基于ANSYS的四杆机构分析详细
直列四缸发动机曲轴ansys分析
直列四缸发动机曲轴a n s y s分析本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March有限元分析课程报告直列四缸发动机曲轴有限元分析姓名:学号:分数:年月日目录1.引言 .......................................................................................................错误!未定义书签。
2.曲轴有限元模型的建立........................................................................错误!未定义书签。
3.曲轴网格划分 .......................................................................................错误!未定义书签。
确定物理场和网格划分法.............................................................错误!未定义书签。
确定全局网格参数设置.................................................................错误!未定义书签。
确定局部网格参数设置.................................................................错误!未定义书签。
网格质量检查 ................................................................................错误!未定义书签。
调整网格划分 ................................................................................错误!未定义书签。
四杆机构实验报告
四杆机构实验报告四杆机构实验报告引言四杆机构是一种常见的机械结构,由四个连杆组成,通过铰链相连。
在工程学中,四杆机构被广泛应用于各种机械设备中,如发动机、机械手臂和运动机构等。
本实验旨在通过对四杆机构的研究和实验,深入了解其运动特性和应用。
一、实验目的本实验的主要目的是通过实验观察和测量四杆机构的运动规律,深入了解四杆机构的结构和工作原理。
具体目标包括:1. 理解四杆机构的基本构造和运动方式;2. 掌握四杆机构的运动规律和特性;3. 分析四杆机构的应用领域和优缺点。
二、实验装置和方法1. 实验装置:本实验使用由四个连杆和铰链组成的四杆机构模型,以及相应的测量仪器和工具。
2. 实验方法:a. 调整四个连杆的长度和角度,使其满足四杆机构的运动要求;b. 使用测量仪器测量和记录四个连杆的长度和角度的变化;c. 分析测量数据,绘制运动曲线和角度变化图表;d. 观察和记录四杆机构的运动规律和特点。
三、实验过程和结果1. 实验过程a. 调整四杆机构的连杆长度和角度,使其形成一个闭合的四边形;b. 使用测量工具测量和记录四个连杆的长度和角度的变化;c. 通过改变连杆长度和角度,观察和记录四杆机构的运动规律;d. 根据测量数据和观察结果,分析四杆机构的运动特性和应用。
2. 实验结果a. 通过测量仪器记录的数据,绘制了四个连杆的长度和角度的变化图表;b. 观察和记录了四杆机构的运动规律,如连杆的旋转和平移运动;c. 分析了四杆机构的运动特性和应用,如转动和传动功能。
四、实验分析和讨论1. 实验分析通过实验观察和测量,我们可以清楚地看到四杆机构的运动规律和特性。
连杆的长度和角度的变化直接影响着四杆机构的运动方式和速度。
通过改变连杆的长度和角度,我们可以实现不同的运动效果,如旋转、平移和传动等。
2. 实验讨论四杆机构具有广泛的应用领域和优点。
它可以用于实现复杂的运动和动力传递,如发动机和机械手臂。
同时,四杆机构的结构简单,易于制造和维护。
四连杆机运动学分析报告
栏杆机四杆机构运动学分析1 四杆机构运动学分析1.1 机构运动分析的任务、目的和方法曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。
对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。
还可以根据机构闭环矢量方程计算从动件的位移偏差。
上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。
机构运动分析的方法很多,主要有图解法和解析法。
当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。
而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。
1.2 机构的工作原理在平面四杆机构中,其具有曲柄的条件为:a.各杆的长度应满足杆长条件,即:最短杆长度+最长杆长度≤其余两杆长度之和。
b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。
三台设备测绘数据分别如下:第一组(2代一套)四杆机构L1=125.36mm,L2=73.4mm, L3=103.4mm,L4=103.52mm最短杆长度+最长杆长度(125.36+73.4) <其余两杆长度之和(103.4+103.52)最短杆为连架杆,四杆机构为曲柄摇杆机构图1-1 II-1型栏杆机机构测绘及其运动位置图第二组(2代二套)四杆机构L1=125.36mm,L2=50.1mm,L3=109.8mm,L4=72.85mm最短杆长度+最长杆长度(125.36+50.1) <其余两杆长度之和(109.8+72.85)最短杆为连架杆,四杆机构为曲柄摇杆机构图1-2 II-2型栏杆机机构测绘及其运动位置图第三组(3代)四杆机构L1=163.2mm,L2=64.25mm,L3=150mm,L4=90.1mm最短杆长度+最长杆长度(163.2+64.25) <其余两杆长度之和(150+90.1)最短杆为连架杆,四杆机构为曲柄摇杆机构图1-3 III型栏杆机机构测绘及其运动位置图在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。
基于ANSYS的平面四杆机构仿真的结构优化设计
基于ANSYS的平面四杆机构仿真的结构优化设计作者:焦晨航来源:《硅谷》2014年第24期摘要随着计算机技术的迅猛发展,结构优化设计方法也随之变更。
本文简要介绍了有限元分析的典型步骤和流程,并运用ANSYS软件,以曲柄摇杆机构为例,对平面四杆机构仿真的结构优化设计进行探讨,以期为进一步的动力学分析打下基础。
关键词 ANSYS;平面四杆机构;曲柄摇杆机构;优化设计中图分类号:TH112 文献标识码:A 文章编号:1671-7597(2014)24-0005-01平面四杆机构是连杆机构中最常见的机构组成,广泛应用于工程机械和农业机械中,对四杆机构仿真的结构优化设计进行研究具有重要意义。
平面四杆机构仿真的结构优化设计就是根据实际情况在计算机编程的帮助下建立起机构的数学模型,并通过运用一定的优化算法寻找既能很好解决约束条件又能使目标函数最优的设计方案,最终达到优化设计的目的。
有限元方法是结构优化设计的重要方法之一,实际应用中,我们可通过自行编制有限元程序或采用通用的有限元分析软件来进行。
基于ANSYS的平面四杆机构仿真的结构优化设计时有效的、可行的。
1 有限元分析的典型步骤和流程有限元法是一种高效能、常用的、离散化的数值分析方法,其典型步骤为:①将连续体离散成有限个单元(杆系的单元是每一个杆件,连续体的单元是各种形状);②选择单元类型或位移模型;③利用变分原理推导单元刚度矩阵;④单元场函数的集合;⑤建立有限个待定参量的代数方程组;⑥求解方程组,得到位移矢量;⑦由节点位移计算出单元的应变和应力。
进行有限元分析,首先要决定分析项目、分析的几何结构、外界条件和外力,获取材料性质;其次,建立有限元模型,包括单元类型、材料性质,直接或间接生成有限元网格;再次,加载并求解,输出分析结果,若结果不合理,重新建立有限元模型,若合理,则进行改进处理,解决问题,得到最佳设计。
2 基于ANSYS平面四杆机构仿真的结构优化设计1)结构优化设计方法。
【ANSYS算例】3.2.5(4)-四杆桁架结构的有限元分析(GUI)及命令流
四杆桁架结构的有限元分析下面针对【典型例题】(1)的问题,在ANSYS 平台上,完成相应的力学分析。
即如图3-8所示的结构,各杆的弹性模量和横截面积都为4229.510N/mm E,E=29.5X10 2100mm A ,基于ANSYS 平台,求解该结构的节点位移、单元应力以及支反力。
图3-8 四杆桁架结构解答 对该问题进行有限元分析的过程如下。
以下为基于ANSYS 图形界面( graphic user interface ,GUI)的菜单操作流程;注意:符号“→”表示针对菜单中选项的鼠标点击操作。
关于ANSYS 的操作方式见附录B 。
1. 基于图形界面的交互式操作(step by step)(1) 进入ANSYS(设定工作目录和工作文件)程序 →ANSYS → ANSYS Interactive →Working directory (设置工作目录) →Initial jobname (设置工作文件名): planetruss →Run → OK(2) 设置计算类型ANSYS Main Menu : Preferences… → Structural → OK(3) 选择单元类型ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete… →Add… →Link :2D spar 1 →OK (返回到Element Types 窗口) →Close(4) 定义材料参数ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic → Isotropic: EX:2.95e11 (弹性模量),PRXY: 0 (泊松比) → OK → 鼠标点击该窗口右上角的“ ”来关闭该窗口(5) 定义实常数以确定单元的截面积ANSYS Main Menu: Preprocessor →Real Constant s… →Add/Edit/Delete →Add →Type 1→ OK →Real Constant Set No: 1 (第1号实常数), AREA: 1e-4 (单元的截面积) →OK →Close(6) 生成单元 ANSYS Main Menu: Preprocessor →Modeling →Creat →Nodes → In Active CS →Node number 1 → X:0,Y:0,Z:0 →Apply →Node number 2 → X:0.4,Y:0,Z:0 →Apply →Node number 3 → X:0.4,Y:0.3,Z:0→Apply →Node number 4 → X:0,Y:0.3,Z:0→OKANSYS Main Menu: Preprocessor → Modeling → Create → Elements →Elem Attributes (接受默认值)→Usernumbered→Thru nodes→OK→选择节点1,2→Apply→选择节点2,3→Apply→选择节点1,3→Apply→选择节点3,4→Apply→OK(7)模型施加约束和外载添加位移的约束,分别将节点1 X和Y方向、节点2 Y方向、节点4的X和Y方向位移约束。
机械原理课件之四杆机构受力分析
通过解方程,求解出各个连杆的受力大小和方向。
四杆机构受力分析的案例研究
案例1
案例2
分析一台工业机械中的四杆机构, 确定各个连杆的受力情况。
在一个机器人手臂中应用四杆机 构,研究其受力和应力分析。
案例3
通过受力分析,优化四杆机构的 设计,提高其工作效率。
结论和总结
四杆机构受力分析是机械工程领域的重要研究方向之一。它不仅可以帮助我 们了解四杆机构的工作原理,还可以指导我们设计更优秀的机械系统。
四杆机构的组成和基本结构
连杆
四杆机构由四根连杆组成,包括两个边连杆和两个角连杆。
铰链
连杆通过铰链连接,使得四杆机构能够实现运动。
驱动装置
驱动装置为四杆机构提供动力,使其能够完成特定任务。
四杆机构的运动分析
1
自由度
四杆机构的自由度取决于连杆的个数和铰链的类型。
2
运动类型
四杆机构可以实现旋转、平动和复杂的运动。
3
工作轨迹
通过对四杆机构的运动分析,可以得到工作轨迹的方程。
四杆机构受力分析的基本原理
四杆机构受力分析的基本原理是根据静力学的原理,通过分析力的平衡条件 来确定各个连杆的受力情况。
四杆机构受力分析的方法和步骤1 建立坐标系确定来自适的坐标系,便于受力分析的计算。
2 列写平衡方程
根据力的平衡条件,列写各个连杆的受力方程。
机械原理课件之四杆机构 受力分析
这篇课件将详细介绍四杆机构的受力分析。从概述四杆机构的基本原理开始, 到运动分析和受力分析的具体方法,最后通过案例研究加深理解。让我们一 起来探索吧!
四杆机构的概述
四杆机构是一种常见的机械连杆机构,由四根连杆组成。它具有简单的结构 和广泛的应用领域,是研究机械原理的重要组成部分。
机械毕业设计(论文)基于ansys的连杆机构的有限元分析【全套设计】
湘潭大学兴湘学院毕业设计论文题目:连杆机构的有限元分析全套设计,加153893706专业:机械设计制造及其自动化学号: 2010963028 姓名:指导教师:完成日期: 2014 年 5 月 25 日湘潭大学兴湘学院毕业论文(设计)任务书论文(设计)题目:连杆机构的有限元分析学号: 2010963028姓名:专业:机械设计制造及其自动化指导教师:系主任:一、主要内容及基本要求1、总结连杆机构设计方法研究和连杆机构研究的发展状况和发展趋势,在总结前人研究成果的基础上,结合当前的技术发展趋势,采用有限元方法来进行开展研究。
2、阐述学习理论基础,即瞬态动力学分析,简要论述瞬态参数,识别原理。
3、简要论述有限元方法和动力学分析的基本求解过程,建立连杆机构中的曲柄滑块机构的有限元模型,合理的确定曲柄长度及转速、连杆长度和转速,偏距,选定和创建单元类型,指点单元属性,创建铰链单元,采用瞬态动力学分析瞬态分析类型对其进行瞬态分析,与图解法进行比较,验证有限元瞬态求解功能。
4、联系工程实际,对受力连杆进行结构静力学学习。
二、重点研究的问题1、 ANSYS的线性静力分析2 、构建几何模型3、在三维铰链单元COMBIN7的创建4、单元类型选择和网络划分5、 ANSYS瞬态动力学分析和静力学分析三、进度安排四、应收集的资料及主要参考文献[1]高耀东,刘学杰.ANSYS机械工程应用精华50例(第三版).- 北京:电子工业出版社,2011.[2]孙波.毕业设计宝典.-西安:西安电子科技大学出版社,2008.[3]温正,张文电.ANSYS14.0有限元分析权威指南.-北京:机械工业出版社,2013.[4]欧阳周,汪振华,刘道德.毕业论文和毕业设计说明书写作指南.-长沙:中南工业大学出版社,1996.[5]华大年,华志宏.连杆机构设计与应用创新.-北京:机械工业出版社,2008.[6]胡仁喜,康士廷.机械与结构有限元分析从入门到精通.-北京:机械工业出版社,2012.[7]李红云,赵社戌,孙雁.ANSYS10.0基础及工程应用.北京:机械工业出版社,2008.[8]唐家玮,马喜川.平面连杆机构运动综合.-哈尔滨:哈尔滨工业大学出版社,1995.[9]潘存云,唐进元.机械原理.-长沙:中南大学出版社,2011.[10]李皓月,周田朋,刘相新.ANSYS工程计算应用教程.-北京:中国铁道出版社,2003湘潭大学兴湘学院毕业论文(设计)评阅表学号2010963028 姓名谭磁安专机械设计制造及其自动化毕业论文(设计)题目:连杆机构的有限元分析湘潭大学兴湘学院毕业论文(设计)鉴定意见学号2010963028 姓名谭磁安专业机械设计制造及其自动化毕业论文77 页图表30 张目录摘要............................................................................................ 错误!未定义书签。
ANSYS分析
机械臂是面向工业领域的多关节机械手,是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。
它可以接受人类指挥,也可以按照预先编排的程序运行,现代的机械臂还可以根据人工智能技术制定的原则纲领行动。
机械臂由主体、驱动系统和控制系统三个基本部分组成。
主体即机座和执行机构,包括臂部、腕部和手部。
大多数机械臂有3~6个运动自由度,其中腕部通常有1~3个运动自由度;驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作;控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。
图1 六自由度机械臂如图1所示为六自由度机械臂。
而机械臂在工作中需要承受一定的载荷,这会引起杆件的弹性变形,从而导致机械臂工作时产生一定的误差。
为了保证机械臂在运动中的定位误差,机械臂杆件结构需要有较高的刚性。
下面就机械臂杆件刚性的提高,从材料的选择、结构设计等方面进行有限元分析二、模型建立并导入到ansys使用solidworks进行机械臂三维模型的建立。
根据实验室相关尺寸建立模型如下图2、3。
其中图2形象的展现了其三维外观,而图3的前视图方便说明起尺寸大小。
图2 机械臂的三维模型图图3 机械臂的三维模型前视图由于是为了研究机械臂末端的应力、应变,所以为了在ansys中分析方便,在保留主体结构设计的前提下,可将该机械臂结构进行简化,得到如图4的第一种结构模型图。
且图4中为简化后结构的主体,其后在对不同结构设计的讨论中,需对该模型进行修改。
其中模型的体积为V A=18528979.98mm3=0.01853m3。
进行简化,得到如图4的第一种结构模型图。
且图4中为简化后结构的主体,其后在对不同结构设计的讨论中,需对该模型进行修改。
其中模型的体积为V A=18528979.98mm3=0.01853m3。
图4 简化后的结构模型1的三维图和基本尺寸将图4所示的模型导入到ansys中:(1)先在solidworks中把模型另存为Parasolid(*.x_t)格式(注意模型名字必须是英文,Ansys不接受中外,可保存为jxb.x_t);(2)然后打开Ansys,在File下选择import-PARA,找到之前保存的Parasolid(*.x_t)格式的模型,将其导入;(3)在顶上菜单栏对话框中选择PoltCtrls—Style—Solid Model Facets,如图6所示。
四杆机构运动分析
四杆机构运动分析四杆机构是一种常见的机械结构,由四根杆件组成,通过铰链连接。
四杆机构的运动分析是机械工程中重要的一环,可以帮助我们理解机构的运动特性和用途。
四杆机构有多种形式,如平行四连杆机构、交叉四连杆机构等。
在运动分析过程中,我们通常关注机构的连杆长度、铰链位置和运动轨迹等方面。
首先,我们可以通过连杆长度关系来确定机构的运动特性。
根据连杆长度的不同,四杆机构可以实现直线运动、旋转运动、摇杆运动等。
连杆长度决定了机构的运动范围和速度,可以通过运动学分析方法进行计算和模拟。
其次,铰链位置对机构运动有很大的影响。
铰链的位置决定了杆件之间的相对运动方式,如平行四连杆机构中的对外运动、交叉四连杆机构中的对内运动。
通过确定铰链位置,我们可以进一步分析机构的运动规律和应用。
另外,机构的运动轨迹也是运动分析的重点之一、运动轨迹描述了机构任意一点在运动过程中的位置变化。
通过分析运动轨迹,我们可以得出机构的最大行程、最大速度、加速度等参数,并且可以根据运动轨迹来优化机构的设计,满足特定的工程要求。
在进行四杆机构运动分析时,我们可以利用运动学分析方法,如广义坐标法、矢量法、逆运动学法等。
通过建立运动方程和约束方程,可以得出机构的运动规律和参数。
此外,计算机辅助设计软件和仿真系统也可以帮助我们进行四杆机构的运动分析。
通过输入机构的参数和初始条件,可以模拟机构的运动过程,观察各个杆件的位置、速度和加速度等变化情况。
四杆机构的运动分析对于机械设计和工程实践都具有重要的意义。
它可以帮助我们了解机构的运动特性,优化机构的设计,提高机械系统的性能和效率。
同时,运动分析也是机械工程师在机构设计和动力传动中常用的工具,通过运动分析可以得到有效的设计参数和工作条件。
四杆机构的运动分析是机械工程师必备的技术之一,也是机械工程教育中的重要内容。
利用ANSYS软件进行动臂(四连杆)优化设计
三.利用ANSYS软件进行动臂(四连杆)优化设计3.1有限元模型建立装载机整机的有限元模型是主要是针对力作用的直接部件进行的,主要包括装载机机身上的转台、主要工作部件铲斗、带动铲斗动作的动臂、动力件油缸、以及运动件连杆和摇臂组成。
在实际建模过程中,通常要求设定材料的性能参数与母材相同,这样做的原因是要对各构件的焊接接头进行连续处理,更为重要的一点是为了在后续精力分析中可以有一个光顺的网格划分,在进行有限元模型的建立中,为了更快捷的进行后续计算,以不至于施加于计算机太多计算负荷,将其中不影响结果数据的螺纹孔、倒角等结构进行了移除。
组件几何模型如图3.1所示。
图3.1 工作装置几何模型根据实际情况定义相应材料的性能,包括:弹性模量e = 2.06×106pa,泊松比μ= 0.3,密度ρ= 7850kg / m3。
每个部件均由solid186单元模拟,接头处的销轴由beam188单元模拟,联接单元由销轴与轴套之间的运动关系模拟,而液压缸则由连杆单元模拟。
通过设置诸如截面积,弹性模量和密度之类的参数来实现对实际液压缸的仿真。
要求将元素尺寸控制在15mm〜20mm之内,并在销轴上局部细化网格,这可以提高计算精度。
最后,为了以危险的姿势获得工作装置的整个有限元模型,需要组装每个部件的有限元模型。
有限元模型包括266783个单元,其中包括266638个实体单元,142个梁单元,3个杆单元和444467个节点。
最后,如果装载机转盘需要完全约束,则应采用边界条件。
通过上述过程计算得出的切向和法向挖掘阻力将作为有限元模型中的外部载荷应用于铲斗尖端,如3.2所示。
图3.2 工作装置有限元模型及边界载荷3.2工作装置静强度分析结果据了解,装载机的材料为 q460c 钢,屈服极限为[ ]=235×106 Pa。
结果表明,工作装置的最大应力为802mpa,该应力发生在提升臂的上吊耳的铰孔和铲斗杆的油缸,远远超过了材料的屈服极限。
基于ANSYS的连杆机构运动分析【毕业作品】
基于ANSYS的连杆机构运动分析摘要:随着工业的发展,连杆机构应用越来越广泛,从工业包装行业到航空业,都能够见到连杆机构应用的影子。
连杆机构的运动特性参数决定了连杆机构能否满足使用要求。
简单的四连杆机构,我们可以根据机械原理与理论力学等理论,虽然通过选取特殊状态能够求得特定时刻的运动特性参数,包括位移、速度、加速度,但是无法求得任意时刻的运动特性参数。
而且当连杆数量的增加,求解变得更加复杂。
本文另辟蹊跷,利用有限元理论建立了有限元模型,施加载荷以及边界条件,求得了四连杆机构的运动特性参数,为更复杂的连杆机构设计提出了建设性的方法。
采用ANSYS中的相关单元对连杆机构进行模型的搭建以及边界处理,进而求的所希望的位移、速度和加速度等随时间变化的相关数据。
论文首先建立简单四连杆机构的ANSYS模型进行求解,选取某一特定状态,将结果同解析法进行对比,验证基于ANSYS的方法的可行性。
然后通过ANSYS计算某一复杂的连杆机构的运动特性,并对所分析的机构利用机械原理相关理论去分析,为进一步优化做准备。
关键词:连杆机构;有限元;解析法;Ansys建模Analysis of linkage mechanism based on ANSYSAbstract:With the development of industry, connecting rod mechanism is used more and more widely, from the industrial packaging industry to the aviation industry, will be able to see the shadow of the connecting rod mechanism application. The motion parameters of linkage mechanism determines the linkage mechanism can meet the use requirements. The four connecting rod mechanism is simple, we can according to the mechanical principle and theoretical mechanics theory, although the movement characteristic parameters to obtain a special state specific time, including the displacement, velocity, acceleration, movement parameters, but can not find any time. And when increasing the number of connecting rod, solving more complex.In this paper, another strange, the finite element model is established by using the finite element theory, the loads and boundary conditions, the motion parameters of the four bar linkage obtained, presents a constructive approach to design more complex linkages. The relevant unit in the ANSYS model is established and the boundary treatment on the connecting rod mechanism, the relevant data and then the desired displacement, velocity and acceleration variation with time. Firstly, a simple ANSYS model of four bar linkage mechanism to solve, select a particular state, the results were compared with the analytical method, the feasibility of the method validation based on ANSYS. Then the motion characteristics of a complex linkage was calculated by ANSYS, and the analysis of the mechanism of using mechanical theory to analyze, for the further optimization of preparation.Keywords: connecting rod mechanism; finite element;analytic method;Ansys modeling目录1、前言 (1)1.1 目的和意义 (1)1.2 研究手段和所做工作 (1)2、连杆机构与有限元理论方法简介 (2)2.1连杆机构 (2)2.2 有限元理论以及动力学分析 (3)2.3涉及的单元简介 (5)2.3.1 COMBIN7介绍 (5)2.3.2 BEAM4介绍 (6)2.3.3 四连杆机构的有限元模型 (7)2.4参数化APDL语言 (7)3、不同计算方法对比研究 (9)3.1 问题描述 (9)3.2解析法 (9)3.3 有限元法 (11)3.3.1建立工作文件 (12)3.3.2定义参量 (12)3.3.3创建单元类型 (13)3.3.4定义材料特性 (14)3.3.5定义实常数 (15)3.3.6创建节点 (16)3.3.7指定单元属性 (17)3.3.8创建铰链单元 (18)3.3.9指定单元属性 (18)3.3.10创建梁单元 (19)3.3.11定分析类型 (19)3.3.12打开大变形选项 (19)3.3.13确定数据库和结果文件中包含的内容 (21)3.3.14设定非线性分析的收敛值 (21)3.3.15施加约束 (22)3.3.16求解 (22)3.3.17定义变量 (23)3.3.18对变量进行数学操作 (23)3.3.19用曲线图显示角位移、角速度和角加速度 (24)3.3.20列表显示角位移、角速度 (25)3.4 方法验证说明 (26)4、变形机构的运动分析 (27)4.1 采用APDL参数化建立复杂模型 (27)4.2对模型进行分析求解 (27)结论 (30)参考文献 (31)致谢 (32)附录 (33)1、前言1.1 目的和意义随着工业的发展,四连杆机构以各种变形形式出现在生活中。
基于ANSYS的塔式起重机四杆式附着结构强度分析
塔式起重机超长附着杆能够满足强度的要求,为施工单位在计算塔式起重机超长附着杆内力及校核其
强度提供了参考依据.
关键词: 超长附着杆; 摩尔积分; 强度校核; 有限元分析; 超静定结构
中图分类号: TH213. 3
文献标识码: A
随着我国经济的不断发展,建筑项目数目的不断增多,塔式起重机在高层建筑项目中的应用越来越 多,因此塔机安全装置的附着杆的安全性问题是值得重点讨论的.
s2
=
σs σmax
=
235 182
= 1. 29
可知,所设计的桁架式附着杆强度值满足要求,可以在施工中安全使用.
5 结论
本文通过对 C5513 塔式起重机特殊位置下最上层附着结构进行分析,得出以下结论: ( 1) 确定了每种工况下各附着杆的内力,得出其最大压力为 220. 11 kN,发生于塔机非工作状态下塔 臂平行于墙面情况下; 最大拉力为 119. 31 kN,发生于塔机非工作状态下塔臂平行于墙面情况时. ( 2) 运用 ANSYS 有限元软件对附着杆的受迫振动特性进行了分析,得出附着杆在受力方向上易发生 共振的频率为 24 Hz ~ 28 Hz,塔臂回转所引起的载荷变化对附着杆动力学影响不显著,对于附着杆的强度 计算可按照静力学方法进行. ( 3) 通过对危险附着杆的结构进行力学分析,得出其最大应力未超过其强度极限,具有一定的安全系 数,在施工时能够安全使用.
塔臂水平惯性力: F水平 = 84 kN.
塔臂所受风载对其扭矩如下,其中 l1 为塔身中心到起重端的最大距离,l2 为塔身中心到平衡端的距
离:
M' 风扭
=
q( l21 - l22 ) 2
= 0. 27( 552 - 122 ) 2
用ANSYS进行四连杆机构的有限元分析
用ANSYS进行四连杆机构的有限元分析作者:谭辉日期:08年3月6日分析目的1、利用ANSYS对典型的四连杆机构进行分析,主要包含各点的轨迹分析,例如X和丫方向的位移等。
2、为五连杆和六连杆机构的分析提供可行的分析方法以及原型代码。
问题简述分析主动杆1绕节点1旋转一周时节点4的运动轨迹,杆2和杆3为从动杆, 具体问题见下图:节点4, 5 (重合)5!分析思路1、 根据分析目的,在 ANSYS 选用linkl 单元进行单元建模,主要考虑 是linkl 单元具有X 和丫方向的自由度,可以获得各个节点的位移轨迹。
之后可以用梁单元等实现更高级的分析目的,例如获得杆上的力,位移, 加速度等相关信息。
2、 该模型结构简单,可以利用直接建模方法进行有限元系统建模,主 要命令:N , E 。
3、 利用自由度耦合对重合节点进行建模,例如节点2和节点3、节点4和节点5进行建模,主要命令:cpintf ,利用该命令可以一次性将重合节 点生成自由度耦合。
4、 利用表数组对于杆1 (主动杆)的节点2进行瞬态边界条件的载荷施 力□,分析类型为瞬态分析,主要命令:*dim ,d 等。
5、 生成节点位移的对应变量,从而获得节点 4的随时间的位移曲线, 主要命令:nsol, plvar 等。
符号注释结束上一次的分析!清除数据库,并读取启动配置文件!!设置图形显示的背景颜色!命令流如下行号命令 1 finish2 /clear,start33 /color,pbak, on ,1,5!/units,si设置单位制:国际单位制 !*afun,deg设置三角函数运算采用度为单位 ! /prep7!进入前处理模块!et,1,link1设置单元类型: link1 ! mp,ex,1,2.07e11 设置材料的弹性模量 !r,1,1 设置单元的实常数,面积为 1 ! n,1,0,0,0 在( 0, 0, 0)处建立节点 1 ! n,2,3,0,0 在( 3, 0, 0)处建立节点 2 ! n,3,3,0,0 在( 3, 0, 0)处建立节点 3,和节 ! !点 2 重合n,4,8,7,0 在( 8, 7, 0)处建立节点 4 ! n,5,8,7,0 在( 8, 7, 0)处建立节点 4,和节! !点 4 重合n,6,10,0,0在( 10,0,0)处建立节点 6 !e,1,2建立单元 1(连接节点 1和 2) ! e,3,4建立单元 2(连接节点 3和 4) ! e,5,6建立单元 3(连接节点 5和 6) ! cpintf,all,1e-3!对于重合节点一次性的建立耦合自 ! 由度,容差 1e - 3/pnum,node,1 !显示节点编号 !/pnum,elem,1 显示单元编号 !eplot显示单元6 7 8 91011 12 13 14 15 16 17 18 19 202122232425 26 27finish 退出前处理模块!/solu antype,trans time,1deltim,0.01 timint,on,all*dim,node_2_ux,table,100,1,1 *dim,node_2_uy,table,100,1,1 *do,i,1,100,1node_2_ux(i,0,1)=0.01*inode_2_ux(i,1,1)=distnd(1,2)*cos(3.6*i)-distnd(1, 2)node_2_uy(i,0,1)=0.01*inode_2_uy(i,1,1)=distnd(1,2)*sin(3.6*i) *enddod,1,all,0 d,6,all,0d,2,ux,%node_2_ux% d,2,uy,%node_2_uy%数组: node_2_uy28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49进入求解模块!设置分析类型为瞬态分析 ! 设置分析结束时间为 1 !设置时间步长为 0.01 !打开时间积分! !设置节点 2的 X 方向的时间-位移 !的表数据: node_2_ux设置节点 2的 Y 方向的时间-位移 !的表数据: node_2_uy 进入表数据赋值循环 !设定节点 2 的 X 方向位移的时间序 !■ 列:0.01, 0.02, 0.03 ……设定节点 2 的 X 方向的位移序列 ! 设定节点 2 的 Y 方向位移的时间序 !列:0.01, 0.02, 0.03 ……设定节点 2 的 Y 方向的位移序列 !结束循环! ! 设定节点 1 的所有自由度为 0 ! 设定节点 6 的所有自由度为 0! !将节点 2 的 X 方向的位移赋值为表 !数组: node_2_ux将节点 2 的 Y 方向的位移赋值为表I !alls outres,all,all solve finish /post26 nsol,2,3,u,x nsol,3,3,u,y nsol,4,4,u,x nsol,5,4,u,y plvar,2,3,4,5 /image,save,tran s_curve,jpg finish /post1 /dscale,1,1 pldisp,2 finish/exit,save选择所有的对象 !计算并输出所有的数据!执行求解! 退出求解模块! ! 进入时间序列后处理模块! 将节点3的X 方向的位移设置为 2 I!#变量将节点3的Y 方向的位移设置为 3 ! #变量将节点4的X 方向的位移设置为 4 I! #变量将节点4的Y 方向的位移设置为 5 ! #变量打印2#、3#、4 #和 5#变量随时 I ! 间的变化曲线保存当前的曲线图形到文件: I ° trans_curve.jpg,方便用户看图 退出时间序列后处理模块! ! 进入通用后处理模块! 设置模型变形的显示比例为 1! 显示变形状态!退出通用后处理模块退出并保存数据库5051 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70几点思考1、为什么最终显示的变形和原来的图形完全重合了?答:因为杆1旋转了360度,在最后的载荷步计算完成和就和原来最初的模型重合了,但是可以用an time命令显示动画,就可以看出运动的效果。
基于ANSYS的四轴飞行器机架振动分析
( 4 3 . 4 9 7 7  ̄1 6 2 . 3 3 8 ) H z ,机架 的固有振型可 分为
两类 : ( 1 ) 支撑杆座 的振动 第5 阶 振 型 是机 架 支 撑 杆 在x z 平 面 的 扩 大 :第8 阶频率 为 1 3 1 . 6 5 ,其振 型为 支撑 杆的 弯 曲和 扭转 ;第 9 阶 振 型 是支 撑 杆 的扭 转 变 形 ,且最大变形量 出现 在杆中间。 ( 2 ) 桨 叶的振动
式 中:M 一质量矩 阵: K 一 刚度矩 阵: X 一 位移向量; F ( t ) 一作 用力 o 时,忽略阻尼C 影响,方程变为: M X ”+ K X = 0 ( 2 ) 自由振 动时,结构上各 点作 简谐振动 ,各 结点位 :
且机 架 的扭 转振动主要 受其支撑 杆的影响 , 因此 ,要提高 扭转刚度 ,需要求解 出机 架的所 参考文献 有扭转模态 。 1 ] 冯 鉴, 何 俊, 雷智翔. 机械原 理【 M 】 . 成都: 西 南交通大 学 由于结构 的振 动可 以表示为 各阶固有振型 【 2 0 0 8 , 8 . 的线性组合 ,其中低阶 的振型对结构 的动力影 出版 社 , 图1机架实体图 2 1 濮良贵, 纪名刚. 机械设计( 第八版) 【 M1 . 高等教育 出版 响程度 比高阶振型大 ,因此,低阶振 型决定 了 [ 社, 2 0 1 0 . 该机架结 构复杂 ,且为三 维实体,建立有 结构的动态特性 。 [ 3 】 胡国 良, 任 继文. A N S Y S 1 1 . O 有 限元分 析入 门与提 高 限元模型 的过程 中,以符合结构主要 的力学特 5 . 结果分析 性 为 前提 ,对结 构做 适 当而合理 的假 设 …( 假 . 北京: 国防工业出版 社2 o l 1 . 1 . 机架 的激励 源主要来 自于机 架支座上的桨 [ 设四分之 一的机架不包 括脚架 ,且 电机和支撑 叶、 电机和 机架上支撑杆 的振动 。该 四轴飞行 杆之 间是固定连接 ,而桨叶与 电机 为转动面接 器所使 用发动机型 号为B E 4 2 1 5 — 6 5 0 k v ,取转速 触) 和简化 ( 去 除对分 析影 响小 的多余 零件) , 为7 1 0 0 r / m i n 。机架前1 0 阶弹性模态频率分布在
基于ANSYS的四杆机构分析详细
ANSYS作业一.问题描述图1所示平行四边形机构,曲柄长200mm,连杆长l根据各自学号后2位乘以10,各杆截面为40x5,其中宽度为40,厚度为5。
现在连杆上表面加1MPa的三角分布的压力(铰接结构自习设计,加载面去除2端铰接结构),求各杆的强度和变形。
要求按报告格式写,写出主要步骤、注意事项、关键程序、结果及其评价(材料按Q235A),铰接处结构是否合理。
二.有限元分析本文采用ANSYS编程语言APDL,编制参数化程序。
简介方便,便于重复分析,节省大量的工作量。
1.定义材料、单元finish/clear/prep7 !进入前处理器et,1,solid185 !定义8节点实体单元solid185 mp,ex,1,2.08e5 ! 弹性模量mp,prxy,1,0.277 ! 泊松比mp,dens,1,7.86e-6 ! 密度et,2,conta173 !定义接触单元conta173et,3,targe170 !定义目标单元targe170 keyopt,2,5,3 !设置接触单元选项keyopt,2,7,1keyopt,2,9,0keyopt,2,12,02.四杆机构建模参数p0=1 !载荷a=40 !连杆截面宽度b=5 !连杆截面厚度l1=200 !曲柄长度l2=90 !连杆长度3.四杆机构参数化建模block,0,b,8,l1-8,0,a !生成长方体块block,0,b,0,8,0,10block,0,b,0,8,a-10,ablock,0,b,l1-8,l1,0,10block,0,b,l1-8,l1,a-10,avadd,all !将以上长方体布尔相加得到曲柄block,8,l2-8,0,b,0,a !生成长方体块block,0,8,0,b,10,30block,l2-8,l2,0,b,10,30vadd,1,2,3 !将以上长方体布尔相加得到机架vgen,2,6,6,0,l2-5 !复制曲柄得到第四杆vgen,2,4,4,0,,l1-5 !复制机架得到连杆wpoffs,2.5,2.5,0 !工作平面沿x、y正向各平移2.5mm cylind,0,2,0,40,0,360 !在铰接处画圆柱半径2mm、长度40mm vsbv,6,3,sepo !布尔运算、曲柄减去圆柱生成曲柄铰链孔cylind,0,2,0,40,0,360 !生成曲柄铰链的销vsbv,4,3,sepo !布尔运算、机架减去圆柱生成机架铰链孔cylind,0,2,0,40,0,360vgen,2,3,3,0,l2-5 !将圆柱销复制得到另外三个铰接出圆柱vsbv,6,4,sepo !布尔运算得到铰链孔vgen,2,3,3,0,l2-5 !生成圆柱vsbv,1,4,sepo !布尔运算得到铰链孔vgen,2,3,3,0,l2-5 !生成销vgen,2,3,3,0,,l1-5vsbv,5,4,sepo !布尔运算得到铰链孔vgen,2,3,3,0,,l1-5 !生成圆柱vsbv,2,4,sepo !布尔运算得到铰链孔vgen,2,3,3,0,,l1-5 !生成销vgen,2,3,3,0,l2-5,l1-5vsbv,5,4,sepo !布尔运算得到铰链孔 vgen,2,3,3,0,l2-5,l1-5 !生成圆柱vsbv,6,4,sepo !布尔运算得到铰链孔 vgen,2,3,3,0,l2-5,l1-5 !生成销四杆机构实体模型如图1所示:图1(a ) 图1(b ) 图1(c )图1. 四杆机构、铰链处销实体模型4. 有限元网格划分wpoffs,-2.5,-2.5,0 !工作平面移动到总体坐标系原点处 wpoffs,8,195,0 !移动工作平面wprota,,,90 !工作平面绕y 轴旋转90°vsbw,all !用工作平面切割连杆与机架一端 wpoffs,,,l2-16 !移动工作平面vsbw,all !用工作平面切割连杆与机架另一端 wpoffs,,,-(l2-16) !移动工作平面 wpoffs,,-3,0 !移动工作平面wprota,,90 !工作平面绕x 轴旋转90° vsbw,all !用工作平面切割体 wpoffs,,,184 !移动工作平面vsbw,all !用工作平面切割体 esize,1,0, !设置网格大小 mshape,1,3D !设置单元形状 mshkey,0 !网格划分方式vsweep,all !扫略生成网格四杆机构有限元模型如图2所示:图2(a ) 图2(b )图2(c)图2. 四杆机构有限元网格模型5.添加接触对asel,s,area,,3,4,1 !选择第一个铰接处接触面(凸面)nsla,s,1 !选择接触面上所有节点cm,jiechu1,node !做成名为jiechu1的节点集合allsel,all !选择所有asel,s,area,,69,70,1 !选择第一个铰接处目标面(凹面)asel,a,area,,135,136,1asel,a,area,,21,23,2nsla,s,1 !选择目标面上所有节点cm,mubiao1,node !做成名为mubiao1的节点集合allsel,allasel,s,area,,11,12,1 !选择第二个铰接处接触面(凸面)nsla,s,1 !选择接触面上所有节点cm,jiechu2,node !做成名为jiechu2的节点集合allsel,allasel,s,area,,18,26,8 !选择第二个铰接处目标面(凹面)asel,a,area,,51,52,1asel,a,area,,77,78,1nsla,s,1 !选择目标面上所有节点cm,mubiao2,node !做成名为mubiao2的节点集合allsel,allasel,s,area,,20,22,2 !选择第三个铰接处接触面(凸面)nsla,s,1 !选择接触面上所有节点cm,jiechu3,node !做成名为jiechu3的节点集合allsel,allasel,s,area,,111,112,1 !选择第三个铰接处目标面asel,a,area,,121,122,1asel,a,area,,75,76,1nsla,s,1 !选择目标面上所有节点cm,mubiao3,node !做成名为mubiao3的节点集合allsel,allasel,s,area,,7,8,1 !选择第四个铰接处接触面nsla,s,1 !选择接触面上所有节点cm,jiechu4,node !做成名为jiechu4的节点集合allsel,allasel,s,area,,97,100,1 !选择第四个铰接处目标面asel,a,area,,14,16,2nsla,s,1 !选择目标面上所有节点cm,mubiao4,node !做成名为mubiao4的节点集合allsel,allr,1,,,1,0.1 !定义接触属性:刚度渗透量等r,2,,,1,0.1r,3,,,1,0.1r,4,,,1,0.1type,2 !生成第一个铰接处的接触对mat,1real,1cmsel,s,jiechu1,nodeesurf,toptype,3mat,1real,1cmsel,s,mubiao1,nodeesurf,toptype,2 !生成第二个铰接处的接触对mat,1real,2cmsel,s,jiechu2,nodeesurf,toptype,3mat,1real,2cmsel,s,mubiao2,nodeesurf,toptype,2 !生成第三个铰接处的接触对mat,1real,3cmsel,s,jiechu3,nodeesurf,toptype,3mat,1real,3cmsel,s,mubiao3,nodeesurf,toptype,2 !生成第四个铰接处的接触对mat,1real,4cmsel,s,jiechu4,nodeesurf,toptype,3mat,1real,4cmsel,s,mubiao4,nodeesurf,top接触对模型如图3所示:图3(a)接触单元图3(b )目标单元图3(c )接触单元放大 图3(d )目标单元放大图3. 四个铰链处接触对6. 加载与求解nsel,s,loc,x,5,l2-5 !选择机架上所有节点,施加全约束 nsel,r,loc,y,0,5 d,all,allnsel,s,loc,x,8,l2/2,1!按坐标选择连杆上表面从左端点至中间位置的所有节点(铰接处除外) nsel,r,loc,y,199.9,200,0.1*get,nmax,node,,num,max, !提取当前激活的最大节点数目编号nmax *get,nmin,node,,num,min, !提取当前激活的最小节点数目编号nmin *dim,t1,array,nmax,1,1, !定义名为t1的数组*do,j,nmin,nmax !循环,j 从nmin 到nmax *if,nsel(j),eq,1,then !if 判断 t1(j)=p0*abs(nx(j)-8)*1/l2/2!连杆从左端点到中间位置的载荷位置函数(一次函数)*else t1(j)=0*endif*enddo !结束循环sffun,pres,t1(1)sf,all,pres,0 !添加连杆上表面从左端点至中间位置的载荷local,12,0,l2,200,0 !定义局部坐标系编号为12,远点位于连杆右端点上表面处csys,12allsel,allnsel,s,loc,x,(-1)*l2/2,-8,1nsel,r,loc,y,-0.1,0,0.1!按坐标选择连杆上表面从右端点至中间位置的所有节点(铰接处除外)*get,nmax,node,,num,max,*get,nmin,node,,num,min,*dim,t2,array,nmax,1,1,*do,i,nmin,nmax*if,nsel(i),eq,1,thent2(i)=p0*(abs(nx(i)+8)/l2/2)!连杆从右端点到中间位置的载荷位置函数(一次函数)*elset2(i)=0*endif*enddosffun,pres,t2(1)sf,all,pres,0allsel,allnummrg,node !节点融合/solu !进入求解器antype,static !静态分析autots,on ! 使用自动时间步长neqit,200 ! 最大迭代次数200pred ! 跨越荷载步时不作预测nropt,full,,off ! 完全牛顿拉夫逊法,不使用自适应下降因子LNSRCH,onNLGEOM,on ! 考虑集合非线性EQSLV,PCG !采用预条件共轭梯度迭代方程求解器nsubst,20,100,20 !载荷步的子步数为20allsel,alloutpr,basic,all !输出选项solve !求解四杆机构加载以及约束如图4、5所示:图4. 机架全约束图5. 连杆上表面渐变的三角形分布载荷三.查看结果1.查看应力,应力图如图6、7所示。
ANSYS结构分析教程篇(45页,详细)(图文)
ANSYS结构分析基础篇一、总体介绍进行有限元分析的基本流程:1.分析前的思考1)采用哪种分析(静态,模态,动态...)2)模型是零件还是装配件(零件可以form a part形成装配件,有时为了划分六面体网格采用零件,但零件间需定义bond接触)3)单元类型选择(线单元,面单元还是实体单元)4)是否可以简化模型(如镜像对称,轴对称)2.预处理1)建立模型2)定义材料3)划分网格4)施加载荷及边界条件3.求解4.后处理1)查看结果(位移,应力,应变,支反力)2)根据标准规范评估结构的可靠性3)优化结构设计高阶篇:一、结构的离散化将结构或弹性体人为地划分成由有限个单元,并通过有限个节点相互连接的离散系统。
这一步要解决以下几个方面的问题:1、选择一个适当的参考系,既要考虑到工程设计习惯,又要照顾到建立模型的方便。
2、根据结构的特点,选择不同类型的单元。
对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。
3、根据计算分析的精度、周期及费用等方面的要求,合理确定单元的尺寸和阶次。
4、根据工程需要,确定分析类型和计算工况。
要考虑参数区间及确定最危险工况等问题。
5、根据结构的实际支撑情况及受载状态,确定各工况的边界约束和有效计算载荷。
二、选择位移插值函数1、位移插值函数的要求在有限元法中通常选择多项式函数作为单元位移插值函数,并利用节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式。
位移插值函数需要满足相容(协调)条件,采用多项式形式的位移插值函数,这一条件始终可以满足。
但近年来有人提出了一些新的位移插值函数,如:三角函数、样条函数及双曲函数等,此时需要检查是否满足相容条件。
2、位移插值函数的收敛性(完备性)要求:1) 位移插值函数必须包含常应变状态。
2)位移插值函数必须包含刚体位移。
3、复杂单元形函数的构造对于高阶复杂单元,利用节点处的位移连续性条件求解形函数,实际上是不可行的。
四杆桁架结构的有限元分析
四杆桁架结构的有限元分析在ANSYS 平台上,完成相应的力学分析。
即如图3-8所示的结构,各杆的弹性模量和横截面积都为4229.510N/mm E = , 2100mm A =,基于ANSYS 平台,求解该结构的节点位移、单元应力以及支反力。
1. 基于图形界面的交互式操作(step by step)(1) 进入ANSYS(设定工作目录和工作文件)程序 →ANSYS → ANSYS Interactive →Working directory (设置工作目录) →Initial jobname (设置工作文件名): planetruss →Run → OK(2) 设置计算类型ANSYS Main Menu : Preferences… → Structural → OK(3) 选择单元类型ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete… →Add… →Link :2D spar 1 →OK (返回到Element Types 窗口) →Close(4) 定义材料参数ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic → Isotropic: EX:2.95e11 (弹性模量),PRXY: 0 (泊松比) → OK → 鼠标点击该窗口右上角的“ ”来关闭该窗口(5) 定义实常数以确定单元的截面积ANSYS Main Menu: Preprocessor →Real Constant s… →Add/Edit/Delete →Add →Type 1→ OK →Real Constant Set No: 1 (第1号实常数), AREA: 1e-4 (单元的截面积) →OK →Close(6) 生成单元ANSYS Main Menu: Preprocessor →Modeling →Creat →Nodes → In Active CS →Node number 1 → X:0,Y:0,Z:0 →Apply →Node number 2 → X:0.4,Y:0,Z:0 →Apply →Node number 3 → X:0.4,Y:0.3,Z:0→Apply→Node number 4 →X:0,Y:0.3,Z:0→OKANSYS Main Menu: Preprocessor →Modeling→Create →Elements→Elem Attributes(接受默认值)→User numbered→Thru nodes→OK→选择节点1,2→Apply→选择节点2,3→Apply→选择节点1,3→Apply→选择节点3,4→Apply→OK(7)模型施加约束和外载添加位移的约束,分别将节点1 X和Y方向、节点2 Y方向、节点4的X和Y方向位移约束。
基于ANSYS的平面四杆机构仿真的结构优化设计
关键 词 A N S Y S; 平 面四杆机 构 ;曲柄摇 杆机 构 ; 优化 设计 中 图分 类号 : T H 1 1 2 文献 标识 码 : A 文章 编号 :1 6 7 卜7 5 9 7( 2 0 1 4 )2 4 - 0 0 0 5 - 0 1
平 面 四杆 机构 是 连 杆 机构 中最 常见 的机 构 组成 , 广泛 应 用 于 工 程机 械 和 农业 机 械 中 , 对 四杆机 构 仿 真 的结 构 优 化 设计 进 行 研 究 具有 重 要 意义 。 平 面 四杆 机 构仿 真 的 结构 优 化 设计 就 是 根 据 实 际 情 况 在计 算 机 编 程 的帮 助 下建 立 起 机 构 的 数 学模 型 , 并 通 过运 用 一 定 的优 化 算 法 寻找 既 能很 好 解 决约 束 条件 又能 使 目标 函 数 最优 的设 计方 案 ,最终 达 到优 化 设 计 的 目的。有 限 元 方 法 是结 构 优 化 设计 的重 要 方法 之 一 , 实 际 应用 中 , 我 们 可 通 妒 k 为实 际输 出角 。
2 0 1 4  ̄ 2 4 期总第1 6 8 期
S- L- C 0 N VALLEY
基于A NS YS 的平 面四杆机构仿 真 的 结构优化设 计
焦晨 航
( 兰州 交通大 学 , 甘 肃兰 州
7 3 0 0 0 0 )
摘 要 随着计算机技术的迅猛发展 , 结构优化设计方法也随之变更。本文简要介绍了有限元分析的典型步骤和流程 , 并运用 A N S Y S 软件 ,以曲柄摇杆机构为例 , 对平面四杆机构仿真的结构优化设计进行探讨 , 以期为进一步的动力学分
如 :1 l ≤ 1 2 ;1 l≤ 1 3;1 1 ≤ l 4;1 1 + 1 4≤ l 2 + 1 3;l 1 + l 3 ≤ 1 2 + 1 4 ;
基于ANSYS的四旋翼飞行器机架受力弯曲分析
基于ANSYS的四旋翼飞行器机架受力弯曲分析摘要:随着科技的发展,四旋翼飞行器的应用越来越广泛,与之相关的研究也越来越多。
本文通过建立四旋翼飞行器机架模型,用ANSYS软件计算分析了四旋翼飞行器机架支撑杆的受力,分析了支撑杆各部分的受力弯曲情况。
计算结果为提高机架的性能和优化设计提供了参考依据。
关键词:四旋翼飞行器静力分析ANSYS1.引言四旋翼飞行器是一种微型飞行器,利用四个螺旋桨作为飞行引擎进行空中飞行。
由于机械结构简单,尺寸较小,重量较轻,适合携带一定的载荷,具备自主导航能力,因而广泛用于军事、民用和科技等复杂危险的环境中。
四旋翼飞行器的飞行控制系统通过传感器采集飞行姿态数据,实时监测和控制飞行姿态,因而飞行很稳定,也能任意角度移动,非常灵活。
在没有外力并且重量分布均匀时,四个螺旋桨以同样的速度转动。
当四个螺旋桨向上的拉力大于机身的重力时,四旋翼飞行器就会上升。
拉力与机身重量相等时,四旋翼飞行器就会在空中悬停。
当前方的马达减速,后方的马达加速,四旋翼就会向前倾斜,实现飞行器的向前飞行[1]。
通过调整四个马达的转速,可以实现各种飞行姿态。
目前,四旋翼飞行器主要偏重于飞控算法的研究,例如:瑞士联邦理工学院的0S4四旋翼飞行器分别使用了FID、LQR、Back Stepping和Sliding Mode算法实现了对飞行器的姿态控制[2]。
MIT的G. Gowtham 提出了一组高效指引四旋翼行器编队飞行的控制方法[3];MIT 还研制出了基于视觉导航的室内四旋翼飞行器控制系统,能够精确地完成各种复杂的机动飞行。
南京航空航天大学提出了DI/QFT控制器在四旋翼飞行器飞行控制中的应用[4];国防科技大学提出的自抗扰控制器可以对四旋翼飞行器实现姿态增稳控制[5]。
此外还有很多由民间飞行器爱好者开发的开源四旋翼飞行控制系统,都能较好实现对四旋翼飞行器的姿态稳定控制。
然而,关于四旋翼飞行器机械结构的设计却很少有涉及。
基于ANSYS平台的四连杆门座起重机立柱及平衡系统金属结构有限元分析
基于ANSYS平台的四连杆门座起重机立柱及平衡系统金属结构有限元分析王红霞;王红勤【摘要】四连杆门座起重机是一种广泛应用于港口装卸的机械设备,立柱及平衡系统是门座起重机的重要组成部分,在门座起重机正常工作的过程当中扮演着重要的角色。
传统的设计方法设计出来的门座起重机较为笨重,造成很严重的材料浪费。
文章就以MQ4030四连杆门座起重机为例,利用有限元ANSYS分析软件,对起重机的立柱及平衡系统的金属结构进行静强度及刚度的分析。
通过各个工况下的应力云图及位移云图,进一步验证手算的正确性,并为进一步优化产品设计提供理论依据。
【期刊名称】《时代农机》【年(卷),期】2017(000)012【总页数】3页(P110-111)【关键词】四连杆门座起重机;立柱及平衡系统金属结构;有限元ANSYS静强度及刚度分析;优化产品设计【作者】王红霞;王红勤【作者单位】[1]河南工学院,河南新乡453003;;[2]广州大学华软软件学院,广东广州510990;【正文语种】中文【中图分类】U441四连杆门座起重机作为一种典型的旋转类型起重机(CAD模型如图1所示,实物如图2所示),被广泛应用于港口、码头货物的装卸,造船厂船舶的施工与安装及大型水电站建坝工程中。
金属结构在门座起重机的总重量中占有很大的比重,约占70%,金属结构的大小对起重机零部件的尺寸和重量、能耗、轨道基础和安装等费用都有很大的影响,因此如何减轻金属结构的重量显得尤为重要。
立柱及平衡系统在四连杆门座起重机正常工作的过程中扮演着重要的角色,为了使门座起重机正常的工作,同样必须把立柱及平衡系统也设计好。
有限元ANSYS做为一种结构分析软件,被广泛地应用于起重机金属结构设计过程当中来。
相对于以前传统的设计方法,有限元分析更直接地把结构件各个截面的应力和位移表示出来,这是传统的以力学和数学为基础的半理论半经验的设计方法所不能比拟的。
文章利用有限元分析软件对MQ4030四连杆门座起重机的立柱及平衡系统进行应力及位移分析,通过应力云图和位移云图,来进行结构优化设计,从而进一步验证设计的合理性,同时还可以大大缩短设计周期,降低生产成本,提高整机的经济效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS作业一.问题描述图1所示平行四边形机构,曲柄长200mm,连杆长l根据各自学号后2位乘以10,各杆截面为40x5,其中宽度为40,厚度为5。
现在连杆上表面加1MPa的三角分布的压力(铰接结构自习设计,加载面去除2端铰接结构),求各杆的强度和变形。
要求按报告格式写,写出主要步骤、注意事项、关键程序、结果及其评价(材料按Q235A),铰接处结构是否合理。
二.有限元分析本文采用ANSYS编程语言APDL,编制参数化程序。
简介方便,便于重复分析,节省大量的工作量。
1.定义材料、单元finish/clear/prep7 !进入前处理器et,1,solid185 !定义8节点实体单元solid185 mp,ex,1,2.08e5 ! 弹性模量mp,prxy,1,0.277 ! 泊松比mp,dens,1,7.86e-6 ! 密度et,2,conta173 !定义接触单元conta173et,3,targe170 !定义目标单元targe170 keyopt,2,5,3 !设置接触单元选项keyopt,2,7,1keyopt,2,9,0keyopt,2,12,02.四杆机构建模参数p0=1 !载荷a=40 !连杆截面宽度b=5 !连杆截面厚度l1=200 !曲柄长度l2=90 !连杆长度3.四杆机构参数化建模block,0,b,8,l1-8,0,a !生成长方体块block,0,b,0,8,0,10block,0,b,0,8,a-10,ablock,0,b,l1-8,l1,0,10block,0,b,l1-8,l1,a-10,avadd,all !将以上长方体布尔相加得到曲柄block,8,l2-8,0,b,0,a !生成长方体块block,0,8,0,b,10,30block,l2-8,l2,0,b,10,30vadd,1,2,3 !将以上长方体布尔相加得到机架vgen,2,6,6,0,l2-5 !复制曲柄得到第四杆vgen,2,4,4,0,,l1-5 !复制机架得到连杆wpoffs,2.5,2.5,0 !工作平面沿x、y正向各平移2.5mm cylind,0,2,0,40,0,360 !在铰接处画圆柱半径2mm、长度40mm vsbv,6,3,sepo !布尔运算、曲柄减去圆柱生成曲柄铰链孔cylind,0,2,0,40,0,360 !生成曲柄铰链的销vsbv,4,3,sepo !布尔运算、机架减去圆柱生成机架铰链孔cylind,0,2,0,40,0,360vgen,2,3,3,0,l2-5 !将圆柱销复制得到另外三个铰接出圆柱vsbv,6,4,sepo !布尔运算得到铰链孔vgen,2,3,3,0,l2-5 !生成圆柱vsbv,1,4,sepo !布尔运算得到铰链孔vgen,2,3,3,0,l2-5 !生成销vgen,2,3,3,0,,l1-5vsbv,5,4,sepo !布尔运算得到铰链孔vgen,2,3,3,0,,l1-5 !生成圆柱vsbv,2,4,sepo !布尔运算得到铰链孔vgen,2,3,3,0,,l1-5 !生成销vgen,2,3,3,0,l2-5,l1-5vsbv,5,4,sepo !布尔运算得到铰链孔 vgen,2,3,3,0,l2-5,l1-5 !生成圆柱vsbv,6,4,sepo !布尔运算得到铰链孔 vgen,2,3,3,0,l2-5,l1-5 !生成销四杆机构实体模型如图1所示:图1(a ) 图1(b ) 图1(c )图1. 四杆机构、铰链处销实体模型4. 有限元网格划分wpoffs,-2.5,-2.5,0 !工作平面移动到总体坐标系原点处 wpoffs,8,195,0 !移动工作平面wprota,,,90 !工作平面绕y 轴旋转90°vsbw,all !用工作平面切割连杆与机架一端 wpoffs,,,l2-16 !移动工作平面vsbw,all !用工作平面切割连杆与机架另一端 wpoffs,,,-(l2-16) !移动工作平面 wpoffs,,-3,0 !移动工作平面wprota,,90 !工作平面绕x 轴旋转90° vsbw,all !用工作平面切割体 wpoffs,,,184 !移动工作平面vsbw,all !用工作平面切割体 esize,1,0, !设置网格大小 mshape,1,3D !设置单元形状 mshkey,0 !网格划分方式vsweep,all !扫略生成网格四杆机构有限元模型如图2所示:图2(a ) 图2(b )图2(c)图2. 四杆机构有限元网格模型5.添加接触对asel,s,area,,3,4,1 !选择第一个铰接处接触面(凸面)nsla,s,1 !选择接触面上所有节点cm,jiechu1,node !做成名为jiechu1的节点集合allsel,all !选择所有asel,s,area,,69,70,1 !选择第一个铰接处目标面(凹面)asel,a,area,,135,136,1asel,a,area,,21,23,2nsla,s,1 !选择目标面上所有节点cm,mubiao1,node !做成名为mubiao1的节点集合allsel,allasel,s,area,,11,12,1 !选择第二个铰接处接触面(凸面)nsla,s,1 !选择接触面上所有节点cm,jiechu2,node !做成名为jiechu2的节点集合allsel,allasel,s,area,,18,26,8 !选择第二个铰接处目标面(凹面)asel,a,area,,51,52,1asel,a,area,,77,78,1nsla,s,1 !选择目标面上所有节点cm,mubiao2,node !做成名为mubiao2的节点集合allsel,allasel,s,area,,20,22,2 !选择第三个铰接处接触面(凸面)nsla,s,1 !选择接触面上所有节点cm,jiechu3,node !做成名为jiechu3的节点集合allsel,allasel,s,area,,111,112,1 !选择第三个铰接处目标面asel,a,area,,121,122,1asel,a,area,,75,76,1nsla,s,1 !选择目标面上所有节点cm,mubiao3,node !做成名为mubiao3的节点集合allsel,allasel,s,area,,7,8,1 !选择第四个铰接处接触面nsla,s,1 !选择接触面上所有节点cm,jiechu4,node !做成名为jiechu4的节点集合allsel,allasel,s,area,,97,100,1 !选择第四个铰接处目标面asel,a,area,,14,16,2nsla,s,1 !选择目标面上所有节点cm,mubiao4,node !做成名为mubiao4的节点集合allsel,allr,1,,,1,0.1 !定义接触属性:刚度渗透量等r,2,,,1,0.1r,3,,,1,0.1r,4,,,1,0.1type,2 !生成第一个铰接处的接触对mat,1real,1cmsel,s,jiechu1,nodeesurf,toptype,3mat,1real,1cmsel,s,mubiao1,nodeesurf,toptype,2 !生成第二个铰接处的接触对mat,1real,2cmsel,s,jiechu2,nodeesurf,toptype,3mat,1real,2cmsel,s,mubiao2,nodeesurf,toptype,2 !生成第三个铰接处的接触对mat,1real,3cmsel,s,jiechu3,nodeesurf,toptype,3mat,1real,3cmsel,s,mubiao3,nodeesurf,toptype,2 !生成第四个铰接处的接触对mat,1real,4cmsel,s,jiechu4,nodeesurf,toptype,3mat,1real,4cmsel,s,mubiao4,nodeesurf,top接触对模型如图3所示:图3(a)接触单元图3(b )目标单元图3(c )接触单元放大 图3(d )目标单元放大图3. 四个铰链处接触对6. 加载与求解nsel,s,loc,x,5,l2-5 !选择机架上所有节点,施加全约束 nsel,r,loc,y,0,5 d,all,allnsel,s,loc,x,8,l2/2,1!按坐标选择连杆上表面从左端点至中间位置的所有节点(铰接处除外) nsel,r,loc,y,199.9,200,0.1*get,nmax,node,,num,max, !提取当前激活的最大节点数目编号nmax *get,nmin,node,,num,min, !提取当前激活的最小节点数目编号nmin *dim,t1,array,nmax,1,1, !定义名为t1的数组*do,j,nmin,nmax !循环,j 从nmin 到nmax *if,nsel(j),eq,1,then !if 判断 t1(j)=p0*abs(nx(j)-8)*1/l2/2!连杆从左端点到中间位置的载荷位置函数(一次函数)*else t1(j)=0*endif*enddo !结束循环sffun,pres,t1(1)sf,all,pres,0 !添加连杆上表面从左端点至中间位置的载荷local,12,0,l2,200,0 !定义局部坐标系编号为12,远点位于连杆右端点上表面处csys,12allsel,allnsel,s,loc,x,(-1)*l2/2,-8,1nsel,r,loc,y,-0.1,0,0.1!按坐标选择连杆上表面从右端点至中间位置的所有节点(铰接处除外)*get,nmax,node,,num,max,*get,nmin,node,,num,min,*dim,t2,array,nmax,1,1,*do,i,nmin,nmax*if,nsel(i),eq,1,thent2(i)=p0*(abs(nx(i)+8)/l2/2)!连杆从右端点到中间位置的载荷位置函数(一次函数)*elset2(i)=0*endif*enddosffun,pres,t2(1)sf,all,pres,0allsel,allnummrg,node !节点融合/solu !进入求解器antype,static !静态分析autots,on ! 使用自动时间步长neqit,200 ! 最大迭代次数200pred ! 跨越荷载步时不作预测nropt,full,,off ! 完全牛顿拉夫逊法,不使用自适应下降因子LNSRCH,onNLGEOM,on ! 考虑集合非线性EQSLV,PCG !采用预条件共轭梯度迭代方程求解器nsubst,20,100,20 !载荷步的子步数为20allsel,alloutpr,basic,all !输出选项solve !求解四杆机构加载以及约束如图4、5所示:图4. 机架全约束图5. 连杆上表面渐变的三角形分布载荷三.查看结果1.查看应力,应力图如图6、7所示。