高精度运动控制系统的关键技术及综合运用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运动控制系统的关键技术
运动控制系统的基本构成
人机接口/高层指令生成
运动控制平台/运动控制卡
功率放大器/驱动器
执行机构/电机 被控对象 反馈传感器
运动控制系统的要求及所涉及关键技术
要求:
在机械结构允许的情况下,产生最快最平稳的时间轨迹.
这就需要在下列系统限制的情况下确定算法: 机械机构的固有频率, 执行机构的响应时间, 伺服系统通带宽度, 电机功率, 驱动器功率, 传感器响应及限制 电源电压, …. 同时算法的复杂性还要受到系统实时性和计算机的速度的制约。
频率响应与最高速度
[m/sec]
安装要求
反映真实的被测物理变量 对电气及机械噪声干扰不敏感 可允许的振动与冲击的工作环境 光栅尺与读数头的安装刚度 光栅传感器的非运动部件的振动隔离 传感器电缆的最小弯曲半径
实例: 实例:编码器安装对信号质量及精度的影响
安装误差的影响
实例:编码器安装对信号质量及精度的影响( 实例:编码器安装对信号质量及精度的影响(续)
直线电机的特点
现代机床业的新宠—直线电机
无丝杠传动 结构简单 低成本 低噪声 无磨损/少维修(空气轴承无磨损) 直接驱动+直接反馈 高精度 高稳定性 北京慧摩森公司SM系列U型开口式直线电机是高速、轻型设备的首 选。其持续推力在1到20公斤之间,峰值推力可以到80公斤,配备 MicorE光栅和合适的控制系统,典型运行速度1到2米/秒,最大5米/ 秒。此系列电机结构简单、价格便宜、控制方便,主要应用于电子设 备、精密测量、精细加工等领域。
运动控制的主要技术指标
可产生的运动轨迹的种类(直线,圆,弧线,任意曲线) 轨迹相对时间的阶次 最高速度,最高加速度 位置,速度精度 可同时控制运动轴数(4 轴,8,轴,……) 运动轴之间的同步 伺服轴的数目 ………
伺服控制中的关键技术
伺服控制:运动控制在于如何产生运动控制指令(算法),而伺服控制在于如何让 机电系统快速,准确地跟踪运动控制指令 系统实验与系统辩识 振动分析与抑振技术 鲁棒控制技术 自适应控制 自学习与自调整 模糊训练
总结
运动控制技术是多学科复合技术:机械与电子、硬件和软件、算法 和分析 运动控制应用范围广:开环控制或闭环控制、半闭环或全闭环控制 采用闭环控制首要考虑的是系统稳定性 运动控制的性能不仅要考核时域响应,还要考核频域特性 运动控制系统由控制平台、功率放大器/驱动器、执行机构/电机/ 电机、反馈器件、被控对象及控制算法构成 运动系统部件的选择要综合考虑很多因素
装配工艺中应注意的问题
设备的装配质量受到多方面因素的影响,除了技术、工艺方面的问题以外,还与装 配工人的人为因素有关,这里我们重点介绍一下位置反馈传感器的选取与安装 光栅传感器精度的决定因素
光栅尺的精度 线距,或信号周期(每毫米线数,或每圈线) 光栅尺的热敏系数 差值技术 信号质量
旋转编码器最大速度 = [工作频率 (Hz) / (每转线数) ]*60 [RPM] 线性编码器最大速度 = [扫描频率(Hz)*信号周期 (micron) ]*10e-6 其中 信号周期 = 测量步距 (micron) * 细分倍数 * 4 [micron]
伺服驱动器的选择
HN伺服控制驱动器是一种通用型的 伺服控制驱动器,可驱动交流无刷旋 转电机和交流无刷直线电机等伺服电 机。该驱动器采用DSP作为核心控制 芯片,使用全数字电机控制算法,实 现了电流环、速度环、位置环的闭环 控制,此外该驱动器还具有:微动换 相、电机参数识别、控制参数自整定 、高阶运动轨迹生成、共振抑制、用 户程序控制等功能。
SIKO磁栅尺
Excel激光干涉仪
10XX系列激光干涉仪(Laser Interferometer) 1100B激光标定系统(Laser Calibration System) 1700A水平度/倾斜度传感器 (Level Sensor)
慧摩森
高精度运动控制系统 ----关键技术及综合运用 关键技术及综合运用
北京慧摩森电子系统技术有限公司
公司简介( 公司简介(一)
北京慧摩森电子系统技术有限公司是以开发生 产高精度运动定位系统为主的高新技术企业,所研 发产品集成光机电一体化技术,采用的技术和产品 精度达到国际先进水平。 目前直线电机在运动控制领域的应用越来越广 泛,我公司所生产的SM系列直线电机性能稳定, 质量好,与PWM的驱动控制器及直线光栅编码器组 成伺服运动系统,代替传统的丝杠和皮带传动结构 形式,简化了结构,提高了运动控制系统的性能。 公司自主研制的0.1微米级精密运动平台及集成 控制系统是微电子制造和测试设备的核心部件,也 是生物医疗设备和精密制造业发展的关键部件,这 些产品在以上领域的应用可以极大提高我国的制造 水平,缩小和先进国家的差距。
信号质量对误差影响
运动控制系统的保护
软件级 •计算错误保护 •位置误差保护 •饱和保护 •震荡保护 •RMS功率保护 •电源故障保护 •急停保护 机械级 •机械限位装置 •机械刹车/卡紧装置 •机械防撞装置 •… … 硬件级 •限位传感器保护 •看门狗保护 •电源故障保护 •过功率保护 •驱动器短路保护 •驱动器过压/欠压保护 •驱动器过温保护 •驱动器RMS电流保护 •… …
反馈装置的选择
MicroE光栅编码器及DRC编码器
尺寸下(硬币大小),重量轻(5克) 分辨率高:5um-0.1nm可选 速度快:高达7.2m/s 直线和旋转运动均可适用 提供栅尺、读取头、信号转换装置、显示表头。 信号输出方式:模拟、数字、绝对式 典型产品:MSK5000系列
• • • • • 数字信号输出,LED工作状态指示 最高分辨率:0.001毫米 最大速度:4m/s(0.001mm分辨率时) 应用于直线或角度测量 ……
公司简介( 公司简介(二)
此外公司还与秦皇岛海纳科技公司 合作研发了国内首款可驱动直线电机和 旋转电机的通用型伺服驱动器。该驱动 器具有高阶轨迹生成、支持用户编程等 高端功能,产品性能已达到国际先进水 平,可广泛用于高精密运动控制系统的 驱动和控制。 公司还代理销售MicroE、SIKO、 ELMO等多家国外知名品牌的光栅、磁 栅、驱动器、控制器等产品,并为客户 提供技术支持和伺服运动控制系统集成 。
执行机构
运动系统的执行机构由电机及完成运动的机械结构组成,执行机构的 设计主要目的是提高系统刚性、抑制系统的低频共振。 执行机构/电机的设计 运动连接及动力传输 动力学分析与仿真 结构与振动分析 直线电机的兴起及应用 ……
执行机构的主要性能指标
系统刚度 系统共振频率 系统的承载能力 系统Βιβλιοθήκη Baidu大运行速度及加速度 ……
通常在理想时间轨迹之外,还需加入补偿控制,以实现运动的快速性及平稳性。
关键技术: 关键技术:
高精度运动控制系统的关键技术涉及:运动控制、伺服控制、机械 结构设计及材料选择、装配工艺以及系统的保护等诸多方面的技术 。
运动控制中的关键技术
运动控制
产生相对于时间的空间轨迹,以及直接实现各机械模块之间的同 步控制, 例如: 电子齿轮变速(无级变速) 各种平面曲线,圆,椭圆, y(t) = f(x(t)) 各种空间曲线, z(t) = f(x(t), y(t)) 运动插补 高阶运动轨迹生成 运动控制系统的自学习与自调整 工业现场的高速网络化通讯 ……
伺服驱动器的主要性能指标
工作电压 输出电流 工作效率 伺服控制算法 闭环响应带宽 动/静态精度 控制刚度 稳态时间 分辨率 采样时间/控制频率 各种保护功能 过压保护/欠压报警、短路保护、最大电流持续时间、连续/RMS电流 保护、过温保护、停机保护、失控保护(电流反灌保护)
执行机构设计的关键技术
高精度运动控制系统的应用
龙门式双轴直线电机平台
构成:CNC(控制卡)+驱动+电 机+反馈 控制模式:位置/速度/力矩 控制接口:总线/模拟/脉冲 定位分辨率:0.5um-5um 重复定位精度:10um 最大加速度:5g 特点:多轴联动,精度高,功能 强,价格偏高 应用领域:数控机床、激光设备 、封装设备、测试测量
相关文档
最新文档