大学物理简明教程第版赵近芳习题答案习题静电场

合集下载

2024版年度大学物理简明教程赵近芳

2024版年度大学物理简明教程赵近芳

质点是具有质量而几何尺寸可以忽略不计的物体。

质点概念描述质点运动的数学表达式,包括位移、速度和加速度等物理量。

运动学方程质点沿一直线进行的运动,可分为匀速直线运动和变速直线运动。

直线运动质点沿一曲线进行的运动,其速度方向时刻在改变。

曲线运动质点运动学01牛顿第一定律又称惯性定律,表明物体在不受外力作用时,其运动状态不会发生改变。

02牛顿第二定律物体的加速度与作用力成正比,与物体质量成反比,加速度方向与作用力方向相同。

03牛顿第三定律作用力和反作用力大小相等、方向相反、作用在同一直线上。

牛顿运动定律03物体的质量和速度的乘积,表示物体运动的量度。

动量概念物体动量的改变等于作用力对时间的积累。

动量定理在封闭系统中,没有外力作用时,系统总动量保持不变。

动量守恒定律力与物体在力的方向上通过的距离的乘积,表示力对物体所做的功。

功的概念物体由于位置而具有的能量,如重力势能和弹性势能等。

势能概念合外力对物体所做的功等于物体动能的变化。

动能定理在一个封闭系统中,没有外力做功时,系统总能量保持不变。

能量守恒定律分子运动论的基本概念物质由大量分子组成,分子在永不停息地做无规则运动,分子之间存在着相互作用力。

气体压强大量气体分子对容器壁的频繁碰撞产生了气体的压强,压强的大小与分子的平均动能和分子的密集程度有关。

温度的微观意义温度是分子平均动能的标志,温度越高,分子的平均动能越大。

能量均分定理在热平衡状态下,气体分子的平均动能与温度成正比,且每个自由度上的平均动能都相等。

气体动理论01020304热力学系统内部所有分子的动能和势能之和称为内能,它是一个状态量。

热力学系统的内能热量是系统与外界之间由于温度差而传递的能量,功是系统与外界之间由于力而产生的能量传递。

热量和功热力学系统内能的增量等于外界对系统所做的功与系统从外界吸收的热量之和。

热力学第一定律的表述可以求解各种热力学过程中的功、热量和内能变化等问题。

热力学第一定律的应用热力学第一定律克劳修斯表述和开尔文-普朗克表述,分别揭示了热量传递和功转变为热的方向性。

大学物理简明教程(赵近芳)习题7详解

大学物理简明教程(赵近芳)习题7详解

习题71. 选择题(1) 下面说法正确的是: [ ](A )若高斯面上的电场强度处处为零,则该面内必无电荷;(B )若高斯面内无电荷,则高斯面上的电场强度处处为零;(C )若高斯面上的电场强度处处不为零,则高斯面内必定有电荷;(D )若高斯面内有净电荷,则通过高斯面的电通量必不为零;(E )高斯定理仅适用于具有高度对称性的电场。

[答案:D](2)点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如题7.1(2)图所示,则引入前后, [ ](A) 曲面S 的电场强度通量不变,曲面上各点场强不变.(B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. 题7.1(2)图[答案D ](3)在电场中的导体内部的 [ ](A )电场和电势均为零; (B )电场不为零,电势均为零;(C )电势和表面电势相等; (D )电势低于表面电势。

[答案:C](4)两个同心均匀带电球面,半径分别为R a 和R b (R a <R b ), 所带电荷分别为Q a 和Q b .设某点与球心相距r ,当R a <r <R b 时,该点的电场强度的大小为: [ ](A) 2014a b Q Q r ε+⋅π. (B) 2014a b Q Q r ε-⋅π. (C)22014a b b Q Q r R ε⎛⎫⋅+ ⎪⎝⎭π. (D) 2014a Q r ε⋅π.[答案 D](5)如果某带电体其电荷分布的体密度增大为原来的2倍,则其电场的能量变为原来的 [ ](A) 2倍. (B) 1/2倍.(C) 4倍. (D) 1/4倍.[答案 C]q2.填空题(1)在静电场中,电势不变的区域,电场强度必定为。

[答案:相同](2)一个点电荷q 放在立方体中心,则穿过某一表面的电通量为 ,若将点电荷由中心向外移动至无限远,则总的电通量将 。

大学物理简明教程(赵近芳)习题1详解

大学物理简明教程(赵近芳)习题1详解

习题11.选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为 ( ) (A)dt dr (B)dtr d (C)dtr d || (D) 22)()(dt dy dt dx + 答案:(D)。

(2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度 ( )(A)等于零 (B)等于-2m/s(C)等于2m/s (D)不能确定。

答案:(D)。

(3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 ( ) (A)t R t R ππ2,2 (B) tR π2,0 (C) 0,0 (D) 0,2t R π 答案:(B)。

(4) 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中, ( ) ① a t = d /d v , ② v =t r d /d ,③ v =t S d /d , ④ τa t =d /d v .(A) 只有①、④是对的.(B) 只有②、④是对的.(C) 只有②是对的.(D) 只有③是对的.答案:(D)。

(5)一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有: ( )(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠=答案:(D)。

2.填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

答案: 10m ; 5πm 。

(2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。

大学物理(第4版)主编赵近芳-第10章的课后答案详解

大学物理(第4版)主编赵近芳-第10章的课后答案详解

习题1010.1选择题(1)对于安培环路定理的理解,正确的是:(A)若环流等于零,则在回路L上必定是H处处为零;(B)若环流等于零,则在回路L上必定不包围电流;(C)若环流等于零,则在回路L所包围传导电流的代数和为零;(D)回路L上各点的H仅与回路L包围的电流有关。

[答案:C](2)对半径为R载流为I的无限长直圆柱体,距轴线r处的磁感应强度B()(A)内外部磁感应强度B都与r成正比;(B)内部磁感应强度B与r成正比,外部磁感应强度B与r成反比;(C)内外部磁感应强度B都与r成反比;(D)内部磁感应强度B与r成反比,外部磁感应强度B与r成正比。

[答案:B](3)质量为m电量为q的粒子,以速率v与均匀磁场B成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要()(A)增加磁场B;(B)减少磁场B;(C)增加θ角;(D)减少速率v。

[答案:B](4)一个100匝的圆形线圈,半径为5厘米,通过电流为0.1安,当线圈在1.5T的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为()(A)0.24J;(B)2.4J;(C)0.14J;(D)14J。

[答案:A]10.2 填空题(1)边长为a的正方形导线回路载有电流为I,则其中心处的磁感应强度。

[答案:a Iπμ22,方向垂直正方形平面](2)计算有限长的直线电流产生的磁场用毕奥——萨伐尔定律,而用安培环路定理求得(填能或不能)。

[答案:能, 不能](3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为。

电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为。

[答案:零,零](4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以电流时,管内的磁力线分布相同,管内的磁感线分布将。

[答案:相同,不相同]10.3 在同一磁感应线上,各点B ϖ的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B ϖ的方向?解: 在同一磁感应线上,各点B ϖ的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B ϖ的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B ϖ的方向.题10.3图10.4 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B ϖ的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B ρϖ=∑⎰==-=⋅0d 021I bc B da B l B abcdμϖϖ∴ 21B B ρϖ=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B ϖ方向相反,即21B B ρϖ≠.10.5 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.10.6 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题10.6图)的环路积分⎰外B L ϖ·d l ϖ=0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为 ⎰外B L ϖ·d l ϖ=I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μϖϖ外,与⎰⎰=⋅=⋅Ll l B 0d 0d ϖϖϖ外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B ϖ的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 10.6 图10.7 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.10.8 已知磁感应强度0.2=B Wb/m 2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量. 解: 如题10.8图所示题10.8图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S B ϖϖΦWb(2)通过befc 面积2S 的磁通量022=⋅=S B ϖϖΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb (或24.0-Wb )题10.9图10.9 如题10.9图所示,AB 、CD 为长直导线,C B )为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题10.9图所示,O 点磁场由AB 、C B )、CD 三部分电流产生.其中AB 产生 01=B ϖBC 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向垂直向里.10.10 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题10.10图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题10.10图解:如题10.10图所示,A B ϖ方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T52010103310502050102-⨯=⨯++-=..)..(πμπμI I B B T(2)设0=B ϖ在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题10.11图10.11 如题10.11图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题10.11图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

()
(3) 对功的概念有以下几种说法:
①保守力作正功时,系统内相应的势能增加。
习题 1
1.1 选择题
(1)
一运动质点在某瞬时位于矢径
r (x,
y)
的端点处,其速度大小为
(A) dr dt
(B) dr
dt
(C) d | r |
dt
(D) ( dx)2 + ( dy )2 dt dt
答案:(D)。
()
(2) 一质点作直线运动,某时刻的瞬时速度 v = 2m / s ,瞬时加速度 a = −2m / s2 ,则一
答案:(B)。
(D) 2R ,0 t
(4) 质点作曲线运动, r 表示位置矢量,v 表示速度, a 表示加速度,S 表示路程, a
表示切向加速度,下列表达式中,
① dv / d t = a ,
② dr / dt = v ,
③ dS / d t = v ,
④ dv / dt = a .
()
速度 v0 为 5m·s-1,则当 t 为 3s 时,质点的速度 v=

答案: 23m·s-1 .
(3) 一质点从静止出发沿半径 R=1 m 的圆周运动,其角加速度随时间 t 的变化规律是 α=12t2-
6t (SI),则质点的角速度 =__________________;切向加速度 a =_________________. 答案:4t3-3t2 (rad/s), 12t2-6t (m/s2)
*1.14 一船以速率 v1 =30km·h-1沿直线向东行驶,另一小艇在其前方以速率 v2 =40km·h-1
沿直线向北行驶,问在船上看小艇的速度为多少?在艇上看船的速度又为多少?

大学物理(第4版)主编赵近芳_第10章课后答案解析

大学物理(第4版)主编赵近芳_第10章课后答案解析

习题1010.1选择题(1)对于安培环路定理的理解,正确的是:(A)若环流等于零,则在回路L上必定是H处处为零;(B)若环流等于零,则在回路L上必定不包围电流;(C)若环流等于零,则在回路L所包围传导电流的代数和为零;(D)回路L上各点的H仅与回路L包围的电流有关。

[答案:C](2)对半径为R载流为I的无限长直圆柱体,距轴线r处的磁感应强度B()(A)内外部磁感应强度B都与r成正比;(B)内部磁感应强度B与r成正比,外部磁感应强度B与r成反比;(C)内外部磁感应强度B都与r成反比;(D)内部磁感应强度B与r成反比,外部磁感应强度B与r成正比。

[答案:B](3)质量为m电量为q的粒子,以速率v与均匀磁场B成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要()(A)增加磁场B;(B)减少磁场B;(C)增加θ角;(D)减少速率v。

[答案:B](4)一个100匝的圆形线圈,半径为5厘米,通过电流为0.1安,当线圈在1.5T的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为()(A)0.24J;(B)2.4J;(C)0.14J;(D)14J。

[答案:A]10.2 填空题(1)边长为a的正方形导线回路载有电流为I,则其中心处的磁感应强度。

[答案:a Iπμ22,方向垂直正方形平面](2)计算有限长的直线电流产生的磁场用毕奥——萨伐尔定律,而用安培环路定理求得(填能或不能)。

[答案:能, 不能](3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为。

电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为。

[答案:零,零](4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以电流时,管内的磁力线分布相同,管内的磁感线分布将。

[答案:相同,不相同]10.3 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题10.3图10.4 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcdμ∴ 21B B=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B ≠.10.5 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.10.6 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题10.6图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为 ⎰外B L·d l =I 0μ 这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B 的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 10.6 图10.7 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.10.8 已知磁感应强度0.2=B Wb/m 2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题10.8图所示题10.8图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或24.0-Wb )题10.9图10.9 如题10.9图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题10.9图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BBC 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向垂直向里.10.10 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题10.10图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B题10.10图解:如题10.10图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T52010103310502050102-⨯=⨯++-=..)..(πμπμI I B B T(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题10.11图10.11 如题10.11图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题10.11图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

大学物理课后习题答案(赵近芳)下册演示教学

大学物理课后习题答案(赵近芳)下册演示教学

习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q E ϖϖε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,S q E 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么?f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p ϖϖ=,场点到偶极子中心O 点的距离为r ,矢量rϖ与l ϖ的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p ϖ分解为与r ϖ平行的分量θsin p 和垂直于r ϖ的分量θsin p .∵ l r >>∴ 场点P 在r 方向场强分量3π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin rp E εθ=题8-5图 题8-6图8-6 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题8-6图所示由于对称性⎰=l QxE 0d ,即Q E ϖ只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==l QyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d RR E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如8-8图示,正方形一条边上电荷4q在P 点产生物强P E ϖd 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴24π4d2222lrllrEP++=ελPEϖd在垂直于平面上的分量βcosddPEE=⊥∴424π4d222222lrrlrlrlE+++=⊥ελ题8-8图由于对称性,P点场强沿OP方向,大小为2)4(π44d42222lrlrlrEEP++=⨯=⊥ελ∵lq4=λ∴2)4(π42222lrlrqrEP++=ε方向沿OP8-9 (1)点电荷q位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q的电场中取半径为R的圆平面.q在该平面轴线上的A点处,求:通过圆平面的电通量.(xRarctan=α)解: (1)由高斯定理dεqSEs⎰=⋅ϖϖ立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图 (3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq=[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E sϖϖ,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E ϖ8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E sϖϖ取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E Sπ2d =⋅⎰ϖϖ对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E ϖϖ)(21210σσε-=1σ面外, n E ϖϖ)(21210σσε+-= 2σ面外, n E ϖϖ)(21210σσε+=n ϖ:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E ϖ,ρ- 球在O 点产生电场'd π4π3430320OO r E ερ=ϖ∴ O 点电场'd33030OO r E ερ=ϖ; (2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ϖρ-球在O '产生电场002='E ϖ∴ O ' 点电场 003ερ='E ϖ'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ϖ',相对O 点位矢为r ϖ (如题8-13(b)图)则 03ερrE PO ϖϖ=,3ερr E O P '-='ϖϖ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P ϖϖϖϖϖϖ=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p ϖ在外场E ϖ中受力矩E p M ϖϖϖ⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功? 解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εεϖϖ)11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-=∴ Rqq U U q A o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势. 解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点E ϖd 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O 8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E ϖ与电势U 的关系U E -∇=ϖ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r rq r r U E ϖϖϖε=∂∂-= 0r ϖ为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR q U +=ε∴ ()i x R qxi x U E ϖϖϖ2/3220π4+=∂∂-=ε(3)偶极子l q p ϖϖ=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql llr q U εθθθε=+--=∴ 30π2cos r p r U E r εθ=∂∂-= 30π4sin 1rp U r E εθθθ=∂∂-= 8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσϖϖ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=2220π4π4d d R R R qr r q r E U εεϖϖ (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q 8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F r qr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q . ∴ 小球1、2间的作用力00294π432322F r qq F ==ε*8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势. 解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持UU AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 Sq261==σσSq d U2032-=-=εσσ Sq dU2054+=-=εσσ 所以CB 间电场 S qd U E 00422εεσ+==)2d (212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C = 8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sϖϖd(1)介质内)(21R r R <<场强303π4,π4rrQ E r r Q D r εεϖϖϖϖ==内; 介质外)(2R r <场强303π4,π4rr Q E r Qr D εϖϖϖ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞ϖϖ外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221ϖϖϖϖ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.rd r d ϖϖϖϖ⋅+⋅=⎰⎰∞∞rrE E U 外内解: 如题8-28图所示,充满电介质部分场强为2E ϖ,真空部分场强为1E ϖ,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D ϖϖ得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰ϖϖ当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41rq q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112*********U U U C U C q qU C U C q q q q 解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E ϖ在21R r R <<时 301π4r rQ E εϖϖ= 3R r >时 302π4r rQ E εϖϖ=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4rrQ E εϖϖ=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B ϖ的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B ϖ的方向?解: 在同一磁感应线上,各点B ϖ的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B ϖ的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B ϖ的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度Bϖ的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)?(2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B ρϖ=∑⎰==-=⋅0d 021I bc B da B l B abcdμϖϖ∴ 21B B ρϖ=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B ϖ方向相反,即21B B ρϖ≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场? 答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题9-4图)的环路积分⎰外B L ϖ·d l ϖ=0 但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L ϖ·d l ϖ=I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μϖϖ外,与⎰⎰=⋅=⋅Ll l B 0d 0d ϖϖϖ外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B ϖ的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m -2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量. 解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S B ϖϖΦWb(2)通过befc 面积2S 的磁通量022=⋅=S B ϖϖΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B )为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B )、CD 三部分电流产生.其中AB 产生 01=B ϖCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B ϖ方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B ϖ在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

大学物理简明教程(赵金芳版)习题

大学物理简明教程(赵金芳版)习题

第1篇 力学一、选择题1. 一物体在位置1的矢径是 r 1, 速度是v 1. 经∆t 秒后到达位置2,其矢径是 r 2, 速度 是v 2.则在∆t 时间内的平均速度是 [ ] (A)1221() v v - (B) 1221() v v + (C) t r r ∆-12 (D) tr r ∆+122. 一物体在位置1的速度是 v 1, 加速度是 a 1.经∆t 秒后到达位置2,其速度是 v 2, 加速度是a 2.则在∆t 时间内的平均加速度是[ ] (A) 121∆t v v () - (B) 121∆t v v () + (C) 1221() a a - (D) 1221() a a +3. 关于加速度的物理意义, 下列说法正确的是 [ ] (A) 加速度是描述物体运动快慢的物理量 (B) 加速度是描述物体位移变化率的物理量 (C) 加速度是描述物体速度变化的物理量 (D) 加速度是描述物体速度变化率的物理量4. 一质点作曲线运动, 任一时刻的矢径为 r , 速度为v , 则在∆t 时间内[ ] (A) ∆∆v v = (B) 平均速度为∆∆r t (C) ∆∆r r = (D) 平均速度为∆∆ r t5. 下列表述中正确的是:[ ] (A) 质点作圆周运动时, 加速度一定与速度垂直 (B) 物体作直线运动时, 法向加速度必为零 (C) 轨道最弯处法向加速度最大(D) 某时刻的速率为零, 切向加速度必为零6.质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)(A) dtdv(B) R v 2 (C) dt dv +R v 2 (D)222)()(Rv dt dv +7.一质点在平面上运动, 已知质点位置矢量的表示式为r a t i b t j =+22(其中a 、b 为常量) , 则该质点作[ ] (A) 匀速直线运动 (B) 变速直线运动(C) 抛物曲线运动 (D) 一般曲线运动T 1-1-1图T 1-1-2图8. 某物体的运动规律为t kv tv2d d -=, 式中k 为常数.当t = 0时,初速度为v 0.则速度v 与时间t 的函数关系是:[ ] (A) v k t v =+1220 (B) v k t v =-+1220 (C) 12120v k t v =+ (D) 12120v k t v =-+9. 牛顿定律和动量守恒定律的适用范围为[ ] (A) 仅适用于宏观物体(B) 仅适用于宏观, 低速物体(C) 牛顿定律适用于宏观低速物体, 动量守恒定律普遍适用 (D) 牛顿定律适用于宏观低速物体, 动量守恒定律适用于宏观物体10. 用锤压钉不易将钉压入木块, 用锤击钉则很容易将钉击入木块, 这是因为[ ] (A) 前者遇到的阻力大, 后者遇到的阻力小 (B) 前者动量守恒, 后者动量不守恒(C) 后者锤的动量变化大, 给钉的作用力就大(D) 后者锤的动量变化率大, 给钉的作用力就大 11. 关于保守力, 下面说法正确的是[ ] (A) 只有保守力作用的系统动能和势能之和保持不变 (B) 只有合外力为零的保守内力作用系统机械能守恒 (C) 保守力总是内力(D) 物体沿任一闭合路径运动一周, 作用于它的某种力所作之功为零, 则该种力称为保守力12. 对于一个物体系统来说,在下列条件中,哪种情况下系统的机械能守恒?[ ] (A) 合外力为0 (B) 合外力不作功(C) 外力和非保守内力都不作功 (D) 外力和保守力都不作功1. C2. A3. D4. D5. B6.D7. B8. C9. C 10.D 11. D 12.C1-3 一质点在xOy 平面上运动,运动方程为x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t=0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) j t t i t r)4321()53(2-+++=m(2)将1=t ,2=t 代入上式即有j i r5.081-= mj j r4112+=mj j r r r5.4312+=-=∆m(3)∵ j i r j j r1617,4540+=-=∴104s m 534201204-⋅+=+=--=∆∆=j i ji r r t r v(4) 1s m )3(3d d -⋅++==j t i trv则 j i v 734+= 1s m -⋅ (5)∵ j i v j i v73,3340+=+=204s m 1444-⋅==-=∆∆=j v v t v a (6) 2s m 1d d -⋅==j tva这说明该点只有y 方向的加速度,且为恒量。

大学物理简明教程赵近芳版练习题

大学物理简明教程赵近芳版练习题

练习题第一章质点运动学一、填空题度,则为速度度时,4、质点作沿半径R=10m的圆周运动,某时刻的角速度ω=2rad/s,角加速度α=5rad/s2,则该质点此时刻的速度大小为________,法向加速度大小为_________,其切向加速度大小为__________.5、设质点的运动方程为:10cos()10sin()x ty tππ==,则质点的运动方程矢量形式为;速度矢量表达式式速度,是10.质点运动学方程为r=ti+0.5t2j(m),当t=1秒时,质点切向加速度大小为;一质点沿x 轴运动,a=3+2t,t=0时,v0=5m/s,则t=3s时速度大小为。

21.一质点在在x-y平面内运动,运动学方程为x=3cos4t,y=3sin4t,则t时刻的位矢r(t)= ,速度v(t)= ,加速度a(t)= ,质点轨迹是。

1、一质点的运动方程为r=(Rωt-Rsinωt)i+(R-Rcos ωt)j,式中R和ω为常数,t为时间,则此质点的加速度的大小为()① ω2/R ② ω2/2R ③ 2R ω2 ④ R ω22、一质点的运动方程为r=(Rsin ωt )i+(Rcos ωt)j ,式中R 和ω为常数,t 为时间,则此质点的加速度的大④ T 可 (d)t=1)5、一质点沿x 轴运动的规律是542+-=t t x (SI 制)。

则前三秒内它的 ( )(A)位移和路程都是3m ;(B)位移和路程都是-3m ;(C)位移是-3m,路程是3m;(D)位移是-3m,路程是5m。

6、某人以4km/h的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。

为,从,从45°2、一质点沿x轴运动,坐标与时间的变化关系为x=4t-2t 3(SI制),试计算⑴在最初2s内的平均速度,2s末的瞬时速度;⑵1s末到3s末的位移和平均速度;⑶1s末到3s末的平均加速度。

此平均加速度是否可以用a=(a1+a2)/2计算;⑷3s末的瞬时加速度。

大学物理学第三版修订版下册第11章答案(赵近芳)

大学物理学第三版修订版下册第11章答案(赵近芳)

习题1111.1选择题(1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流() (A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。

[答案:B](2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。

[答案:A](3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式221LI W m=()( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。

[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。

[答案:C]11.2 填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。

[答案:磁力](2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。

[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。

[答案:端点,221l B ω;中点,0]11.3一半径r =10cm B =0.8T 的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V11.4 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题11.4图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i, 题11.4图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j,则αΦcos 2π22B R m=∵ B 与i 夹角和B 与j 夹角相等,∴ ︒=45α 则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题11.5图 11.5 如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即b a ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)(2)解: 以向外磁通为正则 (1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r I ab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7 如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解: )cos(2π02ϕωΦ+=⋅=t r B S B m∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε ∴ RBfr R I m22π==ε11.8 如题11.8图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1d =0.05m 时线圈中感应电动势的大小和方向.题11.8图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.11.9 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题11.9图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题11.9图11.10 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题11.11图11.11 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题11.12图11.12 如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则 b a b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-lnd )211(2d )(00πμπμε∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln 0πμ题11.13图11.13 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=--∴ tB R R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →11.14 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅= Φ∴ tB R R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15 如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示(1)ab(2)cd解: 由⎰⎰⋅-=⋅l S t B l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E与ab 垂直∴⎰=⋅ll 0d旋∴0=ab ε,有b a U U = (2)同理, 0d >⋅=⎰l E cddc旋ε∴ 0<-c d U U 即d c U U >题11.16图11.16 一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==11.17两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H题11.18图11.18 一矩形截面的螺绕环如题11.18图所示,共有N(1)(2)若导线内通有电流I ,环内磁能为多少? 解:如题11.18图示 (1)通过横截面的磁通为 ⎰==baab NIhr h r NIlnπ2d π200μμΦ 磁链 ab IhN N lnπ220μΦψ==∴ abhN IL lnπ220μψ==(2)∵ 221LI W m = ∴ ab hI N W m ln π4220μ=11.19 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2RI B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I Rrr I r r w W 0204320π16π4d d 2μμπ。

大学物理学习题全解-赵近芳版(10-17章)

大学物理学习题全解-赵近芳版(10-17章)
显然, ,因此

由于δ≧0,所以 ,因此不论分子的速度的分布服从什么规律,都有 .
另外也可直接用平均值运算.
由于 ,展开得 ,
取平均值时得 .
因为 、 并且 ,所以 ,即 .证毕.
10.10将(11.19)式表示成以理想气体最可几速率vp为单位表示的形式,即令x = v/vp,若已知 ,试计算:
(1)分子速率小于最可几速率的分子占分子总数的百分比为多少?
当射线粒子能量全部转变成氖气的内能时,由公式 可得气体升高的温度为
= 1.28×10-6(K).
10.7某些恒星的温度达到108K的数量级,此时原子已不存在,只有质子存在,求:
(1)质子的平均动能是多少?
(2)质子的方均根速率多大?
[解答](1)质子的平动自由度为t= 3,平均平动动能为 = 2.07×10-15(J).
(2)nf(v)dv,n为分子数密度;
(3) ;
(4) ,vp为最可几速率;
(5) .
[解答](1)由公式dN/N = f(v)dv可知:f(v)dv表示分子数在速率区间v~v+dv之中分子数的比率dN/N.
(2)由于n = N/V,可得ndN/N =dN/V,因此nf(v)dv表示分子数在速率区间v~v+dv之中分子数密度.
(3) 表示分子在速率区间v1到v2之间的平均速率.
(4) 表示分子速率小于最可几速率的分子占分子总数的比率.
(5) 表示分子速率大于最可几速率的速率平方的平均值.
10.14质量为6.2×10-14g的微粒悬浮于27℃的液体中,观察到它的方均根速率为1.4cm·s-1.由这些结果计算阿佛加德罗常数NA.
当系统沿adc路径变化时,可得:Q1= ΔE1+A1,

大学物理简明教程 (赵近芳 著) 北京邮电大学出版社 课后答案

大学物理简明教程 (赵近芳 著) 北京邮电大学出版社 课后答案

两边积分得
1 v2 = 2x + 2x3 + c 2
由题知, x = 0 时, v0 = 10 ,∴ c = 50

v = 2 x3 + x + 25 m ⋅ s −1
1-6 已知一质点作直线运动,其加速度 a=4+3t m ⋅ s −2 .开始运动时,x=5 m,v=0,
习题 1
1-1
|
∆r
|与
∆r
有无 不同 ? |
dr dt
|

dr dt
有无 不同 ?
|
dv dt
|

dv dt
有无 不同 ?其不 同在
哪里?试举例说明.
解:(1) ∆r 是位移的模, ∆ r 是位矢的模的增量,即 ∆r = r2 − r1 , ∆r = r�2 − r�1 ;
dr
(2)
dr
是速度的模,即

v�
=
∆r� ∆t
=
r�4 − r�0 4−0
�� = 12i + 20 j
4
=
� 3i
+
� 5j
m

s−1
(4)
v�
=
dr�
=
� 3i
+ (t
+ 3)
� j
m

பைடு நூலகம்
s−1
dt

v�4
=
� 3i
+
7
� j
m ⋅ s−1
(5)∵
v�0 = 3i� + 3 �j, v�4 = 3i� + 7 �j
a� =
x=3t+5, y = 1 t 2 + 3t − 4, 2

大学物理简明教程赵近芳版练习题

大学物理简明教程赵近芳版练习题

练习题第一章 质点运动学一、填空题 1、某质点的运动方程为r=8ti+4t2j(SI),则质点的轨迹方程为 ,质点的运动速度为 。

法向。

,,.矢量形式为 ;速度矢量表达式为 度矢量表达式为 。

6、某质点的运动方程为r=4ti+2t2j (SI),则质点的轨迹方程为 ,质点的运动速度为 。

8、已知质点的运动方程为: j t i t r )1(2-+= ,则质点运动的初始位置是_______, t=2s 时,质点运动的位移是 ____________,加速度为____________。

9、质点沿半径R=1m的圆周运动,角速度ω=1rad/s,角加速度α=1rad/s2,则该质点的速度大小是________,加速度大小是_________,其切向加速度是__________。

10.质点运动学方程为r=ti+0.5t2j(m),当t=1秒时,质点切向加1112已知13、度aτ= ,轨道的曲率半径ρ= 。

二、选择题1、一质点的运动方程为r=(Rωt-Rsinωt)i+(R-Rcosωt)j,式中R和ω为常数,t为时间,则此质点的加速度的大小为()①ω2/R ②ω2/2R ③ 2Rω2 ④ Rω22、一质点的运动方程为r=(Rsinωt)i+(Rcosωt)j,式中R和ω为常数,t为时间,则此质点的加速度的大小为()①ω2/R ②ω2/2R ③ 2Rω2 ④ Rω2秒6、某人以4km/h的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。

实际风速与风向为()(A)4km/h,从北方吹来; (B)4km/h,从西北方吹来;(C)24km/h ,从东北方吹来; (D) 24km/h ,从西北方吹来。

三、计算题:1、一质点沿半径为0.1m 的圆作圆周运动,所转过的角342t +=θrad(22 3. 4. 边s 距离处,当人以速率v 0匀速收绳时,试求船的速率和加速度大小。

5 一质点在平面上运动,运动方程为 式中以 s 计,,以m 计.(1)以时间为变量,写出质点位置矢量的表示式;(2)求出=1 s 时刻和=2s 时刻的位置矢量,计算这1秒4321,532-+=+=t t y t x内质点的位移;(3)计算=0 s 时刻到=4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算=4 s 时质点的速度;(5)计算=0s 到=4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算=4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢处,为F=6+4x (SI),则物体由静止开始从x=0运动到x=2m 处,合力所做的功A= J ,当x=2m 时,物体的运动速度为v = 。

物理学简明教程第六章课后习题答案—高等教育出版社

物理学简明教程第六章课后习题答案—高等教育出版社

物理学简明教程第六章课后习题答案高等教育出版社第六章 静 电 场6-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( )题 6-1 图分析与解 “无限大”均匀带电平板激发的电场强度为,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B).6-2 下列说法正确的是( )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).6-3 下列说法正确的是( ) (A) 电场强度为零的点,电势也一定为零2εσ(B) 电场强度不为零的点,电势也一定不为零 (C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).6-4 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析题 6-4 图6-5 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.2020π1)2/(2π41aqa q E P εε==题 6-5 图分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元,在点O 激发的电场强度为由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系,统一积分变量,有积分得 6-6 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).θθδδd sin π2d d 2⋅⋅==R S q ()i E 2/3220d π41d r x qx +=εθR x cos =θR r sin =()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R RR r x q x E 02/π004d cos sin 2εδθθθεδ⎰==E 1m V 120-⋅分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径(为地球平均半径).由高斯定理地球表面电荷面密度单位面积额外电子数6-7 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2)R 1 <r <R 2 ,(3) r >R 2 .题 6-7 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且,求出不同半径高斯面内的电荷.即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理r <R 1 ,E R R ≈E R ∑⎰=-=⋅q εR E E 021π4d S E ∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ25cm 1063.6)/(-⨯=-=e nσ⎰⋅=⋅rL E d π2S E ∑q ∑=⋅0/π2εq rL E 0=∑qR 1 <r <R 2 ,r >R 2,在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变6-8 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 6-8 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为在球面内电场强度为零,电势处处相等,等于球面的电势其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各01=E L λq =∑rελE 02π2=0=∑q 03=E 000π2π2ΔεσrL εL λr ελE ===⎰∞⋅=p p V l E d rεQV 0π4=RεQV 0π4=区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布由电势 可求得各区域的电势分布.当r ≤R 1 时,有当R 1 ≤r ≤R 2 时,有当r ≥R 2 时,有(2) 两个球面间的电势差解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则若该点位于两个球面之间,即R 1≤r ≤R 2 ,则()()()22021321201211 π4 π40R r rεQ Q R r R rεQ R r r r>+=<<=<=e E e E E ⎰∞⋅=rV l E d 20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r+=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞lE l E l E 202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r+=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞lE l E rεQ Q V r 02133π4d +=⋅=⎰∞l E ⎪⎪⎭⎫⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 2021011π4π4R εQ R εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则(2) 两个球面间的电势差6-9 一圆盘半径R =3.00 ×10-2m.圆盘均匀带电,电荷面密度σ=2.00×10-5C ·m -2.(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 6-9 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势由电势叠加,轴线上任一点P 的电势的(1)202012π4π4R εQ r εQ V +=rεQ Q V 0213π4+=()2011012112π4π42R εQ R εQ V V U R r -=-==220d π2π41d x r rr σεV +=()x x R εσx r r r εσV R-+=+=⎰222202d 2(2) 轴线上任一点的电场强度为(2) 电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得当x >>R 时,圆盘也可以视为点电荷,其电荷为.依照点电荷电场中电势和电场强度的计算公式,有由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.6-10 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C.(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J · kg)(2) 假设每一个家庭一年消耗的能量为3 000kW ·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量即可融化约 90 吨冰.(2) 一个家庭一年消耗的能量为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεσx V V 6911=V -1m V 6075⋅=E C 1065.5π82-⨯==σR q V 1695π40==xεqV 1-20m V 5649π4⋅==xεq E kg 1098.8Δ4⨯===LqUL E m J 1008.1h kW 0003100⨯=⋅=E 8.2Δ00===E qUE E n一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.6-11 一真空二极管,其主要构件是一个半径R 1=5.0×10-4 m 的圆柱形阴极和一个套在阴极外、半径R 2=4.5×10-3 m 的同轴圆筒形阳极.阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L =2.5×10-2 m .假设电子从阴极射出时的速度为零.求:(1) 该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力.题 6-11 图分析 (1) 由于半径R 1<<L ,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性.从阴极射出的电子在电场力作用下从静止开始加速,电子所获得的动能等于电场力所作的功,也即等于电子势能的减少.由此,可求得电子到达阳极时的动能和速率.(2) 计算阳极表面附近的电场强度,由F =q E 求出电子在阴极表面所受的电场力.解 (1) 电子到达阳极时,势能的减少量为由于电子的初始速度为零,故因此电子到达阳极的速率为(2) 两极间的电场强度为J 108.4Δ17ep -⨯-=-=eV E J 108.4ΔΔ17ep ek ek -⨯-=-==E E E 1-7ek s m 1003.122⋅⨯===meVm E v r rελe E 0π2-=两极间的电势差负号表示阳极电势高于阴极电势.阴极表面电场强度电子在阴极表面受力这个力尽管很小,但作用在质量为9.11×10-31kg 的电子上,电子获得的加速度可达重力加速度的5×1015倍.6-12 一导体球半径为R 1 ,外罩一半径为R 2 的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0 .求此系统的电势和电场的分布.分析 若,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.1200ln π2d π2d 2121R R r r V R R R R ελελ-=-=⋅=⎰⎰r E r r R R R V R ελe e E 12110ln π2=-=r e e E F N)1037.414-⨯=-=(200π4R εQV =200π4R εQV ≠⎰∞⋅=p p V l Ed题 6-12 图解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为r <R 1时, R 1<r <R 2 时,()202π4r εqr E = r >R 2 时, ()202π4rεqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布.r <R 1时,20103211π4π4d d d d 2211R Q R q V R R R R r r εε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞lE l E l E l ER 1<r <R 2 时,200322π4π4d d d 22R Q r q V R R r r εε+=⋅+⋅=⋅=⎰⎰⎰∞∞lE l E l Er >R 2 时,rqQ V r 03π4d ε+=⋅=⎰∞l E 3 也可以从球面电势的叠加求电势的分布: 在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2 )()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ()01=r E 2002π4π4R εQr εq V +=在球壳外(r >R 2)为由题意得于是可求得各处的电场强度和电势的分布:r <R 1时,;R 1<r <R 2 时,; r >R 2 时,;6-13 两线输电线,其导线半径为3.26 mm ,两线中心相距0.50 m ,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容.分析 假设两根导线带等量异号电荷,电荷在导线上均匀分布,则由长直带电线的电场叠加,可以求出两根带电导线间的电场分布,再由电势差的定义求出两根导线之间的电势差,就可根据电容器电容的定义,求出两线输电线单位长度的电容解 建立如图坐标,带等量异号电荷的两根导线在P 点激发的电场强度方向如图,由上述分析可得P 点电场强度的大小为rqQ V 03π4ε+=102001π4π4R εQR εq V V +==Q R R V R q 21010π4==ε01=E 01V V =22012012π4r R εQR r V R E -=rR Q R r r V R V 201012π4)(ε-+=220122013π4)(r R Q R R r V R E ε-+=rR Q R R r V R V 2012013π4)(ε-+=-++=E E E电场强度的方向沿x 轴,电线自身为等势体,依照定义两导线之间的电势差为上式积分得因此,输电线单位长度的电容代入数据题 10-10 图6-14 如图所示,在A 点和B 点之间有5 个电容器,其连接如图所示.(1) 求A 、B 两点之间的等效电容;(2) 若A 、B 之间的电势差为12 V ,求U AC 、U CD 和U DB .题 6-14 图)11(π20xd x E --=ελx xd x l E U lRd Rd )11(π2d 0--=⋅=⎰⎰-ελRR d ελU -=ln π0Rd εR R d εU λC ln /πln /π00≈-==F 1052.512-⨯=C解 (1) 由电容器的串、并联,有求得等效电容C AB =4 μF .(2) 由于,得6-15 半径为0.10 cm 的长直导线,外面套有内半径为1.0 cm 的共轴导体圆筒,导线与圆筒间为空气.略去边缘效应,求:(1) 导线表面最大电荷面密度;(2) 沿轴线单位长度的最大电场能量.分析 如果设长直导线上单位长度所带电荷为λ,导线表面附近的电场强度查表可以得知空气的击穿电场强度E b =3.0 ×106(V /m ),只有当空气中的电场强度E ≤E b 空气才不会被击穿,由于在导线表面附近电场强度最大,因而可以求出σ的极限值.再求得电场能量密度,并通过同轴圆柱形体元内电场能量的积分求得单位长度的最大电场强度.解 (1) 导线表面最大电荷面密度显然导线表面最大电荷面密度与导线半径无关.(2) 由上述分析得,此时导线与圆筒之间各点的电场强度为μF 1221=+=C C C AC μF 843=+=C C C CD 51111C C C C CD AC AB ++=AB D B CD AC Q Q Q Q ===V 4==AB ACABAC U C C U V 6==AB CDABCD U C C U V 2==AB DBABDB U C C U 00π2εσR ελE ==250max m C 1066.2--⋅⨯==b E εσb E R ελ10max π2=(其他)沿轴线单位长度的最大电场能量14122210m m J 1076.5lnπ--⋅⨯==R R E R W b ε()1210m π2R r R rR r E <<==ελ0=E 222102m 0m 2121rE R E w b εε==r rE R r r w W R Rb d 1πd π2212210m ⎰⎰⎰⎰Ω=⋅=ε。

大学物理简明教程(第2版)(赵近芳)习题答案,习题7 静电场

大学物理简明教程(第2版)(赵近芳)习题答案,习题7 静电场

习题77-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题7-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题7-1图 题7-2图题7-2图7-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题7--2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题7-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q =7-3 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说2204q f d πε=,又有人说,因为f =qE ,0q E Sε=,所以20q f Sε=试问这两种说法对吗?为什么?f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.7-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷.试求:(1)在导线的延长线上与导线B 端相距1 5.0a cm =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强. 解: 如题7-4图所示题7-4图(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如题7-4图所示 由于对称性⎰=lQxE 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Q y Q E E 1C N -⋅,方向沿y 轴正向7-5 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题7-5(a)图所示.题7-5(3)图题7-5(a)图 题7-5(b)图 题7-5 (c)图7-6 均匀带电球壳内半径6 cm ,外半径10 cm ,电荷体密度为53210C m -⨯.试求距球心5cm,8 cm 及12 cm 的各点的场强. 解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q rE当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4ρ=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外.7-7 半径为1R 和2R (21R R >)的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1) 1r R <;(2) 12R r R <<;(3) 2r R >处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E7-8 两个无限大的平行平面都均匀带电,电荷的面密度分别为σ和-σ,试求空间各处电场强度。

大学物理简明教程习题解答(赵近芳)

大学物理简明教程习题解答(赵近芳)

大学物理简明教程习题解答习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆtr t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题77-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题7-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷解得 q q 33-=' (2)与三角形边长无关.题7-1图 题7-2图题7-2图7-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题7--2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题7-2图示 解得θπεθtan 4sin 20mg l q =7-3 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说2204q f d πε=,又有人说,因为f =qE ,0q E S ε=,所以20q f Sε=试问这两种说法对吗?为什么?f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S qE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力. 7-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷.试求:(1)在导线的延长线上与导线B 端相距1 5.0a cm =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强. 解: 如题7-4图所示题7-4图(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为 用15=lcm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题7-4图所示由于对称性⎰=lQxE 0d ,即Q E ϖ只有y 分量, ∵ 22222220dd d d π41d ++=x x x E Qyλε以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向7-5 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理0d εqS E s⎰=⋅ϖϖ立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εq e =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εqe =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题7-5(a)图所示.题7-5(3)图题7-5(a)图 题7-5(b)图 题7-5 (c)图7-6 均匀带电球壳内半径6 cm ,外半径10 cm ,电荷体密度为53210C m -⨯.试求距球心5cm,8cm 及12 cm 的各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E sϖϖ,02π4ε∑=q r E当5=rcm 时,0=∑q ,0=E ϖ8=r cm 时,∑q 3π4ρ=3(r )3内r -∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 7-7 半径为1R 和2R (21R R >)的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1) 1r R <;(2) 12R r R <<;(3) 2r R >处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E sϖϖ取同轴圆柱形高斯面,侧面积rl Sπ2=则 rl E S E S π2d =⋅⎰ϖϖ对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r > 0=∑q∴0=E7-8 两个无限大的平行平面都均匀带电,电荷的面密度分别为σ和-σ,试求空间各处电场强度。

解:两面间,n n E ϖϖϖ00)]([21εσσσε=--= σ面外, 0)]([210=---=n E ϖϖσσεσ-面外, 0)]([210=-+=n E ϖϖσσεn ϖ:垂直于两平面由σ面指为σ-面7-9 如题7-9图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力做的功. 解: 如题7-9图示∴ Rqq U U q A o C O 00π6)(ε=-=题7-9图 题7-10图7-10 如题7-10图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两段直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点E ϖd 如图,由于对称性,O 点场强沿y 轴负方向题7-10图R 0π4ελ=[2sin π)2sin(π--](2)AB 电荷在O 点产生电势,以0=∞U同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O7-11两个平行金属板A 、B 的面积为200cm 2,A 和B 之间距离为2cm ,B 板接地,如图7-11所示。

如果使A 板带上正电7.08⨯10-7C ,略去边缘效应,问:以地的电势为零。

则A 板的电势是多少?解:如图7-11所示,设平行金属板A 、B 的四个面均匀带电的面电荷密度分别为4321,,,σσσσ接地时04=σ对于平行金属板A 中的a 点有对于平行金属板B 中的b 点有得到:01=σ,04=σ,2532/1054.3m C -⨯=-=σσ平行金属板A 、B 之间的电场强度大小为02εσ=E A 板的电势V Ed U 4108⨯==7-12 两个半径分别为R 1和R 2(R 2>R 1)的同心薄金属球壳,现给内球壳带电+q ,试计算: (1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势。

解: (1)内球壳带电q +;外球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势⎰⎰∞∞==⋅=22020π4π4d d R R Rqr r q r E U εεϖϖ题7-12图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:7-13 在半径为R 1的金属球之外包有一层外半径为R 2的均匀电介质球壳,介质相对介电常数为εr ,金属球带电Q 。

试求:(1)电介质内、外的电场强度; (2)电介质层内、外的电势; (3)金属球的电势。

解: 利用有介质时的高斯定理∑⎰=⋅ii Sq S D ϖϖd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εεϖϖϖϖ==内; 介质外)(2R r >场强 (2)介质外)(2R r >电势 介质内)(21R r R <<电势 (3)金属球的电势7-14 计算球形电容器的电容和能量。

已知球形电容器的内外半径分别为R 1和R 2,带电量分别为Q 和-Q 。

为简单起见,设球内外介质介电常数均为ε0。

解:21R r R <<, r r Q E ϖϖ304πε=1R r <和2R r >, 0=E ϖ体积元dr r dV 24π= 能量⎰=VwdV W⎰=21d π4)π4(2122200R R r r rQ εε 电容器的电容WQ C 22=121202104)11/(π4R R R R R R -=-=πεε7-15 如题7-15图所示,10.25C F μ=,20.15C F μ=,30.20C F μ=,1C 上电压为50 V.求:AB U.题7-15图解: 电容1C 上电量电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U。

相关文档
最新文档