大学物理简明教程第三版修订版课后习题详解
大学物理简明教程第三版修订版赵近芳课后习题答案
第一章选择题1动量是矢量,因为速度方向不断改变,所以动量不断改变。
AB错。
角动量也是矢量。
但是做匀速圆周运动时的角动量是不断的。
所以正确的是C正确。
D错误。
2选C1、内力不能改变系统的质量,所以A不对;2、内力不能改变系统的总动量,所以B不对;3、内力不能改变系统的总角动量,所以D不对;4、内力可以对系统做功,能改变系统的总动能,所以C对;3C(1)这种说法是错误的。
保守力作正功时,系统内相应的势能减少。
(2)这种说法是对的。
(3)作用力和反作用力是作用在不同物体上的,虽然它们大小相等,方向相反,但它们所作的功不一定相等,它们所作的功的正负也未必相反,功的大小和正负与施力方向及受力物体的运动状态有关。
本题答案应选(C)。
4选A,因为木块相对于斜面静止,那么如果斜面有一个水平方向上的加速度的话,木块也有同样的水平加速度, 但是对于他两个组成的系统来看,并没有受到外界的水平方向上的力来产生、维持这个加速度,所以系统在水平方向上来讲是不可能有加速度的,所以A正确5分析对AB受力分析,由于在撤去外力瞬间,弹簧未来的及变化,根据牛顿第二定律判断加速变化解答解:由于AB向右运动,当撤去外力瞬间,由于惯性,AB还是向右运动,由于弹簧还未来得及变化,故B继续向前加速运动,A向前减速运动,故a A <0,a B>0故选:C点评本题主要考查了对物体的受力分析,抓住撤去外力的瞬间,弹簧的弹力不变即可。
填空题:解答题和后面章节的课后答案请关注.微-.信.公众号:学糕1未断线前,T的竖直分力和重力是一对平衡力。
T=mg/cosθ断线瞬间:打破平衡力,T和重力的合力方向斜向下Tˊ=mgcosθT:Tˊ=1/cosθ²2、I=∫F*dt=140;动量定理:I=P2-P1=M*(V2-V1)得V2=243、因为F与X成一次函数关系所以可以用平均作用力来表示F=(4+54)/2=29N位移S=10M所以W=FS=290J当然也可以作出F关于X的图像:所包围的面积就是功W=(4+54)×10/2=290J4、02-v2=2asa=-v2/(2s)-μmg=maμ=a/g=v2/(2gs)物体加速度大小为v2/(2s),物体与水平面的摩擦系数为v2/(2gs)。
大学物理简明教程_课后答案_1章
问题1.1 关于行星运动的地心说和日心说的根本区别是什么?答:地心说和日心说的根本区别在于描述所观测运动时所选取的参考系不同。
1.2 牛顿是怎样统一了行星运动的引力和地面的重力?答:用手向空中抛出任一物体,按照惯性定律,物体应沿抛出方向走直线,但是它最终却还会落到地面上。
这说明地球对地面物体都有一种吸引力。
平抛物体的抛速越大,落地时就离起点越远,惯性和地球吸引力使它在空中划出一条曲线。
地球吸引力也应作用于月球,但月球的不落地,牛顿认为这不过是月球下落运动曲线的弯曲度正好与地球表面的弯曲程度相同。
这样牛顿就把地球对地面物体的吸引力和地球对月球的吸引力统一起来了。
牛顿认为这种引力也作用在太阳和行星、行星与行星之间,称为万有引力。
并认为物体所受的重力就等于地球引力场的引力。
这样牛顿就统一了行星运动的引力和地面的重力。
1.3 什么是惯性? 什么是惯性系?答:任何物体都有保持静止或匀速直线运动状态的特性,这种特性叫惯性。
我们把牛顿第一定律成立的参考系叫惯性系。
而相对于已知惯性系静止或做匀速直线运动的参考系也是惯性系。
1.4 人推动车的力和车推人的力是作用力与反作用力,为什么人可以推车前进呢?答:人推动车的力和车推人的力是作用力与反作用力,这是符合牛顿第三定律的。
但这两两个力是分别作用在两个物体上的。
对于车这个研究对象来说,它就只受到人推动车的力(在不考虑摩擦力的情况下),所以人可以推车前进。
1.5 摩擦力是否一定阻碍物体的运动?答:不一定。
例如汽车前进时,在车轮与路面之间实际上存在着两种摩擦力:静摩擦和滚动摩擦。
前者是驱使汽车前进的驱动力,后者是阻碍汽车前进的阻力。
再如,拖板上放上一物体,拉动拖板,物体可以和拖板一起运动,其原因就是拖板给予了物体向前的摩擦力。
1.6 用天平测出的物体的质量,是引力质量还是惯性质量?两汽车相撞时,其撞击力的产生是源于引力质量还是惯性质量?1答:用天平测出的物体的质量和引力有关,是地球对物体和砝码的引力对天平刀口支撑点力矩平衡测出的质量,所以是引力质量。
大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案
习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为 ( )(A)dtdr(B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +答案:(D)。
(2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a −=,则一秒钟后质点的速度 ( )(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
答案:(D)。
(3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 ( )(A)tR t R ππ2,2 (B) t Rπ2,0 (C) 0,0 (D) 0,2tRπ 答案:(B)。
(4) 质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中, ( ) ① a t = d /d v , ② v =t r d /d , ③ v =t S d /d , ④ τa t =d /d v.(A) 只有①、④是对的. (B) 只有②、④是对的.(C) 只有②是对的.(D) 只有③是对的. 答案:(D)。
(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有: ( ) (A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠=答案:(D)。
1.2填空题(1) 一质点,以1−⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
答案: 10m ; 5πm 。
(2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。
大学物理简明教程课后习题以及它的答案
大学物理简明教程习题以及它的答案习题一1-1 解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v t sd d . t rd d 只是速度在径向上的分量.∵有rr ˆr =(式中r ˆ叫做单位矢),则t ˆrˆt r t d d d d d d r r r +=式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示. 题1-1图 (3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量.∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以 t vt v t v d d d d d d ττϖϖϖ+= 式中dt dv 就是加速度的切向分量. (t t rd ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=, j t y i t x t r a jty i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a t r v == 其二,可能是将22d d d d t r t r 与误作速度与加速度的模。
在1-1题中已说明t rd d 不是速度的模,而只是速度在径向上的分量,同样,22d d t r 也不是加速度的模,它只是加速度在径向分量中的一部分⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=222d d d d t r t r a θ径。
[大学物理简明教程]课后习题答案(全)2
[大学物理简明教程]课后习题答案(全)2《大学物理简明教程》习题解答习题一1-1 ||与有无不同?和有无不同? 同?其不同在哪里?试举例说明.;drdtdrdtdvdt和dvdt有无不解:(1)是位移的模,是位矢的模的增量,即,drdt(2)drdt是速度的模,即.只是速度在径向上的分量.有(式中r叫做单位矢),则dr式中dt就是速度径向上的分量,∴题1-1图dvdtdrdr与dtdt不同如题1-1图所示.(3)量.表轨道节线方向单位矢)∵有,所以dt表示加速度的模,即dv,dt是加速度a在切向上的分dv式中dt就是加速度的切向分量.与(dtdt的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为x=x(t),y=y(t),在计算质点的速度和加速度时,有人先求出r=而求得结果;又有人先计算速度和加速度的分量,再合成求得结 dr22,然后根据v=dtd2r,及a=dt2果,即=及a=你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角,坐标系中,有dtdtdt222222故它们的模即为2x2而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作dtdrdr与2其二,可能是将dtdtdr说明dt22dt误作速度与加速度的模。
在1-1题中已d2r不是速度的模,而只是速度在径向上的分量,同样,dt2也不是加速度的模,它只是加速度在径向分量中的一部分2径。
或者概括性地说,前一种方法只考虑了位矢在径向(即量值)方面随时间的变化率,而没有考虑位矢r及速度的方向随间的变化率对速度、加速度的贡献。
1-3 一质点在xOy平面上运动,运动方程为x=3t+5, y=2t2+3t-4.式中t以 s计,x,y以m计.(1)以时间t为变量,写出质点位置矢量的表示式;(2)求出t=1 s 时刻和t=2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t=0 s 时刻到t=4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算t=4 s 时质点的速度;(5)计算t=0s 到t=4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t=4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).2m 解:(1)(2)将代入上式即有(4) dt则dt(6)这说明该点只有y方向的加速度,且为恒量。
大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案
习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为 ( )(A)dtdr(B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +答案:(D)。
(2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a −=,则一秒钟后质点的速度 ( )(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
答案:(D)。
(3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 ( )(A)tR t R ππ2,2 (B) t Rπ2,0 (C) 0,0 (D) 0,2tRπ 答案:(B)。
(4) 质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中, ( ) ① a t = d /d v , ② v =t r d /d , ③ v =t S d /d , ④ τa t =d /d v.(A) 只有①、④是对的. (B) 只有②、④是对的.(C) 只有②是对的.(D) 只有③是对的. 答案:(D)。
(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有: ( ) (A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠=答案:(D)。
1.2填空题(1) 一质点,以1−⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
答案: 10m ; 5πm 。
(2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。
大学物理简明教程第三版修订版课后答案
习题11.1选择题(1) 一运动质点在某瞬时位于矢径的端点处,其速度大小为 ( )),(y x r(A)(B)dt dr dtr d (C)(D) dtr d || 22)()(dtdy dt dx +答案:(D)。
(2) 一质点作直线运动,某时刻的瞬时速度,瞬时加速度,则s m v /2=2/2s m a -=一秒钟后质点的速度 ( )(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
答案:(D)。
(3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 ( )(A)(B) tRt R ππ2,2t Rπ2,0(C) (D) 0,00,2tRπ答案:(B)。
(4)质点作曲线运动,表示位置矢量,表示速度,表示加速度,S 表示路程,r v a表示切向加速度,下列表达式中, ( τa ) ① , ② ,a t = d /d v v =t r d /d ③ ,④ .v =t S d /d τa t =d /d v(A) 只有①、④是对的. (B) 只有②、④是对的.(C) 只有②是对的. (D) 只有③是对的. 答案:(D)。
(5)一质点在平面上作一般曲线运动,其瞬时速度为,瞬时速率为υ,某一时间内的v平均速度为,平均速率为,它们之间的关系必定有: vv( )(A ) (B )v v v,v ==vv v,v =≠(C ) (D )v v v,v ≠≠ v v v,v ≠=答案:(D)。
1.2填空题(1) 一质点,以的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小1-⋅s m π是 ;经过的路程是 。
答案: 10m ; 5πm 。
(2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。
答案: 23m·s -1 . (3)一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律是α=12t 2-6t (SI),则质点的角速度ω=__________________;切向加速度τa =_________________.答案:4t 3-3t 2 (rad/s), 12t 2-6t (m/s 2)(4) 一质点作直线运动,其坐标x 与时间t 的关系曲线如题1.2(4)图所示.则该质点在第___ 秒瞬时速度为零;在第 秒至第秒间速度与加速度同方向.题1.2(4)图答案:3, 3 6;(5) 一质点其速率表示式为,则在任一位置处其切向加速度为 v s =+12a τ。
《大学物理简明教程》课后习题
《大学物理简明教程》习题解答习题一1-1 |r ∆|与r ∆有无不同?td d r 和td d r 有无不同? td d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆;(2)td d r 是速度的模,即t d d r ==v ts d d .tr d d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中trd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)td d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量.∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t t r d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =trd d ,及a =22d d t r而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a tr v ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。
大学物理简明教程课后习题及答案
大学物理简明教程习题解答习题一1-1 |r ∆|与r ∆有无不同t d d r 和t d d r 有无不同 t d d v 和t d d v有无不同其不同在哪里试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆrˆt r t d d d d d d r r r += 式中t rd d 就是速度径向上的分量, ∴t r td d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确为什么两者差别何在解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
大学物理简明教程第三版课后习题答案
物理简明教程第三版课后习题及答案习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆtr t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题图所示.(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作。
大学物理简明教程习题3详解
习题33.1选择题(1) 有两个力作用在一个有固定转轴的刚体上:①这两个力都平行于轴作用时,它们对轴的合力矩一定是零;②这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;③当这两个力的合力为零时,它们对轴的合力矩也一定是零;④当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,()(A) 只有①是正确的.(B) ①、②正确,③、④错误.(C) ①、②、③都正确,④错误.(D) ①、②、③、④都正确.答案:(B)(2) 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J,绳下端挂一物体.物体所受重力为P,滑轮的角加速度为α.若将物体去掉而以与P相等的力直接向下拉绳子,滑轮的角加速度α将()(A) 不变.(B) 变小.(C) 变大.(D) 如何变化无法判断.答案:(C)(3)关于刚体的转动惯量,下列说法中正确的是()(A)只取决于刚体的质量,与质量的空间分布和轴的位置无关;(B)取决于刚体的质量和质量的空间分布,与轴的位置无关;(C)取决于刚体的质量、质量的空间分布和轴的位置;(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
答案:(C)(4) 一人造地球卫星到地球中心O的最大距离和最小距离分别是R A和R B.设卫星对应的角动量分别是L A、L B,动能分别是E KA、E KB,则应有()(A) L B > L A,E KA > E KB.(B) L B > L A,E KA = E KB.(C) L B = L A,E KA = E KB.(D) L B < L A,E KA = E KB.(E) L B = L A,E KA < E KB.答案:(E)(5) 一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω()(A) 增大.(B) 不变.(C) 减小.(D) 不能确定.题3.1(5)图答案: (C) 3.2填空题(1) 三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上.此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=________,对通过三角形中心且平行于其一边的轴的转动惯量为J A =__________,对通过三角形中心和一个顶点的轴的转动惯量为J B =__________. 答案:ma 2 ;21 ma 2 ; 21ma 2(2) 两个质量分布均匀的圆盘A 和B 的密度分别为ρA 和ρB (ρA >ρB ),且两圆盘的总质量和厚度均相同。
大学物理简明教程课后习题加答案
大学物理简明教程习题解答习题一1-1 |r ∆|与r ∆有无不同t d d r 和t d d r 有无不同 t d d v 和t d d v有无不同其不同在哪里试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆrˆt r t d d d d d d r r r += 式中t rd d 就是速度径向上的分量, ∴t r td d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确为什么两者差别何在解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
大学物理简明教程课后习题加答案
大学物理简明教程习题解答习题一解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d=,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
在1-1题中已说明t r d d 不是速度的模,而只是速度在径向上的分量,同样,22d d t r 也不是加速度的模,它只是加速度在径向分量中的一部分⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=222d d d d t r t r a θ径。