成人高考高起专数学复习资料.doc

合集下载

成人高考(专升本)高等数学(一)知识点复习资料

成人高考(专升本)高等数学(一)知识点复习资料

它们是作为相应三角函数的反函数定义出来的,由于
[答]
.
,y=cosx在定义域内不单调,所以对于
2.初等函数
1.直线的倾角和斜率:

2.直线的斜截式方程: 3.两 直 线 的 平 行 与 垂 直 : 己 知 两 条 直 线
时,函数
的左极限是 A,记作

所谓初等函数是指由基本初等函数经过有限次的四则
,只考虑
母 y换成 x得
(1)各组函数中,两个函数相等的是
3)对分段函数求函数值时,不同点的函数值应代入相 结论:
应范围的公式中去求;
这就是
的反函数。
A.
4)分段函数的定义域是各段定义域的并集。
(1)直接函数
与它的反函数 y=

例 4.分段函数
图形,必定对称于直线 y=x(一般地,二者是不同的函
B.
数,其图形是不同的曲线);
(2)
是微积分中常用的指数函数。 4.对数函数
例如,匀速直线运动路程公式 示速度)
(其中 v表 内自变量 x的不同值,函数不能用一个统一的公式表示, 是 一 个 函 数 , 则 称 它 为 而是要用两个或两个以上的公式来表示。这类函数称为
的反函数,记为
自由落体运动
(其中 g为重力加速度)
“分段函数”。
3.了解函数
与其反函数
之间的关
系(定义域、值域、图像),会求单调函数的反函数。
4.熟练掌握函数的四则运算与复合运算。
5.掌握基本初等函数的性质及其图像。
6.了解初等函数的概念。
7.会建立简单实际问题的函数关系式。
(4)设
,则
例 5.函数的性质
它的定义域是

成人高考数学考试考前复习资料

成人高考数学考试考前复习资料

成人高考数学考试考前复习资料成人高考数学考试考前复习资料(1)理解因式分解的概念和意义(2)认识因式分解与整式乘法的相互关系相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

能力目标由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。

情感目标培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

分层目标A层(1)理解因式分解的概念和意义(2)会运用因式分解与整式乘法的相互关系寻求因式分解的方法。

B层会自行探求解题途径观察、学会分析、判断能力和创新能力。

C层(1)深化学生逆向思维能力和综合运用能力。

(2)培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

教学方法1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。

2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑感知概括运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高能力。

3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。

4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。

5.改变传统言传身教的方式,利用电化教学手段进行教学,增大教学的容量和直观性,提高教学效率成考数学应试策略1.调整知识结构,在代数部分中增加一个新的知识模块“集合与简易逻辑”,是由原“函数”中的“元素与集合”知识点与“直线”中的“充分必要条件”知识点整合而成。

2.删除3个知识点或知识模块及相应的考核要求(1)删除了“会根据三角形两边及夹角求三角形的面积”。

(2)删除了“掌握直线的向量参数方程”。

《数学》(高起专)复习资料

《数学》(高起专)复习资料

2009年高中起点专科《数学》课程入学考试复习资料(内部资料)适用专业:高中起点专科层次各理工科专业四川大学网络教育学院2008年11月四川大学网络教育学院《数学》(高中起点专科)入学考试复习资料复习参考书:全国各类高中起点专科教材总要求本大纲对所列知识提出了三个层次和相应要求,三个层次由低到高顺序排列,高一级层次的要求包含低一级层次的要求。

三个层次分别为:了解 要求考生对所列知识的含义有初步的认识,识记有关内容,并能直接运用。

理解、掌握、会 要求考生对所列知识的含义有比较深刻的认识,能够解释、举例或变形、推断,并能运用知识解决有关问题。

灵活运用 要求考生对所列知识能够综合运用,并能解决较为复杂的数学问题。

第一部分 考试内容一、代数(一) 集合和简易逻辑1. 知识范围集合的概念,集合的表示法,集合与集合的关系;简易逻辑的基本知识2. 要求了解集合的意义及表示方法,了解空集、全集、子集、交集、并集、补集的概念及其表示方法,了解符号∉∈=⊇⊆,,,,的含义,并能运用这些符号表示集合与集合、元素与集合的关系;了解充分条件、必要条件、充分必要条件的含义。

(二) 不等式与不等式组1. 知识范围不等式的概念与性质,一元一次不等式及其结法,一元一次不等式组及其解法,含有绝对值符号的不等式,一元二次不等式及其解法,可利用一元二次不等式求解的两种常见的不等式。

2. 要求(1)理解不等式的性质。

会用不等式的性质和基本不等式a2 ≥0(a∈R)a2+b2≥2ab(a、b ∈R)、a+b≥2√ab (a 、b≥0)解决一些简单问题。

(2)会解一元一次不等式,一元一次不等式组和可化为一元一次不等式组的不等式,会解一元二次不等式,了解区间的概念,会在数轴上表示不等式或不等式组的解集。

(3)了解绝对值不等式的性质,会解形如c b ax ≥+||和c b ax ≤+||的绝对值不等式。

(三)指数与对数1. 知识范围根式,有理指数幂,幂的运算法则,对数、换底公式。

成人高考高起专《数学》必考考点

成人高考高起专《数学》必考考点

成人高考高起专《数学》必考考点1、集合【注意:请不要忘记空集!!!】交集:A ∩B={x| x ∈A 且x ∈B}并集:A ∪B={x| x ∈A 或x ∈B}补集:C U A={x| x A 但x ∈U}2、数列(选择和填空中的数列请大家掌握)3、解不等式(含绝对值)a>0, |x|<a 则 –a<x<a |x|>a 则 x>a 或 x<-a4、平面向量 0 ,//21211221=+⇔⊥=⇔y y x x y x y x5、平均数、方差6、解三角形(1)正弦定理:Cc B b A a sin sin sin ==(已知两边一对角或已知双角必定用正弦) (2)三角形面积公式:A bc B ac C ab S sin 21sin 21sin 21===(3)余弦定理:(已知三条边或两边一夹角必定用余弦)2222cos a b c bc A =+-B ac c a b cos 2222-+=C ab b a c cos 2222-+=7、导数0)(='c (c 为常数),)()(1+-∈='N n nx x n n ,()x x e e ='8、求切线方程步骤【例题】求曲线y=x 3-4x+2在点(1,-1)处的切线方程①求导:y ’=3x 2-4②把x=1 代入○1中:y=3-4=-1(即切线方程的k 为-1)③y=-x+b④把点(1,-1)代入○3:-1=-1+b 得b=0⑤所以切线方程为:y=-x请大家大题目当中的倒数第二题的第一步求导,无论会不会做,第一步请求导。

大题目中的解三角形无论会不会做第一步请写公式。

成人高考高数复习经典资料

成人高考高数复习经典资料

第一讲函数、连续与极限一、理论要求二、题型与解法极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1、函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2、极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3、连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)第二讲导数、微分及其应用一、理论要求1、导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)会求平面曲线的切线与法线方程2、微分中值定理理解Roll、Lagrange、Cauchy、Taylor定理会用定理证明相关问题3、会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图会计算曲率(半径)二、题型与解法第三讲不定积分与定积分一、理论要求二、题型与解法1、不定积分掌握不定积分的概念、性质(线性、与微分的关系)会求不定积分(基本公式、线性、凑微分、换元技巧、分部)2、定积分理解定积分的概念与性质理解变上限定积分是其上限的函数及其导数求法会求定积分、广义积分会用定积分求几何问题(长、面、体)会用定积分求物理问题(功、引力、压力)及函数平均值第四讲向量代数、多元函数微分与空间解读几何一、理论要求二、题型与解法1、向量代数理解向量的概念(单位向量、方向余弦、模)了解两个向量平行、垂直的条件向量计算的几何意义与坐标表示2、多元函数微分理解二元函数的几何意义、连续、极限概念,闭域性质理解偏导数、全微分概念能熟练求偏导数、全微分熟练掌握复合函数与隐函数求导法3、多元微分应用理解多元函数极值的求法,会用Lagrange乘数法求极值4、空间解读几何掌握曲线的切线与法平面、曲面的切平面与法线的求法会求平面、直线方程与点线距离、点面距离第五讲多元函数的积分一、理论要求二、题型与解法。

成人高考专升本高等数学(一)考试辅导复习资料【全】

成人高考专升本高等数学(一)考试辅导复习资料【全】

成人高等学校招生考试专升本高等数学(一)(适合2022年及往后的成考复习)函数、极限与连续本章内容一、函数二、极限三、连续本章约13%,20分选择题、填空题、解答题第一节函数知识点归纳●函数的概念、性质●反函数●复合函数●基本初等函数●初等函数考试要求1、理解概念会求函数包括分段函数的定义域、表达式及函数值,并会作出简单的分段函数图象。

2、掌握判断掌握函数的单调性、奇偶性、有界性和周期性定义,会判断所给函数的相关性质。

3、理解函数理解函数与它的反函数之间的关系,会求单调函数的反函数。

4、掌握过程掌握函数四则运算与复合运算,熟练掌握复合函数的复合过程。

5、掌握性质掌握基本初等函数的简单性质及其图象。

6、掌握概念掌握初等函数的概念。

第一节函数一、函数的概念定理设x和y是两个变量,D是一个给定的数集,如果对于每个数x∈D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y=f(x).y是因变量,x是自变量。

函数值全体组成的数集W={y|y=f(x),x∈D} 称为函数的值域。

函数概念的两个基本要素对于给定的函数y=f(x),当函数的定义域D确定后,按照对应法则f,因变量的变化范围也随之确定,所以定义域和对应法则就是确定一个函数的两个要素。

两个函数只有在它们的定义域和对应法则都相同时,才是相同的。

例:研究函数y=x和y=2是不是表示相同的函数。

解:y=x是定义在(−∞,+∞)上的函数关系,y=2是定义在(−∞,0)∪(0,+∞)上的函数关系,它们定义域不同,所以这两个函数是不同的函数关系。

例:研究下面这两个函数是不是相同的函数关系f(x)=x,g(x)=2解:f(x)=x和g(x)=2是定义在(−∞,+∞)上的函数关系,f(x)的值域在(−∞,+∞)上的函数,g(x)的值域在[0,+∞),它们定义域相同,值域不同函数。

函数的定义域(1)在分式中,分母不能为零;(2)在根式中,负数不能开偶次方根;(3)在对数式中,真数必须大于零,底数大于零且不等于1;(4)在反三角函数式中,应满足反三角函数的定义要求;(5)如果函数的解析式中含有分式、根式、对数式和反三角函数式中的两者或两者以上的,求定义域时应取各部分定义域的交集。

(完整word版)成人高考专科数学复习重点 (1)

(完整word版)成人高考专科数学复习重点  (1)

第一部分代数(重点 占55%)第一章 集合和简易逻辑一、集合的概念:强调——共同属性、全体 二、元素与集合的关系: x A ∈ 或 x∉A三、集合的运算:1.交集 A ∩B={x︱x A ∈且x B ∈} 注意:“且”2.并集 A ∪B ={x︱x A ∈或x B ∈} 注意:“或”3.补集 c u A ={x︱ U x ∈但A x ∉}四、简易逻辑:充分条件.必要条件:1.充分条件:若p q ⇒,则p 是q 充分条件. 2.必要条件:若q p ⇒,则p 是q 必要条件.3.充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.第二章 函数 (重点)一、函数的定义:1.理解f的含义,掌握求函数解析式的方法-配方法2.求函数值3.求函数定义域:1)分式的分母不等于0; 2)偶次根式的被开方数≥0; 3)对数的真数>0;二、函数的性质 1.单调性:(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数2.奇偶性(1)定义:若()()f x f x -=,则函数)(x f y =是偶函数;若()()f x f x -=-,则函数)(x f y =是奇函数. (2)奇偶函数的图象特征:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数。

高起专《数学》重点公式及考点总结

高起专《数学》重点公式及考点总结

成人高考高起专《数学》复习资料考试注意要点1)考试采用闭卷笔试形式。

全卷满分为150分,考试时间为120分钟2)考试中可以使用计算器3)考试要求分为三个等级:了解、掌握、灵活运用一、集合和简易逻辑1.集合的概念(灵活运用)子集:对于集合A和集合B,如果A中的所有元素都能在B中找到,则集合A就叫做B的子集,记作:A包含于B,A⊆B并集:由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B交集:由属于A且属于B的相同元素组成的集合,记作A∩B补集:绝对补集。

一般来说,设U是一个集合,A是U的一个子集,则U中所有不属于A的元素称为A在U中的补集2.简易逻辑(灵活运用)判断真假的语句叫命题。

命题真值只能取两个值:真或假。

真对应判断正确,假对应判断错误。

如:真命题:三角形的三角之和为180度如:假命题:人会飞充分条件:如果A能推出B,B不一定能推出A,那么A就是B的充分条件。

如:A为B的子集,即属于A的一定属于B,则有元素x属于A,就一定能推出x属于B必要条件:如果B能推出A,A不一定能推出B,则B为A的必要条件充分必要条件:A能推出B,B也能推出A,则A是B的充分必要条件二、不等式和不等式组1.不等式性质一(灵活运用)1)不等式两边同加或同减一个数,不等号方向不变,若a>b,则a±c>b±c2)不等式两边同乘或同除以一个正数,方向不变3)不等式两边同乘或同除以一个负数,方向改变2.不等式的性质二(掌握)1)如果a>b>0,c>d>0,那么ac>bd2)如果a>b,ab>0,则1/a<1/b3)如果a>b>0,那么a n>b n(n>1)4)|a+b|≤|a|+|b|三、函数1.函数定义域和值域(掌握)Y=f(x)中,x的取值范围即为函数的定义域,y对应x的取值范围为值域2.函数奇偶性(掌握)偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。

2024成人高考高起专、高起本数学(理)-考点知识点汇编复习资料(完整版)

2024成人高考高起专、高起本数学(理)-考点知识点汇编复习资料(完整版)

考点1实数1.实数的分类(1)有理数(2)无理数2.实数的相关概念(1)数轴(2)绝对值绝对值的意义:数轴上的点到原点的距离.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.实数a 的绝成考高起专、高起本数学(理)-考点汇编第一部分代数第一章数、式、方程和方程组(预备知识)对值可表示为a ,即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩若a,b 为实数,则(1)a ≥0,当且仅当0a =时取等号.(2)||||00a b a +=⇔=且0b =.(3)||||a a =-.(3)相反数(4)倒数3.实数的运算(1)运算法则数的运算顺序:先乘方、开方,然后乘、除,最后加、减,有括号先算括号(即从内往外的顺序)考点2整式的运算1.整式的加减运算2.整式的乘法运算(1)单项式乘单项式(2)多项式乘单项式(3)多项式乘多项式(4)常用乘法公式平方差公式:22()()a b a b a b +-=-;完全平方公式:222()2a b a ab b ±=±+;立方和、差公式:()()33223322(),()a b a b a ab bab a b a ab b +=+-+-=-++;完全立方公式:33223()33a b a a b ab b ±=±+±.3.多项式的因式分解4.分式的运算分式的加、减运算:a c ad bc ad bcb d bd bd bd ±±=±=.分式的乘法运算:ac ac bd bd⋅=.分式的除法运算:a c a d ad b d b c bc÷=⨯=.分式的乘方运算:nn n a a b b ⎛⎫= ⎪⎝⎭.注意:分式的运算结果一定要化为最简分式(或整式).5.二次根式考点3方程1.一元一次方程2.一元二次方程一元二次方程的解法直接开平方法,形如)(m x +2=ɑ(ɑ≥0)的方程因式分解法,可化为()()0m x a x b ++=的方程公式法,求根公式为=b 2-4ɑc ≥0)配方法,若20ax bx c ++=不易分解因式,考虑配方为2()a x t h +=的形式,再开方求解总结常用方法:首选因式分解法,若不适用则选择公式法.(公式法适用于一切有实数根的一元二次方程)(3)根的判别式:24b ac ∆=-叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,它与根的关系如下:①当0∆>时,方程有两个不相等的实数根.②当0∆=时,方程有两个相等的实数根.③当0∆<时,方程没有实数根.④根与系数的关系:若12,x x 是方程20(0)ax bx c a ++=≠的两个根,则有12x x +=12,b cx x a a-=(韦达定理).如果1212,x x p x x q +==,则20x px q -+=是以1x 和2x 为根的一元二次方程.考点4方程组(1)方程组形如1112220,0a x b y c a x b y c ++=⎧⎨++=⎩的方程组称为二元一次方程组.其中123123123123,,,,,,,,,,,a a a b b b c c c d d d 均为实数.“元”指未知数的个数;“次”指末知数的最高次数.(2)一次方程组的解法:一般采用代人消元法或加减消元法求解.第二章集合与简易逻辑考点1.元素与集合一组对象的全体构成一个集合.(1)集合中元素的三大特征:确定性、互异性、无序性.(2)集合中元素与集合的关系:对于元素a 与集合A ,a ∈A 或a ∉A ,二者必居其一.(3)常见集合的符号表示及其关系图.数集自然数集正整数集整数集有理数集实数集符号NN*ZQR(4)集合的表示法:列举法、描述法、Venn 图法.(5)集合的分类:集合按元素个数的多少分为有限集、无限集,有限集常用列举法表示,无限集常用描述法表示.考点2.集合间的基本关系关系定义表示相等集合A 与集合B 中的所有元素都相同A =B 子集A 中的任意一个元素都是B 中的元素A ⊆B 真子集A 是B 的子集,且B 中至少有一个元素不属于AAB注意:(1)空集用∅表示.(2)若集合A 中含有n 个元素,则其子集个数为2n,真子集个数为2n -1,非空真子集的个数为2n -2.(3)空集是任何集合的子集,是任何非空集合的真子集.(4)若A ⊆B ,B ⊆C ,则A ⊆C.考点3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪BA∩B若全集为U,则集合A 的补集为C U A图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x ∉A}运算性质A∪A=A,A∪∅=A,A∪B=B∪A.A∩A=A,A∩∅=∅,A∩B=B∩A.A∩(C U A)=∅,A∪(C U A)=U,C U (C U A)=A特别提醒:1.A ⊆B ⇔A∩B=A ⇔A∪B=B ⇔C U A ⊇C U B.2.C U (A∩B)=(C U A)∪(C U B),C U (A∪B)=(C U A)∩(C U B).考点4.简易逻辑1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.充分条件与必要条件若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q pp 是q 的必要不充分条件pq 且q ⇒pp 是q 的充要条件p ⇔qp 是q 的既不充分又不必要条件p q 且q p3.重要结论1.若A ={x |p (x )},B ={x |q (x )},则(1)若A ⊆B ,则p 是q 的充分条件;(2)若A ⊇B ,则p 是q 的必要条件;(3)若A =B ,则p 是q 的充要条件;(4)若A B ,则p 是q 的充分不必要条件;(5)若B A ,则p 是q 的必要不充分条件;(6)若AB 且BA ,则p 是q 的既不充分也不必要条件.2.充分条件与必要条件的两个特征:(1)对称性:若p 是q 的充分条件,则q 是p 的必要条件,即“p ⇒q ”⇔“q ⇐p ”.(2)传递性:若p 是q 的充分(必要)条件,q 是r 的充分(必要)条件,则p 是r 的充分(必要)条件,即“p ⇒q 且q ⇒r ”⇒“p ⇒r ”(“p ⇐q 且q ⇐r ”⇒“p ⇐r ”).注意:不能将“若p ,则q ”与“p ⇒q ”混为一谈,只有“若p ,则q ”为真命题时,才有“p ⇒q ”,即“p ⇒q ”⇔“若p ,则q ”为真命题.第三章函数考点1.函数的单调性1.单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的2.单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.考点2.函数的奇偶性偶函数奇函数定义如果对于函数f (x )的定义域内任意一个x都有f (-x )=f (x ),那么函数f (x )是偶函数都有f (-x )=-f (x ),那么函数f (x )是奇函数图象特征关于y 轴对称关于原点对称考点3.二次函数(1)解析式:一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -h )2+k (a ≠0).两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0).(2)图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域(-∞,+∞)(-∞,+∞)值域[4ac -b 24a,+∞)(-∞,4ac -b24a]单调性在x ∈(-∞,-b2a )上是减函数,在x ∈[-b2a ,+∞)上是增函数在x ∈(-∞,-b2a)上是增函数,在x ∈[-b2a,+∞)上是减函数最值当x =-b 2a 时,y 有最小值4ac -b24a当x =-b 2a 时,y 有最大值4ac -b24a奇偶性当b =0时为偶函数顶点(-b 2a ,4ac -b 24a)对称性图象关于直线x=-b2a成轴对称图形考点4.指数与指数运算1.根式(1)根式的概念根式的概念符号表示备注如果x n=a ,那么x 叫做a 的n 次方根n >1且n ∈N *当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数n a零的n 次方根是零当n 为偶数时,正数的n 次方根有两个,它们互为相反数±n a负数没有偶次方根(2)两个重要公式①na ≥0),a <0),n 为偶数.②(na )n=a (注意a 必须使n a 有意义).2.分数指数幂(1)正数的正分数指数幂是a mn =na (a >0,m ,n ∈N *,n >1).(2)正数的负分数指数幂是a -m n =1n a m(a >0,m ,n ∈N *,n >1).(3)0的正分数指数幂是0,0的负分数指数幂无意义.3.实数指数幂的运算性质(1)a r ·a s =a r +s (a >0,r 、s ∈R );(2)(a r )s =a rs (a >0,r 、s ∈R );(3)(ab )r=a r b r(a >0,b >0,r ∈R ).考点5.幂函数函数y =x y =x 2y =x 3y =x12y =x -1图象定义域R R R {x |x ≥0}{x |x ≠0}值域R {y |y ≥0}R {y |y ≥0}{y |y ≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上单调递增在(-∞,0)上单调递减,在(0,+∞)上单调递增在R 上单调递增在[0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减考点6.指数函数图象与性质指数函数的概念、图象和性质定义函数f (x )=a x (a >0且a ≠1)叫指数函数底数a >10<a <1图象性质函数的定义域为R ,值域为(0,+∞)考点7.对数函数的图象和性质图象a >10<a <1性质定义域:(0,+∞)值域:(-∞,+∞)当x=1时,y=0,即过定点(1,0)当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0在(0,+∞)上为增函数在(0,+∞)上为减函数第四章不等式与不等式组考点1.不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)同向可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d;(4)同向同正可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;a>b>0,c>d>0⇒ac>bd;(5)可乘方性:a>b>0⇒a n_>b n(n∈N,n≥2);(6)可开方性:a>b>0⇒na>nb(n∈N,n≥2).考点2.一元一次不等式组的解法:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

成人高考高起点数学文复习资料(精选5篇)

成人高考高起点数学文复习资料(精选5篇)

成人高考高起点数学文复习资料(精选5篇)成人高考高起点数学文复习资料精选篇1充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.难点例题已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|2且|β|2是2|a|4+b且|b|4的充要条件.解题分析求实数m的取值范围.命题意图:本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,强调了知识点的灵活性.知识依托:本题解题的闪光点是利用等价命题对题目的文字表述方式进行转化,使考生对充要条件的难理解变得简单明了.错解分析:对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,对否命题,学生本身存在着语言理解上的困难.技巧与方法:利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决.成人高考高起点数学文复习资料精选篇21、知识范围(1)导数概念导数的定义、左导数与右导数、函数在一点处可导的充分必要条件导数的几何意义与物理意义、可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算、反函数的导数、导数的基本公式(3)求导方法复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数(4)高阶导数高阶导数的定义、高阶导数的计算(5)微分微分的定义、微分与导数的关系、微分法则一阶微分形式不变性2、要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。

(2)会求曲线上一点处的切线方程与法线方程。

(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。

(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。

(完整版)成人高考数学知识点总结.doc

(完整版)成人高考数学知识点总结.doc

数学知识点与习题(一)集合[说明]重点是集合的并与交的运算。

第1题和第2题是最典型的试题,要很好掌握;关于补集的运算,元素与集合的关系,子集合的内容也要知道,做些准备。

(3、4两题在以往考试中很少出现。

)1、设集合M={1,2,3,4,5}, 集合N= {2,4,6,8,10} 则M N = _M N = ___2、设集合M {x| x 1}, N {x|x 2}则MN = —M N = ___________3、全集U= {1,2,3,4,5,6,7},集合A= {1,3,5,7},集合B={3,5}贝y C ,, A n B =;c u A U B=4、下列式子正确的是(A) 0 N (B) {0}N (C) 0N (D) {0} N(二)简要逻辑[说明]几乎每年都有一道这个内容的选择记住:要想证明由甲可以推出乙必须根据定义定理公要想证明由甲不能推出乙,除了根据定义定理公式,还可以举出反例。

题目内容会涉及代数、三角或几何知识。

1、设命题甲:|a| = |b| ;命题乙:a=b贝U(A)甲是乙的充分条件但不是乙的必要条件(B)甲是乙的必要条件但不是乙的充分条(C)甲不是乙的充分条件也不是乙的必要条件(D)甲是乙的充分必要条件2、设命题甲:x=1 ;命题乙:x2 x 0(A)甲是乙的充分条件但不是乙的必要条件(B)甲是乙的必要条件但不是乙的充分条件(C)甲不是乙的充分条件也不是乙的必要条件(D)甲是乙的充分必要条件3、设x、y是实数,则x2 y2的充分必要条件是(A) x=y (B) x=-y (C) x3 y3(D) |x|=|y|(三)不等式的性质[说明]判断不等式是否成立,在试题中也常出现。

一定要明白不等式性质中的条件是什么结论是什么;此外用作差比较法可解决一些问题;最后还可根据函数单调性判断某些不等式能否成立(见指数函数对数函数)1、若a<b<0 ,则下列不等式中不能成立的是(A)a b(B)氏a(C)I a | > | b |(D)a2 b22、设x、y是实数且x > y 则下列不等式中,一定成立的是2 2 x .(A)x y (B ) xc >yc (c 工0)(C) x - y>0 (D)弋 1(四)解一元一次不等式和不等式组[说明]一般没有直接作为试题出现,但是必须掌握这些基础知识并提高运算能力3x 2 7 2 5x c1、不等式组的解集为___________2、解不等式才莎04 5x 21(五)解绝对值不等式[说明]这部分内容重要,在历年试题中几乎都出现过。

成人高考专升本高数一复习资料

成人高考专升本高数一复习资料

精品文档. 成人高考高数一复习资料第一章极限和连续第一节极限[复习考试要求]1.理解极限的概念(对极限定义、、等形式的描述不作要求)。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

4.熟练掌握用两个重要极限求极限的方法。

[主要知识内容](一)数列的极限1.数列按一定顺序排列的无穷多个数称为数列,记作,其中每一个数称为数列的项,第n项。

为数列的一般项或通项,例如(1)1,3,5,…,,…(2)(3)(4)1,0,1,0,…,…都是数列。

在几何上,数列可看作数轴上的一个动点,它依次取数轴上的点。

2.数列的极限定义对于数列,如果当时,无限地趋于一个常数A,则称当n 趋于无穷大时,数列以常数A为极限,或称数列收敛于A,记作否则称数列没有极限,如果数列没有极限,就称数列是发散的。

数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,若数列以A为极限,就表示当n趋于无穷大时,点可以无限靠近点A。

(二)数列极限的性质定理1.1(惟一性)若数列收敛,则其极限值必定惟一。

定理1.2(有界性)若数列收敛,则它必定有界。

注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。

定理 1.3(两面夹定理)若数列,,满足不等式且。

定理1.4若数列单调有界,则它必有极限。

下面我们给出数列极限的四则运算定理。

定理1.5(1)(2)(3)当时,(三)函数极限的概念1.当时函数的极限(1)当时的极限定义对于函数,如果当x无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的极限是A,记作或(当时)(2)当时的左极限定义对于函数,如果当x从的左边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的左极限是A,记作或例如函数当x从0的左边无限地趋于0时,无限地趋于一个常数1.我们称:当时,的左极限是1,即有(3)当时,的右极限定义对于函数,如果当x从的右边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的右极限是A,记作或又如函数当x从0的右边无限地趋于0时,无限地趋于一个常数-1 。

2022年成人高考高起点《数学(文)》复习资料

2022年成人高考高起点《数学(文)》复习资料

2022年成人高考高起点《数学(文)》复习资料第一篇:《成人高考高起点数学(文)复习资料》成人高考高起点数学(文)复习资料一、三性(奇偶、单调、周期)(1)、下列函数在其定义域内是奇函数又是偶函数的是(D)(1995年真题)A.y=inB。

y=log2C。

y=+8D。

y=3(2)、函数y=3+2in(A)(1996年真题)A。

奇B。

偶C。

非奇非偶D。

既是奇函数又是偶函数(3)、函数y=1-2in2(B)(1998年真题)A。

奇B。

偶C。

既是奇函数又是偶韩式D。

非奇非偶(4)、下列函数中偶函数(D)(2002年真题)A。

co(+1)B。

y=3C。

y=(-1)2D。

y=in2(5)、下列函数中偶函数(A)(2003年真题)A。

y=3+3-B。

y=32-3C。

y=1+inD。

y=tan2022年成人高考高起点《数学(文)》复习资料。

(6)、函数f()=in+3(2004年真题)A。

偶B。

奇C。

既是奇函数又是偶函数D。

非奇非偶(7)、下列选项中,正确的是(B)A。

y=+in是偶函数B。

y=_in是奇函数C。

y=∣∣+in是偶函数D。

y=∣∣+in是奇函数(8)、下列函数中为偶函数的是(D)A。

y=2B。

y=2C。

y=log2D。

y=2co(9)、下列函数中既不是奇函数又不是偶函数的是(B)A。

f()=1、1+2B。

f()=2+C。

f()=co、3D。

f()=2、(10)、函数y=in在区间(C)为增函数A。

[0π]B。

[π,2π]C。

[3π、2,5π、2]D。

[5π、8,7π、8]第二篇:《成人高考高起点数学复习讲义》2022年成人高考高起点《数学(文)》复习资料。

成人高考高起点数学复习讲义难点1集合思想及应用集合是高中数学的基本,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用。

本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019成人高考(高起专)专用复习资料数学成人高考数学复习资料(可打印)集合和简易逻辑: 考点:交集、并集、补集 概念:1、由所有既属于集合A 又属于集合B 的元素所组成的集合,叫做集合A 和集合B 的交集,记作A ∩B ,读作“A 交B ”(求公共元素)A ∩B={x|x ∈A,且x ∈B}2、由所有属于集合A 或属于集合B 的元素所组成的集合,叫做集合A 和集合B 的并集,记作A ∪B ,读作“A 并B ”(求全部元素)A ∪B={x|x ∈A,或x ∈B}3、如果已知全集为U ,且集合A 包含于U ,则由U 中所有不属于A 的元素组成的集合,叫做集合A 的补集,记作A C u ,读作“A 补”A C u ={ x|x ∈U ,且x A } 解析:集合的交集或并集主要以例举法或不等式的形式出现 考点:简易逻辑 概念:在一个数学命题中,往往由条件A 和结论B 两部分构成,写成“如果A 成立,那么B 成立”。

充分条件:如果A 成立,那么B 成立,记作“A →B ”“A 推出B ,B 不能推出A ”。

必要条件:如果B 成立,那么A 成立,记作“A ←B ”“B 推出A ,A 不能推出B ”。

充要条件:如果A →B,又有A ←B ,记作“A ←B ”“A 推出B ,B 推出A ”。

解析:分析A 和B 的关系,是A 推出B 还是B 推出A ,然后进行判断 不等式和不等式组 考点:不等式的性质如果a>b ,那么b<a ;反之,如果b>a ,那么a<b 成立如果a>b,且b>c,那么a>c如果a>b,存在一个c(c可以为正数、负数或一个整式),那么a+c>b+c,a-c>b-c 如果a>b,c>0,那么ac>bc(两边同乘、除一个正数,不等号不变)如果a>b,c<0,那么ac<bc(两边同乘、除一个负数,不等号变号)如果a>b>0,那么a2>b2如果解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面考点:一元一次不等式定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。

解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。

如:6x+8>9x-4,求x?把x的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。

考点:一元一次不等式组定义:由几个一元一次不等式所组成的不等式组,叫做一元一次不等式组解法:求出每个一元一次不等式的值,最后求这几个一元一次不等式的交集(公共部分)。

考点:含有绝对值的不等式定义:含有绝对值符号的不等式,如:|x|<a,|x|>a型不等式及其解法。

简单绝对值不等式的解法:|x|<a的解集是{x|-a<x<a},取中间,在数轴上表示所有与原点的距离小于a 的点的集合;|x|>a 的解集是{x|x>a 或x<-a},取两边,在数轴上表示所有与原点的距离大于a 的点的集合。

复杂绝对值不等式的解法:|ax+b|<c ,相当于解不等式-c<ax+b<c,不等式三边同时减去b ,再同时除以a (注意,当a<0的时候,不等号要改变方向);|ax+|>c 相当于解不等式ax+b>c 或ax+b<-c ,解法同一元一次不等式一样。

解析:主要搞清楚取中间还是取两边,取中间是连起来的,取两边有“或” 考点:一元二次不等式定义:含有一个未知数并且未知数的最高次数是二次的不等式,叫做一元二次不等式。

如:02>++c bx ax 与02<++c bx ax (a>0)) 解法:求02>++c bx ax (a>0为例) 步骤:(1)先令02=++c bx ax ,求出x (三种方法:求根公式、十字相乘法、配方法)求根公式:a acb b x 242-±-=十字相乘法:如:62x -7x-5=0求x ?2 1 ×3 -5交叉相乘后 3 + -10 = -7解析:左边两个相乘等于2x 前的系数,右边两个相乘等于常数项,交叉相乘后相加等于x 前的系数,如满足条件即可分解成:(2x+1)×(3x-5)=0,两个数相乘等于0,只有当2x+1=0或3x-5=0的时候满足条件,所以x=21-或x=35。

配方法(省略)(2)求出x 之后,“>”取两边,“<”取中间,即可求出答案。

注意:当a<0时必须要不等式两边同乘-1,使得a>0,然后用上面的步骤来解。

考点:其他不等式不等式(ax+b )(cx+d )>0(或<0)的解法这种不等式可依一元二次方程(ax+b )(cx+d )=0的两根情况及2x 系数的正、负来确定其解集。

不等式0>++d cx bax (或<0)的解法它与(ax+b )(cx+d )>0(或<0)是同解不等式,从而前者也可化为一元二次不等式求解。

此处看不明白者问我,课堂上讲。

指数与对数 考点:有理指数幂正整数指数幂:a a a a a nΛ⨯⨯= 表示n 个a 相乘,(n +∈N 且n>1) 零的指数幂:10=a (0≠a )负整数指数幂:p p a a 1=-(0≠a ,p +∈N )分数指数幂:正分数指数幂:nm nm a a =(a ≥0,;m ,n +∈N 且n>1)负分数指数幂:nmnm nm a aa11==-(a>0,;m ,n +∈N 且n>1)解析:重点掌握负整数指数幂和分数指数幂 考点:幂的运算法则y x y x a a a +=⨯(同底数指数幂相乘,指数相加) yx y x a b a -=(同底数指数幂相除,指数相减) xy y x a a =)((可以乘进去) x x x b a ab =)((可以分别x 次)解析:重点掌握同底数指数幂相乘和相除 考点:对数定义:如果N a b =(a>0且1≠a ),那么b 叫做以a 为底的N 的对数,记作b N a =log (N>0),这里a 叫做底数,N 叫做真数。

特别底,以10为底的对数叫做常用对数,通常记N 10log 为lgN ;以e 为底的对数叫做自然对数,e ≈2.7182818,通常记作N ln 。

两个恒等式:ba N ab a N a ==log log ,几个性质:b N a =log ,N>0,零和负数没有对数1log =a a ,当底数和真数相同时等于1 01log =a ,当真数等于1的对数等于0n n =10lg ,(n Z ∈)考点:对数的运算法则NM MN a a a log log )(log +=(真数相乘,等于两个对数相加;两个对数相加,底相同,可以变成真数相乘)N M N Ma a alog log log -=(真数相除,等于两个对数相减;两个对数相减,底相同,可以变成真数相除)Mn M a n a log log =(真数的次数n 可以移到前面来)M n M a n a log 1log =(n n M M 1=,真数的次数n 1可以移到前面来)M a bM N b N a log log =函数考点:函数的定义域和值域定义:x 的取值范围叫做函数的定义域;y 的值的集合叫做函数的值域 求定义域:c bx ax y bkx y ++=+=2一般形式的定义域:x ∈R x ky =分式形式的定义域:x ≠0x y =根式的形式定义域:x ≥0xy a log = 对数形式的定义域:x >0解析:考试时一般会求结合两种形式的定义域,分开最后求交集(公共部分)即可考点:函数的单调性在)(x f y =定义在某区间上任取1x ,2x ,且1x <2x ,相应得出)(1x f ,)(2x f 如果: 1、)(1x f <)(2x f ,则函数)(x f y =在此区间上是单调增加函数,或增函数,此区间叫做函数的单调递增区间。

随着x 的增加,y 值增加,为增函数。

2、)(1x f >)(2x f ,则函数)(x f y =在此区间上是单调减少函数,或减函数,此区间叫做函数的单调递减区间。

随着x 的增加,y 值减少,为减函数。

解析:分别在其定义区间上任取两个值,代入,如果得到的y 值增加了,为增函数;相反为减函数。

考点:函数的奇偶性定义:设函数)(x f y =的定义域为D ,如果对任意的x ∈D ,有-x ∈D 且: 1、)()(x f x f -=-,则称)(x f 为奇函数,奇函数的图像关于原点对称 2、)()(x f x f =-,则称)(x f 为偶函数,偶函数的图像关于y 轴对称解析:判断时先令x x -=,如果得出的y 值是原函数,则是偶函数;如果得出的y 值是原函数的相反数,则是奇函数;否则就是非奇非偶函数。

考点:一次函数定义:函数b kx y +=叫做一次函数,其中k ,b 为常数,且0≠k 。

当b=0是,kx y =为正比例函数,图像经过原点。

当k>0时,图像主要经过一三象限;当k<0时,图像主要经过二四象限 考点:二次函数定义:c bx ax y ++=2为二次函数,其中a ,b ,c 为常数,且0≠a ,当a>0时,其性质如下:定义域:二次函数的定义域为R图像:顶点坐标为(a b ac a b 44,22--),对称轴a bx 2-=,图像为开口向上的抛物线,如果a<0,为开口向下的抛物线单调性:(-∞,a b 2-]单调递减,[a b2-,+∞)单调递增;当a<0时相反.最大值、最小值:a b ac y 442-=为最小值;当a<0时a b ac y 442-=取最大值 韦达定理:a cx x a b x x =⋅-=+2121,考点:反比例函数 定义:x ky =叫做反比例函数定义域:0≠x 是奇函数当k>0时,函数在区间(-∞,0)与区间(0,+∞)内是减函数 当k<0时,函数在区间(-∞,0)与区间(0,+∞)内是增函数 考点:指数函数定义:函数)10(≠>=a a a y x且叫做指数函数 定义域:指数函数的定义域为R 性质:a a a ==10,10>x a图像:经过点(0,1),当a>1时,函数单调递增,曲线左方与x 轴无限靠近;当0<a<1时,函数单调递减,曲线右方可与x 轴无限靠近。

相关文档
最新文档