最新分数乘法简便运算专项练习题(1)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
涉及定律:乘法交换律、乘法分配律逆向运算
基本方法:将各项的分子与分子(或分母与分母)互换,通过变换得出公有因数,按照乘法分配律逆 向运算进行计算。
注意:只有相乘的两组分数才能分子和分子互换,分母和分母互换。不能分子和分母互换,也不能出 现一组中的其中一个分子(或分母)和另一组乘式中的分子(或分母)进行互换。
例题:1)2017垒152)1998一0163)136卫4
20162017135
涉及定律:
乘法分配律逆向运算
基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1
等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。
注意:将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发
分数简便运算常见题型
I第一种:连乘——乘法交换律的应用
54
例题:1)14
13 7
涉及定律:乘法交换律a b c=a c b
基本方法:将分数相乘的因数互相交换,先行运算。
■第二种:乘法分配律的应用
842161
例题:1)() 272)() 203)7 9
92754718
涉及定律:乘法分配律(a二b) c二ac二be
变化。例如:999可化为1000-1。其结果与原数字保持一致。
■第六种:带分数化加式
5
2 1
3 1
例题:1)26 -
2Baidu Nhomakorabea41
3)7 12一
3 5
5 8
13
涉及定律:乘法分配律
基本方法:将带分数转化为整数部分和分数部分相加的形式, 目的是便于约分。再按照乘法分配律计算。
I第七种:乘法交换律与乘法分配律相结合(转化法)
基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
■第三种:乘法分配律的逆运算(提取公因数)
1
1
1
1
5551
4
1
例题:1) 一
+_X_
2)
3)-
77
2
15
3
2
6996
5
5
涉及定律:乘法分配律逆向定律a b_a c=a(b^c)
基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。
122030425672
基本方法:
形如 一1的分数可拆分为 丄-^^ 丄的形式,再进行运算。
a汇(a+n)+n丿n
a+b
■第九种:有规律的分数混合运算一一形如(a,b不为0)的分数(拆分法)
b
7 9 11 13 15 17
例题:1)---
1220 30 42 56 72
■第四种:添加因数“1”
5557221417
例题:1)5一__2)一一•一3)二23, —23-23
79716993131
涉及定律:乘法分配律逆向运算
基本方法:添加因数“1”,将其中一个数n转化为1xn的形式,将原式转化为两两之积相加减的形式, 再提取公有因数,按乘法分配律逆向定律运算。
丄第五种:数字化加式或减式
基本方法:将各项的分子与分子(或分母与分母)互换,通过变换得出公有因数,按照乘法分配律逆 向运算进行计算。
注意:只有相乘的两组分数才能分子和分子互换,分母和分母互换。不能分子和分母互换,也不能出 现一组中的其中一个分子(或分母)和另一组乘式中的分子(或分母)进行互换。
例题:1)2017垒152)1998一0163)136卫4
20162017135
涉及定律:
乘法分配律逆向运算
基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1
等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。
注意:将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发
分数简便运算常见题型
I第一种:连乘——乘法交换律的应用
54
例题:1)14
13 7
涉及定律:乘法交换律a b c=a c b
基本方法:将分数相乘的因数互相交换,先行运算。
■第二种:乘法分配律的应用
842161
例题:1)() 272)() 203)7 9
92754718
涉及定律:乘法分配律(a二b) c二ac二be
变化。例如:999可化为1000-1。其结果与原数字保持一致。
■第六种:带分数化加式
5
2 1
3 1
例题:1)26 -
2Baidu Nhomakorabea41
3)7 12一
3 5
5 8
13
涉及定律:乘法分配律
基本方法:将带分数转化为整数部分和分数部分相加的形式, 目的是便于约分。再按照乘法分配律计算。
I第七种:乘法交换律与乘法分配律相结合(转化法)
基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
■第三种:乘法分配律的逆运算(提取公因数)
1
1
1
1
5551
4
1
例题:1) 一
+_X_
2)
3)-
77
2
15
3
2
6996
5
5
涉及定律:乘法分配律逆向定律a b_a c=a(b^c)
基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。
122030425672
基本方法:
形如 一1的分数可拆分为 丄-^^ 丄的形式,再进行运算。
a汇(a+n)+n丿n
a+b
■第九种:有规律的分数混合运算一一形如(a,b不为0)的分数(拆分法)
b
7 9 11 13 15 17
例题:1)---
1220 30 42 56 72
■第四种:添加因数“1”
5557221417
例题:1)5一__2)一一•一3)二23, —23-23
79716993131
涉及定律:乘法分配律逆向运算
基本方法:添加因数“1”,将其中一个数n转化为1xn的形式,将原式转化为两两之积相加减的形式, 再提取公有因数,按乘法分配律逆向定律运算。
丄第五种:数字化加式或减式