ansys中阻尼的设置

合集下载

【拉布索思】谐响应中阻尼的设置及其工程应用

【拉布索思】谐响应中阻尼的设置及其工程应用

【拉布索思】谐响应中阻尼的设置及其工程应用讨论背景这里主要讨论的是ANSYS(Workbench)中模态叠加法(包括瞬态中用模态叠加)的阻尼比(包括α、β阻尼)设置问题,不考虑材料的阻尼比。

各阻尼比的解释这里会把阻尼都写成阻尼比的形式,因为阻尼比最直观,也可以在实验中得到。

那么,总阻尼比为:其中,是常值阻尼比,是作用于所有阶的模态,而且值是恒定的,在Constant Damping Ratio 设置;是第i阶模态的阻尼比,用来设定某些阶的阻尼比,要通过命令MDAMP设置(命令解释请看help,命令使用实例请看下面例子);,这是β阻尼相应的阻尼比,也是作用于所有阶的模态,但值随频率增大而线性增大。

HELP中说,在很多实际结构问题中,α会被忽略,所以上式中就没有α只有β,我是这么猜的,因为通常实际问题的频率都在几十到几千赫兹不等,那么就比较小,可以忽略。

反正,在Workbench界面中是没有α的设置项的,默认α=0,要设的话就要加命令,这里也不讨论α了。

那么β值就决定了这个阻尼比,而因为β值是恒定的,所以这个阻尼比会随频率增大而线性增大,就能起到抑制高频的作用。

AWB中有两种输入β阻尼的方法,一是直接输入β值(Direct Input),二是输入某个频率下的阻尼比(Dampingvs Frequency),系统就会根据来计算出β值,界面中的Beta Damping Measure就是。

通过两种输入方法设置了β值后,系统就会自动求出各阶的β阻尼比,个人喜欢用第二种方法,因为设置阻尼比更直观,结合使用另外两个阻尼比时会更方便;注意,三个阻尼比的效果是叠加的。

为什么要设置阻尼?首先,加阻尼对共振频率的影响很小,比如是固有频率乘以,所以阻尼对共振频率的影响可以忽略。

那我认为,阻尼的主要作用是压低共振处的幅值,使频响曲线变得更平缓。

而实际结构中一定有阻尼,所以分析中适当设置一定的阻尼会比较接近实际。

如果阻尼都取为0(默认值)的话,频呼曲线的峰值会相当大,理论上是无穷大的。

Ansys中的阻尼

Ansys中的阻尼

Ansys中的阻尼ANSYS动力学分析中提供了各种的阻尼形式,这些阻尼在分析中是如何计算,并对分析有什么影响呢?本文将就此做一些说明何介绍.一.首先要清楚,在完全方法和模态叠加法中定义的阻尼是不同。

因为前者使用节点坐标,而后者使用总体坐标.1.在完全的模态分析、谐相应分析和瞬态分析中,振动方程为:阻尼矩阵为下面的各阻尼形式之和:α为常值质量阻尼(α阻尼)(ALPHAD命令)β为常值刚度阻尼(β阻尼)(BETA命令)ξ为常值阻尼比,f为当前的频率(DMPRAT命令)βj为第j种材料的常值刚度矩阵系数(MP,DAMP命令)[C]为单元阻尼矩阵(支持该形式阻尼的单元)where: [C] = structure damping matrixα = mass matrix multiplier (input on ALPHAD command)[M] = structure mass matrixβ = stiffness matri x multiplier (input on BETAD command)βc = variable stiffness matrix multiplier (see Equation 15–23)[K] = structure stiffness matrixNm = number of materials with DAMP or DMPR input= stiffness matrix multiplier for material j (input as DAMP on MP command)= constant (frequency-independent) stiffness matrix coefficient for material j (input as DMPR on MP command)Ω = circular excitation frequencyKj = portion of structure stiffness matrix based on material jNe = number of elements with specified dampingCk = element damping matrixCξ = frequency-dependent damping matrix (see Equation 15–21)2.对模态叠加方法进行的谐相应分析、瞬态分析何谱分析,动力学求解方程为:每个模态产生有效阻尼比ξid而不是创建阻尼矩阵α为常值质量阻尼β为常值刚度阻尼ξ为常值阻尼比ξmi为第i个模态的常值阻尼比ξj为第j个材料的阻尼系数Ejs为第j个材料的应变能,ANSYS由{f}T[K]{f}计算得到。

apdl导出阻尼矩阵

apdl导出阻尼矩阵

apdl导出阻尼矩阵
APDL(ANSYS Parametric Design Language)是用于执行有限元分析的强大工具。

要导出阻尼矩阵,您可以按照以下步骤进行操作:
1. 首先,您需要在APDL中设置分析类型和所需的阻尼矩阵选项。

这可能涉及定义材料特性、几何形状、加载条件等。

2. 确保在设置分析类型时包括了阻尼矩阵的计算。

这通常涉及在命令中使用相应的选项或命令来启用阻尼矩阵的计算。

3. 运行分析。

一旦设置好了分析类型和阻尼矩阵选项,您可以运行分析以获得结果。

4. 导出阻尼矩阵。

一旦分析完成,您可以使用APDL中的命令或选项将阻尼矩阵导出到所需的格式中。

这可能涉及使用ANSYS内置的命令或脚本来完成导出操作。

请注意,具体的步骤可能会因您的分析类型、模型复杂性和所使用的ANSYS版本而有所不同。

因此,建议您查阅相关的ANSYS文
档或手册,或者在ANSYS用户社区中寻求帮助,以确保您按照正确的步骤导出阻尼矩阵。

【ANSYS】2-阻尼

【ANSYS】2-阻尼
通过在工程数据模块输入质量阻尼系数和刚度阻尼系数可以考虑由 不同材料组成的结构的阻尼特性:
5、阻尼矩阵
5.1 完全法瞬态动力学或考虑阻尼的模态分析支持的阻尼
此外也可以在求解阶段输入结构的总体质量阻尼系数和刚度阻尼系 数:
5、阻尼矩阵
5.2 完全法谐响应分析支持的阻尼 考虑阻尼的单自由度系统运动方程:
i ki / mi
i
ci cci
cci 2 kimi
i 2
ki mi
mi
ki
i
mi
2 ki mi
2
ki
ki mi
i
2
mi
ki 2
ki mi
i
2i
i
2
5、阻尼矩阵
5.1 完全法瞬态动力学或考虑阻尼的模态分析支持的阻尼
实际工程问题中,很多情况下都忽略质量阻尼系数,即α= 0 。在这种情况下, 用户可以从已知的阻尼比和固有频率ωi 中,计算刚度阻尼系数β
5、阻尼矩阵
5.1 完全法瞬态动力学或考虑阻尼的模态分析支持的阻尼
如果已经知道结构的阻尼比,通常通过假设结构的在某一个频率范 围内该结构的阻尼比为恒定值,因此可以根据阻尼阻尼比,两个固有频 率点f1和f2求解出刚度阻尼系数和质量阻尼系数:
5、阻尼矩阵
5.1 完全法瞬态动力学或考虑阻尼的模态分析支持的阻尼
5、阻尼矩阵
5.2 完全法谐响应分析支持的阻尼
材料阻尼时材料的一种固有特性,即能量是通过材料的内摩擦消耗掉的,因此需要在 动力学分析中考虑进去;
在现实工程中,由于内摩擦造成的能量耗散,并不取决于结构的圆频率(自然频率或 固有频率) 将阻尼力假设为与速度成正比与结构的振动频率成反比,即

ANSYS中的阻尼(转载)

ANSYS中的阻尼(转载)

阻尼是动力分析的一大特点,也是动力分析中的一个易于引起困惑之处,而且由于它只是影响动力响应的衰减,出了错不容易觉察。

阻尼的本质和表现是相当复杂的,相应的模型也很多。

ANSYS提供了强大又丰富的阻尼输入,但也正以其强大和丰富使初学者容易发生迷惑这里介绍各种阻尼的数学模型在ANSYS中的实现,与在ANSYS中阻尼功能的使用。

1.比例阻尼最常用也是比较简单的阻尼大概是Rayleigh阻尼,又称为比例阻尼。

它是多数实用动力分析的首选,对许多实际工程应用也是足够的。

在ANSYS里,它就是阻尼与阻尼之和,分别用ALPHD与BETAD命令输入。

已知结构总阻尼比是,则用两个频率点上阻尼与阻尼产生的等效阻尼比之和与其相等,就可以求出近似的阻尼与阻尼系数来用作输入:(5.1.1)求比例阻尼系数的拟合公式用方程组(5.1.1)可以得到阻尼与阻尼系数值,然后用ALPHD与BETAD命令输入,这种阻尼输入既可以做full(完全)法的分析,也可以作减缩法与振型叠加法的分析,都是一样的有效。

但是尽管阻尼与阻尼概念简单明确,在使用中也要小心一些可能的误区。

首先,阻尼与质量有关,主要影响低阶振型,而阻尼与刚度有关,主要影响高阶振型;如果要做的是非线性瞬态分析,同时刚度变化很大时,那么使用阻尼很可能会造成收敛上的困难;一样的理由,有时在使用一些计算技巧时,比如行波效应分析的大质量法,加上了虚假的大人工质量,那么就不可以使用阻尼。

同样,在模型里加上了刚性连接时,也应该检查一下阻尼会不会造成一些虚假的计算结果。

2.阻尼阵的计算ANSYS中有多种办法可以输入阻尼特性。

先概括几个在结构分析中常用的输入阻尼的命令:ALPHAD:输入阻尼参数BETAD:输入阻尼参数DMPRA T:输入全结构的阻尼比MDAMP:输入与各频率的振型对应的模态阻尼比MP,DAMP 输入对应于某种材料的材料阻尼??。

与以上几种命令的输入对应的ANSYS计算的总阻尼阵[C]是:(5.1.2)ANSYS计算阻尼矩阵的公式其中m是结构中有阻尼的材料种类数,n是具有特有阻尼的单元类型数。

阻尼的问题

阻尼的问题

阻尼的问题wudingyi积分 49 帖子 37#12007-1-21 19:51我在论坛上看到可以用mp,damp 命令来输入材料的材料阻尼系数;但是在ansys 的帮助文件中是这样说明的: MP, Lab, MAT, C0, C1, C2, C3, C4 LabDAMP ― K matrix multiplier for damping.Note: If used in an explicit dynamic analysis, the value corresponds to the percentage of damping in the high frequency domain. For example, 0.1 roughly corresponds to 10% damping in the high frequency domain.DMPR ― Constant material damping coefficient .我对上面的理解是:输入材料的阻尼系数应该是用mp,dmpr 而mp,damp 到底输入的是什么,从上面我感觉和瑞利阻尼中的刚度阻尼系数重复,或者他是用来将材料阻尼系数等效为刚度阻尼系数来输入,如果是,该如何等效?请同行明示,谢谢!wms328积分 220 帖子 153#22007-1-23 20:21我也想问下阻尼的问题:一般做什么分析要考虑阻尼?是不是实际工程的计算分析都要考虑阻尼,从而在材料属性中输入阻尼系数! 希望有人能帮忙解开疑惑!谢谢mysuper积分 3 帖子 3#32007-1-24 12:38楼主说的材料属性中阻尼项我也很想知道在用combin14单元模拟阻尼单元时要求材料属性中mp,damp 一项不知道具体表示什么,在combin14单元实常数中定义了阻尼系数后,随意改变mp,damp 项似乎对结构的动力响应没有影响,不只是何原因wudingyi#42007-1-26 21:39你应该做的是完全瞬态分析,在ansys 中对其有两种阻尼输入模式,一积分 49 帖子 37 个是mp,damp 输入材料阻尼,另一个是单元阻尼,而对于其他一切的以阻尼比的形式输入的阻尼参数,程序一律忽略。

ansys中阻尼的设置

ansys中阻尼的设置

ANSYS/LS-DYNA中阻尼的设置ANSYS/LS-DYNA中阻尼的设置总结如下:EDDAMP, PART, LCID, VALDMP (用此命令流来定义阻尼)Defines mass weighted (Alpha) or stiffness weighted (Beta) damping for an explicit dynamics model.(默认有质量阻尼与刚度阻尼两种)图1 LS-DYNA中的阻尼选项PARTPART number [EDPART] identifying the group of elements to which damping should be applied. If PART = ALL (default), damping is applied to the entire model.(定义施加阻尼的Part 号,如果Part =ALL (or blank),整体质量阻尼将被应用于整个模型。

)LCIDLoad curve ID (previously defined with the EDCURVE command) identifying the damping coefficient versus time curve. If time-dependent damping is defined, an LCID is required.(用来指定相对于时间的质量阻尼)VALDMPConstant system damping coefficient or a scale factor applied to the curve defining damping coefficient versus time.(可以用来代替对时间的质量阻尼曲线,或者使用LCID命令中的比例系数)注意:Mass-weighted (Alpha) or stiffness-weighted (Beta) damping can be defined with the EDDAMP command. Generally, stiffness proportional or beta damping is effective foroscillatory motion at high frequencies. This type of damping is orthogonal to rigid body motion and so will not damp out rigid body motion. On the other hand, mass proportional or alpha damping is more effective for low frequencies and will damp out rigid body motion. The different possibilities are described below:1.Global DampingMass-weighted or Alpha damping (质量阻尼)When PART = (blank) or ALL (default), mass-weighted global damping can be defined in the following 2 ways. In this case, the same damping is applied for the entire structure.1.When the damping coefficient versus time curve (LCID) is specified usingthe EDCURVE command, VALDMP is ignored by LS-DYNA (although it iswritten in the LS-DYNA input file Jobname.K). The damping force appliedto each node in the model is given by f d= d(t)mv, where d(t) is thedamping coefficient as a function of time defined by the EDCURVEcommand, m is the mass, and v is the velocity.2.When the LCID is 0 or blank (default), a constant mass-weighted systemdamping coefficient can be specified using VALDMP.The constant and time-dependent damping, described above, cannot be defined simultaneously. The last defined global damping will overwrite any previously defined global damping.2.Damping defined for a PART(1)Mass-weighted or Alpha damping (质量阻尼)When both a valid PART number is specified and the damping coefficient versus time curve (LCID) is specified using the EDCURVE command, mass-weighted time-dependent damping will be defined for the particular PART. In this case, VALDMP will act as a scaling factor for the damping versus time curve (if VALDMP is not specified, it will default to 1). A valid PART number must be specified to define this type of damping. For example, use PART=1 (and not blank) when the entire model consists of only one PART. Issue the command repeatedly with different PART numbers in order to specify alpha damping for different PARTS.(2)Stiffness-weighted or Beta damping (刚度阻尼)When a valid PART number is specified with LCID= 0 or (blank) (default), a stiffness-weighted (Beta) constant damping coefficient for this particular PART canbe defined by VALDMP. The stiffness-weighted value corresponds to the percentage of damping in the high frequency domain. For example, 0.1 roughly corresponds to 10% damping in the high frequency domain. Recommended values range from 0.01 to 0.25. Values lower than 0.01 may have little effect. If a value larger than 0.25 is used, it may be necessary to lower the time step size significantly. Issue the command repeatedly with different PART numbers in order to specify beta damping for different PARTS. Time-dependent stiffness-weighted damping is not available in ANSYS LS-DYNA.The mass-weighted and stiffness-weighted damping, described above, cannot be defined simultaneously for a particular PART number. The last defined damping for the particular PART number will overwrite any previously defined mass-weighted or stiffness-weighted damping for this PART.In order to define the mass-weighted and stiffness-weighted damping simultaneously, you can use the MP,DAMP command to define stiffness-weighted (Beta) constant damping coefficient. However, do not use both of these commands together to define stiffness-weighted (Beta) constant damping coefficient for a particular PART. If you do, duplicate stiffness-weighted (Beta) constant damping coefficients for this PART will be written to the LS-DYNA input file Jobname.K. The last defined value will be used by LS-DYNA. Also, note that the MP,DAMP command is applied on the MAT number, and not on the PART number. Since a group of elements having the same MAT ID may belong to more than one PART (the opposite is not true), you need to issue the MP,DAMP command only once for this MAT ID and the stiffness-weighted (Beta) damping coefficients will be automatically defined for all the PART s with that MAT ID.Mass-weighted and stiffness-weighted damping can be defined simultaneously using the EDDAMP command only when mass-weighted damping (constant or time-dependent) is defined as global damping (EDDAMP, ALL, LCID, VALDMP) and stiffness-weighted damping is defined for all necessary PARTs (EDDAMP,PART, ,VALDMP).To remove defined global damping, reissue the EDDAMP, ALL command with LCID and VALDMP set to 0. To remove damping defined for a particular PART, reissue EDDAMP, PART, where PART is the PART number, with LCID and VALDMP set to 0. There is no default for the EDDAMP command, i.e., issuing the EDDAMP command with PART = LCID = VALDMP = 0 will result in an error. Stiffness-weighted damping defined by the MP,DAMP command can be deleted using MPDELE, DAMP, MAT.In an explicit dynamic small restart (EDSTART,2) or full restart analysis (EDSTART,3), you can only specify global alpha damping. This damping will overwrite any alpha damping input in the original analysis. If you do not input global alpha damping in the restart, the damping properties input in the original analysis will carry over to the restart.Damping specified by the EDDAMP command can be listed, along with other explicit dynamics specifications, by typing the command string EDSOLV$STAT into the ANSYS input window. Beta damping specified by the MP,DAMP command can be listed by MPLIST, MAT command.Menu PathsMain Menu>Preprocessor>Loads>Load Step Opts>Other>Change MatProps>DampingMain Menu>Preprocessor>Material Props>DampingMain Menu>Solution>Load Step Opts>Other>Change Mat Props>DampingK文件,Eg.1 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ SYSTEM DAMPING $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $*DAMPING_PART_STIFFNESS2 1.000$K文件,Eg.2 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ SYSTEM DAMPING $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $*DAMPING_GLOBAL00.5000E+02$。

ansys 提取质量刚度阻尼矩阵

ansys 提取质量刚度阻尼矩阵

ansys 提取质量刚度阻尼矩阵
在ANSYS中,可以使用以下步骤来提取质量、刚度、阻尼矩阵:
打开ANSYS软件,并导入需要分析的模型。

在主界面中,选择“工具”菜单中的“质量特性”,打开“质量特性”对话框。

在“质量特性”对话框中,选择“全局质量矩阵”,然后单击“计算”按钮。

在计算完成后,将显示全局质量矩阵、全局刚度矩阵和全局阻尼矩阵。

可以使用类似的方法提取其他相关矩阵,例如局部质量矩阵、局部刚度矩阵和局部阻尼矩阵。

需要注意的是,在提取矩阵之前,需要对模型进行正确的材料属性设置和边界条件设置。

此外,对于复杂模型,可能需要使用其他工具或方法来提取矩阵。

ANSYS中阻尼的定义和使用方式

ANSYS中阻尼的定义和使用方式

ANSYS的轴承座结构分析教程一、实体模型的建立建立实体模型可以通过自上而下和自下而上两个途径:1、自上而下建模,首先要建立体(或面),对这些体或面按一定规则组合得到最终需要的形状。

2、自下而上建模,首先要建立关键点,由这些点建立线、由线连成面等一般建模原则是充分利用对称性,合理考虑细节。

根据题中的轴承座,由于轴承座具有对称性,只需建立轴承座的半个实体对称模型,在进行镜像操作即可。

采用自下而上的建模方法得到如下图1所示的三维实体模型:(1)生成长方体Main Menu:Preprocessor>Modeling->Create>Volumes->Block>By Dimensions输入x1=0,x2=60,y1=0,y2=20,z1=0,z2=60平移并旋转工作平面Utility Menu>WorkPlane>Offset WP by IncrementsX,Y,Z Offsets 输入45,25,15 点击ApplyXY,YZ,ZX Angles输入0,-90,0点击OK。

创建圆柱体Main Menu:Preprocessor>Create>Cylinder> Solid CylinderRadius输入15/2, Depth输入-30,点击OK。

拷贝生成另一个圆柱体Main Menu:Preprocessor>Copy>Volume拾取圆柱体,点击Apply, DZ输入30然后点击OK从长方体中减去两个圆柱体Main Menu:Preprocessor>Operate>Subtract Volumes首先拾取被减的长方体,点击Apply,然后拾取减去的两个圆柱体,点击OK。

使工作平面与总体笛卡尔坐标系一致Utility Menu>WorkPlane>Align WP with> Global Cartesian(2)创建支撑部分Main Menu: Preprocessor -> -Modeling-Create -> -Volumes-Block -> By 2 corners & Z在创建实体块的参数表中输入下列数值:WP X = 0WP Y = 20Width = 30Height = 35Depth = 15OKToolbar: SAVE_DB(3)偏移工作平面到轴瓦支架的前表面Utility Menu: WorkPlane -> Offset WP to -> Keypoints +1. 在刚刚创建的实体块的左上角拾取关键点2. OKToolbar: SAVE_DB(4)创建轴瓦支架的上部Main Menu: Preprocessor -> Modeling-Create -> Volumes-Cylinder -> Partial Cylinder +1). 在创建圆柱的参数表中输入下列参数:WP X = 0WP Y = 0Rad-1 = 0Theta-1 = 0Rad-2 = 30Theta-2 = 90Depth = -15或者在by dimensions 下建立圆柱体,输入相应的参数,其余圆柱的创建方式相同。

ANSYS动力分析中的阻尼

ANSYS动力分析中的阻尼

ANSYS动力分析中的阻尼问题结构导则5. 瞬态动力学分析5.9. 瞬态动力学分析5.9.3. 阻尼在诸多体系中,存在阻尼,且在动力分析中必须定义阻尼。

在ANSYS program 中,存在以下不同形式的阻尼:•瑞利阻尼•材料阻尼•材料常数阻尼系数•常数阻尼比•模态阻尼•单元阻尼在ANSYS Professional program中,仅有常数阻尼比和模态阻尼比可用。

在一个模型中,可定义多种阻尼,将不同形式的阻尼集成后,ANSYS软件会形成阻尼矩阵(C)。

材料常数阻尼系数仅可应用于完全谐响应分析和模态谐响应分析。

表5.5为“结构动力分析中的阻尼”,阐述了在不同结构动力分析中可用的阻尼类型。

表5.5 结构动力分析中的阻尼N/A :不可用1.仅有β阻尼,无α阻尼。

2.此阻尼仅用于模态组合,但不用于计算模态系数。

3.包括超单元阻尼矩阵4.如果采用扩展模态,则转化为模态阻尼5.如果定义,则为谱分析确定一个有效阻尼比6.如果采用QR阻尼模态提取模态(MODOPT,QRDAMP),且在前处理或模态分析中定义了任意一种类型的阻尼,ANSYS软件均忽略振型叠加分析中的阻尼。

7.在振型叠加谐响应分析中,仅有QR阻尼法支持材料常数阻尼系数。

α阻尼和β阻尼用于定义瑞利阻尼中的常数α 和β。

阻尼矩阵(C)通过以下常数乘以质量矩阵(M)和刚度矩阵(K):(C) = α(M) + β(K)ALPHAD与BETAD命令用来定义α 和β。

一般α and β未知,但可以通过模态阻尼比ξi计算得到。

模态阻尼比ξi ξi = α/2ωi + βωi/2某个关心的或者重要的频率上的实际模态阻尼比。

如果模态i的圆频率ωi已知,则α 和β 满足下式:在诸多实际工程结构中,忽略α阻尼(或质量阻尼),即α = 0。

在此情况下,可通过ξi andωi计算β:β = 2ξi/ωi在一个荷载步中,只可输入一个β值,因此,应选择最关键的频率来计算β。

ANSYS_02_阻尼

ANSYS_02_阻尼

jku ku f ( mu t)
上式中,j—表示与速度同相位,j η—滞变阻尼系数

1
ku f ( mu t)
式中,复刚度
k (1 j ) k
5
© 2016 ANSYS, Inc.
June 19, 2017
阻尼理论基础
——几种常见阻尼的数学模型:库伦阻尼模型 库伦阻尼假定摩擦力的大小与运动的速度无关,方向与运动方向相反。单自 由度体系时,运动方程如下:
完全法瞬态动力学分析
15
© 2016 ANSYS, Inc.
June 19, 2017
阻尼矩阵:完全法的谐响应分析
完全法、VT法、缩减法的谐响应分析,阻尼矩阵形式:
质量阻尼
C M M
m i i i 1
刚度阻尼 N mb m 1 2 1 E g K j m j g j K j j 1 黏弹性阻尼 Ng Ne Nv 1 C k Gl C m k 1 l 1 l 1 单元阻尼 陀螺阻尼
10
© 2016 ANSYS, Inc.
June 19, 2017
ANSYS中的阻尼:Rayleigh阻尼(续)
其中,模态阻尼比可以由实验确定,频率区间选择感兴趣的频率范围,而不是直 接采用低阶,如第一、第二阶。通常情况下,假定结构的各阶模态阻尼比相同, 因此,上式可简化为:

2ij i j 2 i j
常阻尼比
质量阻 尼系数
刚度阻 尼系数
d m
i i
i 2i 2
18
© 2016 ANSYS, Inc.

ansys接触稳定阻尼因数

ansys接触稳定阻尼因数

ansys接触稳定阻尼因数Ansys接触稳定阻尼因数是指在分析和模拟中,使用Ansys软件时,为了保证计算结果的稳定性和精确性,引入的一种参数。

它在动态分析中起到了重要的作用,可以有效地控制模型的振动幅度和振动周期。

本文将对Ansys接触稳定阻尼因数进行详细介绍,并探讨其在工程实践中的应用。

我们需要了解什么是接触稳定阻尼。

在工程领域中,接触是一种常见的现象,比如机械零件之间的接触、结构与地基的接触等。

当两个物体之间存在接触时,由于摩擦力和接触面的变形等因素的影响,会导致振动的发生。

而接触稳定阻尼因数就是用来控制这种振动的参数。

Ansys软件是一款常用的工程仿真软件,可以对各种工程问题进行模拟和分析。

在进行动态分析时,如果不引入接触稳定阻尼因数,模型可能会出现不稳定的情况,振动幅度会越来越大,甚至无法得到合理的结果。

而引入接触稳定阻尼因数后,可以有效地控制振动幅度,使模型的振动趋于稳定。

那么,如何确定接触稳定阻尼因数呢?一般来说,这需要根据具体的工程问题和模型特点来确定。

在Ansys软件中,可以通过设置接触稳定阻尼因数的数值来控制模型的振动。

一般情况下,接触稳定阻尼因数的数值越大,模型的振动越稳定。

但是过大的数值也会导致计算时间增加,影响计算效率。

在实际工程中,接触稳定阻尼因数的选择需要考虑多个因素。

首先,需要分析模型的振动特性和振动频率。

不同的振动频率对应不同的接触稳定阻尼因数,需要根据实际情况进行调整。

其次,还需要考虑模型的材料特性和接触面的摩擦系数等因素。

这些因素都会对接触稳定阻尼因数的选择产生影响。

接触稳定阻尼因数的选择也需要结合实际的工程要求。

在某些情况下,为了保证模型的振动稳定性,可能需要增大接触稳定阻尼因数的数值。

而在另一些情况下,为了减小计算时间和提高计算效率,可能需要适当降低接触稳定阻尼因数的数值。

这需要工程师根据实际情况进行综合考虑,并进行优化设计。

Ansys接触稳定阻尼因数在工程实践中起到了重要的作用。

damp

damp

如前所述,在做 Full积分法的瞬态分析时,用阻尼比定义的阻尼都被 ANSYS 程序忽略掉了,所以同一个模型采用 full 法和模态叠加法的瞬态分析,ANSYS 计算采用的阻尼可能不一样,造成结果也有差别。

以下是结构分析中 ANSYS 常用的几种阻尼输入的命令流演示。

1)用 MP,damp 来输入粘滞阻尼DAMPRATO = 0.025 ! 已知粘滞阻尼的阻尼比LOSSMODM = 2*DAMPRATO ! 粘滞阻尼的阻尼比乘以2 是等价的材料阻尼系数(日本规范的“减衰系数”)CRITFREQ = 2.6 ! 此为粘性阻尼等效为材料阻尼时的换算频率MP_BETAD = DAMPRATO/(acos(-1)*CRITFREQ) ! 粘滞阻尼与频率有关/prep7mp,damp,1,MP_BETAD !定义viscous damping,与频率有关/soluantype,modalmodopt,lanb,1! 要使模态计算考虑阻尼的影响,必须用材料阻尼,材料阻尼必须在求解前指定! mxpand,,,,yes, 选项!阻尼比输入只在对求出的振型求反应再叠加中有用,! ansys 不会把阻尼比还原计算为阻尼阵 [C] 的mxpand,1,,,yes,,,Solve2)用 MP,Damp 输入材料阻尼DAMPRATO=0.025LOSSMODM=2*DAMPRATO ! 材料阻尼系数,书上给的一般是LOSSMODM/prep7mp,damp,1,DAMPRATO !常数,如果已知的是材料阻尼系数LOSSMODM,就要除以2 /soluantype,modal ! 使用模态叠加法modopt,lanb,1! importantmxpand,1,,,yes,,,,Solve3)用 BETAD 输入粘滞阻尼(振型叠加法)! MSUP method with BETAD! BETAD is damping_ratio/pi*f, even for MSUPDAMPRATO=0.025 ! 阻尼比LOSSMODM=2*DAMPRATO !等效的材料阻尼系数/prep7! mp,damp,1,DAMPRATOBETAD,DAMPRATO/(acos(-1)*442) ! 注意此公式! 442 是你给定的频率值/soluantype,modal !模态分析modopt,lanb,1! importantmxpand,1,,,yeslumpm,on,,,,solve/soluantype,harmic !谐分析hropt, msuphrout, on, offharfrq, FREQBEGN, FREQENDG,,,solve4)使用 DMPRAT 定义的整体结构的常数阻尼比(模态叠加法)! MSUP method with DMPRAT! shows that DMPRAT is damping ratioDAMPRATO=0.025 !全结构阻尼比是0.025LOSSMODM=2*DAMPRATO/prep7!mp,damp,1,DAMPRATO/soluantype,modal ! 先做无阻尼振型分解solve/soluantype,harmichropt,msuphrout,on,offharfrq,FREQBEGN,FREQENDGnsubst,NUM_STEPkbc,1dmprat,DAMPRATO ! 在这里定义此阻尼比,常数,,,,,,solve5)用 MP,DAMP 定义粘性阻尼做 FULL 瞬态分析! 粘性阻尼随频率增加而增加,高频衰减快! Full method with MP,DAMP! shows that MP,DAMP with FULL is damping_ratio/pi*f! As freq increases, damping is hugeDAMPRATO=0.025LOSSMODM=2*DAMPRATOCRITFREQ=480MP_BETAD=DAMPRATO/(acos(-1)*CRITFREQ) ! 注意此公式/prep7mp,damp,1,MP_BETAD6)用 DMPRAT 定义全结构常数阻尼比! Full method with DMPRATDAMPRATO=0.025LOSSMODM=2*DAMPRATOCRITFREQ=480MP_BETAD=DAMPRATO/(acos(-1)*CRITFREQ)/prep7et,1,1! mp,damp,1,MP_BETAD ! 如果用材料阻尼形式输入,就这样输入dmprat,DAMPRATO !常数阻尼比/soluantype,modal !带阻尼的振型分解modopt,lanb,3! importantmxpand,3,,,yeslumpm,on,,,solve/soluantype,harmichropt,full ! full harmonic analysis6.单元阻尼许多单元具有单元阻尼,单元阻尼都是在相关单元数据中输入。

ansys接触原则

ansys接触原则

ansys接触原则:
ANSYS的接触原则主要包括以下几个方面:
1.接触类型选择:ANSYS提供了多种接触类型,如绑定(Bonded)、不分离(No
Separation)、无摩擦(Frictionless)和无穷粗糙(Rough)等。

选择合适的接触类型对于模拟结果的准确性和收敛性至关重要。

2.接触面和目标面选择:在定义接触时,需要选择接触面和目标面。

通常,接触面是
指与目标面接触的表面,而目标面则是与接触面相互作用的面。

确保选择的接触面和目标面匹配是获得准确结果的重要步骤。

3.接触刚度和阻尼:在ANSYS中,可以通过设置接触刚度和阻尼来模拟接触行为。


触刚度决定了接触面的刚性,而阻尼则用于控制能量的吸收和耗散。

选择合适的刚度和阻尼参数对于获得准确的模拟结果至关重要。

4.接触算法选择:ANSYS提供了多种接触算法,如罚函数法、拉格朗日乘子法和增广
拉格朗日法等。

选择合适的算法对于确保模拟结果的准确性和收敛性至关重要。

5.初始条件和边界条件:在定义接触时,需要考虑初始条件和边界条件。

初始条件是
指接触状态在开始时的状态,而边界条件则用于限制模拟的边界条件。

确保初始条件和边界条件的正确设置对于获得准确的模拟结果至关重要。

(完整版)ansysworkbench常见材料设置

(完整版)ansysworkbench常见材料设置

Ansys workbench常用材料属性
1. isotropic secant coefficient of expansion 各向同性的热胀系数
需要输入基准温度、热膨胀系数。

基准温度,默认22度热膨胀系数
2. orthotropic secant coefficient of expansion 各向异性的热胀系数
需要输入基准温度、三个方向的热膨胀系数。

3. isotropic instantaneous coefficient of expansion 各向同性的热胀系数(随温度变化)需要输入基准温度、热膨胀系数。

(随温度变化)
4. orthotropic instantaneous coefficient of expansion 各向异性的热胀系数(随温度变化)需要输入基准温度、三个方向的热膨胀系数。

(随温度变化)
5. 阻尼系数、质量阻尼、刚度阻尼
6.Isotropic elasticity 各项同性的线弹性材料
需要输入弹性模量与泊松比
7.orthotropic elasticity 各项异性的线弹性材料
需要输入各方向的弹性模量与泊松比
8 Bilinear isotropic/kinematic hardening 双线性材料(非线性材料)需要输入屈服强度及切向模量,需要配合isotropic elasticity使用。

9.multilinear isotropic/kinematic hardening 多线性材料(非线性材料,应力应变曲线)需要配合isotropic elasticity使用,输入应力应变曲线。

ANSYS中的阻尼

ANSYS中的阻尼

ANSYS 动力学分析中提供了各种的阻尼形式,这些阻尼在分析中是如何计算,并对分析有什么影响呢?本文将就此做一些说明何介绍.一.首先要清楚,在完全方法和模态叠加法中定义的阻尼是不同。

因为前者使用节点坐标,而后者使用总体坐标.1.在完全的模态分析、谐相应分析和瞬态分析中,振动方程为:阻尼矩阵为下面的各阻尼形式之和:α为常值质量阻尼(α阻尼)(ALPHAD命令)β为常值刚度阻尼(β阻尼)(BETA命令)ξ为常值阻尼比,f为当前的频率(DMPRAT命令)βj为第j种材料的常值刚度矩阵系数(MP,DAMP命令)[C]为单元阻尼矩阵(支持该形式阻尼的单元)where: [C] = structure damping matrixα = mass matrix multiplier (input on ALPHAD command)[M] = structure mass matrixβ = stiffness matrix multiplier (input on BETAD command)βc = variable stiffness matrix multiplier (see Equation 15–23)[K] = structure stiffness matrixNm = number of materials with DAMP or DMPR input? ?= stiffness matrix multiplier for material j (input as DAMP on MP command)? ?= constant (frequency-independent) stiffness matrix coefficient for material j (input as? ?DMPR on MP command)Ω = circular excitation frequencyKj = portion of structure stiffness matrix based on material jNe = number of elements with specified dampingCk = element damping matrixCξ = frequency-dependent damping matrix (see Equation 15–21)2.对模态叠加方法进行的谐相应分析、瞬态分析何谱分析,动力学求解方程为:每个模态产生有效阻尼比ξid而不是创建阻尼矩阵α为常值质量阻尼β为常值刚度阻尼ξ为常值阻尼比ξmi为第i个模态的常值阻尼比ξj为第j个材料的阻尼系数Ejs为第j个材料的应变能,ANSYS由{f}T[K]{f}计算得到。

瑞利阻尼设置

瑞利阻尼设置

瑞利阻尼设置
瑞利阻尼参数
在 ANSYS 的帮助文件中有具体说明,一般可以假设粘性阻尼比为
0.03,0.05,然后根据感兴趣的频率范围的下限和上限计算出 Alpha 和 Beta 值。

或者,看看下面一个例子:
在 ANSYS 中,用 Full方法进行瞬态动力分析时,只能使用瑞利阻尼,即: * [K] [C] = α* [M] + β
其中的系数α 和β 与常用的粘性比例阻尼系数ξ 之间有如下关系: α / (2 * ω) + β * ω / 2 = ξ
而ω = 2 * π * f (f –频率,单位 Hz)
对于固定的ξ 值,α 和β 是随频率变化的。

作为一种近似,可以用感兴趣的频率范围的下限和上限带入上述关系,通过求解联立方程来确定α 和β,作为该频率段的系数使用。

联立方程:
α / (2 * ω1) + β * ω1 / 2 = ξ
α / (2 * ω2) + β * ω2 / 2 = ξ
解为:
α = 2 *ω1 *ω2*ξ/ (ω1+ω2) = 4 *π*f1 *f2*ξ/( f1 +f2)
β = 2 *ξ/ (ω1+ω2) =ξ/π/(f1 +f2)
对本项目,结构的频率范围取为 0.6 , 10,ξ 取 0.03,计算得到:
α = 0.2134
β = 0.0009009。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANSYS/LS-DYNA中阻尼的设置ANSYS/LS-DYNA中阻尼的设置总结如下:EDDAMP, PART, LCID, VALDMP (用此命令流来定义阻尼)Defines mass weighted (Alpha) or stiffness weighted (Beta) damping for an explicit dynamics model.(默认有质量阻尼与刚度阻尼两种)图1 LS-DYNA中的阻尼选项PARTPART number [EDPART] identifying the group of elements to which damping should be applied. If PART = ALL (default), damping is applied to the entire model.(定义施加阻尼的Part 号,如果Part =ALL (or blank),整体质量阻尼将被应用于整个模型。

)LCIDLoad curve ID (previously defined with the EDCURVE command) identifying the damping coefficient versus time curve. If time-dependent damping is defined, an LCID is required.(用来指定相对于时间的质量阻尼)VALDMPConstant system damping coefficient or a scale factor applied to the curve defining damping coefficient versus time.(可以用来代替对时间的质量阻尼曲线,或者使用LCID命令中的比例系数)注意:Mass-weighted (Alpha) or stiffness-weighted (Beta) damping can be defined with the EDDAMP command. Generally, stiffness proportional or beta damping is effective foroscillatory motion at high frequencies. This type of damping is orthogonal to rigid body motion and so will not damp out rigid body motion. On the other hand, mass proportional or alpha damping is more effective for low frequencies and will damp out rigid body motion. The different possibilities are described below:1.Global DampingMass-weighted or Alpha damping (质量阻尼)When PART = (blank) or ALL (default), mass-weighted global damping can be defined in the following 2 ways. In this case, the same damping is applied for the entire structure.1.When the damping coefficient versus time curve (LCID) is specified usingthe EDCURVE command, VALDMP is ignored by LS-DYNA (although it iswritten in the LS-DYNA input file Jobname.K). The damping force appliedto each node in the model is given by f d= d(t)mv, where d(t) is thedamping coefficient as a function of time defined by the EDCURVEcommand, m is the mass, and v is the velocity.2.When the LCID is 0 or blank (default), a constant mass-weighted systemdamping coefficient can be specified using VALDMP.The constant and time-dependent damping, described above, cannot be defined simultaneously. The last defined global damping will overwrite any previously defined global damping.2.Damping defined for a PART(1)Mass-weighted or Alpha damping (质量阻尼)When both a valid PART number is specified and the damping coefficient versus time curve (LCID) is specified using the EDCURVE command, mass-weighted time-dependent damping will be defined for the particular PART. In this case, VALDMP will act as a scaling factor for the damping versus time curve (if VALDMP is not specified, it will default to 1). A valid PART number must be specified to define this type of damping. For example, use PART=1 (and not blank) when the entire model consists of only one PART. Issue the command repeatedly with different PART numbers in order to specify alpha damping for different PARTS.(2)Stiffness-weighted or Beta damping (刚度阻尼)When a valid PART number is specified with LCID= 0 or (blank) (default), a stiffness-weighted (Beta) constant damping coefficient for this particular PART canbe defined by VALDMP. The stiffness-weighted value corresponds to the percentage of damping in the high frequency domain. For example, 0.1 roughly corresponds to 10% damping in the high frequency domain. Recommended values range from 0.01 to 0.25. Values lower than 0.01 may have little effect. If a value larger than 0.25 is used, it may be necessary to lower the time step size significantly. Issue the command repeatedly with different PART numbers in order to specify beta damping for different PARTS. Time-dependent stiffness-weighted damping is not available in ANSYS LS-DYNA.The mass-weighted and stiffness-weighted damping, described above, cannot be defined simultaneously for a particular PART number. The last defined damping for the particular PART number will overwrite any previously defined mass-weighted or stiffness-weighted damping for this PART.In order to define the mass-weighted and stiffness-weighted damping simultaneously, you can use the MP,DAMP command to define stiffness-weighted (Beta) constant damping coefficient. However, do not use both of these commands together to define stiffness-weighted (Beta) constant damping coefficient for a particular PART. If you do, duplicate stiffness-weighted (Beta) constant damping coefficients for this PART will be written to the LS-DYNA input file Jobname.K. The last defined value will be used by LS-DYNA. Also, note that the MP,DAMP command is applied on the MAT number, and not on the PART number. Since a group of elements having the same MAT ID may belong to more than one PART (the opposite is not true), you need to issue the MP,DAMP command only once for this MAT ID and the stiffness-weighted (Beta) damping coefficients will be automatically defined for all the PART s with that MAT ID.Mass-weighted and stiffness-weighted damping can be defined simultaneously using the EDDAMP command only when mass-weighted damping (constant or time-dependent) is defined as global damping (EDDAMP, ALL, LCID, VALDMP) and stiffness-weighted damping is defined for all necessary PARTs (EDDAMP,PART, ,VALDMP).To remove defined global damping, reissue the EDDAMP, ALL command with LCID and VALDMP set to 0. To remove damping defined for a particular PART, reissue EDDAMP, PART, where PART is the PART number, with LCID and VALDMP set to 0. There is no default for the EDDAMP command, i.e., issuing the EDDAMP command with PART = LCID = VALDMP = 0 will result in an error. Stiffness-weighted damping defined by the MP,DAMP command can be deleted using MPDELE, DAMP, MAT.In an explicit dynamic small restart (EDSTART,2) or full restart analysis (EDSTART,3), you can only specify global alpha damping. This damping will overwrite any alpha damping input in the original analysis. If you do not input global alpha damping in the restart, the damping properties input in the original analysis will carry over to the restart.Damping specified by the EDDAMP command can be listed, along with other explicit dynamics specifications, by typing the command string EDSOLV$STAT into the ANSYS input window. Beta damping specified by the MP,DAMP command can be listed by MPLIST, MAT command.Menu PathsMain Menu>Preprocessor>Loads>Load Step Opts>Other>Change MatProps>DampingMain Menu>Preprocessor>Material Props>DampingMain Menu>Solution>Load Step Opts>Other>Change Mat Props>DampingK文件,Eg.1 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ SYSTEM DAMPING $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $*DAMPING_PART_STIFFNESS2 1.000$K文件,Eg.2 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ SYSTEM DAMPING $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $*DAMPING_GLOBAL00.5000E+02$。

相关文档
最新文档