大学物理C-06静电场答案
大学物理课后习题答案第六章
x解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取 dq1dl , dq 在带电圆环轴线上x 处产生的场强大小为dEdq4(x R )根据电荷分布的对称性知,E y E z 0dE x dE cos1 xdq4(x 2 R 2)'2第6章 真空中的静电场 习题及答案1.电荷为 q 和 2q 的两个点电荷分别置于 x 1m 和x 1m 处。
一试验电荷置于 x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷 q 0位于点电荷 q 的右侧,它受到的合力才可能为0,所以2qq o qq o2 24 n o (x 1)4 n o (x 1)故 x 3 2 22.电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2这种平衡与三角形的边长有无关系 ?解:(1)以A 处点电荷为研究对象,由力平衡知, q 为负电荷,所以(2)与三角形边长无关。
3.如图所示,半径为 R 、电荷线密度为 1的一个均匀带电圆环,在其轴线上放一长为I 、电荷线密度为 2的均匀带电直线段, 该线段的一端处于圆环中心处。
求该直线段受到的电场力。
2% cos30 a1 qqa)24nE xsin d4n 0R 2n 0R式中:为dq 到场点的连线与x 轴负向的夹角。
---------------------------------- 3dq4 o (x 2 R 2) 2x 1 2 R 1R x40 (x 2 R 2)'2 2 0(x 2 R 2)'2下面求直线段受到的电场力。
在直线段上取 dq2dx , dq受到的电场力大小为dF E x dq1 2只 ------- x ———dx2 0(x 2 R 2),2方向沿x 轴正方向。
大学物理静电场练习题带标准答案
大学物理静电场练习题带答案————————————————————————————————作者:————————————————————————————————日期:大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O '的矢量用a 表示。
试证明球形空腔中任一点电场强度为 . A 、03ρεa B 、0ρεa C 、02ρεa D 、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强A 、02πR λε-B 、0πRλε- C 、00ln 22π4λλεε+ D 、00ln 2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。
A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。
求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。
A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ]Q Opr)(A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
大学物理C-06静电场答案
练 习 六 静电场一、填空题1.点电荷q 1、q 2、q 3 和q 4 在真空中的分布如图所示.图中S为闭合曲面,则通过该闭合曲面的电场强度通量sE dS ⎰=____120()q q ε+________,式中的E 是点电荷___q 1、q 2、q 3、q 4____在闭合曲面上任一点产生的场强的矢量和.2.在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为_______203Q aπε______3.一半径为R 的均匀带电圆环,电荷线密度为λ. 设无穷远处为电势零点,则圆环中心O 点的电势U =_______2λε________. 4.一半径为R 的均匀带电导体球壳,带电荷为Q .球壳内、外均为真空.设无限远处为电势零点,则壳内各点电势U =_______04Q Rπε_______.5.在点电荷q 的电场中,把一个-1.0×10-9 C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功1.8×10-5 J ,则该点电荷q =_____ -2×10-7 C___________.(真空介电常量0=8.85×10-12 C2·N -1·m -2 )6.一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能We =_____04Qq rπε____________.7. 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q 的点电荷.线段BA = R .现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所作的_______06q Rπε______________。
二、选择题1. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( D ) (A) 穿过S 面的电通量改变,O 点的场强大小不变;(B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变; q OSTP 3q •SA q • 1q •2q •1q • 1q •(D) 穿过S 面的电通量不变,O 点的场强大小不变。
大学物理(第四版)课后习题及答案 静电场
题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e 31-下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10-20 m ),中子内的两个下夸克之间相距2.60⨯10-15 m 。
求它们之间的斥力。
题7.1解:由于夸克可视为经典点电荷,由库仑定律r r 220r 2210N 78.394141e e e F ===r e r q q πεπεF 与r e 方向相同表明它们之间为斥力。
题7.2:质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k 。
证明电子的旋转频率满足42k20232me E εν=其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。
题7.2分析:根据题意将电子作为经典粒子处理。
电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷。
点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有220241r e r v m πε= 由此出发命题可证。
证:由上述分析可得电子的动能为re mv E 202k 8121πε==电子旋转角速度为30224mr e πεω=由上述两式消去r ,得43k 20222324me E επων== 题7.3:在氯化铯晶体中,一价氯离于Cl -与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。
(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。
题7.3分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。
为方便计算可以利用晶格的对称性求氯离子所受的合力。
解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故01=F (2)除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为N 1092.134920220212-⨯===ae rq q F πεπε2F 方向如图所示。
大学物理练习题答案完美生活答案 06稳恒电流的磁场、电磁感应定律
dt
a
⎞ ⎟⎠
=
n
μ0 2π
l
I
⎛ ⎜⎝
1 R
−
1 R+
a
⎞ ⎟⎠
dR dt
=
μ0 2π
l
I
⎛ ⎜⎝
1 d
−
d
1 +
a
⎞ ⎟⎠
v
=
1×
2× 10−7×5 Nhomakorabea0×
0.4
×
2
×
⎛ ⎜⎝
1 0.20
−
0.20
1 +
0.20
⎞ ⎟⎠
成绩:
r d I
= 2 ×10−6(V ) ………4 分
方法二、相当于四段导体切割磁力线在瞬间,线圈产生的电动势等效于并接的两电动势。 距离长直导线为 r 处的磁感应强度为:
势。若若线圈保持不动,而长直导线中的电流变为交变电流 i = 10 sin (100π t ) A i=10,求线圈中的感应电动
势。(不计线圈的自感) 解:(1)方法(一)如图,距离长直导线为 r 处的磁感应强度为:
B = μ0i ,………2 分 2πr
选回路的绕行方向为顺时针方向,则通过窄条
6
专业班级: 面积 ds 的磁通量为:
d l
I
a
5
专业班级:
学号:
姓名:
在竖直方向的分量为 B .求ab两端间的电势差Ua −Ub .
解: Ob 间的动生电动势:
∫ ∫ ε1
=
4L 0
5
(υ
×
B)id l
=
4L 0
5
ω Bldl
=
1ωB( 4 25
大学物理第八章静电场(答案)
第八章 静电场8.1 真空中有两个点电荷M 、N ,相互间作用力为F,当另一点电荷Q 移近这两个点电荷时,M 、N两点电荷之间的作用力 (A) 大小不变,方向改变. (B) 大小改变,方向不变.(C) 大小和方向都不变. (D) 大小和方向都改. [ C ]8.2 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电通量必不为零.[ D ]8.3有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03εq . (B) 04επq (C) 03επq . (D) 06εq[ D ]q8.4面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)Sq 02ε. (B) S q 022ε.(C) 2022S q ε. (D) 202Sq ε. [ B ]8.5一个带正电荷的质点,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递增的,下面关于C 点场强方向的四个图示中正确的是:[ D ]8.6如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ D ]-8.7静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能. (B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)把单位正电荷从该点移到电势零点外力所作的功. [ C ]8.8已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度E M <E N . (B) 电势U M <U N .(C) 电势能W M <W N . (D) 电场力的功A >0.[ C ]A8.9 电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零?解:设试验电荷置于x 处所受合力为零,即该点场强为零.()()0142142020=+π-+-πx qx q εε 2分 得 x 2-6x +1=0, ()223±=x m因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得()223+=x m3分8.10 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.L解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε 2分d EO总场强为 ⎰+π=Lx d L x L q E 020)(d 4-ε()d L d q+π=04ε 3分 方向沿x 轴,即杆的延长线方向.8.11 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π。
大学物理第6章真空中的静电场课后习题与答案
第6章真空中的静电场习题及答案1.电荷为q 和2q 的两个点电荷分别置于x1m 和x1m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷 q 位于点电荷 0q 的右侧,它受到的合力才可能为0,所以2qqqq00224(x 1)4(x1) ππ 00故x3222.电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放 一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都 为零)?(2)这种平衡与三角形的边长有无关系?解:(1)以A 处点电荷为研究对象,由力平衡知,q 为负电荷,所以2 4 1 π 0 q a 22 cos304 1 π 0 ( q 33qa 2 )3故qq3(2)与三角形边长无关。
3.如图所示,半径为R 、电荷线密度为1的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dqdl 1,dq 在带电圆环轴 线上x 处产生的场强大小为 dE 4 dq20(xRy2 )根据电荷分布的对称性知,yE0E zdEdEcos x41xdq 1R 3 22 2O(xR) 02xl式中:为dq 到场点的连线与x 轴负向的夹角。
E x4x 220(xR) 3 2dqzx21R R 1 x4x 2R2()3 2 2xR 2( 02 )3 2下面求直线段受到的电场力。
在直线段上取dqdx2,dq受到的电场力大小为Rx12dFxdxEdq32222(xR)0方向沿x轴正方向。
直线段受到的电场力大小为Rlx12FdxdF3202220xR)(11R1121/22R22lR方向沿x轴正方向。
4.一个半径为R的均匀带电半圆环,电荷线密度为。
求:(1)圆心处O点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O点场强。
大学物理练习题答案完美生活答案 06稳恒电流的磁场、电磁感应定律
ε2 =
∫ (υ × B)idl = ∫ ω Bldl = 2ω B( 5 L)
0 0
L5
1
1
2
=
1 ω BL2 50
a点电势高于O点.
∴ U a − U b = ε 2 − ε1 =
1 16 15 3 ω BL2 − ω BL2 = − ω BL2 = − ω BL2 50 50 50 10
6.如图所示,一无限长直导线通有电流 I=5.0A,一矩形单匝线圈与此长直导线共面。设矩形线圈以 V=2.0m/s 的速度垂直于长直导线向右运动。已知:l=0.40m, a=0.20m, d=0.20m,求矩形线圈中的感应电动 势。若若线圈保持不动,而长直导线中的电流变为交变电流 i = 10 sin ( 100π t ) A i=10,求线圈中的感应电动 势。 (不计线圈的自感) 解: (1)方法(一)如图,距离长直导线为 r 处的磁感应强度为:
ε1r1 ε2r2
R1 R2 R4
ε3r3 A
R3 B
1. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,
3
专业班级:
学号:
姓名:
成绩:
1 由实线表示), AB = EF = R ,大圆弧 BC 的半径为R,小圆弧 DE 的半径为 R ,求圆心O 处 2
的磁感强度 B 的大小和方向.
解:解:(1) AB , CD , EF 三条直线电流在O 点激发的磁场零;
2
专业班级: 正)为 (D) (A)
学号:
姓名:
成绩:
π r 2 B . . (B) 2π r 2 B .(C) −π r 2 B sin α . (D) −π r 2 B cos α
大学物理静电场答案
大学物理静电场答案【篇一:大学物理静电场试题库】txt>1、下列关于高斯定理的说法正确的是(a) a如果高斯面上e处处为零,则面内未必无电荷。
b如果高斯面上e处处不为零,则面内必有静电荷。
c如果高斯面内无电荷,则高斯面上e处处为零。
d如果高斯面内有净电荷,则高斯面上e处处不为零。
2、以下说法哪一种是正确的(b)a电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向 b电场中某点电场强度的方向可由e?fq0确定,其中q0为试验电荷的电荷量,q0可正可负,f为试验电荷所受的电场力c在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同 d以上说法都不正确3、如图所示,有两个电2、下列说法正确的是(d)a电场强度为零处,电势一定为零。
电势为零处,电场强度一定为零。
b电势较高处电场强度一定较大,电场强度较小处电势一定较低。
c带正电的物体电势一定为正,带负电的物体电势一定为负。
d 静电场中任一导体上电势一定处处相等。
3、点电荷q位于金属球壳中心,球壳内外半径分别为试判断下r1,r2,所带静电荷为零a,b为球壳内外两点,说法的正误(c)a移去球壳, b点电场强度变大b移去球壳,a点电场强度变大 c移去球壳,a点电势升高 d移去球壳,b点电势升高4、下列说法正确的是(d)列a场强相等的区域,电势也处处相等 b场强为零处,电势也一定为零 c电势为零处,场强也一定为零 d场强大处,电势不一定高a 5、如图所示,一个点电荷q位于立方体一顶点a上,则通过abcdq6?0q12?0q24?0q36?0a b cd6、如图所示,在电场强度e的均匀电场中,有一半径为r的半球面,场强e的方向与半球面的对称抽平行,穿过此半球面的电通量为(c) a 2?r2e b22?re c ?red212?re27、如图所示两块无限大的铅直平行平面a和b,均匀带电,其电荷密度均为?(??0c?m?2),在如图所示的a、b、c三处的电场强度分别为(d) a 0,8、如图所示为一具有球对称性分布的静电场的e~r关系曲线.请指出该静电场是由下列哪种带电体产生的.(b)a 半径为r的均匀带电球面. b半径为r的均匀带电球体.c半径为r的、电荷体密度为??ar(a为常数)的非均匀带电球体 d半径为r的、电荷体密度为??a/r(a为常数)的非均匀带电球体9、设无穷远处电势为零,则半径为r的均匀带电球体产生的电场的电势分布规律为(图中的u0和b皆为常量):(c)??,0,0 b 0,?2?,0,0c?2?0?0?0,?,?d??0,0,??010、如图所示,在半径为r的“无限长”均匀带电圆筒的静电场中,各点的电场强度e的大小与距轴线的距离r 关系曲线为(a)ee or r orrorror r(a)(b) (c)(d)11、下列说法正确的是( d)(a)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(b)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(c)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零。
大学物理知识总结习题答案(第四章)静电场
第四章 静电场本章提要1.电荷的基本性质两种电荷,量子性,电荷首恒,相对论不变性。
2.库仑定律两个静止的点电荷之间的作用力12122204kq q q q r r==F r r πε 其中922910(N m /C )k =⨯⋅122-1-2018.8510(C N m )4k -==⨯⋅επ3.电场强度q =F E 0q 为静止电荷。
由10102204kq q q q r r==F r r πε 得112204kq q r r ==E r r πε4.场强的计算(1)场强叠加原理电场中某一点的电场强度等于各个点电荷单独存在时在该点产生的电场强度的矢量和。
i =∑E E(2)高斯定理电通量:在电场强度为E 的某点附近取一个面元,规定S ∆=∆S n ,θ为E 与n 之间的夹角,通过S ∆的电场强度通量定义为e cos E S ∆ψ=∆=⋅∆v S θ取积分可得电场中有限大的曲面的电通量ψd e sS =⋅⎰⎰E Ò高斯定理:在真空中,通过任一封闭曲面的电通量等于该封闭曲面内的所有电荷电量的代数和除以0ε,与封闭曲面外的电荷无关。
即i 01d sq=∑⎰⎰E S g Ò内ε5.典型静电场(1)均匀带电球面0=E (球面内) 204q r πε=E r (球面外)(2)均匀带电球体304q R πε=E r (球体内) 204q r πε=E r (球体外)(3)均匀带电无限长直线场强方向垂直于带电直线,大小为02E r λπε=(4)均匀带电无限大平面场强方向垂直于带电平面,大小为2E σε=6.电偶极矩电偶极子在电场中受到的力矩=⨯M P E思考题4-1 020 4qq r ==πεr 与FE E 两式有什么区别与联系。
答:公式q FE =是关于电场强度的定义式,适合求任何情况下的电场。
而公式0204q rπε=E r是由库仑定理代入定义式推导而来,只适于求点电荷的电场强度。
大学物理-静电场(一)(带答案)
一、库仑定律和电场力1.关于摩擦一物体后,物体呈现正电性的一种解释是:在摩擦过程中,[ ]A.物体获得了中子。
B.物体获得了质子。
C.物体失去了电子。
D.物体失去了中子。
【答案】:C2.两条平行的无限长直均匀带电线,相距为d,线电荷密度分别为±λ,若已知一无限长均匀带电直线的场强分布为λ2πε0r方向垂直于带电直线,则其中一带电直线上的单位长度电荷受到另一带电直线的静电作用力大小为[ ]A.λ24πε0d2B.λ24πε0dC.λ22πε0d2D.λ22πε0d【答案】:D3.关于电荷与电场,有下列几种说法,其中正确的是[]A.点电荷的附近空间一定存在电场;B.电荷间的相互作用与电场无关;C.若电荷在电场中某点受到的电场力很大,则表明该点的电场强度一定很大;D.在某一点电荷附近的任一点,若没放试验电荷,则该点的电场强度为零。
【答案】:A4. 两个静止不动的点电荷的带电总量为2q,为使它们间的排斥力最大,各自所带的电荷量分别为[]A.q2,3q 2B.q3,5q 3C.q,qD.−q2,5q 2【答案】:C5.关于电场力和电场强度,有下列几种说法,其中正确的是[]A.静电场的库仑力的叠加原理和电场强度的叠加原理彼此独立、没有联系;B.两静止点电荷之间的相互作用力遵守牛顿第三定律;C.在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同;D.以上说法都不正确。
【答案】:B6.—点电荷对放在相距d处的另一个点电荷的作用力为F,若两点电荷之间的距离减小一半,此时它们之间的静电力为[ ]A.4FB.2FC.0.5FD.0.25F【答案】:A7.如图所示为一竖直放置的无穷大平板,其上均匀分布着面电荷密度为σ的正电荷,周围激发的电场强度大小为σ2ε0,方向沿水平方向向外且垂直于平板。
在其附近有一水平放置的、长度为l的均匀带电直线,直线与平板垂直,其线电荷密度为λ,则该带电直线所受到的电场力大小为[ ]A.σλ2πε0ln lB.σλ2ε0ln lC.σλl2πε0D.σλl2ε0【答案】:D8.质量为m、电荷为-e的电子以圆轨道绕静止的氢原子核旋转,其轨道半径为r,旋转频率为γ,动能为E,则下列几种关系中正确的是[]A.E=e8πε0rB.γ2=32ε02E3me4C.E=e 24πε0rD.γ2=32ε0E3me2【答案】:B9.电偶极子在非均匀电场中的运动状态[ ]A.只可能有转动运动;B.不可能有转动运动;C.只可能有平动运动;D.既可能有转动运动,也可能有平动运动。
大学物理 科学出版社 第9章 静电场 参考答案
第4篇电磁学第9章静电场9.1 基本要求1 掌握静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。
掌 握电势与电场强度的积分关系。
能计算一些简单问题中的电场强度和电势。
了解电场强度 与电势的微分关系。
2 理解静电场的规律:高斯定理和环路定理。
理解用高斯定理计算电场强度的条件和 方法。
3 了解导体的静电平衡条件,了解介质的极化现象及其微观解释。
了解各向同性介质 中D和E之间的关系。
了解介质中的高斯定理。
4 了解电容和电能密度的概念。
9.2 基本概念1 电场强度E :试验电荷0q 所受到的电场力F 与0q 之比,即0q =F E 2 电位移D :电位移矢量是描述电场性质的辅助量。
在各向同性介质中,它与场强成正比,即ε=D E 3 电场强度通量e Φ:e Sd Φ=⎰E S电位移通量:D Sd Φ=⎰D S4 电势能pa E :0pa aE q d ∞=⎰E l (设0p E ∞=)5 电势a V :0pa a aE V d q ∞==⎰ E l (设0V ∞=)电势差ab U :ab a b U V V =- 6 场强与电势的关系(1)积分关系 a aV d ∞=⎰E l(2)微分关系 = -V ∇=-E gradV7 电容C:描述导体或导体组(电容器)容纳电荷能力的物理量。
孤立导体的电容:Q C V =;电容器的电容:Q C U= 8 静电场的能量:静电场中所贮存的能量。
电容器所贮存的电能:22222CU Q QUW C ===电场能量密度e w :单位体积的电场中所贮存的能量,即22e E w ε=9.3 基本规律 1 库仑定律:12204rq q rπε=F e 2 叠加原理(1)电场强度叠加原理:在点电荷系产生的电场中任一点的场强等于每个点电荷单独 存在时在该点产生的场强的矢量和。
(2)电势叠加原理:在点电荷系产生的电场中,某点的电势等于每个点电荷单独存在时 在该点产生的电势的代数和。
大学静电场试题及答案
大学静电场试题及答案一、选择题1. 静电场中的电场线是从正电荷出发,终止于负电荷。
A. 正确B. 错误答案:A2. 电场强度的方向是正电荷所受电场力的方向。
A. 正确B. 错误答案:A3. 电场中某点的电势与该点的电场强度大小无关。
A. 正确B. 错误答案:A4. 电容器的电容与两极板间的距离成反比。
A. 正确B. 错误答案:B5. 电场中某点的电势与该点的电场强度方向无关。
A. 正确B. 错误答案:A二、填空题1. 电场强度的定义式为_______,其中E表示电场强度,F表示电场力,q表示试探电荷。
答案:E = F/q2. 电势差的定义式为_______,其中U表示电势差,W表示电场力做的功,q表示试探电荷。
答案:U = W/q3. 电容器的电容公式为_______,其中C表示电容,Q表示电荷量,V表示电势差。
答案:C = Q/V4. 电场力做功的公式为_______,其中W表示功,q表示电荷量,U表示电势差。
答案:W = qU5. 电场中某点的电势与该点的电场强度大小_______关系。
答案:无关三、简答题1. 简述电场强度和电势的概念及其物理意义。
答案:电场强度是描述电场强弱和方向的物理量,其大小等于单位正电荷在该点所受的电场力,方向与正电荷所受电场力的方向相同。
电势是描述电场能的性质的物理量,它表示单位正电荷在电场中从某点移到参考点(通常取无穷远处)所做的功。
2. 电容器的电容与哪些因素有关?请简述其关系。
答案:电容器的电容与电容器的几何尺寸、两极板间的距离以及介质的介电常数有关。
电容与两极板的面积成正比,与两极板间的距离成反比,与介质的介电常数成正比。
四、计算题1. 一个平行板电容器,其极板面积为0.05平方米,两极板间的距离为0.01米,介质为空气(介电常数ε₀=8.85×10^-12 F/m)。
求该电容器的电容。
答案:C = ε₀ * A / d = 8.85×10^-12 * 0.05 / 0.01 =4.425×10^-11 F2. 已知电场中某点的电势为100V,试探电荷为-2C,求该点的电场强度。
大学物理第六章课后习题答案
第六章静电场中的导体与电介质6 —1将一个带正电的带电体A从远处移到一个不带电的导体B附近,则导体B的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B相对无穷远处为零电势。
由于带正电的带电体A移到不带电的导体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。
6 —2 将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷。
若将导体N的左端接地(如图所示),则()(B)N上的正电荷入地(A )N上的负电荷入地(C)N上的所有电荷入地地(D)N上所有的感应电荷入题6-2图分析与解导体N接地表明导体N为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关。
因而正确答案为( A )。
6 —3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷距导体球球心为d,参见附图。
设无穷远处为零电势,则在导体球球心0点有()(A)E =0,V —4 n^d(B)E J,V L4 n%d 4 n %d (C)E = 0,V = 0题6-3图分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷 q 在导 体球表面感应等量异号的感应电荷土 q',导体球表面的感应电荷土 q'在球心 0点激发的电势为零,0点的电势等于点电荷q 在该处激发的电势。
因而正 确答案为(A )。
6 -4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合 曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是()(A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有 自由电荷 (B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代 数和一定等于零 (C) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有 极化电荷 (D) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E)介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零; 由于电介质会改变自由电荷的空间分布, 介质 中的电位移矢量与自由电荷与位移电荷的分布有关。
物理大一轮复习讲义第六章静电场静电场章末含答案
第六章章末检测1.如图1所示的情况中,a、b两点的电场强度和电势均相同的是().图1A.甲图:离点电荷等距的a、b两点B.乙图:两个等量异种点电荷连线的中垂线上,与连线中点等距的a、b两点C.丙图:两个等量同种点电荷连线上,与连线中点等距的a、b 两点D.丁图:带电平行金属板两板间分别靠近两板的a、b两点解析电场强度是矢量,电场强度相同,则大小和方向均要相同,电势相同则两点应在同一等势面上,所以甲图中,电场强度大小相同,但方向不同,电势相同,所以A错误;图乙中由对称性可知:两点的电场强度的大小和方向相同,a、b在同一等势面上,所以电势相等,可见B正确;同理图丙:电场强度大小相同,但方向相反,所以C错误;图丁为匀强电场,所以电场强度相同,但a点的电势较高,所以D错误.答案B2.如图2所示,电子由静止开始从A板向B板运动,当到达B极板时速度为v,保持两板间电压不变,则().图2A.当增大两板间距离时,v也增大B.当减小两板间距离时,v增大C.当改变两板间距离时,v不变D.当增大两板间距离时,电子在两板间运动的时间也增大解析电子从静止开始运动,根据动能定理,从A运动到B动能的变化量等于电场力做的功.因为保持两个极板间的电势差不变,所以末速度不变,平均速度不变,若两板间距离增加,时间变长.答案CD3.静电计是在验电器的基础上制成的,用其指针张角的大小来定性显示其金属球与外壳之间的电势差大小.如图3所示,A、B是平行板电容器的两个金属板,G为静电计.开始时开关S闭合,静电计指针张开一定角度,为了使指针张开的角度增大些,下列采取的措施可行的是()图3A.断开开关S后,将A、B两极板分开些B.保持开关S闭合,将A、B两极板分开些C.保持开关S闭合,将A、B两极板靠近些D.保持开关S闭合,将变阻器滑动触头向右移动解析要使静电计的指针张开角度增大些,必须使静电计金属球和外壳之间的电势差增大,断开开关S后,将A、B两极板分开些,电容器的带电量不变,电容减小,电势差增大,A正确;保持开关S闭合,将A、B两极板分开或靠近些,静电计金属和外壳之间的电势差不变,B、C错误;保持开关S闭合,将滑动变阻器触头向右或向左移动,静电计金属球和外壳之间的电势差不变,D错误。
[习题06静电场]
电荷q0在外电场中的电势能:
E p q 0V
移动电荷时电场力做的功:
Wab a q0 E dl
b
Epa Epb q (Va Vb )
NIZQ
第 7页
大学物理学 静电场
无限大带电平板:
带电细棒:
cos 1 cos 2 Ey 4 π 0 a
pe ql
电偶极子 : 等量异号 电荷+q、-q, 相距为 l (l相对于求场点很小 ) 的带电体系.
NIZQ
第 9页
例题3: 求长为l、电荷线密度为的均匀带电细棒周围空间的电场.
x
大学物理学 静电场
解: 建立坐标系O-xy, 任取电荷元
2
dq dx
d Ex d E
O
dq
有限体无限远处为电势零点. 2. 叠加法:
qi V q 4 π 0 r
dq V 4 π 0 r
dV V V 4 π 0 r dS V S 4 π 0 r dl V l 4 π 0 r
NIZQ
第 6页
大学物理学 静电场
电势差:
Vab
Va Vb a E dl
大学物理学 静电场
NIZQ
第 4页
归纳
大学物理学 静电场
点电荷
带电量
均匀带电
球体
带电量
均匀带电
球面
带电量
无限长 均匀带电
直线
电荷线密度
无限长 均匀带电
圆柱面
电荷面密度
无限大 均匀带电
平面
电荷面密度
近场
NIZQ
第 5页
大学物理学 静电场
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练 习 六 静电场一、填空题1.点电荷q 1、q 2、q 3 和q 4 在真空中的分布如图所示.图中为闭合曲面,则通过该闭合曲面的电场强度通量sE dS ⎰=____120()q q ε+________,式中的E 是点电荷___q 1、q 2q 3、q 4____在闭合曲面上任一点产生的场强的矢量和.2.在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为_______203Q a πε______3.一半径为R 的均匀带电圆环,电荷线密度为λ. 设无穷远处为电势零点,则圆环中心O 点的电势U =_______2λε________. 4.一半径为R 的均匀带电导体球壳,带电荷为Q .球壳内、外均为真空.设无限远处为电势零点,则壳内各点电势U =_______04Q Rπε_______.5.在点电荷q 的电场中,把一个-1.0×10-9 C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功1.8×10-5 J ,则该点电荷q =_____ -2×10-7 C___________.(真空介电常量0=8.85×10-12 C2·N -1·m -2 )6.一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能We =_____04Qq rπε____________.7. 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q 的点电荷.线段BA = R .现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所作的_______06q Rπε______________。
二、选择题1. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且( D ) (A) 穿过S 面的电通量改变,O 点的场强大小不变;(B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变;(D) 穿过S 面的电通量不变,O 点的场强大小不变。
2. 半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为: (B )3. 如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为:( B ) (A )1204Q Q r πε+;(B )12010244Q Q R R πεπε+;(C)0;(D)1014QR πε4. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:( D )(A) EA >EB >EC ,UA >UB >UC . (B) EA <EB <EC ,UA <UB <UC . (C) EA >EB >EC ,UA <UB <UC . (D) EA <EB <EC ,UA >UB >UC .5.面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(B )(A)20q S ε;(B)202q S ε;(C)2202q S ε;(D)220q Sε 6.一点电荷,放在球形高斯面的中心处.下列哪一种情况,通过高斯面的电场强度通量发生变化:(B )(A) 将另一点电荷放在高斯面外. (B) 将另一点电荷放进高斯面内.(C) 将球心处的点电荷移开,但仍在高斯面内. (D) 将高斯面半径缩小.7. 当一个带电导体达到静电平衡时:(D) (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高.(C) 导体内部的电势比导体表面的电势高.(D) 导体内任一点与其表面上任一点的电势差等于零. 8. 真空中有一点电荷Q ,在与它相距为r 的a点处有一试验电荷q .现使试验电荷q 从a 点沿半圆弧轨道运动到b 点,如图所示.则电场力对q 作功为(D )(A)22042Qq r r ππε;(B) 2024Qq r r πε;(C) 204Qq r r ππε;(D)0 9.真空中有两个点电荷M 、N ,相互间作用力为F ,当另一点电荷Q 移近这两个点电荷时,M 、N 两点电荷之间的作用力(C)(A) 大小不变,方向改变. (B) 大小改变,方向不变. (C) 大小和方向都不变. (D) 大小和方向都改.10.在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现:( B )(A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变. (D) 球壳内、外场强分布均改变.11. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为(C ) (A)1202q q d S ε+ (B) 1204q q d S ε+ (C) 1202q q d S ε-. (D) 1204q qd Sε-三、简答题为什么在无电荷的空间里电场线不能相交?答:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾,故无电荷的空间里电场线不能相交。
四、计算题1.在x 轴上,有以点电荷612010q C -=⨯,位于原点,另一点电荷625010q C -=⨯,位于x=-10cm 处。
试求x 轴上任一点的电场强度。
解:点电荷1q 和2q 将x 轴分为三个区域0x:在此区域,两个点电荷产生的电场强度的方向都沿x 轴方向,坐标x 处的场强为:122200412244(0.10)2.0 5.09.010[](0.10)q q E x x V m x x πεπε-=++=⨯+⋅+0.100x-:在此区域,两个点电荷的电场强度方向相反,坐标x 处的场强为:21220041224(0.10)45.0 2.09.010[](0.10)q q E x x V mx x πεπε-=-+=⨯-⋅+0.10xm -:在此区域,两个点电荷的场强方向相同,都沿x 轴反方向,坐标x处的场强为:1222004122[]44(0.10)2.0 5.09.010[](0.10)q q E x x V mx x πεπε-=-++=-⨯+⋅+2.在直角三角形ABC 的A 点,放置点电荷91 1.810q C -=⨯,在B 点放置点电荷92 4.810q C -=-⨯。
已知BC=0.04m ,AC=0.03m 。
试求直角顶点C 处的场强E 。
解:点电荷1q 和2q 在C 处的电场强度1E 和2E 的方向41112011.8104q E V m r πε-==⨯⋅4122202 2.7104q E V m rπε-==⨯⋅C处的场强大小为413.2410E V m -==⨯⋅E 的方向与BC 边的夹角12tan33.7E ar E θ︒== 3.电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零?解:设试验电荷置于x 处所受合力为零,即该点场强为零.2200204(1)4(1)q qx x πεπε-+=-+ 得2610x x -+=,(3x m =±因3x =-q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得3x =+4.一半径为R 的均匀带电圆盘,电荷面密度为σ.设无穷远处为电势零点.计算圆盘中心O 点电势.解:在圆盘上取一半径为r →r +d r 范围的同心圆环.其面积为 2dS rdr π= 其上电荷为 2dq rdr πσ= 它在O 点产生的电势为0042dq drdU rσπεε==总电势00022R s RU dU dr σσεε===⎰⎰ 5..如图所示,已知C q q cm d cm r 8281103,103,8,6--⨯-=⨯===。
求: (1)将电荷量为9102-⨯C 的点电荷从A 点移到B(2)将此点电荷从C 点移到D 点,电场力作功多少?(ε0=8.85×10-12C 2N -1m -2)解. (1)1124A A A q q U U U r πε=+=+31.810V =⨯B 点的电势为: 120B B B U U U =+=故将电荷9210q C -=⨯从A 点移动到B 点电场力的功96()11(0.0648.85103.610AB A B W U U q Jπ--=-=-⨯⨯=⨯(2)C 点的电势为3212 1.8104C C C A q U U U U V rπε=+=+=-=-⨯D 点的电势为120D D D U U U =+=所以将电荷9210q C -=⨯从C 点移动到D 点电场力的功6() 3.610C D AB W U U q W J -=-=-=-⨯。