概率论总复习题(2)(2020年九月整理).doc
概率总复习 期末考试必备 考题及答案

P( A B )P( B )
j 1 j j
n
, i 1, 2, , n.
称为贝叶斯公式.
事件的相互独立性
(1)两事件相互独立
设 A, B 是两事件 , 如果满足等式 P ( AB ) P ( A) P ( B ). 则称事件 A, B 相互独立, 简称 A, B 独立.
说明 事件 A 与 B 相互独立是指事件 A 出现的 概率与事件 B 是否出现无关.
为在事件 B 发生的条件下事件 A 发生的条件概率.
(2) 条件概率的性质
1 非负性 : P( A B) ≥ 0;
0
2 正则性 : P( B) 1, P( B) 0;
0
30 P ( A1 A2 B) P ( A1 B) P ( A2 B) P ( A1 A2 B);
4 0 P (列可加性 : 设 B1 , B2 , 是两两不相容的事件, 则有
P Bi A P ( Bi A). i 1 i 1
乘法公式
设 P ( A) 0, 则有 P ( AB) P ( B A) P ( A).
设 A, B, C 为事件, 且 P ( AB) 0, 则有
n重伯努利概型的计算公式 设n重伯努利试验中,事件A发生的概率为 p,则A出现k次的概率为:
k P( A) Cn pk (1 p)nk
随机变量
定义 设 E 是随机试验, 其样本空间为 {e }. 若对于每一个 e , 都有一个实数 X (e ) 与之 对应 , 这样得到定义在上的一个单值实值函 数 X (e ), 称X (e )为随机变量 .
说明 全概率公式的主要用处在于它可以将 一个复杂事件的概率计算问题分解为若干个简单 事件的概率计算问题, 最后应用概率的可加性求出 最终结果.
概率论期末复习

(6)两个相互独立的正态分布,期望未知,对方差的检验(F检验)
15)
根据双边检验和单边检验,给出的显著性水平,找出分位点,确定拒绝域。
16)
看检验统计量是否在拒绝域内判断原假设是否正确。
[10]
原假设为“=”时,为双边检验,其他为单边检验。
[2]
作图步骤:
(1)找出最小值和最大值;
(2)将选定区间分为k个小区间;
(3)算出每个区间的频率,在区间上做高度为频率的小矩形。
[3]
1)
样本(X1,X2,...,Xn)的不含有未知参数的连续函数g(X1,X2,...,Xn)称为统计量。(统计量是随机变量)
2)
样本均值
样本方差
样本标准差(标准偏差)
内容:参数估计、假设检验(重要)
目的:对总体特征作出推断
2.样本分析
[1]
总体——研究对象全体元素组成的集合。研究的对象的某个(或某些)数量指标的全体,它是一个随机变量(或多维随机变量),记为X。X的分布函数和数字特征称为总体的分布函数和数字特征。
个体——组成总体的每一个元素即总体的每个数量指标,可看作随机变量X的某个取值,可记作Xi
8)
定义:设 和 是θ的无偏估计量,且 ,则称 比 有效。
9)
定义:设 是θ的无偏估计量,当n(样本容量)→∞时, 收敛于θ。
[7]
10)
选取枢轴量
由分位点定义建立不等式
解出不等式
11)
定义:
正态分布的枢轴量选取:
(1)样本均值的置信区间(已知σ)
(2)样本均值的置信区间(未知σ)
(3)样本方差的置信区间(μ未知)
概率论期末总复习必考题型

复习重点题目第一章p13例2、p14例5、习题一20、25第二章p34 例7、8;习题二15、24。
第三章p58 例2、例5、p61 例5、p63 例1、习题三5。
第四章习题四13、14、15、16。
第七章P139 例4、P148 例2、习题七P157 1、P159 13。
第八章例4、例5、习题八3、6。
例 1.5.2 设袋中装有r 只红球,t 只白球,每次自袋中任取一只球,观察其颜色然后放回,并再放入 a 只与所取出的那只球同色的球,若在袋中连续取球 4 次,试求第一、二次取到红球且第三、四次取到白球的概率。
解以A i(i 1,2,3,4)表示事件“第i次取到红球”,则A3, A4 分别表示事件“第三、四次取到白球” 。
所求概率为:P( A1 A2 A3 A4 ) P(A4 | A1 A2 A3)P( A3 | A1A2 )P( A2 |A1)P(A1)t a t r a rr t 3a r t 2a r t a r t例 1.5.4 八支枪中,有三支未经试射校正,五支已经试射校正。
校正过的枪射击时,中靶的概率为0.8,未校正的枪射击时,中靶的概率为0.3,今从8 支枪中任取一支射击中靶。
问所用这枪是校正过的概率是多少?解设事件8 8 10 45A ={射击中靶}B 1={ 任取一枪是校正过的 }, B 2 ={任取一枪是未校正过的 }, B 1, B 2构成完备事件组 ,则 P(B 1) 5/8,P(B 2) 3/8,P(A |B 1) 0.8,P(A|B 2) 0.3, 故所求概率为P(B 1 | A) P(B 1)P(A|B 1)/[P(B 1)P(A|B 1) P(B 2)P(A|B 2)] 40/49 0.816习题一、20.已知在 10 只晶体管中有 2 只次品,在其中取两次,每次任取一 只,作不放回抽样。
求下列事件的概率: (1)两只都是正品; (2)两只都是次品;(3)一只是正品,一只是次品; (4)第二次取出的是次品。
概率论期末考试题及答案

概率论期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个事件是必然事件?A. 抛硬币正面朝上B. 抛硬币反面朝上C. 抛硬币出现正面或反面D. 抛硬币出现正面和反面2. 假设随机变量X服从正态分布N(μ, σ²),以下哪个选项是正确的?A. μ是X的期望值B. σ²是X的方差C. μ是X的中位数D. σ²是X的期望值3. 假设随机变量X和Y相互独立,以下哪个选项是正确的?A. P(X∩Y) = P(X)P(Y)B. P(X∪Y) = P(X) + P(Y)C. P(X∩Y) = P(X) + P(Y)D. P(X∪Y) = P(X)P(Y)4. 假设随机变量X服从二项分布B(n, p),以下哪个选项是正确的?A. X的期望值是npB. X的方差是np(1-p)C. X的期望值是nD. X的方差是p(1-p)二、填空题(每题5分,共20分)1. 如果随机变量X服从泊松分布,其概率质量函数为P(X=k) =________,其中λ > 0,k = 0, 1, 2, ...2. 假设随机变量X服从均匀分布U(a, b),其概率密度函数为f(x) = ________,其中a < x < b。
3. 假设随机变量X和Y相互独立,且X服从正态分布N(μ, σ²),Y 服从正态分布N(ν, τ²),则Z = X + Y服从正态分布N(μ+ν,________)。
4. 假设随机变量X服从二项分布B(n, p),其期望值E(X) = np,方差Var(X) = ________。
三、解答题(每题30分,共40分)1. 假设随机变量X服从正态分布N(0, 1),求P(-1 < X < 2)。
2. 假设随机变量X服从二项分布B(10, 0.3),求P(X ≥ 5)。
答案:一、选择题1. C2. A3. A4. A二、填空题1. λ^k * e^(-λ) / k!2. 1/(b-a)3. σ² + τ²4. np(1-p)三、解答题1. 根据标准正态分布表,P(-1 < X < 2) = Φ(2) - Φ(-1) =0.9772 - 0.1587 = 0.8185。
(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
最新2020概率论与数理统计期末完整题库288题(含答案)

2020年概率论与数理统计期末测试复习题288题[含答案]一、选择题1.从某同类零件中抽取9件,测得其长度为( 单位:mm ):2.设随机变量X ~N(μ,9),Y ~N(μ,25),记}5{},3{21+≥=-≤=μμY p X P p ,则( B )。
A. p1<p2B. p1=p2C. p1>p2D. p1与p2的关系无法确定3.一批螺丝钉中,随机抽取9个, 测得数据经计算如下:16.10, 2.10x cm s cm ==。
设螺丝钉的长度服从正态分布,试求该批螺丝钉长度方差2σ的置信度为0.95的置信区间。
22220.0250.9750.0250.975((8)17.535, (8) 2.18(9)19.02, (9) 2.7)χχχχ====已知:;解:因为螺丝钉的长度服从正态分布,所以222(1)~(1)n S W n χσ-=-220.0250.975{(8)(8)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1),11n S n S n n χχ⎛⎫-- ⎪ ⎪--⎝⎭ 2σ的置信度0.95的置信区间为 228 2.108 2.10,17.535 2.180⎛⎫⨯⨯ ⎪⎝⎭ 即()2.012,16.1834.设离散型随机变量的概率分布为101)(+==k k X P ,3,2,1,0=k ,则)(X E =( B )。
A. 1.8B. 2C. 2.2D. 2.45.在假设检验中, 下列说法错误的是( C )。
A. 1H 真时拒绝1H 称为犯第二类错误。
B. 1H 不真时接受1H 称为犯第一类错误。
C. 设α=}|{00真拒绝H H P ,β=}|{00不真接受H H P ,则α变大时β变小。
D. α.β的意义同(C ),当样本容量一定时,α变大时则β变小。
6.随机抽取某种炮弹9发做实验,测得炮口速度的样本标准差S=3(m/s),设炮口速度服从正态分布,求这种炮弹的炮口速度的方差2σ的置信度为0.95的置信区间。
概率统计总复习

概率统计总复习一、填空选择题考点1 掌握事件的关系与运算,会写样本空间1.试验E 为抛一枚硬币,观察正面H ,反面T 出现的情况,则E 的样本空间S= .2.设,,A B C 为随机事件,则,,A B C 中至少有一个发生可表示为 ,,A B C 同时发生可表示为 考点2古典概型的计算;1.同时抛掷3枚均匀的硬币,则恰好有2枚正面朝上的概率是2.袋中有5个球,其中3个新球,2个旧球,每次取一个,无放回地取两次,则两次取到的均为新球的概率为 .3.一袋中装有6个球,其中3个白球,3个红球,依次从中取出2个球(不放回),则两次取到的均为白球的概率为15。
4.从1,2,3,4,5五个数中任意取两个数,则这两个数中含偶数的概率是 考点3 概率的计算A 概率的性质和事件的独立性综合计算1.已知(),()0.2,()0.96P A a P B P A B ==⋃=,若事件AB 相互独立,则 a =1/202 设()0.4,()0.3P A P B ==,,A B 独立,则()P AB = ()____P A B -=.3.设事件A 与B 相互独立,已知()0.5,()0.8P A P A B == , ()P AB = .B 条件概率相关计算 1.设事件A 与B 独立,且()0.4P A =,(|)0.5P B A =,则()P AB =2.设()0.3P AB =,(|)0.4P B A =,则()P A = .3.已知()0.5,()0.6,()0.4P A P B P B A ===,那么()P AB = __0.2_____,()P AB =_0.4____, ()P A B ⋃=_______0.7_____.C 正态分布概率相关计算 1.设随机变量~(1,1)X N ,则{02}P X <<= .((1)0.8413Φ=)2.已知2~(1,)X N σ,{12}0.3P X <<=,则{0}P X <=____0.2_____.3 设随机变量(1,4)X N ,则(13)P X -<<= ;若()0.5,P X a >= 则a = .0.6826,14.随机变量),2(~2σN X ,(04)0.3,<<=P X 则(0)<=P X 。
概率论考试题库及答案

概率论考试题库及答案一、单项选择题(每题2分,共20分)1. 如果随机变量X服从标准正态分布,则P(X > 0)的值为:A. 0.5B. 0.3C. 0.7D. 0.9答案:A2. 以下哪个选项是概率论中大数定律的表述?A. 样本均值收敛于总体均值B. 样本方差收敛于总体方差C. 样本中事件A出现的次数除以总次数收敛于P(A)D. 所有上述选项答案:D3. 假设随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)的值为:A. 3B. 2.1C. 0.3D. 0.9答案:B4. 在概率论中,以下哪个事件是必然事件?A. 抛一枚硬币,正面朝上B. 抛一枚骰子,得到6点C. 太阳从东方升起D. 以上都不是答案:C5. 如果随机变量X和Y独立,且P(X=1)=0.4,P(Y=1)=0.3,那么P(X=1且Y=1)的值为:A. 0.12B. 0.09C. 0.43D. 0.7答案:A6. 假设随机变量X服从泊松分布,其参数为λ=2,那么P(X=0)的值为:A. 0.1353B. 0.2707C. 0.5488D. 0.8647答案:A7. 以下哪个选项是概率论中条件概率的定义?A. P(A|B) = P(A)P(B)B. P(A|B) = P(A∩B)/P(B)C. P(A|B) = P(B)P(A)D. P(A|B) = P(A∩B)答案:B8. 假设随机变量X服从均匀分布U(a, b),那么其概率密度函数f(x)的表达式为:A. f(x) = 1/(b-a),当a≤x≤bB. f(x) = 1/(a+b),当a≤x≤bC. f(x) = 1/a,当a≤x≤bD. f(x) = 1/b,当a≤x≤b答案:A9. 如果随机变量X服从正态分布N(μ, σ^2),那么其期望E(X)的值为:A. μB. σC. μ^2D. σ^2答案:A10. 假设随机变量X服从几何分布,其成功概率为p,那么其期望E(X)的值为:A. 1/pB. pC. 1-pD. p^2答案:A二、多项选择题(每题3分,共15分)11. 以下哪些是概率论中随机变量的类型?A. 离散型B. 连续型C. 混合型D. 以上都是答案:D12. 在概率论中,以下哪些是随机变量的期望值的性质?A. 线性性质B. 无界性质C. 单调性质D. 以上都是答案:A13. 以下哪些是概率论中随机变量的方差的性质?A. 非负性B. 齐次性C. 可加性D. 以上都是答案:A14. 在概率论中,以下哪些是随机变量的协方差的性质?A. 对称性B. 线性性质C. 非负性D. 以上都是答案:A15. 以下哪些是概率论中随机变量的相关系数的性质?A. 取值范围在[-1, 1]之间B. 对称性C. 非负性D. 以上都是答案:A三、计算题(每题10分,共40分)16. 假设随机变量X服从正态分布N(2, 4),求P(1 < X < 3)。
概率论期末考试复习题及答案

第一章1.设P (A )=31,P (A ∪B )=21,且A 与B 互不相容,则P (B )=____61_______.2. 设P (A )=31,P (A ∪B )=21,且A 与B 相互独立,则P (B )=______41_____.3.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ⋃)=___0.5_____. 4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独立,则P (A B )=________1/3________. A 与B 相互独立5.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___0.2________.6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____ 0.5______.7.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________ 0.6________.8.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,并再放入1只同颜色的球,若连取两次,则第一次取得红球且第二次取得白球的概率等于____12/55____.9.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=___0.21_____.10.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间生产的概率.3518第二章1.设随机变量X~N (2,22),则P {X ≤0}=___0.1587____.(附:Φ(1)=0.8413) 设随机变量X~N (2,22),则P{X ≤0}=(P{(X-2)/2≤-1} =Φ(-1)=1-Φ(1)=0.15872.设连续型随机变量X 的分布函数为⎩⎨⎧≤>-=-,0,0;0,1)(3x x e x F x则当x >0时,X 的概率密度f (x )=___ xe33-_____.3.设随机变量X 的分布函数为F (x )=⎩⎨⎧≤>--,0,0;0,2x x e a x 则常数a =____1____.4.设随机变量X~N (1,4),已知标准正态分布函数值Φ(1)=0.8413,为使P{X<a}<0.8413,则常数a<___3_________.5.抛一枚均匀硬币5次,记正面向上的次数为X ,则P{X ≥1}=_____3231_______. 6.X 表示4次独立重复射击命中目标的次数,每次命中目标的概率为0.5,则X~ _B(4, 0.5)____7.设随机变量X 服从区间[0,5]8.设随机变量X 的分布律为 =X 2,记随机变量Y 的分布函数为F Y (y 9.设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 110.已知随机变量X 的密度函数为f (x )=A e ?|x |, ?∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ).21 21(1-e ??) ⎪⎩⎪⎨⎧≤>-=-0210211)(x e x e x F x x11.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩(1) 求常数A ,B ;(2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ). A=1 B=-1 P {X ≤2}=λ21--e P {X >3}=λ3-e⎩⎨⎧≤>=-0)(x x e x f xλλ 12.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ).求(1)X 的分布函数,(2)Y =X 的分布律.14.设随机变量X ~U (0,1),试求: (1) Y =e X 的分布函数及密度函数; (2) Z =?2ln X 的分布函数及密度函数.第三章1.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧>>=+-,,0;0,0,),()(其他y x ey x f y x (1)求边缘概率密度f X (x)和f Y (y ),(2)问X 与Y 是否相互独立,并说明理由.因为 )()(),(y f x f y x f Y X = ,所以X 与Y 相互独立2.设二维随机变量221212(,)~(,, ,,)X Y N μμσσρ,且X 与Y 相互独立,则ρ=____0______. 3.设X~N (-1,4),Y~N (1,9)且X 与Y 相互独立,则2X-Y~___ N (-3,25)____. 4.,5.设随机变量(X,Y)服从区域D 上的均匀分布,其中区域D 是直线y=x ,x=1和x 轴所围成的三角形区域,则(X,Y)的概率密度101()2y x f x y others⎧≤<≤⎪=⎨⎪⎩,.62)随机变量Z=XY 的分布律.7求:(1)a 的值;(2)(X ,Y )分别关于X 和Y 的边缘分布列;(3)X 与Y 是否独立?为什么?(4)X+Y 的分布列. a=0.3因为{0,1}{0}{1}P X Y P X P Y ==≠==,所以X 与Y 不相互独立。
(完整word版)概率论复习题及答案

概率论与数理统计复习题一.事件及其概率1. 设,,A B C 为三个事件,试写出下列事件的表达式:(1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。
解:(1) ABC A B C =⋃⋃(2) ABC A B C =⋃⋃ (3) A B C ⋃⋃ (4) BC AC AB ⋃⋃2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ⋃-。
解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ⋃=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。
3. 设,A B 互斥,()0.5P A =,()0.9P A B ⋃=,求(),()P B P A B -。
解:()()()0.4,()()0.5P B P A B P A P A B P A =⋃-=-==。
4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ⋃。
解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==⋃=+-= ()()()()0.2P AB P A B P A P AB =-=-=。
5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ⋃⋃。
解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ⋃⋃=-⋃⋃=-=-=。
6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率;(2) 取到一个黄球、一个白球的概率。
概率论期末考试题及答案

概率论期末考试题及答案概率论是一门研究随机现象及其规律性的数学分支。
以下是一套概率论期末考试题及答案,供参考。
一、选择题(每题2分,共20分)1. 事件A和事件B是互斥的,P(A)=0.3,P(B)=0.4,那么P(A∪B)等于多少?A. 0.1B. 0.7C. 0.35D. 0.6答案:B2. 抛一枚均匀的硬币两次,求正面朝上的次数为1的概率。
A. 0.25B. 0.5C. 0.75D. 1答案:B3. 随机变量X服从参数为λ的泊松分布,求P(X=1)。
A. λB. λe^(-λ)C. e^(-λ)D. 1/λ答案:B4. 某工厂有5台机器,每台机器正常工作的概率都是0.9,求至少有3台机器正常工作的概率。
A. 0.999B. 0.99C. 0.95D. 0.9答案:C5. 一个骰子连续抛掷两次,求点数之和为7的概率。
A. 1/6B. 1/3C. 5/36D. 2/9答案:C二、填空题(每题2分,共10分)6. 随机变量X服从正态分布N(μ, σ²),其密度函数的峰值出现在X=______。
答案:μ7. 假设事件A和B相互独立,P(A)=0.6,P(B)=0.5,则P(A∩B)=______。
答案:0.38. 某随机试验中,事件A发生的概率为0.2,事件B发生的概率为0.3,且P(A∪B)=0.4,则P(A∩B)=______。
答案:0.19. 连续型随机变量X的分布函数F(x)=1-e^(-λx),其中λ>0,当x≥0时,X服从______分布。
答案:指数10. 假设随机变量X服从二项分布B(n, p),求其期望E(X)=______。
答案:np三、简答题(每题10分,共30分)11. 简述什么是条件概率,并给出条件概率的公式。
答案:条件概率是指在某个事件已经发生的条件下,另一个事件发生的概率。
条件概率的公式为P(A|B) = P(A∩B) / P(B),其中 P(A|B) 表示在事件B发生的条件下事件A发生的概率,P(A∩B) 是事件A和B 同时发生的概率,P(B) 是事件B发生的概率。
《概率论与数理统计》综合复习资料全

《概率论与数理统计》综合复习资料一、填空题1、一个盒子中有10 个球,其中有 3 个红球, 2 个黑球, 5 个白球,从中取球两次,每次取一个(无放回),则:第二次取到黑球的概率为;取到的两只球至少有一个黑球的概率为。
2、 X 的概率密度为 f ( x)1 e x2 2 x 1(x) ,则DX。
3、已知随机变量X ~N(1,1),Y~N(3,1) 且 X 与Y 相互独立,设随机变量Z 2X Y 5,则EX;DX。
4、已知随机变量X 的分布列为X-102P k0.40.2p则: EX=;DX =。
5、设X与Y独立同分布,且X~N(2,22) ,则D( 3X2Y) =。
6、设对于事件A、B、 C有 P(A)P(B)1,P(ABC)1P(C),412P( AB) P( BC )P(AC)1。
,则 A 、 B、 C 都不发生的概率为87、批产品中一、二、三等品各占60% 、30%、 10%,从中任取一件,结果不是三等品,则取到的是二等品的概率为。
8、相互独立,且概率分布分别为1,1 y 3f (x)e ( x 1)x) ;( y)(,其它则:E(X Y)=;E(2X3 2 )=。
Y9 、已知工厂A、 B 生产产品的次品率分别为2%和1%,现从由A、 B 工厂分别占30%和70%的一批产品中随机抽取一件,发现是次品,则该产品是 B 工厂的概率为。
10、设X、Y的概率分布分别为, 1 x 54e4 y,y01/ 4( x);( y),,其它0y0则: E(X 2Y) =;(X 2 4 ) =。
E Y二、选择题1、设X 和 Y 相互独立,且分别服从N(1,22) 和N (1,1),则。
A .P{ X Y 1}1/ 2B.P{ X Y0}1/ 2C .P{ X Y0}1/ 2D.P{ X Y 1}1/ 22、已知P( A)0.4,P(B)0.6,P(B | A)0.5 ,则P( A B)。
A .1B.0.7C .0.8D .0.53、设某人进行射击,每次击中的概率为1/3,今独立重复射击10 次,则恰好击中 3 次的概率为。
概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案
这篇文档将提供一系列概率论与数理统计的复题和答案。
以下是一些例题,供您练和巩固知识。
1. 一个骰子投掷三次,计算以下事件的概率:
- A:至少有一次出现6点
- B:三次投掷的和为18点
答案:
- A的概率 = 1 - (5/6) * (5/6) * (5/6) = 91/216
- B的概率 = 1/6 * 1/6 * 1/6 = 1/216
2. 一批商品的质量服从正态分布,均值为80,标准差为5。
从中随机取一件,计算以下事件的概率:
- A:质量在75到85之间
- B:质量小于70
答案:
- A的概率 = P(75 < X < 85),其中X服从均值为80,标准差为5的正态分布,可通过查表或计算得到概率值。
- B的概率 = P(X < 70),同样需要查表或计算。
3. 在某次调查中,有50%的受访者表示会购买某个产品。
从100位受访者中随机选择10人,计算以下事件的概率:- A:恰好有5人表示会购买该产品
- B:至少有8人表示会购买该产品
答案:
- A的概率 = C(10, 5) * (0.5)^5 * (0.5)^5 = 0.2461,其中C为组合数。
- B的概率 = P(X >= 8),其中X服从二项分布,可通过计算得到概率值。
这些复习题可以帮助您巩固概率论与数理统计的知识。
建议您自行尝试计算答案,并对比参考答案进行学习。
祝您学习顺利!。
概率论考试题及答案

概率论考试题及答案一、选择题(每题2分,共20分)1. 设随机变量X服从标准正态分布,则P(X > 1)等于:A. 0.1587B. 0.8413C. 0.1587D. 0.8413答案:B2. 随机变量X和Y相互独立,且都服从二项分布,其中X~B(3, 0.5),Y~B(2, 0.5),则P(X+Y=3)等于:A. 0.5B. 0.375C. 0.25D. 0.75答案:B3. 设随机变量X服从泊松分布,其参数λ=2,则P(X=1)等于:A. 0.2707B. 0.1353C. 0.5000D. 0.2707答案:B4. 随机变量X服从均匀分布U(0, 4),则E(X)等于:A. 2B. 4C. 0D. 1答案:A5. 设随机变量X服从指数分布,其参数为λ=2,则D(X)等于:A. 1/4B. 1/2C. 2D. 4答案:C6. 设随机变量X服从正态分布N(μ, σ^2),其中μ=3,σ^2=4,则P(1<X<5)等于:A. 0.6826B. 0.9545C. 0.6830D. 0.9500答案:B7. 设随机变量X服从二项分布B(n, p),其中n=10,p=0.3,则P(X≥5)等于:A. 0.5B. 0.7C. 0.3D. 0.8答案:B8. 设随机变量X服从几何分布,其成功概率为p=0.4,则P(X=3)等于:A. 0.064B. 0.256C. 0.064D. 0.256答案:A9. 设随机变量X服从超几何分布,其中总体大小为N=20,成功状态的个体数为M=5,样本大小为n=4,则P(X=2)等于:A. 0.4B. 0.6C. 0.2D. 0.8答案:C10. 设随机变量X服从t分布,自由度为10,则P(|X|<2)等于:A. 0.9500B. 0.9545C. 0.975D. 0.9800答案:A二、填空题(每题3分,共30分)1. 设随机变量X服从二项分布B(5, 0.2),则P(X=3)=________。
概率论与数理统计期末考试复习资料

m A所包含的基本事件数 n 基本事件总数
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同 时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称 (9) 几 此随机试验为几何概型。对任一事件 A, 何概型 L( A) P( A) 。其中 L 为几何度量(长度、面积、体积) 。 L () (10) 加法公 式 (11) 减法公 式 P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB) 当 B A 时,P(A-B)=P(A)-P(B) 当 A=Ω时,P( B )=1- P(B) 定义 设 A、B 是两个事件,且 P(A)>0,则称 P( A) 为事件 A 发生条件
word
(1)离 设离散型随机变量 X 的可能取值为 Xk(k=1,2,…)且取各个值 散型随 的概率,即事件(X=Xk)的概率为 机变量 P(X=xk)=pk,k=1,2,…, 的分布 则称上式为离散型随机变量 X 的概率分布或分布律。有时也 律 用分布列的形式给出:
X x1, x 2,, xk , 。 | P( X xk ) p1, p 2,, pk ,
pk 对于离散型随机变量, F ( x) x ; x
k
f ( x)dx 1 。
对于连续型随机变量, F ( x) (5)八 0-1 分布 大分布
f ( x)dx
x
。
P(X=1)=p, P(X=0)=q
word
二项分布
泊松分布
最新2020概率论与数理统计期末完整考试题库288题(含答案)

2020年概率论与数理统计期末测试复习题288题[含答案]一、选择题1.正常人的脉搏平均为72次/分,今对某种疾病患者9人,测得其脉搏为(次/分):2.设)(x Φ为标准正态分布函数,100,,2, 1, 0A,1 =⎩⎨⎧=i X i 否则,发生事件且()0.9P A =,10021X X X ,,, 相互独立。
令∑==1001i iX Y ,则由中心极限定理知Y 的分布函数)(y F 近似于( B )。
A. )(y Φ B.90()3y -Φ C.(90)y Φ- D.90()9y -Φ3.对任意两个事件A 和B , 若0)(=AB P , 则( D )。
A. φ=ABB. φ=B AC. 0)()(=B P A PD. )()(A P B A P =-4.设)(x Φ为标准正态分布函数,100,,2, 1, 0A,1 =⎩⎨⎧=i X i 否则,发生事件且()0.7P A =,10021X X X ,,, 相互独立。
令∑==1001i iX Y ,则由中心极限定理知Y 的分布函数)(y F 近似于( B )。
A. )(y ΦB.Φ C.(70)y Φ- D.70()21y -Φ5.设随机变量X ~N(μ,9),Y ~N(μ,25),记}5{},3{21+≥=-≤=μμY p X P p ,则( B )。
A. p1<p2B. p1=p2C. p1>p2D. p1与p2的关系无法确定6.设21,A A 两个随机事件相互独立,当21,A A 同时发生时,必有A 发生,则( A )。
A. )()(21A P A A P ≤ B. )()(21A P A A P ≥C. )()(21A P A A P =D.)()()(21A P A P A P =7.已知随机向量(X,Y )的协差矩阵V 为⎪⎪⎭⎫ ⎝⎛=9664V 计算随机向量(X +Y , X -Y )的协差矩阵(课本116页26题) 解:DX=4, DY=9, COV(X,Y)=6 D(X +Y)= DX + DY +2 COV(X,Y)=25 D(X-Y) = DX + DY -2 COV(X,Y)=1 COV (X +Y, X -Y )=DX-DY=-5故(X +Y, X -Y )的协差矩阵⎪⎪⎭⎫⎝⎛--155258.甲.乙.丙三台机床加工一批同一种零件,各机床加工的零件数量之比为5:3:2,各机床所加工的零件合格率依次为94%,90%,95%。
《概率论与统计原理》复习资料

《概率论与统计原理》复习资料一、填空题1、设A,B,C为三个事件,则下列事件“B发生而A与C至少有一个发生”,“A,B,C中至少有两个发生”,“A,B,C中至少有一个发生”,“A,B,C中不多于一个发生”,“A,B,C中恰好有一个发生”,“A,B,C中恰好有两个发生”分别可表示为、、、、、。
参考答案:B(A+C,AB+AC+BC,A +B+C,CB+BA+CA,AB C+AC B+A BC,A+CABA+CBBC考核知识点:事件的关系及运算2、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为、、。
参考答案:0.04,0.02,0.1考核知识点:古典型概率3、同时抛掷3枚均匀的硬币,则3枚正面都向上的概率为,恰好有2枚正面向上的概率为。
参考答案:1/8,3/8考核知识点:古典型概率4、箱中有60个黑球和40个白球,从中任意连接不放回取出k个球,则第k次取出黑球的概率为。
参考答案:0.6考核知识点:古典型概率5、假设某商店获利15万元以下的概率为0.9,获利10万元以下的概率为0.5,获利5万元以下的概率为0.3,则该商店获利5~10万元的概率为,获利10~15万元的概率为。
参考答案:0.2,0.4考核知识点:概率的性质6、设袋中有6个球,其中4白2黑。
用不放回两种方法取球,则取到的两个球都是白球的概率为;取到的两个球颜色相同的概率为;取到的两个球中至少有一个是白球的概率为。
参考答案:0.4,7/15,14/15考核知识点:古典型概率和概率的性质7、设事件A,B互不相容,已知P(A)= 0.6,P(B)= 0.3,则P(A+B)= ;P(A+B)= ;P(A B)= ;P(BA)= 。
参考答案:0.9,0.4,0.3,0.1考核知识点:概率的性质8、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为0.5,0.6,0.8,则恰有一人中靶的概率为;至少有一人中靶的概率为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总复习题(2)
一、选择题:
1.若两事件A 和B 同时出现的概率P(AB)=0,则 ( )
(A) A 和B 不相容 (B) AB 是不可能事件
(C) P(A)=0或P(B)=0 (D) AB 未必是不可能事件
2. 以A 表示事件“甲种产品畅销,乙种产品滞销”则事件A 为 ( )
(A)甲种产品滞销,乙种产品畅销 (B) 甲、乙两种产品均畅销
(C)甲种产品滞销或乙种产品畅 (D) 甲种产品滞销
3. 设(),~2,σμN X 则随着的增大,则)(σμ<-X P ( )
(A )单调增大 (B )保持不变 (C )单调减少 (D )增减不定
4. 描述随机变量X 波动大小的量为( )
(A )方差)(X D (B )数学期望)(X E (C )X 的分布函数)(x F (D )X 的密度函数)(x f
5.设(X ,Y )为二维随机变量,则( )
(A) 若X 与Y 不独立,X 与Y 必定不相关 (B)若X 与Y 不独立,X 与Y 必定相关
(C)若X 与Y 独立,X 与Y 必定相关 (D) 若X 与Y 独立,X 与Y 必定不相关
6. n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X D i =)(,则这些随机变量的算术平均值∑==n i i X n X 1
1的数学期望和方差分别为 ( ) (A )n a ,b (B )a ,2n
b (C )a ,n b (D )a ,n b 2
7.设(),10~,N X (),11~,N Y Y X ,相互独立,令X Y Z 2-=,则~Z ( )
(A ))5,2(-N ; (B) )5,1(N ; (C) )6,1(N ; (D) )9,2(N ;
8.设二维随机变量),(Y X 的概率密度函数为⎩
⎨⎧<<<<=其他,010,10,4),(y x xy y x f 则 )(Y X P <=( )
(A )dx xydy x )4(11
0⎰⎰ (B) dx xydy x )4(010
⎰⎰ (C) dx xydy )4(1010⎰⎰ (D) dx xydy x
)4(1
0⎰⎰∞-
9.如果Y X ,满足()Y X D Y X D -=+)(,则必有 ( )
(A )EY EX XY E ⋅=)(, (B )0=DY
(C )EY EX XY E ⋅≠)(, (D )0=DX
二. 填空题:
1. 设7.0)(=A P ,5.0)(=B P .则的最小值为)(AB P 。
2.设)1.0,100(~),4,1(~B Y N X 且Y X ,独立。
则=-)23(Y X D ________。
3.三次独立的试验中,,成功的概率相同.,已知至少成功一次的概率为
2726, 则每次试验成功的概率为 。
4.设二维随机变量),,,,(~),(222211r N Y X σμσμ, 则Y X ,相互独立的充分必要条件 是 _____________。
5. Y X ,不相关 Y X ,相互独立。
(一定有 或 未必有)
6.若)5,1(~-U X ,方程04522
=-++X Xx x 有实根的概率 。
7.贝努利大数定律揭示了频率的 性特点。
8. 设总体X 服从参数为λ的泊松分布,其中0>λ未知,n X X X ,,,21 是从该总体中抽取的一个样本,则λ的矩估计为 。
9. 设总体2~(,),X N μσμ未知,12,,,n X X X 是总体X 的样本,则σ的α-1的置信区间为 。
10.已知)1,0(~N X ,2X Y =则=DY 。