混合积与点积 • 向量线性运算的应用
01 向量的定义与表示
向量的定义
01
向量是一个既有大小又有方向的量,通常用有向线段表示。
02
向量的大小称为向量的模,记作|a|。
03
向量的方向由起点指向终点的箭头表示。
向量减法的定义
向量减法是指将两个向量首尾相接,以第一个向量的起点作为 结果向量的起点,以第一个向量的终点作为结果向量的终点。
向量减法的性质
向量减法满足交换律,即$vec{a} - vec{b} = vec{b} vec{a}$。
向量减法的几何意义
向量减法的几何意义是将两个向量的起点重合,然后以第一个向 量的终点为起点,第二个向量的起点为终点作一条新的量的点积定义
对于两个向量$mathbf{a}$和$mathbf{b}$,其点积定义为$mathbf{a} cdot mathbf{b} = |mathbf{a}| |mathbf{b}| cos theta$,其中 $theta$是两向量的夹角。
几何意义
点积的几何意义是向量$mathbf{a}$与向量$mathbf{b}$在方向上的投 影长度之积。
向量及其线性运算ppt课件
az )
ay
az
bx by bz
22
例5 求解以向量为未知元的线性方程组
5
x
3
y
a,
其中
a
(2,1,2),
3x 2 y b, b (1,1,2).
解 如同解以实数为未知元的线性方程组一样,
可解得 x 2a 3b, y 3a 5b.
向量的模 26
例 7 求证以M1(4,3,1)、 M 2 (7,1,2)、 M3 (5,2,3)
三点为顶点的三角形是一个等腰三角形.
解 M1M2 2 (7 4)2 (1 3)2 (2 1)2 14, M2M3 2 (5 7)2 (2 1)2 (3 2)2 6, M3M1 2 (4 5)2 (3 2)2 (1 3)2 6, M2M3 M3M1 , 原结论成立.
两式相减,得
(
)a
0,
即
a 0,
a 0, 故 0, 即 .
8
此定理是建立数轴的理论依据
数轴:点、方向、单位长度
. 1 .x
O i Px
点P 向量 OP = xi 实数 x
轴上点P的坐标为x的充分必要条件是 OP = xi . 另外 设a0表示与非零向量a 同方向的单位向量,
zR
M1
P o
d M1M2 ?
M2
Q N
在直角M1 NM 2 及 直 角 M1 PN
中,使用勾股定
y 理知
x
d 2 M1P 2 PN 2 NM 2 2 ,
第一节 向量及其运算(知识梳理)
第一节向量及其运算复习目标学法指导1.平面向量的实际背景及基本概念(1)向量的物理背景与概念向量的概念.(2)向量的几何表示零向量、单位向量、向量模的概念.(3)相等向量、平行向量、共线向量的概念.2.平面向量的线性运算(1)①向量加法的定义及几何意义.②向量加法的交换律和结合律.(2)①相反向量的概念.②向量减法的定义及几何意义.(3)①向量的数乘运算.②向量数乘运算的几何意义. 1.熟记概念,对于概念中的前提条件引起重视.2.解决向量的概念问题要注意两点,一是考虑大小,更要考虑方向;二是考虑零向量的特殊性.3.向量的线性运算,要在所表达的图形上多思考、多联系相关几何图形.一、平面向量的有关概念1.向量的有关概念(1)定义既有大小又有方向的量叫做向量.(2)表示方法①用字母表示:如a,b,c等;②用有向线段表示:有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.如AB u u u r,CD u u u r等.(3)模向量的大小叫做向量的模,记作|a|,|b|或|AB u u u r|,|CD u u u r|.2.特殊向量相反向量长度相等且方向相反的向量0的相反向量为01.概念理解(1)仅从向量的模定义零向量和单位向量,它们方向不确定,因此解题时注意特殊性.(2)按照方向相同或相反定义平行向量和共线向量,因此两个向量方向相同或相反即可判定是否为共线向量.2.与零向量有关的结论(1)零向量与任意向量为共线向量;(2)0·a=0.二、平面向量的线性运算向量运算定义法则(或几何意义) 运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差数乘求实数λ与向量a的积的运算|λa|=|λ||a|.当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb概念理解(1)利用三角形法则进行加法运算时,要注意两向量的首尾相连,在几何图形中求和向量时,一般要进行向量的平移让两个向量首尾相连.(2)减法运算必须要求两向量有相同起点,差向量即为从减数终点指向被减数终点的向量,如:AB u u u r-AC u u u r= CB u u u r.三、共线向量定理向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa. 1.概念理解(1)向量的平行和直线平行不同,两向量所在直线重合也可以称平行向量.(2)注意定理中a ≠0的条件. 2.与共线向量相关联的结论(1)若a,b,c 均不为零向量,则平行具有传递性. (2)在a(a ≠0)方向上的单位向量:a a.(3)利用共线向量定理证明三点共线的步骤: 第1步:三点构造两个向量; 第2步:证明两向量之间成倍数关系.1.如图,e 1,e 2为互相垂直的单位向量,则向量a-b 可表示为( C )(A)3e 2-e 1 (B)-2e 1-4e 2 (C)e 1-3e 2 (D)3e 1-e 2解析:由题图可知a=-4e 2,b=-e 1-e 2, 则a-b=e 1-3e 2. 故选C.2.设两个非零向量e 1和e 2,且e 1与e 2不共线,AB u u u r =e 1-e 2, BC u u u r=3e 1+2e 2,CD u u u r=-8e 1-2e 2,则下列三点共线的是(D )(A)A,B,C (B)A,B,D (C)B,C,D (D)A,C,D 解析:AB u u u r =e 1-e 2,AC u u u r =AB u u u r + BC u u u r=4e 1+e 2, 因为AC u u u r=-12CD u u u r,且有公共点C,所以A,C,D 三点共线.故选D.3.在△ABC 中,点M,N 满足AM u u u u r =2MC u u u u r ,BN u u u r =NC u u u r .若MN u u u u r =x AB u u u r +y AC u u u r,则x= ,y= . 解析:由题中条件得MNu u u u r =MC u u u u r +CN u u u r=13ACu u u r+12CB u u u r =13AC u u u r +12(AB u u u r -AC u u u r)=12AB u u u r -16ACu u u r=x AB u u u r +y AC u u u r,所以x=12,y=-16. 答案:12 -16考点一 平面向量的基本概念 [例1] (1)下列有关向量相等的命题: ①若|a|=|b|,则a=b;②若A,B,C,D 是不共线的四点,则AB u u u r =DC u u u r是四边形ABCD 为平行四边形的充要条件; ③若a=b,b=c,则a=c;④a=b 的充要条件是|a|=|b|且a ∥b. 其中正确命题的序号是( )(A)②③ (B)①② (C)③④ (D)②③④(2)设a,b 都是非零向量,则“a=2b ”是“a a=b b”成立的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(3)下列与共线向量有关的命题:①相反向量就是方向相反的向量;②若a与b同向,且|a|>|b|,则a>b;③λ,μ为实数,若λa=μb,则a与b共线;④两向量平行是这两个向量相等的必要不充分条件.其中错误命题的序号为.(填序号)解析:(1)①不正确.两个向量的长度相等,它们的方向不一定相同.②正确.因为AB u u u r=DC u u u r,所以|AB u u u r|=|DC u u u r|且AB u u u r∥DC u u u r,又A,B,C,D是不共线的四点,所以四边形ABCD为平行四边形;反之,若四边形ABCD为平行四边形,则AB u u u r∥DC u u u r且|AB u u u r|=|DC u u u r|,AB u u u r与DC u u u r方向相同,因此,AB u u u r= DC u u u r.③正确,因为a=b,所以a,b的长度相等且方向相同,又b=c,所以b,c 的长度相等且方向相同,所以a,c的长度相等且方向相同,故a=c.④不正确.当a∥b且|a|=|b|,不一定a=b,也可以是a=-b.故|a|=|b|且a∥b不是a=b的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③.解析:(2)因为aa =bb,则向量a与向量b方向相同,但它们的模没有关系.因此“a=2b”是“aa =bb”成立的充分不必要条件.故选A.解析:(3)①不正确.相反向量满足方向相反,长度相等.②不正确,两向量不能比较大小;③不正确.当λ=μ=0时,a与b可能不共线;④正确.答案:(1)A (2)A (3)①②③(1)相等向量具有传递性,共线向量不具有传递性,只有当非零向量之间才具有传递性.(2)注意0的特殊性,验证命题为假命题时,通常采用举反例的方式,在向量概念问题的判定上,反例通常可以选取0.(3)向量可以平移,平移后的向量与原向量相等.下列命题中正确的个数为( B )①向量a与向量b平行,则a与b的方向相同或相反;②若向量a与b满足a+b=0,则a与b共线;③若向量a与b均为非零向量,则|a+b|与|a|+|b|一定相等;④设e为单位向量,若a与e平行,则a=|e|·a.(A)1 (B)2 (C)3 (D)4解析:①不正确,若向量a与向量b中有一个为零向量,则两个向量方向不一定相同或相反;③不正确,因为|a+b|≤|a|+|b|,所以|a+b|与|a|+|b|不一定相等;④正确,因为|e|=1,所以a=|e|a成立.故选B.考点二平面向量的线性运算[例2] 下列各式不能化简为PQ u u u r的是( )(A)AB u u u r+(PA u u u r+ BQ u u u r)(B)(AB u u u r+PC u u u r)+(BA u u u r-QC u u u r)(C)QC u u u r-QP u u u r+CQ u u u r(D) PA u u u r+AB u u u r-BQ u u u r解析:选项A,AB u u u r+(PA u u u r+BQ u u u r)= AB u u u r+BQ u u u r+PA u u u r=AQ u u u r+PA u u u r=PQ u u u r;选项B,( AB u u u r+PC u u u r)+(BA u u u r-QC u u u r)=(AB u u u r+BA u u u r)+(PC u u u r-QC u u u r)=PQ u u u r;选项C,QC u u u r-QP u u u r+CQ u u u r=QC u u u r+CQ u u u r- QP u u u r= PQ u u u r;选项D,PA u u u r+ AB u u u r-BQ u u u r=PB u u u r-BQ u u u r得不到PQ u u u r.故选D.三角形法则和平行四边形法则是向量线性运算的主要方法,在运算时,要注意两种法则的适用条件.在三棱锥O-ABC中,若D为BC的中点,则AD u u u r等于( C )(A)12OAu u u r+12OCu u u r-OBu u u r(B)12OAu u u r+12OBu u u r+OCu u u r(C)12OBu u u r+12OCu u u r-OAu u u r(D)12OB u u u r +12OC u u u r +OA u u u r解析:如图根据向量加法三角形法则,AD u u u r =12(AC u u u r +AB u u u r )=12(OC u u u r -OA u u u r +OB u u u r -OA u u u r),所以AD u u u r =12OC u u u r+12OB u u u r-OA u u u r.故选C.考点三 共线向量定理及应用 [例3] 设两个非零向量a 与b 不共线, (1)若AB u u u r =a+b,BC u u u r =2a+8b,CD u u u r=3(a-b), 求证:A,B,D 三点共线;(2)试确定实数k,使ka+b 和a+kb 同向. (1)证明:因为AB u u u r =a+b,BC u u u r =2a+8b,CD u u u r=3(a-b), 所以BD u u u r =BC u u u r +CD u u u r=2a+8b+3(a-b) =2a+8b+3a-3b =5(a+b)=5AB u u u r. 所以AB u u u r,BD u u u r 共线, 又因为它们有公共点B, 所以A,B,D 三点共线. (2)解:因为ka+b 与a+kb 同向,所以存在实数λ(λ>0),使ka+b=λ(a+kb), 即ka+b=λa+λkb.所以(k-λ)a=(λk-1)b.因为a,b 是不共线的两个非零向量,1,10,k k λλ-=⎧⎨-=⎩解得1,1k λ=⎧⎨=⎩或1,1,k λ=-⎧⎨=-⎩ 又因为λ>0,所以k=1.(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别:只有两向量有公共点且共线时,才能得出三点共线.(2)a 与b 共线是指存在不全为零的λ1,λ2,使λ1a+λ2b=0,若λ1a+λ2b=0,当且仅当λ1=λ2=0时成立,则a 与b 不共线.1.设a,b 是不共线的两个非零向量,若OA u u u r=ka+12b,OB u u u r =4a+5b,OC u u u r=-ka+10b,且点A,B,C 三点共线,则k= .解析:AB u u u r =OB u u u r -OA u u u r=(4-k)a-7b,CB u u u r =OB u u u r -OC u u u r=(4+k)a-5b,因为A,B,C 三点共线,所以44k k -+=75--,k=-23. 答案:-232.在△ABC 所在平面内有一点P,如果PA u u u r +PB u u u r +PC u u u r =AB u u u r,则△PAB 与△ABC 的面积之比是 . 解析:因为PA u u u r +PB u u u r +PC u u u r =AB u u u r =PB u u u r -PA u u u r, 所以2PA u u u r +PC u u u r=0,PC u u u r =-2PA u u u r =2AP u u u r ,所以点P 是线段AC 的一个靠近点A 的三等分点. 所以△PAB 与△ABC 的面积之比是1∶3.答案:1∶3类型一平面向量的基本概念1.以下给出了4个命题:(1)两个长度相等的向量一定相等;(2)相等的向量起点必相同;(3)若a·b=a·c,且a≠0,则b=c;(4)若向量a的模小于b的模,则a<b.其中正确命题共有( D )(A)3个(B)2个(C)1个(D)0个解析:长度相等方向相同的向量是相等向量,故(1)错误;根据相等向量的定义知,相等向量起点不一定相同,故(2)错误;因为a·b=a·c,所以a·(b-c)=0,又因为a≠0,所以必有a⊥(b-c),而b=c不一定成立,故(3)错误;向量不能比较大小,故(4)错误.故选D.2.如图,在正方形ABCD中,M是BC的中点,若AC u u u r=λAM u u u u r+μBD u u u r (λ,μ∈R),则λ+μ等于( B )(A)43(B)53(C)158(D)2解析:根据向量的平行四边形加法法则,AC u u u r =AB u u u r +AD u u u r, 又根据向量的三角形加法法则,AMu u u u r =AB u u u r +AM u u u u r =AB u u u r +12BC u u ur =AB u u u r +12AD u u u r ,BD u u u r =AD u u u r -AB u u u r ,所以AC u u u r =λAM u u u u r +μBD u u u r= λ(AB u u u r +12AD u u u r 0+μ(AD u u u r -AB u u u r )=(λ-μ)AB u u u r +(12λ+μ)AD u u u r, 所以1,11,2λμλμ-=⎧⎪⎨+=⎪⎩ 解得4,31,3λμ⎧=⎪⎪⎨⎪=⎪⎩所以λ+μ=53. 故选B.类型二 平面向量的线性运算3.在平行四边形ABCD 中,AC 与BD 相交于点O,E 是线段OD 的中点,AE 的延长线与CD 交于点F,若AC u u u r=a,BD u u u r =b,则AF u u u r等于( B )(A)14a+12b (B)23a+13b (C)12a+14b (D)13a+23b 解析:AF u u u r =AD u u u r +DF u u u r,DE ∶BE=1∶3=DF ∶AB,所以DF u u u r =13AB u u ur ,所以AF u u u r=12a+12b+13(12a-12b)=23a+13b. 故选B.4.在△ABC 中,G 为△ABC 的重心,D 在边AC 上,且CD u u u r =3DA u u u r,则( B )(A)GD u u u r =13AB u u u r +712AC u u u r(B)GD u u u r=-13AB u u u r -112AC u u u r(C)GD u u u r =-13AB u u u r +712AC u u u r (D)GD u u u r=-13AB u u u r+112AC u u u r解析:如图所示,GD u u u r =GA u u u r +AD u u u r,AG u u u r =23×12(AB u u u r +AC u u u r)=13(AB u u ur +AC u u u r ),AD u u u r =14ACu u ur .所以GD u u u r=-(13AB u u u r+13AC u u u r)+14AC u u u r=-13AB u u u r-112AC u u u r. 故选B.5.任意四边形ABCD 中,E,F 分别是AD,BC 的中点,则EF u u u r= (用向量AB u u u r,DC u u u r表示).解析:因为EF u u u r =EA u u u r +AB u u u r +BF u u u r,EF u u u r =ED u u u r +DC u u u r +CF u u u r ,所以2EF u u u r =AB u u u r +DC u u u r +BF u u u r +CF u u u r +EA u u u r +ED u u u r =AB u u u r +DC u u u r, 所以EF u u u r =12(AB u u u r +DC u u u r). 答案:12(AB u u u r+DC u u u r) 类型三 共线向量定理6.已知O 为△ABC 内一点,且AO u u u r =12(OB u u u r +OC u u u r ),AD u u u r =t AC u u u r,若B,O,D 三点共线,则t 等于( B ) (A)14(B)13(C)12(D)23解析:设E 是BC 边的中点, 则12(OB u u u r +OC u u u r )=OE u u u r,由题意得AO u u u r =OE u u u r,所以AO u u u r =12AE u u ur =14(AB u u u r +AC u u u r )=14AB u u u r +14AD tu u ur ,又因为B,O,D 三点共线,所以14+14t =1,解得t=13, 故选B.7.已知点P 是△ABC 所在平面内一点,边BC 的中点为D,若2PD u u u r=(1-λ)PA u u u r +CB u u ur ,其中λ∈R,则P 点一定在( C )(A)AB 边所在的直线上 (B)BC 边所在的直线上 (C)AC 边所在的直线上 (D)△ABC 的内部 解析:因为D 为边BC 的中点, 所以2PD u u u r =PB u u u r +PC u u u r=(1-λ)PA u u u r +CB u u u r=(1-λ)PA u u u r+PB u u u r -PC u u u r, 即2PC u u u r=(1-λ)PA u u u r, 故A,P,C 三点共线,即点P 在AC 边所在的直线上. 故选C.8.已知平面上不共线的四点O,A,B,C,若OA u u u r -4OB u u u r +3OCu u u r=0,则AB BCu u u r u u u r 等于( A )(A)3 (B)4 (C)5 (D)6 解析:由OA u u u r-4OB u u u r+3OC u u u r=0,得OA u u u r -OB u u u r =3(OB u u u r -OC u u u r ),即BA u u u r =3CB u u u r, 所以AB u u u r =3BC u u u r, 所以|AB u u u r |=3|BC u u u r|, 所以AB BCu u u r u u u r =3.故选A.。
1 空间向量及其线性运算 (解析版)
→
=
1 2
→
=
1 2
→,
6
、
→
∴
=
→
−
→
=
1 2
→−
1 2
→−
1 2
→
=
12(→
−
→−
→
).故选:D.
【点评】本题考查空间向量的线性运算,考查了数形结合,属于基础题.
【变式 3-1】(2021 春•成都期中)如图,在三棱锥 S﹣ABC 中,点 E,F 分别是 SA,BC 的中点,点 G 在
1
→ →→ →→ →
→
→
→
→
+ 1 = 1,故答案为: 1,
【点评】本题考查了向量的加减的几何意义,属于基础题.
【变式 2-3】在四棱柱 ABCD﹣A'B'C'D'中,底面 ABCD 为矩形,化简下列各式.
→
→
→
→
→
(1) + ' − ' ' + ' − .
→
→
→
→
(2) ' − + − '.
5
、
【分析】(1)利用向量三角形法则、向量相等即可得出.
→
棱 EF 上,且满足
=
,若 2
=,
=,
= ,则
=(
)
1→ 1→ 1→
1→ 1→ 1→
A. 3
−2
+6
B. 3
+6
+6
1→ 1→ 1→
1→ 1→ 1→
C. 6
−3
+2
D. 3
《向量及其线性运算》课件
详细描述
向量的模是衡量向量大小的量,用符号“| |”表示。向量的模可以通过勾股定理或向量 的点积等公式计算得出。向量的模具有一些基本性质,如非负性、传递性、三角不等式 等。了解向量的模对于解决实际问题非常重要,如物理中的力、速度和加速度等都可以
用向量表示,而向量的模则可以用来衡量这些量的大小。
02
CATALOGUE
向量的线性运算
向量的加法
总结词
向量加法的定义与性质
详细描述
向量加法是向量空间的基本运算之一,其定义基于平行四边形法则。向量加法 满足交换律和结合律,即向量加法不依赖于其运算的顺序。
向量的数乘
总结词
数乘的定义与性质
详细描述
数乘是标量与向量的乘法运算,其结果仍为向量。数乘满足结合律和分配律,即 对于任意实数$k$和向量$vec{a}$,有$k(mvec{a}) = (km)vec{a}$。
总结词
向量积表示一个向量在另一个向 量上的投影面积。
详细描述
向量积的大小等于一个向量在另 一个向量上的投影面积,方向与 两向量的正交角有关,遵循右手 定则。
向量积的运算性质
要点一
总结词
向量积满足交换律和结合律,但不满足数乘分配律。
要点二
详细描述
根据向量的运算性质,我们有$mathbf{A} times mathbf{B} = -mathbf{B} times mathbf{A}$,并且 $(mathbf{A} + mathbf{B}) times mathbf{C} = mathbf{A} times mathbf{C} + mathbf{B} times mathbf{C}$。但是,$lambda(mathbf{A} times mathbf{B}) neq mathbf{A} times lambdamathbf{B}$, 其中$lambda$是标量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
bx ax by ay
bz az
例2. 求解以向量为未知元的线性方程组
其中
a
5x 3x
3 2
y y
a b
(2,1,2), b (1,1,
2).
① ②
解:
2×①
x
-23a× ②3b,得
(7
,
1,10)
代入②得
y 3a 5b (11, 2,16)
练习:P12-1
例3. 已知两点 在AB直线上求一点 M , 使
点 M 11 有序数组 (x, y, z) 11 向径 r
(称为点 M 的坐标) 特殊点的坐标 :
原点 O(0,0,0) ; 坐标轴上的点 P, Q , R ;
坐标面上的点 A , B , C
z
R(0,0, z)
B(0, y, z)
C(x, o, z)
r
o
x P(x,0,0)
M y
Q(0, y,0)
A(x, y,0)
z
o
x 坐标面 :
坐标轴 : y
2. 向量的坐标表示
以在空i ,间j ,直k 分角别坐标表系示下x,,
任意向量 r 可用向径 OM 表示.
y , z 轴上的单位向量 , 设点 M
的坐标为 M (x , y , z), 则
z OM ON NM OA OB OC C
r xi y j z k (x, y,z)
“ ” 已知 b= a , 则 b=0 a , b 同向 a , b 反向
a∥b
例1. 设 M 为 ABCD 对角线的交点,
试用a 与b 表示 MA, MB , MC , MD.
解: a b AC
2 MA
D
C
b a BD
2 MB
bM
MA
1 2
(
a
b)
MB
1 2
(
b
a
)
A
a
B
MC
1 2
(
M
r
OM
OP
OQ OR
o
Q y
由勾股定理得
P
x
N
r OM
x2 y2 z2
对两点
与
因
得两点间的距离公式:
(x2 x1)2 ( y2 y1)2 (z2 z1)2
例 4 设P 在 x轴上,它到P1(0, 2,3)的距离为
到点 P2(0,1,1)的距离的两倍,求点P 的坐标.
及实数 1,
解: 设 M 的坐标为
如图所示
AM MB
AM OM OA MB OB OM
OM O A (OB OM )
A
M B
o
A
得 即
OM
1
1
(OA
OB
B
1
1
(x1 x2 , y1 y2 , z1 z2 )
M
说明: 由
1
1
(x1 x2 , y1 y2 , z1 z2 )
高等数学
第八章:空间解析几何与向量代数
第一部分 向量代数 第二部分 空间解析几何
在三维空间中: 空间形式 — 点, 线, 面
数量关系 —坐标,方程(组)
基本方法 — 坐标法; 向量法
第一节 向量及其线性运算
一、向量的概念 二、向量的线性运算 三、空间直角坐标系 四、利用坐标作向量的线性运算 五、向量的模、方向角、投影
得定比分点公式:
A
x1 x2 1
,
y1 y2 1
,
z1 z2 1
M B
当 1时, 点 M 为 AB 的中点 ,于是得
o
A
中点公式:
x1 x2 2
,
y1
2
y2
,
z1 z2 2
B M
五、向量的模、方向角、投影
1.
设
向量的模与两点间的距离公式
r
(x,
y , z ), 作 OM
r,
则有
z R
a
11可aa见a;a ;
分配律
(a
b)
a
b
则有与a同向的单位向量 a
1 a
a.
因此 a a a
定理1. 设 a 为非零向量 , 则 a∥b
( 为唯一实数)
证: “ ”. 设 a∥b , 取 =±
, a , b 同向时
取正号, 反向时取负号, 则 b 与 a 同向, 且
b
故 b a. 再证数 的唯一性 . 设又有 b= a , 则 ( ) a 0 故 0, 即 .
此式称为向量 r 的坐标分解式 ,
ko i
j
r
M B y
A
x
N
沿三个坐标轴方向的分向量.
设四a、 利(aa用x,baa坐y,((标aazx)a作,x b,b向xa, (a量yby,x的,babyzy线,),baz性z),运bz为)算实数,则
=当>平a 行0向时量, 对应坐标成比例 bx by bz ax ay az
因平行向量可平移到同一直线上, 故两向量平行又称 两向量共线 .
若 k (≥3)个向量经平移可移到同一平面上 , 则称此 k 个向量共面 .
2. 向量的减法
a
三角不等式
3. 向量与数的乘法
是一个数
,
与
a
的乘积是一个新向量,
记作
a
.
规定 :
总之: a a
运算律 : 结合律
(
a)
(
a)
解:因为 P 在 x轴上,设P点坐标为 ( x,0,0),
PP1 x2 2 2 32 x2 11,
PP2 x2 12 12 x2 2,
PP1 2 PP2 , x2 11 2 x2 2
x 1, 所求点为 (1,0,0), (1,0,0).
a4
a5
a3 s
a2 a1
若向量 a 与 b大小相等, 方向相同, 则称 a 与 b 相等, 记作 a=b ;
若向量 a 与 b 方向相同或相反, 则称 a 与 b 平行,记作 a∥b ; 规定: 零向量与任何向量平行 ;
与 a 的大小相等相同, 但方向相反的向量称为 a 的 负向量, 记作-a ;
1. 向量的加法
平行四边形法则:
b ab
(a b) c
c
bc
a (b c)
a
三角形法则:
ab
b
ab b a
a
三角形法则可推广到多个向量相加 .
运算规律 : 交换律 a b b a
结合律 ( a b ) c a (b c ) a b c
s a1 a2 a3 a4 a5
a
b
)
MD
1 2
(b
a
)
三、空间直角坐标系
1. 空间直角坐标系的基本概念
过空间一定点 o ,由三条互相垂直的数轴按右手规则
组成一个空间直角坐标系.
• 坐标原点
Ⅲ
z z 轴(竖轴)
Ⅱ
• 坐标轴 • 坐标面 • 卦限(八个)
Ⅳ
Ⅶ
x
x轴(横轴) Ⅷ
yoz面 o xoy面
Ⅴ
Ⅰ
y
y轴(纵轴)
Ⅵ
在直角坐标系下
一、向量的概念
向量: 既有大小, 又有方向的量称为向量 (又称矢量).
表示法: 有向线段 M1 M2 , 或 a ,
向径 (矢径): 起点为原点的向量. 自由向量: 与起点无关的向量.
向量的模 : 向量的大小,
单位向量: 模为 1 的向量, 零向量: 模为 0 的向量,