【新华东师大版】九年级数学上册:第24章《圆》教案+导学案合集(含答案)

合集下载

九年级上册数学24.1圆教案

九年级上册数学24.1圆教案
图4
三、应用新知
1、如何在操场上画一个半径是5 m的圆?说出你的理由
2、从树木的年轮,可以很清楚地看出树生长的年龄,如果一棵20年树龄的红杉树的树干直径是23 cm,这棵红杉树平均每年半径增加多少?
四、巩固练习:课件出示练习题,学生自主完成。
五、课堂小结:
圆的两种定义以及相关概念。
板书设计
24.1.1圆
半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆。
优弧:大于半圆的弧叫作优弧,用三个字母表示;
劣弧:小于半圆的弧叫作劣弧.
5、讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?
(课件:车轮;课件:方形车轮)
引导学生进行如下分析:如图4,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定。
圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”。
同时从圆的定义中归纳:
(1)圆上各点到定点(圆心)的距离都等于定长(半径);
(2)到定点的距离等于定长的点都在同一个圆上。
于是得到圆的第二定义:
所有到定点的距离等于定长的点组成的图形叫作圆。
4、讨论圆中相关元素的定义。你能说出弦、直径、弧、半圆的定义吗?
学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果。
教师活动设计:
在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的叙述,可以让学生讨论解决。

九年级数学上册第24章直角三角形的性质教案(含教学反思)新版华东师大版

九年级数学上册第24章直角三角形的性质教案(含教学反思)新版华东师大版

九年级数学上册教案新版华东师大版:直角三角形的性质【知识与技能】(1)掌握直角三角形的性质定理,并能灵活运用.(2)继续学习几何证明的分析方法,懂得推理过程中的因果关系.知道数学内容中普遍存在的运动、变化、相互联系和相互转化的规律.【过程与方法】(1)经历探索直角三角形性质的过程,体会研究图形性质的方法.(2)培养在自主探索和合作交流中构建知识的能力.(3)培养识图的能力,提高分析和解决问题的能力,学会转化的数学思想方法.【情感态度】使学生对逻辑思维产生兴趣,在积极参与定理的学习活动中,不断增强主体意识、综合意识.【教学重点】直角三角形斜边上的中线性质定理的应用.【教学难点】直角三角形斜边上的中线性质定理的证明思想方法.一、情境导入,初步认识复习:直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?学生回答:(1)在直角三角形中,两个锐角互余;(2)在直角三角形中,两条直角边的平方和等于斜边的平方(勾股定理).二、思考探究,获取新知除了刚才同学们回答的性质外,直角三角形还具备哪些特殊性质?现在我们一起探索!1.实验操作:要学生拿出事先准备好的直角三角形的纸片.(1)量一量边AB的长度;(2)找到斜边的中点,用字母D表示,画出斜边上的中线;(3)量一量斜边上的中线的长度.让学生猜想斜边上的中线与斜边长度之间的关系.2.提出命题:直角三角形斜边上的中线等于斜边的一半.3.证明命题:你能否用演绎推理证明这一猜想?已知,如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=12AB.【分析】可“倍长中线”,延长CD至点E,使DE=CD,易证四边形ACBE 是矩形,所以CE=AB=2CD.思考还有其他方法来证明吗?还可作如下的辅助线.4.应用:例如图,在Rt△ACB中,∠ACB=90°,∠A=30°.求证:BC=12AB【分析】构造斜边上的中线,作斜边上的中线CD,易证△BDC为等边三角形,所以BC=BD=12AB.【归纳结论】直角三角形中,30°角所对的直角边等于斜边的一半.三、运用新知,深化理解1.如图,CD是Rt△ABC斜边上的中线,CD=4,则AB=______.2.三角形三个角度度数比为1∶2∶3,它的最大边长是4cm,那么它的最小边长为______cm.3.如图,在△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G是CE的中点;(2)∠B=2∠BCE.第3题图第4题图4.如图,△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=2cm,求BC的长.【答案】1.82.23.证明:(1)连接DE.∵在Rt△ADB中,DE=12AB,又∵BE=12AB,DC=BE,∴DC=DE.∵DG⊥CE,∴G为CE的中点.(2)∵BE=ED=DC,∴∠B=∠EDB,∠EDB=2∠BCE,∴∠B=2∠BCE.4.6cm【教学说明】可由学生小组讨论完成,教师归纳.四、师生互动,课堂小结1.直角三角形斜边上的中线等于斜边的一半.2.直角三角形中,30°角所对的直角边等于斜边的一半.3.有斜边上的中点,要考虑构造斜边上的中线或中位线.1.布置作业:从教材相应练习和“习题24.2”中选取.2.完成练习册中本课时练习.本课从复习已学过的直角三角形的性质入手,通过实验操作、猜想、证明探究直角三角形斜边上的中线性质定理,培养学生识图的能力,提高分析和解决问题的能力,在积极参与定理的学习活动中,不断增强主体意识和综合意识.。

九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.1 圆教案2

九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.1 圆教案2

24.1.1 圆01 教学目标1.了解圆的基本概念,并能准确地表示出来.2.理解并掌握与圆有关的概念:弦、直径、圆弧、等圆、同心圆等.02 预习反馈阅读教材P79~80内容,理解记忆与圆有关的概念,并完成下列问题.1.如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径.2.圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.3.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径;圆上任意两点间的部分叫做圆弧;圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.4.以点A为圆心,可以画无数个圆;以已知线段AB的长为半径,可以画无数个圆;以点A为圆心,AB的长为半径,可以画1个圆.【点拨】确定圆的两个要素:圆心(定点)和半径(定长).圆心确定圆的位置,半径确定圆的大小.5.到定点O的距离为5的点的集合是以O为圆心,5为半径的圆.03 新课讲授例1 (教材P80例1)矩形ABCD 的对角线AC ,BD 相交于点O .求证:A ,B ,C ,D 四个点在以点O 为圆心的同一个圆上.【思路点拨】 要求证几个点在同一个圆上,即需要证明这几个点到同一个点(即圆心)的距离相等.【解答】 证明:∵四边形ABCD 为矩形,∴OA =OC =12AC ,OB =OD =12BD ,AC =BD . ∴OA =OC =OB =OD .∴A ,B ,C ,D 四个点在以点O 为圆心,OA 为半径的圆上(如图).例2 (教材P80例1的变式)△ABC 中,∠C =90°.求证:A ,B ,C 三点在同一个圆上.【解答】 证明:如图,取AB 的中点O ,连接OC .∵在△ABC 中,∠C =90°,∴△ABC 是直角三角形.∴OC =OA =OB =12AB (直角三角形斜边上的中线等于斜边的一半). ∴A ,B ,C 三点在同一个圆上.【跟踪训练1】 (例1的变式题)(1)在图中,画出⊙O 的两条直径;(2)依次连接这两条直径的端点,得一个四边形.判断这个四边形的形状,并说明理由.解:(1)作图略.(2)矩形.理由:因为该四边形的对角线互相平分且相等,所以该四边形为矩形.【思考】由刚才的问题思考:矩形的四个顶点一定共圆吗?例3已知⊙O的半径为2,则它的弦长d的取值范围是0<d≤4.【点拨】直径是圆中最长的弦.例4在⊙O中,若弦AB等于⊙O的半径,则△AOB的形状是等边三角形.【点拨】与半径相等的弦和两半径构造等边三角形是常用数学模型.【跟踪训练2】如图,点A,B,C,D都在⊙O上.在图中画出以这4点为端点的各条弦.这样的弦共有多少条?解:图略.6条.04 巩固训练1.如图,图中有1条直径,2条非直径的弦,圆中以A为一个端点的优弧有4条,劣弧有4条.【点拨】这类数弧问题,为防多数或少数,通常按一定的顺序和方向来数.2.如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数为2.3.(24.1.1习题)点P到⊙O上各点的最大距离为10 cm,最小距离为8 cm,则⊙O的半径是1或9cm.【点拨】这里分点在圆外和点在圆内两种情况.4.如图,已知AB是⊙O的直径,点C在⊙O上,点D是BC的中点.若AC=10 cm,则OD的长为5__cm.【点拨】圆心O是直径AB的中点.5.如图,CD为⊙O的直径,∠EOD=72°,AE交⊙O于B,且AB=OC,则∠A的度数为24°.【点拨】连接OB构造三角形,从而得出角的关系.05 课堂小结1.这节课你学了哪些知识?2.学会了哪些解圆的有关问题的技巧?。

九年级上册数学第二十四章圆全章导学案

九年级上册数学第二十四章圆全章导学案

第二十四章圆24.1.1圆的概念一、基础知识填空1.在一个______内,线段OA绕它固定的一个端点O______,另一个端点A所形成的______叫做圆.这个固定的端点O叫做______,线段OA叫做______.以O点为圆心的圆记作______,读作______.2.战国时期的《墨经》中对圆的定义是________________.3.由圆的定义可知:(1)圆上的各点到圆心的距离都等于________;在一个平面内,到圆心的距离等于半径长的点都在________.因此,圆是在一个平面内,所有到一个________的距离等于________的________组成的图形.(2)要确定一个圆,需要两个基本条件,一个是________,另一个是________,其中,________确定圆的位置,______确定圆的大小.4.连结______________的__________叫做弦.经过________的________叫做直径.并且直径是同一圆中__________的弦.5.圆上__________的部分叫做圆弧,简称________,以A,B为端点的弧记作________,读作________或________.6.圆的________的两个端点把圆分成两条弧,每________都叫做半圆.7.在一个圆中_____________叫做优弧;_____________叫做劣弧.8.半径相等的两个圆叫做____________.二、填空题9.如下图,(1)若点O为⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.10.已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.(1)求证:∠AOC=∠BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.11.已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠E=18°,求∠C及∠AOC的度数.12.已知:如图,△ABC,试用直尺和圆规画出过A,B,C三点的⊙O.24.1.2垂直于弦的直径一、基础知识填空1.圆是______对称图形,它的对称轴是______________________;圆又是______对称图形,它的对称中心是____________________.2.垂直于弦的直径的性质定理是____________________________________________.3.平分________的直径________于弦,并且平分________________________________.二、填空题4.圆的半径为5cm,圆心到弦AB的距离为4cm,则AB=______cm.5.如图,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=______cm.5题图6.如图,⊙O的半径OC为6cm,弦AB垂直平分OC,则AB=______cm,∠AOB=______.6题图7.如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.7题图8.如图,⊙O的弦AB垂直于CD,E为垂足,AE=3,BE=7,且AB=CD,则圆心O到CD 的距离是______.8题图9.如图,P为⊙O的弦AB上的点,P A=6,PB=2,⊙O的半径为5,则OP=______.9题图10.如图,⊙O的弦AB垂直于AC,AB=6cm,AC=4cm,则⊙O的半径等于______cm.10题图11.已知:如图,AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=30°,求CD的长.12.已知:如图,试用尺规将它四等分.13.今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.(选自《九章算术》卷第九“句股”中的第九题,1尺=10寸).14.已知:⊙O的半径OA=1,弦AB、AC的长分别为2,3,求∠BAC的度数.15.已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求这两条平行弦AB,CD之间的距离.16.已知:如图,A,B是半圆O上的两点,CD是⊙O的直径,∠AOD=80°,B是的中点.(1)在CD上求作一点P,使得AP+PB最短;(2)若CD=4cm,求AP+PB的最小值.17.如图,有一圆弧形的拱桥,桥下水面宽度为7.2m,拱顶高出水面2.4m,现有一竹排运送一货箱从桥下经过,已知货箱长10m,宽3m,高2m(竹排与水面持平).问:该货箱能否顺利通过该桥?24.1.3弧、弦、圆心角一、基础知识填空1.______________的______________叫做圆心角.2.如图,若长为⊙O 周长的nm ,则∠AOB =____________.3.在同圆或等圆中,两个圆心角及它们所对的两条弧、两条弦中如果有一组量相等,那么_ _____________________.4.在圆中,圆心与弦的距离(即自圆心作弦的垂线段的长)叫做弦心距,不难证明,在同圆或等圆中,如果两条弦相等,那么它们的弦心距也______.反之,如果两条弦的弦心距相等,那么_____________________.二、解答题5.已知:如图,A 、B 、C 、D 在⊙O 上,AB =CD .求证:∠AOC =∠DOB .6.已知:如图,P 是∠AOB 的角平分线OC 上的一点,⊙P 与OA 相交于E ,F 点,与OB 相交于G ,H 点,试确定线段EF 与GH 之间的大小关系,并证明你的结论.7.已知:如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,且C 为的中点,若∠BAD =20°,求∠ACO 的度数.8.⊙O中,M为的中点,则下列结论正确的是( ).A.AB>2AM B.AB=2AMC.AB<2AM D.AB与2AM的大小不能确定9.如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想与之间的关系,并证明你的猜想.10.如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在上滑动(点C与A,点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.24.1.4圆周角一、基础知识填空1._________在圆上,并且角的两边都_________的角叫做圆周角.2.在同一圆中,一条弧所对的圆周角等于_________圆心角的_________.3.在同圆或等圆中,____________所对的圆周角____________.4._________所对的圆周角是直角.90°的圆周角______是直径.5.如图,若五边形ABCDE是⊙O的内接正五边形,则∠BOC=______,∠ABE=______,∠ADC=______,∠ABC=______.5题图6题图6.如图,若六边形ABCDEF是⊙O的内接正六边形,则∠AED=______,∠F AE=______,∠DAB=______,∠EF A=______.7.如图,ΔABC是⊙O的内接正三角形,若P是上一点,则∠BPC=______;若M是上一点,则∠BMC=______.7题图二、选择题8.在⊙O中,若圆心角∠AOB=100°,C是上一点,则∠ACB等于( ).A.80°B.100°C.130°D.140°9.在圆中,弦AB,CD相交于E.若∠ADC=46°,∠BCD=33°,则∠DEB等于( ).A.13°B.79°C.38.5°D.101°10.如图,AC是⊙O的直径,弦AB∥CD,若∠BAC=32°,则∠AOD等于( ).10题图A.64°B.48°C.32°D.76°11.如图,弦AB,CD相交于E点,若∠BAC=27°,∠BEC=64°,则∠AOD等于( ).A.37°B.74°C.54°D.64°12.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于( ).A.69°B.42°C.48°D.38°13.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O的直径,BD交AC于点E,连结DC,则∠AEB等于( ).A.70°B.90°C.110°D.120°14.已知:如图,△ABC内接于⊙O,BC=12cm,∠A=60°.求⊙O的直径.15.已知:如图,AB是⊙O的直径,弦CD⊥AB于E,∠ACD=30°,AE=2cm.求DB长.16.已知:如图,△ABC内接于圆,AD⊥BC于D,弦BH⊥AC于E,交AD于F.求证:FE=EH.17.已知:如图,⊙O的直径AE=10cm,∠B=∠EAC.求AC的长.18.已知:如图,△ABC内接于⊙O,AM平分∠BAC交⊙O于点M,AD⊥BC于D.求证:∠MAO=∠MAD.19.已知:如图,AB是⊙O的直径,CD为弦,且AB⊥CD于E,F为DC延长线上一点,连结AF交⊙O于M.求证:∠AMD=∠FMC.24.2.1点和圆的位置关系一、基础知识填空1.平面内,设⊙O的半径为r,点P到圆心的距离为d,则有d>r⇔点P在⊙O______;d=r⇔点P在⊙O______;d<r⇔点P在⊙O______.2.平面内,经过已知点A,且半径为R的圆的圆心P点在__________________________ _______________.3.平面内,经过已知两点A,B的圆的圆心P点在______________________________________ ____________________.4.______________________________________________确定一个圆.5.在⊙O上任取三点A,B,C,分别连结AB,BC,CA,则△ABC叫做⊙O的______;⊙O叫做△ABC的______;O点叫做△ABC的______,它是△ABC___________的交点.6.锐角三角形的外心在三角形的___________部,钝角三角形的外心在三角形的__________ ___部,直角三角形的外心在________________.7.若正△ABC外接圆的半径为R,则△ABC的面积为___________.8.若正△ABC的边长为a,则它的外接圆的面积为___________.9.若△ABC中,∠C=90°,AC=10cm,BC=24cm,则它的外接圆的直径为___________.10.若△ABC内接于⊙O,BC=12cm,O点到BC的距离为8cm,则⊙O的周长为___________.二、作图题11.已知:如图,△ABC.作法:求件△ABC的外接圆O.三、选择题12.已知:A ,B ,C ,D ,E 五个点中无任何三点共线,无任何四点共圆,那么过其中的三点作圆,最多能作出( ).A .5个圆B .8个圆C .10个圆D .12个圆13.下列说法正确的是( ).A .三点确定一个圆B .三角形的外心是三角形的中心C .三角形的外心是它的三个角的角平分线的交点D .等腰三角形的外心在顶角的角平分线上14.下列说法不正确的是( ).A .任何一个三角形都有外接圆B .等边三角形的外心是这个三角形的中心C .直角三角形的外心是其斜边的中点D .一个三角形的外心不可能在三角形的外部15.正三角形的外接圆的半径和高的比为( ).A .1∶2B .2∶3C .3∶4D .1∶316.已知⊙O 的半径为1,点P 到圆心O 的距离为d ,若关于x 的方程x 2-2x +d =0有实根,则点P ( ).A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 的内部四、解答题17.在平面直角坐标系中,作以原点O 为圆心,半径为4的⊙O ,试确定点A (-2,-3),B (4,-2),)2,32(-C 与⊙O 的位置关系.18.在直线123-=x y 上是否存在一点P ,使得以P 点为圆心的圆经过已知两点A (-3,2),B (1,2).若存在,求出P 点的坐标,并作图.测试6 自我检测(一)一、选择题1.如图,△ABC 内接于⊙O ,若AC =BC ,弦CD 平分∠ACB ,则下列结论中,正确的个数是( ).1题图①CD 是⊙O 的直径 ②CD 平分弦AB ③CD ⊥AB ④= ⑤=A .2个B .3个C .4个D .5个2.如图,CD 是⊙O 的直径,AB ⊥CD 于E ,若AB =10cm ,CE ∶ED =1∶5,则⊙O 的半径是( ).2题图A .cm 25B .cm 34C .cm 53D .cm 623.如图,AB 是⊙O 的直径,AB =10cm ,若弦CD =8cm ,则点A 、B 到直线CD 的距离之和为( ).3题图A .12cmB .8cmC .6cm D.4cm4.△ABC 内接于⊙O ,OD ⊥BC 于D ,若∠A =50°,则∠BOD 等于( ).A .30°B .25°C .50°D .100°5.有四个命题,其中正确的命题是( ).①经过三点一定可以作一个圆②任意一个三角形有且只有一个外接圆③三角形的外心到三角形的三个顶点的距离相等④在圆中,平分弦的直径一定垂直于这条弦A .①、②、③、④B .①、②、③C .②、③、④D .②、③6.在圆内接四边形ABCD 中,若∠A ∶∠B ∶∠C =2∶3∶6,则∠D 等于( ).A .67.5°B .135°C .112.5° D.45°二、填空题7.如图,AC 是⊙O 的直径,∠1=46°,∠2=28°,则∠BCD =______.7题图8.如图,AB 是⊙O 的直径,若∠C =58°,则∠D =______.8题图9.如图,AB 是⊙O 的直径,弦CD 平分∠ACB ,若BD =10cm ,则AB =______,∠BCD =______.9题图10.若△ABC 内接于⊙O ,OC =6cm ,cm 36 AC ,则∠B 等于______.三、解答题11.已知:如图,⊙O 中,AB =AC ,OD ⊥AB 于D ,OE ⊥AC 于E .求证:∠ODE =∠OED .12.已知:如图,AB 是⊙O 的直径,OD ⊥BC 于D ,AC =8cm ,求OD 的长.13.已知:如图,点D的坐标为(0,6),过原点O,D点的圆交x轴的正半轴于A点.圆周角∠OCA=30°,求A点的坐标.14.已知:如图,试用尺规作图确定这个圆的圆心.15.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点.求∠CAD的度数及弦AC,AD和围成的图形(图中阴影部分)的面积S.测试7 直线和圆的位置关系(一)学习要求1.理解直线与圆的相交、相切、相离三种位置关系,掌握它们的判定方法.2.掌握切线的性质和切线的判定,能正确作圆的切线.课堂学习检测一、基础知识填空1.直线与圆在同一平面上做相对运动时,其位置关系有______种,它们分别是____________ __________________.2.直线和圆_________时,叫做直线和圆相交,这条直线叫做____________.直线和圆_________时,叫做直线和圆相切,这条直线叫做____________.这个公共点叫做_________.直线和圆____________时,叫做直线和圆相离.3.设⊙O的半径为r,圆心O到直线l的距离为d,_________⇔直线l和圆O相离;_________⇔直线l和圆O相切;_________⇔直线l和圆O相交.4.圆的切线的性质定理是__________________________________________.5.圆的切线的判定定理是__________________________________________.6.已知直线l及其上一点A,则与直线l相切于A点的圆的圆心P在__________________ __________________________________________________________________.二、解答题7.已知:Rt△ABC中,∠C=90°,BC=5cm,AC=12cm,以C点为圆心,作半径为R的圆,求:(1)当R为何值时,⊙C和直线AB相离?(2)当R为何值时,⊙C和直线AB相切?(3)当R为何值时,⊙C和直线AB相交?8.已知:如图,P是∠AOB的角平分线OC上一点.PE⊥OA于E.以P点为圆心,PE长为半径作⊙P.求证:⊙P与OB相切.9.已知:如图,△ABC内接于⊙O,过A点作直线DE,当∠BAE=∠C时,试确定直线DE 与⊙O的位置关系,并证明你的结论.综合、运用、诊断10.已知:如图,割线ABC 与⊙O 相交于B ,C 两点,E 是的中点,D 是⊙O 上一点,若∠EDA =∠AMD .求证:AD 是⊙O 的切线.11.已知:如图,Rt △ABC 中,∠ACB =90°,以AC 为直径的半圆O 交AB 于F ,E 是BC的中点.求证:直线EF 是半圆O 的切线.12.已知:如图,△ABC 中,AD ⊥BC 于D 点,.21BC AD 以△ABC 的中位线为直径作半圆O ,试确定BC 与半圆O 的位置关系,并证明你的结论.13.已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E点,直线EF⊥AC于F.求证:EF与⊙O相切.14.已知:如图,以△ABC的一边BC为直径作半圆,交AB于E,过E点作半圆O的切线恰与AC垂直,试确定边BC与AC的大小关系,并证明你的结论.15.已知:如图,P A切⊙O于A点,PO∥AC,BC是⊙O的直径.请问:直线PB是否与⊙O相切?说明你的理由.拓广、探究、思考16.已知:如图,P A切⊙O于A点,PO交⊙O于B点.P A=15cm,PB=9cm.求⊙O的半径长.测试8 直线和圆的位置关系(二)学习要求1.掌握圆的切线的性质及判定定理.2.理解切线长的概念,掌握由圆外一点引圆的切线的性质.3.理解三角形的内切圆及内心的概念,会作三角形的内切圆.课堂学习检测一、基础知识填空1.经过圆外一点作圆的切线,______________________________叫做这点到圆的切线长.2.从圆外一点可以引圆的______条切线,它们的____________相等.这一点和____________平分____________.3.三角形的三个内角的平分线交于一点,这个点到__________________相等.4.__________________的圆叫做三角形的内切圆,内切圆的圆心是____________,叫做三角形的____________.5.设等边三角形的内切圆半径为r,外接圆半径为R,边长为a,则r∶R∶a=______.6.设O为△ABC的内心,若∠A=52°,则∠BOC=____________.二、解答题7.已知:如图,从两个同心圆O的大圆上一点A,作大圆的弦AB切小圆于C点,大圆的弦AD切小圆于E点.求证:(1)AB=AD;(2)DE=BC.8.已知:如图,P A,PB分别与⊙O相切于A,B两点.求证:OP垂直平分线段AB.9.已知:如图,△AB C.求作:△ABC的内切圆⊙O.10.已知:如图,P A,PB,DC分别切⊙O于A,B,E点.(1)若∠P=40°,求∠COD;(2)若P A=10cm,求△PCD的周长.综合、运用、诊断11.已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.12.已知:如图,△ABC 的三边BC =a ,CA =b ,AB =c ,它的内切圆O 的半径长为r .求△ABC 的面积S .13.已知:如图,⊙O 内切于△ABC ,∠BOC =105°,∠ACB =90°,AB =20cm .求BC 、AC的长.测试9 自我检测(二)一、选择题1.已知:如图,P A ,PB 分别与⊙O 相切于A ,B 点,C 为⊙O 上一点,∠ACB =65°,则∠APB 等于( ).1题图A .65°B .50°C .45°D .40°2.如图,AB 是⊙O 的直径,直线EC 切⊙O 于B 点,若∠DBC =α,则( ).2题图 A .∠A =90°-αB .∠A = αC .∠ABD = α D .∠α2190o -=ABD3.如图,△ABC 中,∠A =60°,BC =6,它的周长为16.若⊙O 与BC ,AC ,AB 三边分别切于E ,F ,D 点,则DF 的长为( ).3题图A .2B .3C .4D .6 4.下面图形中,一定有内切圆的是( ).A .矩形B .等腰梯形C .菱形D .平行四边形 5.等边三角形的内切圆半径、外接圆半径和高的比是( ).A .3:2:1B .3:2:1C .2:3:1D .1∶2∶3二、解答题6.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,以AB 为直径的⊙O 切DC 边于E 点,AD =3cm ,BC =5cm .求⊙O 的面积.7.已知:如图,AB 是⊙O 的直径,F ,C 是⊙O 上两点,且=,过C 点作DE ⊥AF 的延长线于E 点,交AB 的延长线于D 点.(1)试判断DE 与⊙O 的位置关系,并证明你的结论;(2)试判断∠BCD 与∠BAC 的大小关系,并证明你的结论.8.已知:如图,P A ,PB 分别是⊙O 的切线,A ,B 为切点,AC 是⊙O 的直径,∠BAC =35°,求∠P 的度数.9.已知:如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,∠BAC=60°,求DE的长.10.已知:如图,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状并说明理由;(2)设⊙O的半径为1,且213-=OF,求证△DCE≌△OCB.11.已知:如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D.(1)求证:AT 平分∠BAC ;(2)若,3,2==TC AD 求⊙O 的半径.测试10 圆和圆的位置关系学习要求1.理解两个圆相离、相切(外切和内切)、相交、内含的概念,能利用两圆的圆心距d 与两个圆的半径r 1和r 2之间的关系,讨论两圆的位置关系.2.对两圆相交或相切时的性质有所了解.课堂学习检测一、基础知识填空1.没有______的两个圆叫做这两个圆相离.当两个圆相离时,如果其中一个圆在另一个圆的______,叫做这两个圆外离;如果其中有一个圆在另一个圆的______,叫做这两个圆内含.2.____________的两个圆叫做这两个圆相切.这个公共点叫做______.当两个圆相切时,如果其中的一个圆(除切点外)在另一个圆的______,叫做这两个圆外切;如果其中有一个圆(除切点外)在另一个圆的______,叫做这两个圆内切.3.______的两个圆叫做这两个圆相交,这两个公共点叫做这两个圆的______以这两个公共点为端点的线段叫做两圆的______.4.设d 是⊙O 1与⊙O 2的圆心距,r 1,r 2(r 1>r 2)分别是⊙O 1和⊙O 2的半径,则⊙O 1与⊙O 2外离⇔d ________________________;⊙O 1与⊙O 2外切⇔d ________________________;⊙O 1与⊙O 2相交⇔d ________________________;⊙O 1与⊙O 2内切⇔d ________________________;⊙O 1与⊙O 2内含⇔d ________________________;⊙O 1与⊙O 2为同心圆⇔d ____________________.二、选择题5.若两个圆相切于A 点,它们的半径分别为10cm 、4cm ,则这两个圆的圆心距为( ).A .14cmB .6cmC .14cm 或6cmD .8cm6.若相交两圆的半径分别是17+和17-,则这两个圆的圆心距可取的整数值的个数是( ).A.1B.2 C .3 D .4综合、运用、诊断 一、填空题7.如图,在12×6的网格图中(每个小正方形的边长均为1个单位),⊙A的半径为1,⊙B 的半径为2,要使⊙A与静止的⊙B相切,那么⊙A由图示位置需向右平移______个单位.7题图8.相交两圆的半径分别是为6cm和8cm,请你写出一个符合条件的圆心距为______cm.二.解答题9.已知:如图,⊙O1与⊙O2相交于A,B两点.求证:直线O1O2垂直平分AB.9题图10.已知:如图,⊙O1与⊙O2外切于A点,直线l与⊙O1、⊙O2分别切于B,C点,若⊙O1的半径r1=2cm,⊙O2的半径r2=3cm.求BC的长.11.已知:如图,两圆相交于A,B两点,过A点的割线分别交两圆于D,F点,过B点的割线分别交两圆于H,E点.求证:HD∥EF.12.已知:相交两圆的公共弦的长为6cm ,两圆的半径分别为cm 23,cm 5,求这两个圆的圆心距.拓广、探究、思考13.如图,工地放置的三根外径是1m 的水泥管两两外切,求其最高点到地平面的距离.14.已知:如图,⊙O 1与⊙O 2相交于A ,B 两点,圆心O 1在⊙O 2上,过B 点作两圆的割线CD ,射线DO 1交AC 于E 点.求证:DE ⊥AC .15.已知:如图,⊙O 1与⊙O 2相交于A ,B 两点,过A 点的割线分别交两圆于C ,D ,弦CE ∥DB ,连结EB ,试判断EB 与⊙O 2的位置关系,并证明你的结论.16.如图,点A ,B 在直线MN 上,AB =11cm ,⊙A ,⊙B 的半径均为1cm .⊙A 以每秒2cm的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (cm)与时间t (s )之间的关系式为r =1+t (t ≥0).(1)试写出点A,B之间的距离d(cm)与时间t(s)之间的函数表达式;(2)问点A出发多少秒时两圆相切?测试11 正多边形和圆学习要求1.能通过把一个圆n(n≥3)等分,得到圆的内接正n边形及外切正n边形.2.理解正多边形的中心、半径、中心角、边心距的概念,并能进行简单的计算.课堂学习检测一、基础知识填空1.各条边______,并且各个______也都相等的多边形叫做正多边形.2.把一个圆分成n(n≥3)等份,依次连结各等分点所得的多边形是这个圆的______.3.一个正多边形的______________叫做这个正多边形的中心;______________叫做正多边形的半径;正多边形每一边所对的______叫做正多边形的中心角;中心到正多边形的一边的__________叫做正多边形的边心距.4.正n边形的每一个内角等于__________,它的中心角等于__________,它的每一个外角等于______________.5.设正n边形的半径为R,边长为a n,边心距为r n,则它们之间的数量关系是______.这个正n边形的面积S n=________.6.正八边形的一个内角等于_______,它的中心角等于_______.7.正六边形的边长a,半径R,边心距r的比a∶R∶r=_______.8.同一圆的内接正方形和正六边形的周长比为_______.二、解答题9.在下图中,试分别按要求画出圆O的内接正多边形.(1)正三角形 (2)正方形 (3)正五边形(4)正六边形 (5)正八边形 (6)正十二边形综合、运用、诊断一、选择题10.等边三角形的外接圆面积是内切圆面积的( ).A .3倍B .5倍 C.4倍 D .2倍11.已知正方形的周长为x ,它的外接圆半径为y ,则y 与x 的函数关系式是( ).A .x y 42=B .x y 82=C .x y 21=D .x y 22= 12.有一个长为12cm 的正六边形,若要剪一张圆形纸片完全盖住这个圆形,则这个圆形纸片的半径最小是( ).A .10cmB .12cmC .14cmD .16cm二、解答题13.已知:如图,正八边形A 1A 2A 3A 4A 5A 6A 7A 8内接于半径为R 的⊙O .(1)求A 1A 3的长;(2)求四边形A 1A 2A 3O 的面积;(3)求此正八边形的面积S .14.已知:如图,⊙O 的半径为R ,正方形ABCD ,A ′B ′C ′D 分别是⊙O 的内接正方形和外切正方形.求二者的边长比AB ∶A ′B ′和面积比S 内∶S 外.拓广、探究、思考15.已知:如图,⊙O的半径为R,求⊙O的内接正六边形、⊙O的外切正六边形的边长比AB∶A′B′和面积比S内∶S外.测试12 弧长和扇形面积学习要求掌握弧长和扇形面积的计算公式,能计算由简单平面图形组合的图形的面积.课堂学习检测一、基础知识填空1.在半径为R的圆中,n°的圆心角所对的弧长l=_______.2.____________和______所围成的图形叫做扇形.在半径为R的圆中,圆心角为n°的扇形面积S扇形=__________;若l为扇形的弧长,则S扇形=__________.3.如图,在半径为R的⊙O中,弦AB与所围成的图形叫做弓形.当为劣弧时,S弓形=S扇形-______;当为优弧时,S弓形=______+S△OAB.3题图4.半径为8cm的圆中,72°的圆心角所对的弧长为______;弧长为8cm的圆心角约为______(精确到1′).5.半径为5cm 的圆中,若扇形面积为2cm 3π25,则它的圆心角为______.若扇形面积为15πcm 2,则它的圆心角为______.6.若半径为6cm 的圆中,扇形面积为9πcm 2,则它的弧长为______. 二、选择题7.如图,Rt △ABC 中,∠C =90°,AC =8,BC =6,两等圆⊙A ,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为( ).7题图A .π425 B .π825 C .π1625 D .π32258.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为120°,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( ).8题图A .2πcm 100B .2πcm 3400 C .2πcm 800 D .2πcm 3800 9.如图,△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上一点,且∠EPF =40°,则圆中阴影部分的面积是( ).A .9π4- B .9π84-C .94π8-D .98π8-综合、运用、诊断10.已知:如图,在边长为a 的正△ABC 中,分别以A ,B ,C 点为圆心,a 21长为半径作 ,,,求阴影部分的面积.11.已知:如图,Rt △ABC 中,∠C =90°,∠B =30°,,34=BC 以A 点为圆心,AC 长为半径作,求∠B 与围成的阴影部分的面积.拓广、探究、思考12.已知:如图,以线段AB 为直径作半圆O 1,以线段AO 1为直径作半圆O 2,半径O 1C 交半圆O 2于D 点.试比较与的长.13.已知:如图,扇形OAB 和扇形OA ′B ′的圆心角相同,设AA ′=BB ′=d .=l 1,=l 2.求证:图中阴影部分的面积.)(2121d l l S +=测试13 圆锥的侧面积和全面积学习要求掌握圆锥的侧面积和全面积的计算公式.课堂学习检测一、基础知识填空1.以直角三角形的一条______所在直线为旋转轴,其余各边旋转形成的曲面所围成的几何体叫做______.连结圆锥______和____________的线段叫做圆锥的母线,圆锥的顶点和底面圆心的距离是圆锥的______.2.沿一条母线将圆锥侧面剪开并展平,得到圆锥的侧面展开图是一个______.若设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为______,扇形的弧长为______,因此圆锥的侧面积为______,圆锥的全面积为______.3.Rt△ABC中,∠C=90°,AB=5cm,BC=3cm,以直线BC为轴旋转一周所得圆锥的底面圆的周长是______,这个圆锥的侧面积是______,圆锥的侧面展开图的圆心角是______.4.若把一个半径为12cm,圆心角为120°的扇形做成圆锥的侧面,则这个圆锥的底面圆的周长是______,半径是______,圆锥的高是______,侧面积是______.二、选择题5.若圆锥的底面半径为2cm,母线长为3cm,则它的侧面积为( ).A.2πcm2B.3πcm2C.6πcm2D.12πcm26.若圆锥的底面积为16πcm2,母线长为12cm,则它的侧面展开图的圆心角为( ).A.240°B.120°C.180°D.90°7.底面直径为6cm的圆锥的侧面展开图的圆心角为216°,则这个圆锥的高为( ).A.5cm B.3cm C.8cm D.4cm8.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角为( ).A.120°B.1 80°C.240°D. 300°综合、运用、诊断一、选择题9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则R与r之间的关系是( ).A .R =2rB .r R 3C .R =3rD .R =4r10.如图,扇形OAB 是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为( ).A .21B .22C .2D .22二、解答题11.如图,矩形ABCD 中,AB =18cm ,AD =12cm ,以AB 上一点O 为圆心,OB 长为半径画恰与DC 边相切,交AD 于F 点,连结OF .若将这个扇形OBF 围成一个圆锥,求这个圆锥的底面积S .拓广、探究、思考12.如图,圆锥的轴截面是边长为6cm 的正三角形ABC ,P 是母线AC 的中点.求在圆锥的侧面上从B 点到P 点的最短路线的长.答案与提示第二十四章 圆测试11.平面,旋转一周,图形,圆心,半径,⊙O ,圆O .2.圆,一中同长也.3.(1)半径长,同一个圆上,定点,定长,点.(2)圆心的位置,半径的长短,圆心,半径长.4.圆上的任意两点,线段,圆心,弦,最长.5.任意两点间,弧,圆弧AB ,弧AB .6.任意一条直径,一条弧.7.大于半圆的弧,小于半圆的弧.8.等圆.9.(1)OA ,OB ,OC ;AB ,AC ,BC ,AC ;;及(2)40°,50°,90°.10.(1)提示:在△OAB 中,∵OA =OB ,∴∠A =∠B .同理可证∠OCD =∠ODC .又 ∵ ∠AOC =∠OCD -∠A ,∠BOD =∠ODC -∠B ,∴ ∠AOC =∠BOD .(2)提示:AC =BD .可作OE ⊥CD 于E ,进行证明.11.提示:连结OD .不难得出∠C =36°,∠AOC =54°.12.提示:可分别作线段AB 、BC 的垂直平分线.测试21.轴,经过圆心的任何一条直线,中心,该圆的圆心.2.垂直于弦的直径平分弦,并且平分弦所对的两条弧.3.弦,不是直径,垂直于,弦所对的两条弧.4.6. 5.8; 6..120,36o 7.a 22,a 21 8.2. 9..13 10..13 11..2412.提示:先将二等分(设分点为C ),再分别二等分和.13.提示:题目中的“问径几何”是求圆材的直径.答:材径二尺六寸.14.75°或15°.15.22cm 或8cm .16.(1)作法:①作弦B B '⊥CD .②连结B A ',交CD 于P 点,连结PB .则P 点为所求,即使AP +PB 最短.(2)cm.3217.可以顺利通过.测试31.顶点在圆心,角.2.⋅⨯nm 360 3.它们所对应的其余各组量也分别相等 4.相等,这两条弦也相等. 5.提示:先证=.6.EF =GH .提示:分别作PM ⊥EF 于M ,PN ⊥GH 于N .7.55°. 8.C .9.=3 .提示:设∠COD =α,则∠OPD =2α,∠AOD =3α=3∠BOC .10.(1)作OH ⊥CD 于H ,利用梯形中位线.(2)四边形CDEF 的面积是定值,96221)(21⨯=⋅⋅⋅=⋅+=CD CH CD DE CF S =54. 测试41.顶点,与圆相交. 2.该弧所对的,一半. 3.同弧或等弧,相等.4.半圆(或直径),所对的弦. 5.72°,36°,72°,108°.6.90°,30°,60°,120°. 7.60°,120°.8.C . 9.B . 10.A . 11.B . 12.A . 13.C .14.提示:作⊙O 的直径A B ',连结C A '.不难得出A B '=cm.3815.cm.3416.提示:连结AH ,可证得∠H =∠C =∠AFH .17.提示:连结CE .不难得出cm .25=AC18.提示:延长AO 交⊙O 于N ,连结BN ,证∠BAN =∠DAC .19.提示:连结MB ,证∠DMB =∠CMB .测试51.外,上,内. 2.以A 点为圆心,半径为R 的圆A 上.3.连结A ,B 两点的线段垂直平分线上. 4.不在同一直线上的三个点.5.内接三角形,外接圆,外心,三边的垂直平分线.6.内,外,它的斜边中点处. 7..4332R 8..3π2a 9.26cm . 10.20πcm . 11.略. 12.C . 13.D . 14.D . 15.B . 16.D .17.A 点在⊙O 内,B 点在⊙O 外,C 点在⊙O 上. 18.)25,1(--,作图略.测试61.D . 2.C . 3.C . 4.C . 5.D . 6.C . 7.72°.8.32°. 9.,cm 21045° 10.60°或120°. 11.提示:先证OD =OE . 12.4cm . 13.)0,32(A ,提示:连结AD . 14.略.15.∠CAD =30°,.πcm 6)(π6122==AO S 提示:连结OC 、CD . 测试71.三,相离、相切、相交.2.有两个公共点,圆的割线;有一个公共点,圆的切线,切点;没有公共点.3.d >r ;d =r ;d <r .4.圆的切线垂直于过切点的半径.5.经过半径的外端并且垂直于这条半径的直线是圆的切线.6.过A 点且与直线l 垂直的直线上(A 点除外).7.(1)当cm 13600<<R 时;(2)cm 1360=R ;(3)当cm 1360>R 时. 8.提示:作PF ⊥OB 于F 点.证明PF =PE .9.直线DE 与⊙O 相切.提示:连结OA ,延长AO 交⊙O 于F ,连结CF .10.提示:连结OE 、OD .设OE 交BC 于F ,则有OE ⊥BC .可利用∠FEM +∠FME =90°.证∠ODA =90°.11.提示:连结OF ,FC .12.BC 与半圆O 相切.提示:作OH ⊥BC 于H .证明.21EF OH = 13.提示:连结OE ,先证OE ∥AC .14.BC =AC .提示:连结OE ,证∠B =∠A .15.直线PB 与⊙O 相切.提示:连结OA ,证ΔP AO ≌ΔPBO .16.8cm .提示:连结OA .测试81.这点和切点之间的线段的长.2.两,切线长,圆心的连线,两条切线的夹角.3.这个三角形的三边的距离.4.与三角形各边都相切,三角形三条角平分线的交点,内心.5.1∶2∶32. 6.116°. 7.提示:连线OC ,OE .8.略. 9.略. 10.(1)70°;(2)20cm .11.(1)r =3cm ; (2)c b a ab r ++=(或2c b a r -+=,因为2c b a c b a ab -+=++). 12.).(21c b a r S ++= 13.提示:由BOC A ∠=+∠o 9021,可得∠A =30°,从而BC =10cm ,cm 310=AC . 测试91.B . 2.B . 3.A . 4.C . 5.D .6.15πcm 2. 7.(1)相切;(2)∠BCD =∠BAC . 8.70°.9.(1)略; (2)连结OD ,证OD ∥AC ; (3).325=DE 10.(1)△DCE 是等腰三角形; (2)提示:可得3==BC CE .11.(1)略; (2)AO =2.测试10 1.公共点,外部,内部.2.只有一个公共点,切点,外部,内部.3.有两个公共点,交点,公共弦.4.d >r 1+r 2; d =r 1+r 2; r 1-r 2<d <r 1+r 2; d =r 1-r 2;0≤d <r 1-r 2; d =0.5.C . 6.C . 7.2或4 8.4.(d 在2<d <14的范围内均可)9.提示:分别连结O 1A 、O 1B 、O 2A 、O 2B .。

【新华东师大版】九年级数学上册:第24章《圆》教案合集

【新华东师大版】九年级数学上册:第24章《圆》教案合集

24.1测量教学目标:利用前面学习的相似三角形的有关知识,探索测量距离的几种方法,初步接触直角三角形的边角关系。

教学重点:探索测量距离的几种方法。

教学难点:选择适当的方法测量物体的高度或长度。

教学过程: 一、复习引入:当你走进学校,仰头望着操场旗杆上高高飘扬的五星红旗时,你也许想知道操场旗杆有多高?我们知道可以利用相似三角形的对应边,首先请同学量出太阳下自己的影子长度,旗杆的影子长度,再根据自己的身高,计算出旗杆的高度。

如果在阴天,你一个人能测量出旗杆的高度吗? 二、新课探究:例1如图所示,站在离旗杆BE 底部10米处的D 点,目测旗杆的顶部,视线AB 与水平线的夹角∠BAC=34°,并已知目高AD 为1米。

现在请你按1:500的比例得△ABC 画在纸上,并记为△A 1B 1C 1,用刻度尺量出纸上B 1C 1的长度,便可以算出旗杆的实际高度。

你知道计算的方法吗?解:∵△ABC ∽△A 1B 2C 3, ∴AC:A 1C 1=BC:B 1C 1=500:1∴只要用刻度尺量出纸上B 1C 1的长度,就可以计算出BC 的长度,加上AD 长即为旗杆的高度。

若量得B 1C 1=a ㎝,则BC=500a ㎝=5a ㎝。

故旗杆高(1+5a)m.说明:利用相似三角形的性质测量物体高度或宽度时,关键是构造和实物相似的三角形,且能直接测量出这个三角形各条线段的长,再列式计算出实物的高或宽等。

例2为了测出旗杆的高度,设计了如图所示的三种方案,并测得图(a)中BO=6m,OD=3.4m,CD=1.7m 图(b)中CD=1m,FD=0.6m,EB=1.8m 图(c)中BD=9m,EF=0.2;此人的臂长为0.6m 。

⑴说明其中运用的主要知识;⑵分别计算出旗杆的高度。

(a ) (b ) (c )分析:图(a)和图(c)都运用了相似三角形对应边成比例的性质,图(b)运用了同一时刻的物高与影长成正比的性质。

解:(a )∵△AOB ∽△COD,∴OD OB CDAB=即4.367.1=AB∴AB=3(m).EDC BA 111CB AODCBAFEDCBAFEB CDA(b )∵同一时刻物高与影长成正比,∴DFCD BEAB =即6.018.1=AB∴AB=3(m).(c )∵△CEF ∽△CAB ∴BD FG ABEF=即96.02.0=AB∴AB=3(m).方法技巧:测量物体的高度可利用自己的身高、臂长等长度结合相似形的性质求出物高,也可以运用同一时刻的物高与影长成正比的性质测量物体的高度。

【新华东师大版】九年级数学上册:第24章《圆》教案+导学案合集(含答案)

【新华东师大版】九年级数学上册:第24章《圆》教案+导学案合集(含答案)

24.1测量教学目标:利用前面学习的相似三角形的有关知识,探索测量距离的几种方法,初步接触直角三角形的边角关系。

教学重点:探索测量距离的几种方法。

教学难点:选择适当的方法测量物体的高度或长度。

教学过程:一、复习引入:当你走进学校,仰头望着操场旗杆上高高飘扬的五星红旗时,你也许想知道操场旗杆有多高?我们知道可以利用相似三角形的对应边,首先请同学量出太阳下自己的影子长度,旗杆的影子长度,再根据自己的身高,计算出旗杆的高度。

如果在阴天,你一个人能测量出旗杆的高度吗?二、新课探究:例1如图所示,站在离旗杆BE 底部10米处的D 点,目测旗杆的顶部,视线AB 与水平线的夹角∠BAC=34°,并已知目高AD 为1米。

现在请你按1:500的比例得△ABC 画在纸上,并记为△A 1B 1C 1,用刻度尺量出纸上B 1C 1的长度,便可以算出旗杆的实际高度。

你知道计算的方法吗?解:∵△ABC ∽△A 1B 2C 3, ∴AC:A 1C 1=BC:B 1C 1=500:1∴只要用刻度尺量出纸上B 1C 1的长度,就可以计算出BC 的长度,加上AD 长即为旗杆的高度。

若量得B 1C 1=a ㎝,则BC=500a ㎝=5a ㎝。

故旗杆高(1+5a)m.说明:利用相似三角形的性质测量物体高度或宽度时,关键是构造和实物相似的三角形,且能直接测量出这个三角形各条线段的长,再列式计算出实物的高或宽等。

例2为了测出旗杆的高度,设计了如图所示的三种方案,并测得图(a)中BO=6m ,OD=3.4m ,CD=1.7m 图(b)中CD=1m ,FD=0.6m ,EB=1.8m 图(c)中BD=9m ,EF=0.2;此人的臂长为0.6m 。

⑴说明其中运用的主要知识;⑵分别计算出旗杆的高度。

(a ) (b ) (c ) 分析:图(a)和图(c)都运用了相似三角形对应边成比例的性质,图(b)运用了同一时刻的物高与影长成正比的性质。

九年级数学上册24.1.1圆(导学案)

九年级数学上册24.1.1圆(导学案)

第二十四章圆24.1 圆的有关性质24.1.1 圆——圆的有关看法一、新课导入1.导入课题:情形:察看教材第78、 79 页的图片,赏识圆形实物,抽象出圆的模型.问题:车轮为何要做成圆形而不做成方形的呢?由此导入新课.(板书课题 )2.学习目标:(1)能表达圆的描绘性定义和会合看法定义.(2)知道弦、直径、弧、半圆、等圆、等弧的意义,并能联合图形描绘它们.3.学习重、难点:要点:圆的定义以及弧与半圆、弦与直径之间的关系.难点:圆的会合看法的理解.二、分层学习1.自学指导:(1)自学内容:教材第79 页到第 80 页的例 1.(2)自学时间: 10 分钟 .(3)自学方法:看书、察看,并着手操作、思虑、概括.(4)自学参照纲要:①按课本图— 2 的方式着手画圆,体验圆的形成过程:线段OA 绕它固定的一个端点O 旋转一周,另一个端点 A 所形成的图形叫做圆,这个固定的端点O 叫做圆心,线段OA 叫做半径,以O 为圆心的圆记作⊙O,读作圆O.②⊙ O 上的任一点到圆心O( 定点 )的距离等于半径(定长 ),反过来,到圆心(定点 )的距离等于半径(定长 )的点都在同一个圆上,即圆是全部到定点O 的距离等于定长r 的点的会合.③车轮做成圆形依照的就是轮子上全部点到轮轴的距离都相等.④如安在操场上画一个半径是5m 的圆?说出你的做法.拿一根 5m 长的绳索,站定一端当成圆的圆心,再让另一个人拉紧绳索的另一端,绕着走一圈,所走的轨迹就是半径为5m 的圆 .⑤以例 1 为例说明如何证明几个点在同一个圆上.分别证明这几个点到圆心的距离等于半径即可.2.自学:学生联合自学指导进行自学.3.助学:(1)师助生:①了然学情:了然学生对圆的两种定义的学习状况.②差别指导:从圆的描绘性定义中抽象出圆的会合看法定义.(2)生助生:生生互动沟通、商讨.4.加强:(1)圆的定义 .(2)证明几个点在同一个圆上:证明这几个点到某一个点的距离都相等即可.(3)练习:你见过树的年轮吗?从树木的年轮,能够知道树木的年纪,把树木的横截面当作是圆形的,假如一棵20 年树龄的树的树干直径是23cm,这棵树的半径均匀每年增添多少?解: 23÷2÷20=0.575(cm)答:这棵树的半径均匀每年增添0.575cm.1.自学指导:(1)自学内容:教材第80 页例 1 下边部分的内容.(2)自学时间: 5 分钟 .(3)自学方法:阅读、剖析、理解课文.(4)自学参照纲要:①弦与直径有何关系?半径是弦吗?经过圆心的弦叫做直径.半径不是弦 .②什么是弧?什么是半圆?圆上随意两点间的部分叫做弧.圆的随意一条直径的两个端点把圆分红两条弧,每一条弧都叫做半圆.大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.③能够重合的两个圆叫做等圆,在同圆或等圆中,能够相互重合的弧叫做等弧.④用几何符号表示右图中全部的弦和弧.弦: AB 、 AC;弧:2.自学:学生联合自学指导进行自学.3.助学:(1)师助生:①了然学情:了然学生对这些看法的理解状况,可否联合图形正确表示它们.②差别指导:依据学情进行看法辨析指导.(2)生助生:小组内相互沟通、校正.4.加强:(1) 重申半径和直径 .(2) 等弧为何一定在“同圆或等圆中”?解:不在同圆或等圆中的弧不行能重合.(3) 练习:判断以下说法能否正确:(对的打“√”,错的打“×”)①弦是直径 ( ×)②直径是弦(√)③直径是圆中最长的弦(√)④弧是半圆(×)⑤半圆是弧 (√)⑥同圆中,优弧与劣弧的差是半圆( ×)⑦长度相等的弧是等弧( ×)⑧两个半圆是等弧( ×)三、评论1.学生的自我评论( 环绕三维目标 ):各小组代表总结学习收获和存在的问题与疑点.2.教师对学生的评论:(1)表现性评论:对学生在学习过程中的态度、方法、收效和存在的不足进行评论.(2)纸笔评论:讲堂评论检测.3.教师的自我评论( 教课反省 ):本节课是从学生感觉生活中圆的应用开始,到经过学生动手画圆,培育学生着手、动脑习惯,在操作过程中察看圆的特色,加深对所学知识的认识,并运用所学知识解决实质问题,体验应用知识的成就感,激发他们学习的兴趣.(时间: 12 分钟满分: 100 分)一、基础稳固(70 分)1.(10 分 )以下说法正确的选项是 (D)A. 直径是弦,弦是直径B.半圆是弧,弧是半圆C. 弦是圆上两点之间的部分D.半径不是弦,直径是最长的弦2.(10 分 )以下说法中,不正确的选项是(D)A .过圆心的弦是圆的直径B .等弧的长度必定相等C.周长相等的两个圆是等圆 D .长度相等的两条弧是等弧3.(10 分 )一个圆的最大弦长是 10cm,则此圆的半径是 5 cm.4.(10 分 ) 在同一平面内与已知点 A 的距离等于 5cm 的全部点所构成的图形是圆 .5.(10 分 )如右图,以 AB 为直径的半圆 O 上有两点 D、 E, ED 与BA 的延长线订交于点 C,且有 DC=OE ,若∠ C=20°,则∠ EOB 的度数是 60°.6.(20 分 )已知:如图,在⊙ O 中, AB 为弦, C、D 两点在 AB 上,且 AC=BD .求证: OC=OD .证明:∵ OA 、 OB 为⊙ O 的半径,∴OA=OB. ∴∠ A= ∠ B.又∵ AC=BD ,∴△ ACO ≌△ BDO.∴OC=OD.二、综合应用(20 分)7.(20 分 )已知:如图,在△ABC 中,∠ C=90°,求证: A、 B、 C 三点在同一个圆上.证明:作 AB 的中点 O,连结 OC.∵△ ABC 是直角三角形 .∴OA=OB=OC=12AB.∴A 、 B、 C 三点在同一个圆上 .三、拓展延长(10 分)8.(10 分 ) 求证:直径是圆中最长的弦.证明:如图,在⊙O 中, AB 是⊙ O 的直径,半径是r.CD 是不一样于AB 的随意一条弦 .连结 OC、OD ,则 OA+OB=OC+OD=2r, 即 AB=OC+OD.在△ OCD 中,OC+OD >CD,∴AB >CD.即直径是圆中最长的弦.。

九年级数学上册导学案第二十四章圆24.1.1圆

九年级数学上册导学案第二十四章圆24.1.1圆

导学案圆【学习目标】1、掌握圆的定义,理解弧,半圆,弦,直径,等圆,等弧,优弧,劣弧等有关概念2、通过探究、交流、反思等活动获得圆的有关定义,经历探索圆及其相关结论的过程,发展学生的数学思考能力【课前预习】1.下列四个命题:①直径是弦;②经过三个点确定一个圆;③正六边形是轴对称图形;④等弧所对的圆周角相等.其中正确的有()A.1个B.2个C.3个D.4个2.下列命题错误..的是( )A.经过三个点一定可以作圆B.经过切点且垂直于切线的直线必经过圆心C.同圆或等圆中,相等的圆心角所对的弧相等D.三角形的外心到三角形各顶点的距离相等3.下列说法中正确的是()A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦4.下列语句中,不正确的个数是()①直径是弦;②弧是半圆;③长度相等的弧是等弧;④经过圆内一定点可以作无数条直径.A.1个B.2个C.3个D.4个5.下列四个命题:①直径是弦;②经过三个点一定可以作圆;③正六边形是轴对称图形.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在半圆的直径上作4个正三角形,如这半圆周长为C1,这4个正三角形的周长和为C2,则C1和C2的大小关系是()A .C 1>C 2B .C 1<C 2 C .C 1=C 2D .不能确定7.如图,AB 是⊙O 的直径,C ,D 是⊙O 上两点,且CD =CB ,CD 与AB 交于点E ,连接OD ,若∠AOD =80°,则∠B 的度数是( )A .20°B .25°C .30°D .35°8.如图,已知BC 是⊙O 的直径,半径OA ⊥BC ,点D 在劣弧AC 上(不与点A ,点C 重合),BD 与OA 交于点E .设∠AED =α,∠COD =β,则( )A .3α+β=180°B .2α+β=180°C .3α﹣β=90°D .2α﹣β=90°9.如图,已知直线5-512y x =与x 轴、y 轴分别交于B 、C 两点,点A 是以D (0,2)为圆心,2为半径的⊙D 上的一个动点,连接AC 、AB ,则)ABC 面积的最小值是( )A .30B .29C .28D .27 10.如图,AB 是O 的直径,点C 、D 在O 上,110BOC ∠=°,//AD OC ,则AOD ∠=( )A .70°B .60°C .50°D .40°【学习探究】自主学习阅读课本,完成下列问题一)作圆,标明圆心、半径,体会圆的形成过程。

九年级数学上册 24.1.1 圆导学案(含解析)(新版)新人教

九年级数学上册 24.1.1 圆导学案(含解析)(新版)新人教

圆一、新课导入1、圆是我们生活中常见的图形,你能列举出日常生活中有什么物体是圆形吗?2、对于圆,你了解它哪些方面的知识?你能画一个圆吗?二、学习目标1、掌握圆、弦、直径、弧、优弧、劣弧、半圆的概念。

2、能用符号表示圆、优弧、劣弧。

三、研读课本认真阅读课本的内容,完成以下练习。

(一)划出你认为重点的语句。

(二)完成下面练习,并体验知识点的形成过程。

研读一、认真阅读课本要求:知道圆的定义,掌握圆心、半径,会用符号表示圆。

一边阅读一边完成检测一。

检测练习一、1、如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。

2、线段OA叫圆的半径,点O叫做圆心。

3、圆的符号用⊙表示,圆心是O的圆表示为⊙O,读作圆O.完成尝试应用(1)圆上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.圆是所有到定点O的距离等于定长r的点组成的图形.5、如图,四边形ABCD是正方形,对角线AC、BD交于点O.求证:点A、B、C、D在以O为圆心的圆上.证明:∵四边形ABCD是正方形,∴OA=OB=OC=OD,∵到定点的距离等于定长的点在以定点为圆心的圆上,∴点A、B、C、D在以点O为圆心的圆上.研读二、认真阅读课本要求:理解弦、直径的关系,掌握弧、半圆、优弧、劣弧的定义;会用符号表示弧。

一边阅读一边完成检测二。

检测练习二、6、连接圆上任意两点的线段叫做弦;直径是最长的弦。

7、如下图所示,圆上两点之间的部分叫做圆弧,简称弧;弧的符号是“⌒”。

8、直径把圆分成两个半圆,小于半圆的弧叫劣弧,用表示弧的两个端点的字母表示,例如:AC,读作弧AC;9、大于半圆的弧叫优弧,用表示弧的两个端点的字母和和表示弧上的一个点的字母表求,例如:ABC,读作弧ABC。

结论:直径是最长的弦;半圆也是弧,直径把一个圆分成了两个半圆.研读三、什么样的圆是等圆?什么样的弧是等弧?能够重合的两个圆是等圆;半径相等的圆是等圆;如果两个圆是等圆,那么这两个圆的半径相等。

数学九年级上册第二十四章圆导学案

数学九年级上册第二十四章圆导学案

圆的有关概念圆心角:顶点在圆心的角圆周角:顶点在圆上,并且两边都与圆相交的角圆旋转不变性:绕圆心旋转任意角度,都与自身重合圆的有关性质轴对称性:对称轴有无数条,是直径所在的直线圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角是圆心角的一半垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧新课导引2012年7月27日第三十届奥林匹克运动会将在伦敦隆重开幕,世界各国人民都将目光聚焦在伦敦,下面是几个参加奥运会的国家的国旗,你能观察出它们有什么共同的特征吗?【问题探究】这几面国旗的共同特征不能仅从一个角度去考虑,角度不同,得到的答案也不同,但从几何图形这一角度考虑,易于得出结论.【解析】这几面国旗的共同特征中,最明显的是都有圆形图案.教材精华知识点1 圆的有关概念圆:如图24—l所示,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“O”,读作“圆O”.拓展(1)圆上各点到圆心的距离都等于半径.(2)到圆心的距离等于半径的点都在圆上.(3)圆可以看做是到定点的距离等于定长的点的集合.(4)圆是一条封闭的曲线,是指圆周而不是指圆面,圆由圆心确定位置,由半径确定大小.弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.如图24—2所示,线段AB,AC,BC都是O的弦,且线段AB是O的直径.拓展(1)弦是一条线段,它的两个端点都在圆上.(2)直径是弦,但弦不一定是直径,直径是圆中最长的弦.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A,B为端点的弧记作AB,读作“圆弧AB”或“弧AB”.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.如图24—3所示,像AB,BC,这样小于半圆的圆弧叫做劣弧,像BAC这样大于半圆的圆弧叫做优弧,一般用弧的两个端点及弧上的任一点(放在中间)表示,有时在优弧的中间标一个小写字母m,记为优弧BmC.等圆:能够重合的两个圆叫做等圆.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.实质上,等弧是全等的,不仅弧长相等,形状大小也一样.知识点2圆的对称性圆既是中心对称图形,又是轴对称图形.在O中,将圆周绕圆心O旋转180 ,能与自身重合,因此它是中心对称图形,它的对称中心是圆心O.将圆周绕圆心O旋转任意一个角度,都能与自身重合.经过圆心O画任意一条直线,并沿此直线将O对折,直线两旁的部分能够完全重合,所以圆是轴对称图形,每一条直径所在的直线都是它的对称轴,因为圆有无数条直径,所以圆有无数条对称轴.拓展因为圆是轴对称图形,所以在圆内任意作一条直径就可以把圆2等分,作两条互相垂直的直径就可以把圆4等分,再作两条互相垂直的直径的两组对角的平分线,可以把圆8等分,进而进行16等分、32等分……如图24—4所示.知识点3 垂直于弦的直径(垂径)定理垂直于弦的直径平分弦,并且平分弦所对的两条弧.拓展(1)由垂径定理可以得到以下结论:①若直径垂直于弦,则直径平分弦及其所对的两条弧.②平分弦(不是直径)的直径垂直于弦,且平分弦所对的两条弧.③垂直且平分一条弦的线段是直径.④连接弦所对的两弧的中点的线段是直径.(2)利用垂径定理及其推论可以证明平分弧,平分弦,证垂直,证一条线段是直径.(3)利用垂径定理的推论,可以确定圆心的位置:在圆中找出两条不平行的弦,分别作两弦的垂直平分线,两条垂直平分线的交点即是圆心.(4)由于垂直于弦的直径平分弦,所以可以在圆中构造直角三角形,利用勾股定理列方程求弦长(或半径).知识点4 圆心角圆心角:顶点在圆心的角叫做圆心角.在同圆或等圆中,圆心角、弧、弦之间的关系.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.在同圆或等圆中:(1)如果圆心角相等,那么它们所对的弧相等,所对的弦相等,(2)如果弧相等,那么它们所对的圆心角相等,所对的弦相等,(3)如果弦相等,那么它们所对的圆心角相等,圆心角所对的弧相等.拓展(1)圆心角、弦、弧之间的关系的结论必须是在同圆或等圆中才能成立.(2)利用同圆(或等圆)中圆心角、弦、弧之间的关系可以证明角、弦或弧相等.知识点5圆周角圆周角:顶点在圆上,并且两边都与圆相交的角叫做圆周角.圆周角的性质:1、在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2、半圆(直径)所对的圆周是直角;90°的圆周角所对的弦是圆的直径.拓展此性质介绍了一种常见的引辅助线的方法:有直径,通常构造直径所对的圆周角;反过来,有90 的圆周角,通常构造直径.3、在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧相等.拓展“同弧或等弧所对的圆周角相等”常用来证明两角相等或进行角的转换,将一个圆周角转换为同弧所对的其他圆周角,从而达到解题的目的.知识点6 圆内接多边形(1)如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.(2)圆内接四边形的性质:圆内接四边形的对角互补.探究交流1、下列说法正确吗?为什么?①直径是弦,弦也是直径.②半圆是弧,弧也是半圆.③两条等弧的长度相等,长度相等的弧是等弧.解析①②③都不正确.直径是过圆心的弦,但弦不一定是直径,半圆是一条特殊的弧,但弧不一定是半圆,等弧是指在同圆或等圆中,能够互相重合的弧,它们的长度相等,形状大小一样,但长度相等的弧,只确定了长度相等,形状表必相同,所以不一定是等弧.2、下列说法正确吗?为什么?①过弦的中点的直线平分弦所对的两条弧;②弦的垂线平分它所对的两条弧;③过弦的中点的直径平分弦所对的两条弧;④垂直于弦的直径平分弦所对的两条弧.解析①②③都不对,过弦的中点且垂直于弦的直径平分弦所对的两条弧.①中缺少垂直于弦的条件;②中缺少平分弦的条件;③中“过弦的中点”中的弦一定要强调“不是直径”,否则不对.只有④正确.课堂检测基本概念题1、下列命题正确的有()①顶点在圆周上的角为圆周角;②顶点在圆心的角为圆心角;③弦是直径;④直径是弦;⑤半圆是弧,但弧不一定是半圆;⑥圆的对称轴是它的直径.A.2个B.3个C.4个D.5个基础知识应用题=,那么AB与CD的关系是()2、在同圆或等圆中,如果AB CDA.AB>C DB.AB CD=C.AB CD=AB CD< D.23、如图所示,已知AB是O的直径,弦CD与AB相交于点⊥.(填写一个你认为适当的条件)E,当时,CD AB4、如图所示,AB为O的直径,从圆上一点C作弦CD AB∠的平分线⊥,OCD交O于点P,求证AP BP=.综合应用题5、如图所示,在O中,AB为弦,OC ABAO=,3OC=,则⊥,垂足为C,若5弦AB的长为( )A.10 B.8 C.6 D.46、如图所示,一圆弧形门拱的拱高AB为1 m,跨度CD为4m,这个门拱的半径为m.探索创新题7、如图所示,AD BC ⊥于点D ,且5,3,2,AC CD AB ===则O 的直径等于____.体验中考1、若O 的半径为4cm,点A 到圆心O 的距离为3cm ,则点A 与O 的位置关系是 ( )A.点A 在圆内B.点A 在圆上C.点A 在圆外D. 不能确定2、如图所示,在ABC 中,AB 为O 的直径,60,70B C ∠=︒∠=︒,则BOD ∠的度数是 度.3、如图所示,AB 是O 的直径,,C D 是O 上的两点,且.AC CD =(1)求证//OC BD ;(2)若BC 将四边形OBDC 分成面积相等的两个三角形,试确定四边形OBDC 的形状.学后反思附: 课堂检测及体验中考答案课堂检测1、B 本题主要考查圆的有关概念.根据圆周角的定义,顶点在圆周上,两边与圆相交的角为圆周角,两个条件缺一不可,故①错误;由圆心角的定义可知②正确;由弦、弧、直径及半圆的定义易知③错误,④⑤均是正确的;圆的对称轴为其直径所在的直线,故⑥错误.故选B.2、 B 本题主要考查的是同圆或等圆中弧与弦的关系.在同圆或等圆中,若两条弧相等,则它们所对的圆心角相等,所对的弦相等,所以AB CD =.故选B.3、分析 本题考查垂径定理的应用,根据圆的对称性,若AB CD ⊥,则将O 沿AB 对折,可知点C 与点D 重合,所以有CE DE =,AC AD =,BC BD =,反之也对,填上一个即可.4、分析 本题考查垂径定理的应用,连接OP ,证弧相等,只需证明OP 垂直平分AB 即可.证明: 连接OP ,,.OC OP OCP OPC =∴∠=∠ CP 是OCD ∠的平分线,.DCP OCP ∴∠=∠.//.OPC DCP OP CD ∴∠=∠∴又,.CD AB OP AB ⊥∴⊥又,OA OB OP =∴垂直平分ABAP BP ∴=.【解题策略】 本题是利用垂径定理证明弧相等,垂径定理是证弧相等的常用方法之一.5、分析 本题主要考查垂径定理的应用.解答此题的关键是对“OC AB ⊥”的理解.OC 经过圆心且垂直于弦AB ,由垂径定理可知12AC BC AB ==,由勾股定理,得4AC ===所以28AB AC ==.故选B .规律·方法 (1)在关于“垂直于弦的直径”的题目中,很多情况下不直接给出直径,而只给出直径的一部分,如半径或圆心到弦的距离等,此时要注意灵活运用.(2)圆心到弦的距离叫做弦心距,弦心距是圆中联系直径(半径)和弦的重要纽带,同时也是一条十分重要的辅助线.6、分析 本题主要考查的是垂径定理在实际问题中的应用.解答本题的关键是理解题中的“拱高”和“跨度”,拱高是指弧的中点到弦的中点的线段长,跨度是指弦长,根据垂径定理及其相关结论“平分弦且平分弦所对的一条弧的直线垂直于弦并且过圆心”,需利用圆的半径及弦心距,故设CD 所在的圆的圆心为O ,连接,OC OB ,则OBC 为直角三角形,,,A B O 三点共线,且12BC CD ==2m ,设半径为x m ,那么(1)OB x =-m ,利用勾股定理,得222OC OB BC =+,即222(1)2x x =-+,解得 2.5x =,即门拱的半径为2.5 m .故填2.5.【解题策略】(1)图中由CD 及弦CD 围成的图形叫弓形,AB 是弓形的高.(2)在解答有关弓形的问题时,常利用解直角三角形的方法求解,所以首先应找到弓形的弧所在的圆的圆心,然后利用垂径定理与勾股定理等求半径、弦长的一半和圆心到弦的距离.7、分析 由AD BC ⊥可知ADC 为直角三角形,又知5,3,AC CD ==所以4,AD =又由AB =4BD =,从而得出ABD 是等腰直角三角形,所以45B ∠=︒,所以AC 所对的圆心角为90︒,若连接,OA OC ,则OAC 是等腰直角三角形,且斜边5AC =,通过勾股定理可求出半径OA OC ==,所以O 的直径为故填体验中考1、A 分析 本题考查点和圆的位置关系,由于点A 到圆心的距离小于半径,所以点A 在O 内.故选A .2、100分析 本题综合考查三角形内角和定理及同圆中同弧所对的圆心角、圆周角的关系,由60,70B C ∠=︒∠=︒,可知50A ∠=︒,由同圆或等圆中同弧所对的圆周角等于这条弧所对的圆心角的一半可知2250100BOD A ∠=∠=⨯︒=︒.故填100.3、分析 本题考查弦、弧以及圆周角、圆心角之间的关系.证明:(1),AC CD =∴弧AC 与弧CD 相等,.ABC CBD ∴∠=∠又,,OC OB OCB OBC =∴∠=∠,//.OCB CBD OC BD ∴∠=∠∴解:(2)由(1)知//,OC BD 不防设平行线OC 与BD 间的距离为h , 又O 11,22BC DBC S OC h S BD h =⨯=⨯, BC 将四边形OBDC 分成面积相等的两个三角形,即OBC DBC S S =,,OC BD ∴=∴四边形OBDC 为平行四边形.又,OC OB =∴四边形OBDC 为菱形.【解题策略】 本题利用了相等的弦所对应的劣弧相等,相等的弧所对的圆周角相等这一性质,还利用了“面积相等的两个三角形,若它们的高相等,则它们的底边长相等”这一性质证线段相等.24.2 点、直线的位置关系学习目标、重点、难点【学习目标】1、掌握点与圆的位置关系(点P 在圆外、圆上、圆内)及形成条件;2、掌握直线与圆的位置关系(相离、相切、相交)及形成条件;3、掌握并能灵活运用切线的判定和性质、切线长定理;;【重点难点】1、掌握点与圆的位置关系(点P在圆外、圆上、圆内)及形成条件;2、掌握直线与圆的位置关系(相离、相切、相交)及形成条件;3、掌握并能灵活运用切线的判定和性质、切线长定理;知识概览图①点P d>r点与圆的位置关系②点P d=r③点P d<rd>r切线的判定和性质:经过半径外端且垂直于这条半径的直线是圆的切线,圆的切线垂直于过切点的半径直线与圆的位置关系d=r切线长定理:从圆外一点外圆的两与圆有关的 条切线,它们的切线位置关系 长相等,这一点与 圆心的连线平分两切线的夹角③相交 d <r外离 d >12r r + ①相离 内含 d <12r r +(2r >1r ) 外切 d =12r r +圆与圆的位置关系(附加) ②相切 内切 d =21r r -(2r >1r ) ③相交 21r r -<d <12r r +(2r ≥1r )新课导引奥运五环中的五个圆之间有怎样的位置关系呢?在射击靶上,射击弹着点与靶上各圆上之间存在几种位置关系呢?还有哪些图形与圆之间存在一定的位置关系?【解析】 奥运五环中的五个圆有相交,也有相离,射击弹着点可能在某个圆内,也可能在圆周上,还可能在圆外,我们常研究的有点与圆、直线与圆及圆与圆之间的位置关系.教材精华知识点1 点与圆的位置关系点与圆的位置关系有三种,设点到圆心O 的距离为d ,圆的半径为r ,如图24-55所示.点在圆的外部:点到圆心的距离大于半径,1OP d =>r ; 点在圆上:点到圆心的距离等于半径,2OP d ==r ; 点在圆的内部:点到圆心的距离小于半径,3OP d =<r . 在图24-55中,点1P 在圆外,点2P 在圆上,点3P 在圆内.拓展(1)圆心是圆内的特殊点,它到圆上各点的距离都相等.(2)除圆心外,圆内各点与圆上各点的距离都有最大值和最小值,如图24-59所示,过点P 作直径,DE PD 的长是点P 到圆上各点的最长距离,PE 的长是点P 到圆上各点的最短距离.(3)圆外各点到圆上各点的距离也有最大值和最小值.如图24-60所示,连接PO 并延长,交于O 于D ,,E PD 的长是点P 到圆上各点的最短距离,PE 的长是点P 到圆上各点的最长距离.(4)过圆内一点作最长弦与最短弦,如图24-61所示,过圆内一点P 的最长弦是直径AB ,过P 点的最短弦是上述直径垂直的弦DE .不在同一直线上的三个点确定一个圆.拓展 (1)过同一直线上的三点不能作圆,要注意“过三点的圆”中的“三点”不在同一直线上,故“三点确定一个圆”这种说法是不对的.(2)“确定”一词指不仅能作出圆,而且只能作出一个圆,即“有且只有”的意思.知识点2三角形的外接圆三角形的外接圆:经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心.圆的内接三角形:在圆上任取三点首尾顺次连接组成的三角形叫做圆的内接三角形.拓展(1)任意三角形都有且只有一个外接圆.(2)三角形的外心不仅是三角形外接圆的圆心,它还是三角形三条边的垂直平分线的交点,它到三角形各顶点的距离相等.(3)圆的内接三角形有无数个,它可以是任意的锐角三角形、直角三角形、钝角三角形.知识点3 反证法探究交流中证明“过同一直线上的三点不能作圆”的方法与我们以前学过的证明方法不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设过同一直线上的三点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立,这种方法叫做反证法.在某些情形下,反证法是很有效的证明方法.知识点4 直线与圆的位置关系直线与圆的位置关系有三种,设圆心O到直线l的距离为d,O的半径为r,如图(1)(2)(3)所示.相交:直线和圆有两个公共点,这时我们说这条直线和圆相交,这条直线叫做圆的割线,两个公共点是直线与圆的交点.如图(1)所示,直线l与O有两个公共点,A B,此时d<r.相切:直线和圆有一个公共点,这时我们说条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.如图(2)所示,直线l与O有唯一的公共点A,此时d=r.相离:直线和圆设没有公共点,这时我们说条直线和圆相离.如图(3)所示,直线l与O没有公共点,此时d>r.拓展(1)已知一条直线到圆心O的距离为d,O的半径为r.①当d<r时,直线l 与O相交,l是O的割线;②当d=r时,直线l与O相切,l是O的切线;③当d >r时,直线l与O相离.(2)判定直线和圆的位置关系有两个途径:一是通过直线与圆的交点的个数来判定.二是通过圆心到直线的距离与半径的大小来判定.方法一是直观的,方法二是通过计算、推理才能得出结论的.证明时往往用方法二.(3)点(圆心)到直线的距离是指从这点(圆心)向直线所作的垂线段的长度.知识点5 切线切线的判定定理.经过半径的外端并且垂直于这条半径的直线是圆的切线.如图24-65所示,直线l与O相切,切点为点A.拓展(1)判定一条直线是圆的切线的方法:①定义:直线与圆只有一个公共点,则直线是圆的切线.②圆心到直线的距离等于半径,则直线是圆的切线.③切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.(2)利用切线的判定定理需满足两个条件:①经过的外端.②和半径垂直.两个条件缺一不可,否则不一定是切线,如图24-66所示,这里的直线l都不是圆的切线.(3)由切线的判定定理可以得出画切线的准确方法:已知圆心和圆上一点,先画出半径,然后过圆上的点作半径的垂线,即为圆的切线.(4)如果知道圆的切点和切线,可以确定直径,进而确定圆心,只需过切点作切线的垂线,则垂线和圆相交所成的线段即为直径,直径的中点即为圆心.切线的性质定理.圆的切线垂直于过切点的半径.此性质可能用反证法证明如下:如图24-67所示,假设OA与l不垂直,过点O作OM l,垂足为M,根据垂线段最短的性质有OM<OA,这说明圆心O到直线l的距离小于半径OA,于是直线l就要与圆相交,而这与直线l是O的切线矛盾.因此,假设不成立,OA 与直线l垂直.规律方法小结“有切线,连半径,得垂直”,这是已知圆的切线时常用的辅助线的作法.切线长的定义及切线长定理.(1)切线长:经过圆外一点作圆的切线,这点与切点之间的线段的长,叫做这点到圆的切线长.如图24-68所示,P是O外一点,,PA PB是O的切线,PA PB的长为线长.,A B是切点,线段,(2)切线长定理.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.如图24-68所示,从圆外一点P 可以引圆的两条切线,,,PA PB A B 是切点,根据切线长定理,我们知道P ,OA A OB PB ⊥⊥,而,,OA OB OP OP ==所以Rt OAP Rt OBP ≅,所以,PA PB APO BPO =∠=∠.拓展 (1)从圆外任意一点都可以引圆的两条切线,过圆上一点只能引圆的一条切线.(2)由,PA PB 是O 的切线,得出,PA PB APO BPO =∠=∠的结论可以直接运用,不必再证明. (3)在图24-68中,若连接AB ,则不难得出1180,,2AOB APB AOP BOP AOB OP ∠+∠=︒∠=∠=∠垂直平分AB ,这三个结论也可以直接运用.(4)此定理主要用于证明线段相等、角相等及垂直关系,应重点掌握.知识点6 三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.规律方法小结 (1)数形结合思想是数学中常用的思想方法,在很多题目中都配有相应的图形,结合图形探索数量关系是解答许多问题的重要手段,在没有给出图形的问题中,很多情况下要根据题中条件画出尽可能精确的图形,借图形加深对问题的理解,从而加快解决问题的速度.(2)①直线和圆的位置关系和相应概念.直线和圆的 位置关系②三角形内心、外心的比较名称 确定方法图形 性质外心:三角形 外接圆的 圆心三角形三条边的垂直平分线的交点(1)到三个顶点的距离相等;OA OB OC == (2)外心不一定在三角形的内部内心:三角形 内切圆的 圆心三角形三条平分线 的交点(1)到三边的距离相等;OE OF OD == (2),,BO CO AO 分别平分,,ABC ACB BAC ∠∠∠(3)内心一定在三角形的内部探究交流1、经过同一直线上的三个点能作出一个圆吗?解析 假设过同一直线l 上,,A B C 三点可以作一个圆,设这个圆的圆心为P ,如图24-63所示,那么点P 既在线段AB 的垂直平分线1l 上,又在线段BC 的垂直平分线2l 上,即点P 为1l ,2l 的交点,而122,l l l l ⊥⊥,这与“过一点有且只有一条直线与已知直线垂直”矛盾.所以经过同一直线上的三点不能作圆.2、钝角三角形的内切圆心一定在三角形的外部吗?公共点个数 2个 1个 0个d 与r 的关系 d <r d =r d >r 公共点名称 交点 切点 直线名称割线切线解析 三角形的内心一定在三角形的内部,此题易受钝角三角形的外心在三角形的外部的影响.拓展(1)设直角三角形两直角边为,a b ,斜边为c ,内切圆半径为r ,则1()2r a b c =+-.(2)三角形的内心一定在三角形的内部,是三角形三条角平分线的交点,它到三角形各边的距离相等.(3)一个三角形只有一个内切圆.课堂检测基本概念题1、已知O 的半径为5cm ,A 为线段OP 的中点,当OP 满足下列条件时,分别指出点A 与O 的位置关系.(1)OP =6cm ; (2)OP =10cm ; (3)OP =14cm.基础知识应用题2、在平面直角坐标系中,以点(2,1)为圆心、1为半径的圆必与 ( ) A.x 轴相交 B.y 轴相交 C.x 轴相切 D.y 轴相切3、如图27-24所示,两个同心圆中,大圆的弦,AB CD 相等,且AB 与小圆相切于点E .试判断CD 与小圆的位置关系,并说明理由.4、如图所示,ABC 的内切圆O 与BC ,,CA AB 分别相切于点D ,,E F ,且AB =9cm ,14BC =cm ,13CA =cm ,求,BD,AF CE 的长.综合应用题5、如图所示,A 是O 上一点,半径OC 的延长与过点A的直线交于B 点1,.2OC BC AC OB ==(1)求证AB 是O 的切线;(2)若45,2ACD OC ∠=︒=,求弦CD 的长.探索创新题6、(1)如图24-79(1)所示,,OA OB 是O 的两条半径,且OA AB ⊥,点C 是OB 延长线上任意一点,过点C 作CD 切O 于点D ,连接AD 交OC 于点E ,试说明;CD CE =(2)若将图24-79(1)中的半径OB 所在的直线向上平移交OA 于F ,交O 于'B ,其他条件不变,如图24-792(2)所示,那么CD CE =还成立吗?为什么?(3)若将图24-79(1)中的半径OB 所在的直线向上平移到O 外的CF ,点E 是DA 的延长线与CF 的交点,其他条件不变,如图24-79(3)所示,那么上述结论还成立吗?为什么?体验中考1、如果一个圆的半径是8cm ,圆心到一条直线的距离也是8cm ,那么这条直线和这个圆的位置关系是 ( )A.相离B.相交C.相切D.不能确定2、已知1O 和2O 的半径分别为2cm 和3cm ,两圆的圆心距为5cm ,则两圆的位置关系是( )A.外切B.外离C.相交D.内切3、已知圆1O ,圆2O 的半径不相等,圆1O 的半径长为3,若圆2O 上的点A 满足13AO =,则圆1O 与圆2O 的位置关系是 ( )A.相交或相切B.相切或相离C. 相交或内含D.相切或内含4、如图所示,王在爷家屋后有一块长12m 、宽8m 的矩形空地,他在以BC 为直径的半圆内种菜,他家养的一只羊平时拴在A 处,为了不让羊吃到菜,拴羊的绳长可以选用 ( )A.3mB. 5mC. 7mD. 9m5、如图所示,小圆的圆心在原点,半径为3,大圆的圆心坐标为(,0a),半径为5.如果两圆内含,那么a的取值范围是.学后反思附: 课堂检测及体验中考答案课堂检测1、解:因为A 为线段OP 的中点,所以OA =12OP . (1)当OP =6cm 时,OA =3cm <5cm ,点A 在O 内部.(2)当OP =10cm 时,OA =5cm ,点A 在O 上.(3)当OP =14cm 时,OA =7cm >5cm ,点A 在O 外部.2、分析 本题主要考查直线与圆的位置关系.解答本题的关键在平面直角坐标系中确定圆心的位置,因为点(2,1)在第一象限,到y 轴的距离为2,到x 轴的距离为1,如图24-72所示,所以这个圆与x 轴相切.故选C .3、分析 由图可以看出CD 与小圆相切,关键是怎样证相切,目前条件下不知道CD 与小圆是否有公共点.这种情况下,可以先过O 作CD 的垂线段,然后证明垂线段,然后证明垂线段正好是半径,这样就可以利用切线的判定定理得出结论.解:CD 是小圆的切线.理由:连接OE ,过O 作OF CD ⊥于点F . AB 切于小圆于点E ,.OE AB ∴⊥ ,,,.AB CD OE AB OF CD AE CF =⊥⊥∴=连接,,AO CO 则.AO CO =.,AEO CFO OE OF ∴≅∴=即OF 是小圆的半径.又,OF CD CD ⊥∴是小圆的切线.【解题策略】 证明直线和圆相切,应选用合适的方法,若知道直线与圆有公共点,则可连半径证垂直.若不知道直线与圆有无公共点,则采用作垂线段,证垂线段是半径的方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.1测量教学目标:利用前面学习的相似三角形的有关知识,探索测量距离的几种方法,初步接触直角三角形的边角关系。

教学重点:探索测量距离的几种方法。

教学难点:选择适当的方法测量物体的高度或长度。

教学过程:一、复习引入:当你走进学校,仰头望着操场旗杆上高高飘扬的五星红旗时,你也许想知道操场旗杆有多高?我们知道可以利用相似三角形的对应边,首先请同学量出太阳下自己的影子长度,旗杆的影子长度,再根据自己的身高,计算出旗杆的高度。

如果在阴天,你一个人能测量出旗杆的高度吗?二、新课探究:例1如图所示,站在离旗杆BE 底部10米处的D 点,目测旗杆的顶部,视线AB 与水平线的夹角∠BAC=34°,并已知目高AD 为1米。

现在请你按1:500的比例得△ABC 画在纸上,并记为△A 1B 1C 1,用刻度尺量出纸上B 1C 1的长度,便可以算出旗杆的实际高度。

你知道计算的方法吗?解:∵△ABC ∽△A 1B 2C 3, ∴AC:A 1C 1=BC:B 1C 1=500:1∴只要用刻度尺量出纸上B 1C 1的长度,就可以计算出BC 的长度,加上AD 长即为旗杆的高度。

若量得B 1C 1=a ㎝,则BC=500a ㎝=5a ㎝。

故旗杆高(1+5a)m.说明:利用相似三角形的性质测量物体高度或宽度时,关键是构造和实物相似的三角形,且能直接测量出这个三角形各条线段的长,再列式计算出实物的高或宽等。

例2为了测出旗杆的高度,设计了如图所示的三种方案,并测得图(a)中BO=6m ,OD=3.4m ,CD=1.7m 图(b)中CD=1m ,FD=0.6m ,EB=1.8m 图(c)中BD=9m ,EF=0.2;此人的臂长为0.6m 。

⑴说明其中运用的主要知识;⑵分别计算出旗杆的高度。

(a ) (b ) (c ) 分析:图(a)和图(c)都运用了相似三角形对应边成比例的性质,图(b)运用了同一时刻的物高与影长成正比的性质。

解:(a )∵△AOB ∽△COD ,∴OD OB CD AB = 即4.367.1=AB ∴AB=3(m). (b )∵同一时刻物高与影长成正比,∴DF CDBE AB= 即6.018.1=AB ∴AB=3(m).E D C BA111C B A O DC B AF E D C B A F EB C DA(c )∵△CEF ∽△CAB ∴BD FG AB EF = 即96.02.0=AB ∴AB=3(m).方法技巧:测量物体的高度可利用自己的身高、臂长等长度结合相似形的性质求出物高,也可以运用同一时刻的物高与影长成正比的性质测量物体的高度。

三、引申提高:例3。

设计一种方案,测量学校科技楼的高度。

请写出测量的过程,并简要说明这样做的理由。

分析:测量大楼的高度的方法很多,现采用一种方法,利用人的身高和标杆,依据相似三角形三角对应成比例和平行线的性质,可测出大楼的高度。

解答:测量过程如下:1、在地面上立一个标杆,使人眼、杆顶、楼顶在一条直线上。

2、测出CF 、CH 的距离。

、算出KE 的长度。

4、用标杆长度减去人的身高,即DE 的长度。

、由DE ∥AB 得△KDE ∽△KAB 。

又因为相似三角形三边对应成比例,∴KB KE AB DE=。

6、再将刚才测量的数值代入比例式中,计算出AB 的长度。

7、用AB 加上人的身高即得出大楼的高度。

探究点拔:1.选择测量的方法应是切实可行的。

如本题中人眼、杆顶、楼顶在一条直线上(人是站立的)。

2.大楼的高度=AB+人高。

3.测量的过程要清楚,力求每步都有根有据,达到学以至用。

四.巩固练习:1.如图1,要测量A 、B 两点间距离,在O 点设桩,取OA 中点C ,OB 中点D ,测得CD=31.4m求AB 长。

(AB=62.8m)(1) (2) 2. 如图2, 为了测量河的宽度,可以先在河对岸找到一个具有明显标志的点A ,再在所在的一边找到两点B 、C ,使△ABC 构成Rt △。

如果测得BC=50米,∠ABC=73°,试设计一种方法求河的宽度AC 。

(在地面上另作 Rt △A ’B ’C ’,使B ’C ’=5米,∠C ’=Rt ∠,∠B ’=73°,测得 A ’C ’=16.35米,得 AC=16.35米 ).五.课时小结:FC A B O A BCA选择适当的方法测量物体的高度或长度等是新时期素质教育的要求,运用所学相似三角形知识设计测量方案时一定要考虑可行性,力求操作简便,计算简洁,同时注意分析环境、天气等要素。

六.课堂作业:P.101 习题24.1 1、224.1测量课前知识管理(从教材出发,向宝藏纵深)1、利用影长测量物体的高度:在同一时刻物体的高度与影长成正比例,此时测出同一时刻某已知物体的高度和它的影长,估算出测量物体的高度.如图所示,由标杆高1a ,标杆的影长2a ,物体影长3a ,可得231a a a h =,则213a a a h ⋅=.2、测得观察物体的顶部高度的视线与水平方向的夹角为观测点距物体的距离,按某一比例尺画出直角三角形,测得纸上物体的高度h ′,再利用比例尺算得实际高度h .如图所示,测得所画图形中h ′后,用比例尺算出h 的值.3、利用光线反射原理:用一面小镜子反射光线,使观察者的视线通过镜子看到物体的顶点处,测得观察者的目高、观察者与镜子的距离及物体与镜子的距离,计算出物体的高度.如图所示,由观察者的目高1a ,观察者与镜子的距离2a ,物体与镜子的距离3a ,可得231a a a h =,从而有213a a a h ⋅=.名师导学互动(切磋琢磨,方法是制胜的法宝)典例精析类型一:利用影长测量物体高度例1、如图,在同一时刻,小明测得他的影长为1米,距他不远处的一棵槟榔树的影长为5米,已知小明的身高为1.5米,则这棵槟榔树的高是__________米.【解题思路】设槟榔树的高为x米,根据同一时刻物体的高度与影长成正比例可知1.5, 51 x=解得7.5x=米.【解】7.5【方法归纳】由于太阳光可以看作是一束平行线,人和旗杆都是垂直于地面的,所以太阳光线、实物及实物的影子构成的三角形是相似的(在同一时刻).类型二:测量不可到达的两点间的距离例2、如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为米.【解题思路】如图所示,作P E⊥AB,交CD于点F,由题意知:CD=20,AB=50,PF=15,因为两岸是平行的,所以△PCD∽△PAB,根据相似三角形的对应高的比等于相似比得:CD︰AB=PF︰PE,所以20︰50=15︰(15+EF),解得EF=22.5.【解】22.5.【方法归纳】对于一些实际问题,要构建数学模型来解决,本例是把实际问题转化为数学中的三角形的相似,利用相似三角形的性质解决的.类型三:利用镜子反射测量例3、雨后初晴,一学生在运动场上玩耍,从他前面2米远一块小积水处,他看到了旗杆顶端的倒影,如果旗杆底端到积水处的距离为40米,该生眼睛高度为1.5米,那么旗杆的高度是 米.【解题思路】如图所示,设人在A 处,积水为B 处,旗杆为CD ,人的眼部为E ,则由光线反射原理,知∠EBA=∠DBC ,从而△AEB ~△CBD ,故AE CD BA BC =,所以3025.140=⨯=⋅=BA AE BC CD (米).【解】30.类型四:利用标杆测量物体高度例4、如图所示,学校的围墙外有一旗杆AB ,甲在操场上C 处,直立3m 高的竹竿CD ,乙从C处退到E 处恰好看到竹竿顶端D 与旗杆顶端B 重合,量得CE=3m ,乙的眼睛到地面的距离EF=1.5m ,丙在1C 处也直立3m 高的竹竿11C D ,乙从E 处退后6m 到1E 处,恰好看到两根竹竿与旗杆重合,且竹竿顶端1D 与旗杆顶点B 也重合,量得114C E m =,求旗杆AB 的高.【解题思路】本题考查的是相似三角形中比例线段的应用,解题时运用比例式求解. 【解】∵设直线1F F 与AB 、CD 、11C D 分别交于点G 、M 、N ,BG=x ,GM=y . ∵MD//BG,∴△FDM∽△FBG.∴1.53.3x y=+①;又∵1D N //GB ,∴△11F D N ∽△1F BG ,∴1.5463x y =++.② 由①、②联立方程组,求得9,15.x y =⎧⎨=⎩故旗杆AB 的高为9+1.5=10.5(m ).【方法归纳】在本题的计算中要注意不要忽视加上EF的高度。

本题的测量方法是运用相似三角形对应边成比例,从而设出辅助未知数,列出方程组求解.易错警示1、在求物体的高度时容易因考虑不周而出现计算错误.例5、有一位同学想利用树影测量树高,他在某一时刻测得小树高为1米,树影长为0.9米.但当他马上测量大树影长时,因大树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(如图),他先测得地面部分的影长为2.7米,又测得墙上树影高1.2米,求树高多少米?【错解】树的影子长为BC+CD=2.7+1.2=3.9(米).根据同一时刻物体的高度与影长成正比例,可知13.90.9AB=,解得AB=399(米).所以这棵大树的高度为399米.【错因分析】没有明确影子的含义,要注意大树的影子落在墙上的部分CD的长要比它落在地面上的影子会比较长或短一些.也就是说大树的影子并不是BC+CD.过D作DE⊥AB于E,则相当于AE的影长为DE.由同一时刻物体高度与影长成比例可求AE,从而可求AB.【正解】过D作DE⊥AB于E,则10.9AEDE=,即12.70.9AE=,∴AE=3(米).∴AB=AE+EB=3+1.2=4.2(米).2、忽视影子与物体平行例6、教学楼旁边有一棵树,学完相似三角形性质后,数学兴趣小组的同学们想利用树影测量树高.课外活动时在阳光下他们测得一根长为1m的竹竿的影长是0.9m,但当他们马上测量树高时,发现树的影子不全落在地上,有一部分影子落在教学楼的墙壁上(如图1),经过一番争论,小组同学认为继续测量也可以求出树高.他们测得落在地面的影长2.7m,落在墙壁上的影长1.2m,请你和他们一起算一算,树高为多少?【错解】树的影长为1.2+2.7=3.9(米),设树高为x米,则13.90.9x=,解得133x=(米).【错因分析】错在树顶端的影子与树本身平行,该部分影子的长与地面上影子的长不可“同日而语”,如果不仅是被墙挡住,它落在地面上的影子会比较长或短一些,因此,按照这种计算方法,得到的树高会比实际树高低些或高些.【正解】由于太阳光线是平行的,因此ABE A B E '''=∠∠.又因为90AEB A E B '''==∠∠,所以ABE A B E '''△∽△. ::AE A E BE B E ''''=. 2.713(m)0.9BE A E AE B E ''⋅⨯===''. 故3 1.2 4.2(m)CE AE AC =+=+=,即大树高为4.2米.课堂练习评测(检验学习效果的时候到了,快试试身手吧)1、在比例尺是1:38000的南京交通游览图上,玄武湖公园与雨花台烈士陵园之间的距离约为20厘米,则它们之间的实际距离约为( ).A 、1900厘米B 、0.76千米C 、1.9千米D 、7.6千米2、如图,PA 为旗杆PQ 的影子,小明站在A 处,AC 为小明的影子,在同一时刻,测得PA=20米,AC=2米,如果小明身高AB=1.6米,则旗杆PQ 的高度是( )A.20米B. 16米C.21.6米D.18米3、星期天小川和他爸爸到公园散步,小川身高是160cm ,在阳光下他的影长为80cm ,爸爸身高180cm ,则此时爸爸的影长为________cm.4、如图,有一池塘,现要测量两端A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点C ,连结AC 并延长到D ,使CD=CA ,连结BC 并延长到E ,使CE=BC ,连结ED ,如果量出DE 的长为25m ,求池塘宽AB 是多少m?5、如图,平面上一幢建筑物AB 与铁塔CD 相距60米,另一幢建筑物EF 与铁塔相距20米,某人发现AB 的顶端A 与建筑物EF 的顶端E 、铁塔的顶端C 恰好在一条直线上.已知AB 高为15米,EF 高为25米,求铁塔的高.6、如图,直立在点B 处的标杆 2.5m AB =,立在点F 处的观测者从点E 处看到标杆顶A ,树顶点C 恰好在一条直线上.已知10m 3m BD FB ==,,人目高 1.7m EF =,求树高DC (精确到0.1m ).课后作业练习1、在△ABC 中,∠A=52°,AB=2米,现用1︰200的比例尺,把△ABC 画在纸上记作△A ′B ′C ′,则A ′B ′= ,∠A ′= .2、在没有太阳的情况下,想知道操场上旗杆的高度,只需测出 ,没可以计算出旗杆的高度.3、如图,A 、B 两点被隔开,在AB 外取一点C ,连结AC 、BC ,并分别找出其中点M 、N ,若测得MN=15米,则A 、B 两点之间的距离为 .4、小明的身高为1.6米,他的影长是2米,已知同一时刻古塔的影长是15米,则古塔的高度是 米.5、测量的结果与实际结果之间的关系是( )A 、测量结果不可能与实际结果相同B 、测量结果一定大于实际结果C 、测量结果一定小于实际结果D 、测量结果近似等于实际结果6、在比例尺是1︰3000的交通图上,量得A 地与B 地的距离约为20厘米,则它们之间的距离是( ).A 、600厘米B 、0.60千米C 、6千米D 、60千米7、测量小玻璃口径的量具ABC ,AB 的长为为10mm ,BC 被分成60等份,如果小管口DE 正好对着量具上30份处(DE ∥AB ),则小管口径DE 的长为( )A 、5mmB 、6mmC 、7mmD 、8mm8、请你设计两种方案,测量学校的教学楼的高度.9、为了测量一棵大树的高度,现准备了如下测量工具:①镜子,②皮尺,③长为2米的标杆,④高为1.5米的测角仪.请根据你所设计的测量方案,回答下列问题:(1)在你设计的方案中,选用了哪些测量工具?(只写所用工具的序号);(2)画出测量方案示意图;(3)你需要测量示意图中的哪些数据?请用,,,,a b c αβ等字母表示测量的数据.(4)写出求树高AB 的算式.10、如图所示,一人拿着一支刻有厘米刻度的直尺,他站在距大树约30m 的地方,把手臂向前伸直,小尺竖直,看到尺上约12厘米恰好遮住大树,已知他臂长约60cm ,估计大树的高.11、小明用这样的方法来测量一棵大树的高度:如图3所示,在地面上放一面镜子,他刚好能从镜子中看到大树的顶端,此时测得镜子与大树的距离21m EA =,他与镜子的距离2.5m CE =.已知他的眼睛距地面高度 1.6m DC =.请你帮助小明计算出大树的高度AB 是多少米?(根据光的反射规律:反射角FED ∠=入射角FEB ∠)12、在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法,小芳的测量方法是:拿一根高3.5米的竹竿立在离旗杆27米的C 处(如图),然后沿BC 方向到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.13、如图,为了测量一个大峡谷的宽度,地质勘探人员在对面的岩石上观察到一个特别明显的标志点O ,再在他们所在的这一侧选点A 、B 、D ,使得AB ⊥AO ,DB ⊥AB ,然后确定DO 和AB 的交点C ,测得AC=120m , CB=60m ,BD=50m ,你能帮助他们算出峡谷的宽AO 吗?24.1课堂练习参考答案:1、D2、B3、904、提示:证明△ACB∽△DCE 是解题的关键所在.解:由题意知2AC BC CD CE ==,且∠ACB=∠DCE ,∴△ACB∽△DCE ,∴AC AB CD ED =,∴225AB AB ED ==,∴AB=50米. 5、解:过点A 作AM ⊥CD 于点M ,交EF 于N ,则EN=25-15=10,AN=60-20=40,AM=60,由题可得△AEN∽△ACM,∴AN EN AM CM =,即:401060CM=, ∴CM=15,∴CD= CM+MD=15+15=30(米),答:铁塔的高度为30米.6、解:过点E 作EH CD ⊥,交AB 于G ,交CD 于H .因为AEG CEH =∠∠,90AGE CHE ==∠∠,所以AEG CEH △∽△.所以::AG CH EG EH =. (2.5 1.7)(310) 3.47(m)3AG EH CH EG -⨯+==≈.故大树高3.47 1.7 5.2CD CH HD =+=+=米.课后作业答案:1.答案:1厘米,52°2.答案:旗杆的影长和目高及仰角的度数3.答案:30米4.答案:125.答案:D6.答案:B7.答案:A8.解:方案1:站在距楼底一定远的地方看楼顶,然后拿一根竹竿竖直立在人和楼之间的某处,使竹竿的顶端恰好在人看楼顶的视线上,如图,由于人、竹竿、楼房都垂直于地面,所以△PDE∽△PAB,则由相似三角形的知识计算出楼房的高度.若人站在距楼底m米(用皮尺量得),人的高度为h米,竹竿的长为a米,人和竹竿的距离为d米,则楼房高度为()m a hhd-⎡⎤+⎢⎥⎣⎦米.方案2:站在距楼底m米(用皮尺量得)的地方看楼顶,视线PA与水平面夹角∠APB=α(用量角器量得),然后按1:500的比例在纸上将△PAB画出来,记为△P′A′B′,用皮尺测量人的身高为h米,用刻度尺量出纸上A′B′的长度,便可求出教学楼AC的实际高度,如图.9.解:方案不唯一,如:(1)选用测量工具①②;(2)测量示意图如图所示.(3)EA(镜子到树的距离)=a,CE(人到镜子的距离)=b,DC(目高)=c;(4)AB=acb(米).10.解:如图所示,过点A 作AH BC ⊥,垂足为H ,交DE 于点F ,则有AF DE ⊥.易得ADE ABC △∽△.所以::DE BC AF AH =.即0.12306(m)0.6DE AH BC AF ⨯==≈.11.解:由FED FEB ∠=∠,得AEB DEC =∠∠,90BAE DCE ==∠∠,得Rt Rt ABE CDE △∽△.所以::AB CD AE CE =.即 1.62113.44(m)2.5CD AE AB CE ⋅⨯===.12.解:这种测量方法可行,利用如下:设旗杆高AB=x ,过F 作FG⊥AB 于G ,交CE 与H (如图),所以△AGF∽△EHF ,∵FD=1.5,GF=27+3=30,HF=3,∴E H=3.5-1.5=2,AG=x -1.5.由△AGF∽△EHF,得AG GF EH HF =,即 1.53023x -=.∴x -1.5=20,解得21.5x =(米).所以旗杆的高是21.5米.13.解:∵AB ⊥AO ,DB ⊥AB ,∴∠A=∠B=90°,∠ACO=∠BCD ,∴△ACO ~△BCD ,∴OA ACBD BC=,即1205060OA =,∴OA=100(m ). 24.2 直角三角形的性质教学目标:1、以直角三角形为载体,继续学习几何证明.2、掌握直角三角形的两个锐角互余。

相关文档
最新文档