数学思维的三个特性分别是什么

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学思维的三个特性分别是什么

数学思维的特性

数学思维从数学学科的特点出发,在数学学习过程中主要表现为以下特性:

1.数学思维的问题性

问题是数学的心脏。它促使数学发现、推动数学的发展。没有问题就不会导致数学的思维。数学思维主要地表现在数学问题解决过程中。希尔伯特说:“正如人类的每项事业都追求着确定的目标一样,数学研究也需要自己的问题。正是通过这些问题的解决,研究者锻炼其钢铁般的意志和力量,发现新方法和新观点,达到更为广阔和自由的境界。”(引自:希尔伯特《数学问题》,《数学与文化》,北京大学出版社,1990年版,p191)

在数学学习中,数学思维总是从提出问题开始的,并且数学思维贯穿问题解决的始终。关于问题解决,我们将在后面讨论。

2.数学思维的概括性

思维的概括性主要表现是通过思维而把抽象出的事物本质特性联合起来,或推广到同类事物中去。数学研究的对象不是客观事物,而是从客观事物中抽象出的事物的空间形式与数量关系。例如,数学思维中的平行四边形,就是从客观世界中形形色色的有关的四边形物体中进行抽象和概括出来的。没有抽象概括,就没有数学概念,也就不存在数学思维。

在数学思维中,思维的概括性可以使数学知识活化和推广。“概括就是迁移”。数学思维的概括性具有学习迁移的作用。例如,通过思维的概括,可以使分数的性质很容易地推广到分式上去。

3.数学思维的间接性

间接认识事物是思维的一大功能。对非欧几何的认识是思维间接性何在我们地球这个空间中是无法直观地认识的,只有通过数学思维才能接的思维途径而认识它。

数学思维的间接性在数学学习过程中经常地出现,并表现出它的威力与作用。当然,数学思维的间接性是要凭借已知的数学知识进行思维才能表现出来的。

思维与数学思维

思维是人的一种高级的心理活动形式。

数学思维也就是人们通常所指的数学思维能力,即能够用数学的观点去思考问题和解决问题的能力。比如转化与划归,从一般到特殊、特殊到一般,函数/映射的思想,等等。一般来说数学能力强的人,基本体现在两种能力上,一是联想力,二是数字敏感度。前者能够把两个看似不相关的问题联系在一起,这其中又以构造能力最让人折服;后者便是大多数曝光的所谓geek,比如什么nash之类的。当然也有两种能力的结合体。

我国初、高中数学教学课程标准中都明确指出,思维能力主要是指:会观察、实验、比较、猜想、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会合乎逻辑地、准确地阐述自己的思想和观点;能运用数学概念、思想和方法,辨明数学关系,形成良好的思维品质。

数学思维拓展训练特点

1、全面开发孩子的左右脑潜能,提升孩子的学习能力、解决问题能力和创造力;帮助幼儿学会思考、主动探讨、自主学习,

2、通过思维训练的数学活动和策略游戏, 对思维的广度、深度和创造性方面进行综合训练。

3、根据儿童身心发展的特点,提高幼儿的数学推理、空间推理和逻辑推理,促进幼儿多元智能的发展,为塑造幼儿的未来打下良好的基础。

4、利用神奇快速的心算训练和思维启蒙训练,提高与智商最为相关的五大领域的基础能力。

5、为解决幼小衔接的难题而准备。

相关文档
最新文档