课题学习 选择方案教案(教学设计)

合集下载

人教版数学八年级下册19.3《课题学习选择方案》说课稿

人教版数学八年级下册19.3《课题学习选择方案》说课稿

人教版数学八年级下册19.3《课题学习选择方案》说课稿一. 教材分析人教版数学八年级下册19.3《课题学习选择方案》这一节的内容,主要让学生掌握如何从多个方案中选择最优方案,培养学生解决实际问题的能力。

本节内容是在学生已经学习了概率、统计和二元一次方程组的基础上进行授课的,对学生来说,是一个知识的巩固和拓展。

教材通过实例引入,让学生了解选择方案的实际应用,然后通过分析、讨论、总结,让学生掌握选择方案的方法和技巧。

二. 学情分析八年级的学生已经具备了一定的数学基础,对概率、统计和二元一次方程组的知识有一定的了解。

但是,学生在解决实际问题时,往往缺乏分析问题和解决问题的能力。

因此,在教学过程中,我将会引导学生通过实例分析,总结选择方案的方法,提高学生解决实际问题的能力。

三. 说教学目标1.知识与技能:让学生掌握选择方案的方法和技巧,能运用所学的知识解决实际问题。

2.过程与方法:通过实例分析,培养学生解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极参与数学学习的习惯。

四. 说教学重难点1.教学重点:选择方案的方法和技巧。

2.教学难点:如何运用所学的知识解决实际问题。

五. 说教学方法与手段在教学过程中,我将采用实例教学法、讨论法、总结法等教学方法,利用多媒体课件辅助教学,帮助学生更好地理解和掌握所学知识。

六. 说教学过程1.导入:通过一个简单的实例,引入选择方案的概念,激发学生的学习兴趣。

2.新课讲解:讲解选择方案的方法和技巧,让学生通过实例分析,理解并掌握所学的知识。

3.课堂练习:设计一些练习题,让学生运用所学的知识解决实际问题,巩固所学内容。

4.总结:通过讨论和总结,让学生进一步理解和掌握选择方案的方法和技巧。

5.布置作业:布置一些相关的作业,让学生课后巩固所学知识。

七. 说板书设计板书设计如下:课题:选择方案1.实例引入2.方法讲解3.课堂练习八. 说教学评价教学评价将从学生的课堂表现、作业完成情况、练习题的正确率等方面进行。

浙教版数学八年级上册《课题学习 怎样选择较优方案》教学设计

浙教版数学八年级上册《课题学习 怎样选择较优方案》教学设计

浙教版数学八年级上册《课题学习怎样选择较优方案》教学设计一. 教材分析《课题学习怎样选择较优方案》是浙教版数学八年级上册的一章内容。

本章主要让学生掌握如何从多个方案中选择较优的方案,培养学生解决实际问题的能力。

本章内容包括:排列组合、简单概率、最优化问题等。

在学习本章之前,学生已经掌握了实数、代数、几何等基础知识,为本章的学习打下了基础。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,但在这个过程中,他们可能对一些概念和公式的理解还不到位,需要教师在教学过程中进行引导和解释。

此外,学生可能对实际问题的解决缺乏经验,需要通过实例分析和练习来培养这方面的能力。

三. 教学目标1.知识与技能:使学生掌握排列组合、简单概率、最优化问题的解法,能运用这些知识解决实际问题。

2.过程与方法:培养学生分析问题、解决问题的能力,提高学生的逻辑思维能力。

3.情感态度与价值观:培养学生对数学的兴趣,使学生意识到数学在实际生活中的应用。

四. 教学重难点1.重点:排列组合、简单概率、最优化问题的解法。

2.难点:如何将实际问题转化为数学模型,并运用所学知识解决问题。

五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。

2.引导发现法:教师引导学生发现问题的规律,培养学生解决问题的能力。

3.练习法:通过大量的练习题,巩固所学知识,提高学生的解题能力。

六. 教学准备1.教具:黑板、粉笔、多媒体教学设备。

2.学具:学生用书、练习册、笔记本。

3.教学资源:与课题相关的视频、图片、练习题等。

七. 教学过程1.导入(5分钟)教师通过一个生活实例引入课题,如“如何在几个活动项目中选择最优方案?”引导学生思考如何解决问题。

2.呈现(10分钟)教师讲解排列组合、简单概率、最优化问题的解法,并通过例题展示解题过程。

3.操练(10分钟)学生根据教师提供的练习题,独立解决问题,教师巡回指导,解答学生的疑问。

课题学习-方案选择(1)教学设计(精品课)

课题学习-方案选择(1)教学设计(精品课)

Ⅱ.教学过程设计
问题及师生行为 一、巧设阶梯,激发兴趣 练习题: (1) 1 千米= 1 千瓦= (2) 1 度电= 米; 瓦; 千瓦· 时. 1 米= 1 瓦= 千米; 千瓦 . 设计意图 巧设阶梯,为新知作 好铺垫.
(3) 白炽灯 60 瓦,售价 3 元,每度电 0.5 元/ (千瓦· 时),使用 1000 小时的 费用是多少元? (4) 节能灯 10 瓦售价 60 元,每度电 0.5 元/(千瓦· 时),使用 1000 小时的费 用是多少元? 答案: (1)1000,0.001,1000,0.001 . (2)1. (3)0.5×0.06×1000+3=33(元) . (4)0.5×0.01×1000+60=65(元) . 教师点评,并且提醒学生单位换算的进制.
第 13 课时
课题学习 选择方案(1)
Ⅰ.教学任务分析
1.巩固一次函数知识,灵活运用变量关系解决相关实际问题; 教 学 目 标 过程与能力 实际问题的能力. 1.体会数学与生活的联系, 了解数学的价值, 增强对数学的理解和学好数学的信心; 情感与态度 2.认识数学是解决实际问题的重要工具,了解数学对促进人类理性精神的作用. 教学重点 教学难点 1.建立函数模型;2.灵活运用数学模型解决实际问题. 运用一次函数知识解决实际问题. 知识与技能 2.熟练掌握一次函数与方程, 不等式关系, 把各种数学模型通过函数统一起来使用, 提高解决实际问题的能力; 3.让学生认识数学在现实生活中的意义,提高学生运用数学知识解决实际问题的能 力. 经历活动过程,让学生认识数学在现实生活中的意义,提高学生运用数学知识解决
2
通过板书,突出本节 课的重点.
1. 一个节能灯,一个白炽灯; 2. 两个节能灯; 3. 两个白炽灯. 问题 2:怎样租车 某学校计划在总费用 2300 元的限额内,利用汽车送 234 名学生和 6 名 教师集体外出活动,每辆汽车上至少有 1 名教师. 现有甲、乙两种大客车,它们的载客量和租金如表 : 甲种客车 载客量(单位:人/辆) 租金 (单位:元/辆) (1)共需租多少辆汽车? (2)给出最节省费用的租车方案. 分析: (1)要保证 240 名师生有车坐; (2)要使每辆汽车上至少要有 1 名教师. 根据(1)可知,汽车总数不能小于 6 ; 根据(2)可知,汽车总数不能大于 6 ;综合起来可知汽车总数为 6 . 设租用 x 辆甲种客车,则租车费用 y(单位:元)是 x 的函数,即 y=400x+280(6-x) 化简为: y=120x+1680. 讨论:根据问题中的条件,自变量 x 的取值应有几种可能? 为使 240 名师生有车坐,x 不能 小于 4 ;为使租车费用不超过 2300 元, x 不能超过 5 .综合起来可知 x 的取值为 4 或 5 . 在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用 应选择其中的哪种方案?试说明理由. 方案 1: 4 两甲种客车,2 两乙种客车; y1=120×4+1680=2160. 方案 2:5 两甲种客车,1 辆乙种客车; y2=120×5+1680=2280. 应选择方案 1,它比方案 2 节约 120 元. 45 400 乙种客车 30 280

人教版八年级数学下19.3课题学习选择方案(教案)

人教版八年级数学下19.3课题学习选择方案(教案)
-举例:在处理统计数据时,如何利用图表、计算平均数、方差等进行分析。
在教学过程中,针对以上难点与重点,教师应结合实例进行详细讲解,并通过练习、讨论等方式帮助学生巩固知识点,确保学生能够透彻理解选择方案的相关知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《选择方案》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要做出选择的情况?”比如,周末去哪里玩,买什么款式的衣服等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索选择方案的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解选择方案的基本概念。选择方案是在面临多种可能性时,通过一定的方法确定最佳方案的过程。它是解决问题和决策的关键环节,可以帮助我们更好地实现目标。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用选择方案在购物时找到性价比最高的商品。
-举例:解决最优化问题时,如何一步步筛选出最佳方案。
-应用选择方案解决实际问题:培养学生学以致用的能力,将所学知识应用于生活实际。
2.教学难点
-确定目标:在解决实际问题时,学生可能难以明确自己的目标,需要引导学生学会提炼目标。
-举例:在解决节约成本问题时,如何确定成本的组成,明确要降低哪些方面的成本。
3.重点难点解析:在讲授过程中,我会特别强调选择方案的步骤和评价方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解如何确定目标和评价方案。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与选择方案相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示选择方案的基本原理。

19.3 课题学习 选择方案-(新导学案)2022春八年级下册初二数学(人教版)山西专版

19.3 课题学习 选择方案-(新导学案)2022春八年级下册初二数学(人教版)山西专版

19.3 课题学习选择方案-(新导学案)2022春八年级下册初二数学(人教版)山西专版课题背景本课题为初二数学教学内容,主要讨论学生们在教学过程中,如何针对不同的问题,在多种可行方案中做出最优选择。

教学目标•了解并掌握选择方案的基本概念与思想方法。

•培养学生分析问题、解决问题的能力,增强其综合应用知识的能力。

•培养学生合作探讨的意识和能力,提高学生的团队合作精神。

•提高学生对数学学科的兴趣,增强学生的自主学习能力和创造力。

教学内容选择方案的基本概念选择方案是指在多种可行方案(包括选择、排列、组合等)中,选取一种科学、符合要求、优良的方案的过程。

选择方案一般需要考虑多种因素,如成本、时间、可行性、安全等。

选择方案的思想方法一般情况下,选择方案需要遵循以下几个步骤:1.明确目标和要求:选择方案的第一步就是明确目标和要求,以便选择出最优方案。

明确目标和要求需要结合实际情况,根据情况合理确定要求。

例如,考虑购买电脑时,需要先确定使用目的和购买预算,再选择性价比高、质量可靠等因素来确定要求。

2.收集情报资料:为了作出最优选择方案,需要充分收集相关情报和资料。

情报资料可以来自多个方面,如熟人介绍、网上搜索、问卷调查等。

例如,考虑购买电脑时,可以通过互联网搜索、问卷调查等方式收集相关资料。

3.分析和比较方案:收集到情报和资料后,需要对比分析多个可行方案。

对比分析需要综合考虑多种因素,如性价比、质量、售后服务等。

例如,考虑购买电脑时,需要比较多家电脑品牌的产品性价比、质量、售后服务等。

4.作出最终决策:在分析比较多个方案后,需要作出最终决策。

决策可以根据目标和要求,选取最优方案。

例如,考虑购买电脑时,在研究分析多个品牌的电脑产品性价比、质量、售后服务等因素后,做出最终决策选择最优方案。

实例分析以下是一个具体实例,以帮助学生了解和掌握选择方案的思想方法。

实例:如何选择健康的午餐?游客到一个小城市旅游,到处都是美食,但是游客不能放纵自己吃大餐或者垃圾食品。

19.3 课题学习 选择方案

19.3 课题学习 选择方案

19.3课题学习选择方案一、教学目标1.核心素养:通过在实际问题中建立函数模型,根据所列函数解析式的性质,选择合理方案解决问题的学习,结合实际问题的数学信息,进行合情推理,提升建立数学模型的能力,发展应用意识.2.学习目标(1)巩固一次函数知识,进一步明确一次函数与不等式相结合的实际问题处理方法.灵活运用变量之间的关系建立函数模型.(2)让学生通过“选择上网收费方式”,提高运用函数知识解决实际问题的能力.(3)让学生通过“怎样租车”,提高运用函数知识解决实际问题的能力.3.学习重点(1)培养学生自主分析问题的实际背景中包含的变量及对应关系.(2)运用一次函数的性质解决生活中的最佳方案.4.学习难点如何构建一次函数模型.二、教学设计(一)课前设计1.预习任务任务1:预习教材P102-104页,了解上宽带网有几种收费方式,思考影响收费的因素有哪些?任务2:思考租车数量由什么决定,租车费用与哪些因素有关?(二)课堂设计2.知识回顾(1)形如y=kx+b(k,b是常数且k≠0)的函数,y是x的一次函数.(2)一次函数y=kx+b中,当k>0时,y随x的增大而增大.当k<0时,y随x 的增大而减小.(3)一元一次方程kx+b=0可看作是直线y=kx+b与x轴交点的横坐标.(4)一元一次不等式kx+b>0可看作是直线y=kx+b与x轴交点上方图象对应的x的值.3.问题探究问题探究一怎样选取上网收费方式请认真学习课本P102-103页“问题1”的内容,边学习边思考下列问题:【知识点:一次函数应用,数学思想:建模思想】【点拨】活动一1.选择方案的依据是什么?【答】根据省钱原则选择方案2.要比较三种收费方式的费用,需要做什么?【答】分别计算每种方案的费用.3.怎样计算费用?【答】费用=月使用费+超时费超时费=超时使用价格×超时使用时间4.在A,B,C三种上网收费方式中,上网费用是变量的方式有__________,上网费用的多少与__________有关;上网费用是常量的方式是__________.【答】方案A,B的费用在超过一定时间后,随上网时间变化,是上网时间的函数.方案C费用固定.活动二 1.设上网时间为x h,A,B,C三种方式的收费y1,y2,y3各怎样表示?(注意考虑自变量x的取值范围)2.怎样比较y1,y2,y3的大小?分析:对于这个复杂的问题,我们画函数的图象,借助图象的直观性来解决.【详解】结合图象可知:(1)若y 1=y 2,即3t -45=50,解方程,得t =3123(2)若y 1<y 2,即3t -45<50,解不等式,得t <3123(3)若y 1>y 2,即3t -45>50,解不等式,得t >3123(4)若y 2=y 3,即3t -100=120,解方程,得t =7313(5)若y 2>y 3,即3t -100>120,解不等式,得t >7313综上所述:当上网时间不超过31小时40分,选择方案A 最省钱;当上网时间为31小时40分至73小时20分,选择方案B 最省钱;当上网时间超过73小时20分,选择方案C 最省钱.问题探究二怎样租车思考与讨论:阅读教材P103----P104,【知识点:一次函数应用,数学思想:建模思想】【点拨】活动一 1.影响最后的租车费用的因素有哪些?【答】主要影响因素是甲,乙两种车所租辆数.2.汽车所租辆数又与哪些因素有关?【答】与乘车人数有关.3.如何由乘车人数确定租车辆数呢?【答】(1)要保证240名师生都有车坐,汽车总数不能小于6辆;(2)要使每辆汽车上至少有1名教师,汽车总数不能大于6辆.所以共需租6辆车.活动二在汽车总数确定后,租车费用与租车的种类有关.如果租甲类车x 辆,能求出租车费用y=.在这个函数中,y 随x 的增大而.要求y 的最小值,就要先求x 的取值范围,怎样求x 的取值范围?【详解】设租用x辆甲种客车,则租用乙种客车的辆数为(6-x)辆;设租车费用为y,则y=400x+280(6-x)化简得y=120x+1680.(1)为使240名师生有车坐,则45x+30(6-x)≥240;(2)为使租车费用不超过2300元,则400x+280(6-x)≤2300.解得:4≤x≤316据实际意义可取4或5;因为y随着x的增大而增大,所以当x=4时,y最小,y的最小值为2160.所以,租甲种车4辆,乙种车2辆.结论:在涉及多变量的问题的解决中,能合理选择某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.3.课堂总结【知识梳理】基础知识思维导图【重难点突破】(1)本节的问题,其实质是运用一次函数选择最佳方案,一是用一次函数的图像性质;二是多变量的问题.(2)用一次函数解决生活中的方案选择问题需要根据题意列出函数解析式及图像,分三种情况:函数值相等、大于、小于,结合方程、不等式进行说明,在此基础上选择合理方案.(3)将实际问题抽象概括成函数模型体现建模思想,其步骤:审清题意---建立数学模型---数学方法解决问题----验证结果.4.随堂检测:参见ppt巩固练习提升题。

人教版数学八年级下册《19.3 课题学习——选择方案》教案

人教版数学八年级下册《19.3 课题学习——选择方案》教案

人教版数学八年级下册《19.3 课题学习——选择方案》教案一. 教材分析人教版数学八年级下册《19.3 课题学习——选择方案》这一节主要让学生学会如何从多个方案中选择最优方案。

通过引入实际问题,让学生运用概率知识、列举法等方法,解决实际选择问题。

教材以案例的形式呈现,让学生在解决问题的过程中,掌握选择方案的方法和技巧。

二. 学情分析学生在学习本节内容前,已经掌握了概率基础知识,能够理解并运用列举法。

但如何在实际问题中灵活运用这些知识,选择最优方案,对学生来说还较为困难。

因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的解决问题的能力。

三. 教学目标1.让学生理解选择方案的概念,掌握选择方案的方法和技巧。

2.培养学生运用概率知识、列举法解决实际问题的能力。

3.培养学生独立思考、合作交流的能力。

四. 教学重难点1.重点:选择方案的方法和技巧。

2.难点:如何将所学知识应用于实际问题中,灵活选择最优方案。

五. 教学方法1.案例教学法:通过引入实际问题,让学生在解决问题的过程中掌握选择方案的方法。

2.引导发现法:教师引导学生发现问题的解决方法,培养学生的独立思考能力。

3.合作交流法:分组讨论,让学生在合作中发现问题、解决问题,提高学生的沟通能力。

六. 教学准备1.准备相关案例材料,用于引导学生解决实际问题。

2.准备多媒体教学设备,用于展示案例和引导学生思考。

七. 教学过程1.导入(5分钟)利用多媒体展示一个实际问题:某商场举行抽奖活动,奖品有电视机、洗衣机、电风扇和玩具。

奖品设置如下:一等奖:电视机,概率为1/10;二等奖:洗衣机,概率为2/10;三等奖:电风扇,概率为3/10;四等奖:玩具,概率为4/10。

提问:如果你参加这次抽奖活动,你希望获得哪个奖项?为什么?2.呈现(10分钟)引导学生分析问题,让学生认识到选择最优方案的重要性。

呈现教材中的案例,让学生了解选择方案的方法和技巧。

【人教版】八年级数学下册教案:19.3 课题学习 选择方案

【人教版】八年级数学下册教案:19.3 课题学习 选择方案

19.3课题学习选择方案1.巩固一次函数知识,灵活运用变量关系解决相关实际问题;(重点)2.有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.(难点)一、情境导入某校打算组织八年级师生进行春游,负责组织春游的老师了解到本地有甲乙两家旅行社满足要求,针对团体出游,两家旅行社的优惠方案各不相同,甲旅行社表示可在原价基础上打八折优惠,乙旅行社则推出学生半价,教师九折的优惠,经统计得知有300名学生和24名老师将参加此次春游,你能帮忙分析出如何选择旅行社更划算吗?二、合作探究探究点:运用一次函数解决方案选择性问题【类型一】利用一次函数解决自变量是非负实数的方案选择问题小刚和他父亲一起去灯具店买灯具,灯具店老板介绍说,一种节能灯的功率是10瓦(即0.01千瓦)的,售价60元;一种白炽灯的功率是60瓦(即0.06千瓦)的,售价为3元.两种灯的照明效果是一样的.使用寿命也相同(3000小时以上).如果当地电费为0.5元/千瓦·时,请你帮助他们选择哪种灯可以省钱?解析:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元.根据“费用=灯的售价+电费”,分别列出y1、y2与x的函数解析式;然后根据y1=y2,y1>y2,y2>y1三种情况进行讨论即可求解.解:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元,由题意可知y1=0.01×0.5x+60=0.005x+60,y2=0.06×0.5x+3=0.03x+3.①当使用两灯费用相等时,y1=y2,即0.005x+60=0.03x+3,解得x=2280;②当使用节能灯的费用大于白炽灯的费用时,y1>y2,即0.005x+60>0.03x+3,解得x<2280;③当使用节能灯的费用小于白炽灯的费用时,y2>y1,即0.03x+3>0.005x+60,解得x>2280.所以当照明时间小于2280小时,应买白炽灯;当照明时间大于2280小时,应买节能灯;当照明时间等于2280小时,两种灯具费用一样.本题中两种灯的照明效果是一样的.使用寿命也相同(3000小时以上),所以买节能灯可以省钱.方法总结:解题的关键是要分析题意,根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的基本能力.【类型二】利用一次函数解决自变量是非负整数的方案选择问题某灾情发生后,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答的车辆数为y .求y 与x 的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.解析:(1)装运生活用品的车辆为(20-x -y )辆,根据三种救灾物资共100吨列出关系式;(2)根据题意求出x 的取值范围并取整数值从而确定方案;(3)分别表示装运三种物资的费用,求出表示总运费的表达式,运用函数性质解答.解:(1)根据题意,装运食品的车辆为x 辆,装运药品的车辆为y 辆,那么装运生活用品的车辆数为(20-x -y )辆,则有6x +5y +4(20-x -y )=100,整理得,y =-2x +20;(2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为x ,20-2x ,x ,由题意得⎩⎪⎨⎪⎧x ≥5,20-2x ≥4,解得5≤x ≤8.因为x为整数,所以x 的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆;(3)设总运费为W (元),则W =6x ×120+5(20-2x )×160+4x ×100=16000-480x .因为k =-480<0,所以W 的值随x 的增大而减小.要使总运费最少,需x 最大,则x =8.故选方案四,W 最小=16000-480×8=12160(元).答:选方案四,最少总运费为12160元.方法总结:解答此类问题往往通过解不等式(组)求出自变量的取值范围,然后求出自变量取值范围内的非负整数,进而得出每种方案,最后根据一次函数的性质求出最佳方案.【类型三】 利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题已知A 、B 两地的路程为240千米.某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A 地运往B 地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现有货运收费项目及收费标准表、行驶路程s (千米)与行驶时间t (时)的函数图象(如图①)、上周货运量折线统计图(如图②)等信息如下:货运收费项目及收费标准表货运收费项目及收费标准表:(1)汽车的速度为______千米/时,火车的速度为______千米/时;(2)设每天用汽车和火车运输的总费用分别为y 汽(元)和y 火(元),分别求y 汽、y 火与x 的函数关系式(不必写出x 的取值范围),当x 为何值时,y 汽>y 火(总费用=运输费+冷藏费+固定费用);(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?解析:(1)根据图①上两点的坐标分别为(2,120),(2,200),直接得出两车的速度即可;(2)根据图表得出货运收费项目及收费标准表、行驶路程s (千米)与行驶时间t (时)的函数图象,得出关系式即可;(3)根据平均数的求法以及折线图走势两个角度分析得出运输总费用较省方案.解:(1)60 100(2)根据题意得y 汽=240×2x +24060×5x+200=500x +200;y火=240×1.6x +240100×5x +2280=396x +2280.若y 汽>y 火,得出500x +200>396x +2280.解得x >20,当x >20时,y 汽>y 火;(3)上周货运量x =(17+20+19+22+22+23+24)÷7=21>20,从平均数分析,建议预定火车费用较省.从折线图走势分析,上周货运量周四(含周四)后大于20且呈上升趋势,建议预订火车费用较省.方法总结:解答方案选择问题,要注意根据具体情境适当调整方法,如解统计有关的方案选择问题时,要注意从统计图表中读取信息,然后利用这些信息解决问题. 三、板书设计1.利用一次函数解决自变量是非负实数的方案选择问题2.利用一次函数解决自变量是非负整数的方案选择问题3.利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题教学时,突出重点把握难点.能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想.。

初中数学八年级下册《课题学习 选择方案 怎样租车》优秀教学设计

初中数学八年级下册《课题学习 选择方案 怎样租车》优秀教学设计

19.4课题学习选择方案(二)怎样租车教学目标(一)教学知识点1、体会数学模型的建立都是以实际问题为背景2、通过学习掌握一次函数最值的求解.3、进一步明确一次函数与不等式(组)相结合的实际问题处理方法(二)能力训练要求1、经历观察、思考等数学活动,发展合情推理能力,能有条理地、清晰地阐述观点.2、提高学生在实际问题情景中建立函数模型的能力3、体会解决问题的策略多样性,发展实践能力和创新精神.(三)情感与价值观要求1、积极参与活动,提高学习兴趣及求知欲.2、养成实事求是的态度及独立思考的习惯.教学重点1、培养学生自主分析问题的实际背景中包含的变量及对应关系.2、灵活运用函数知识解决实际问题.教学难点构建一次函数模型解决实际问题教学方法引导─启发思考─探究.教具准备多媒体演示.教学过程一.提出问题,创设情境今天我校租用客车送20名教师到外校参加交流活动,现有甲乙两种客车可以租用,它们的载客量(不含司机座位)与租金如下表,若这20名教师中有17位是讲课教师,3位是带队领导而且要求每辆车上至少要有1位带队领导,这次活动学校将租金控制在240元以内,同学们能不能帮助老师设计一种最节省费用的租车方案?问题:1、一次函数y=kx+b (k 0),当k>0,k<0时,y 随x 的变化规律是什么? 2、对于这一问题很明显租车费用与所租车的种类有关,我们可以建立怎样的函数模型?提示:设租用甲种客车x 辆,租车费用y 元,根据题意可得y =_______________________本题所谓的最节省的方案就是确保y 最________,如果我们知道自变量x 的取值范围就可以根据函数增减性来确定方案了根据题意可知题中提出了如下的 20 即__________________ 240 即__________________ _______________ 二:合作探究某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体 外出活动,每辆汽车上至少1名教师。

14.4课题学习 选择方案(3课时)

14.4课题学习 选择方案(3课时)

新余市十六中张余斌14.4课题学习选择方案(第一课时)一、教学目标1、巩固一次函数知识,灵活运用变量关系解决相关实际问题.2、有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.3、让学生认识数学在现实生活中的意义,发展学生运用数学知识解决实际问题的能力.二、教学重点:1.建立函数模型。

2.灵活运用数学模型解决实际问题。

三、例题讲解引入情景做一件事情,有时有不同的实施方案。

比较这些方案,从中选择最佳方案作为行动计划,是非常必要的。

在选择方案时,往往需要从数学角度进行分析,涉及变量的问题常用到函数。

同学们通过讨论下面三个问题,可以体会如何运用一次函数选择最佳方案。

解决这些问题后,可以进行后面的实践活动。

小明家因种植反季节蔬菜致富后,盖起了一座三层楼房,现正在装修,准备安装照明灯,他和他父亲一起去灯具店买灯具,灯具店老板介绍说:一种节能灯的功率是10瓦(即0.01千瓦)的,售价60元.一种白炽灯的功率是60瓦(即0.06千瓦)的,售价为3元.两种灯的照明效果是一样的.使用寿命也相同(3000小时以上)父亲说:“买白炽灯可以省钱”.而小刚正好读八年级,他在心里默算了一下说:“还是买节能灯吧”.父子二人争执不下,如果当地电费为0.5元/千瓦.时,请聪明的你帮助他们选择哪种灯可以省钱呢?问题节省费用的含义是什么呢?哪一种灯的总费用最少灯的总费用=灯的售价+电费电费=0.5×灯的功率(千瓦)×照明时间(时)问题如何计算两种灯的费用?设照明时间是x小时, 节能灯的费用y1元表示,白炽灯的费用y2元表示,则有:y1=60+0.5×0.01x;y2 =3+0.5×0.06x .观察上述两个函数若使用节能灯省钱,它的含义是什么?y1< y2若使用白炽灯省钱,它的含义是什么?y1> y2若使用两种灯的费用相等,它的含义是什么?? y1= y2若y1< y2,则有60+0.5×0.01x <3+0.5×0.06x 解得:x>2280即当照明时间大于2280小时,购买节能灯较省钱若y 1 > y 2,则有 60+0.5×0.01x >3+0.5×0.06x 解得:x <2280 即当照明时间小于2280小时,购买白炽灯较省钱.•若y 1= y 2,则有 60+0.5×0.01x =3+0.5×0.06x 解得:x =2280 即当照明时间等于2280小时,购买节能灯、白炽灯均可.解:设照明时间是x 小时, 节能灯的费用y 1元表示,白炽灯的费用y 2元表示,则有: y 1 =60+0.5×0.01x; y 2 =3+0.5×0.06x .若y1< y2 ,则有 60+0.5×0.01x <3+0.5×0.06x 解得:x>2280 即当照明时间大于2280小时,购买节能灯较省钱. 若y 1 > y 2,则有解得:x <2280即当照明时间小于2280小时,购买白炽灯较省钱. 若y 1= y 2,则有60+0.5×0.01x =3+0.5×0.06x即当照明时间等于2280小时,购买节能灯、白炽灯均可. 能否利用函数解析式和图象也可以给出解答呢?解:设照明时间是x 小时, 节能灯的费用y 1元表示,白炽灯的费用y 2元表示,则有:y 1 =60+0.5×0.01x; y 2 =3+0.5×0.06x . 即: y 1 =0.005x +60 y 2 =0.03x + 3由图象可知,当照明时间小于2280时, y 2 <y 1,故用白炽灯省钱;当照明时间大于2280时, y 2>y 1,故用节能灯省钱;当照明时间等于2280小时, y 2=y 1购买节能灯、白炽灯均可. 四、方法总结1、建立数学模型——列出两个函数关系式2、通过解不等式或利用图象来确定自变量的取值范围。

八年级数学上人教版《课题学习 选择方案》教案

八年级数学上人教版《课题学习 选择方案》教案

《课题学习选择方案》教案
一、教学目标:
1.通过具体实例,初步体会数学建模思想,学会建立简单的数学模型。

2.学会从实际问题中筛选信息,解决简单的问题,发展解决实际问题的能力。

3.初步认识数学的广泛应用,提高对数学的认识,增强数学的应用意识。

二、教学重点:学会从实际问题中筛选信息,解决简单的问题。

三、教学难点:初步体会数学建模思想,发展解决实际问题的能力。

四、教学准备:多媒体课件、小黑板。

五、教学过程:
1.引入新课:展示一些实际生活中的问题,如购物、收费等,让学生感受到数学
在实际生活中的应用。

2.探究新知:通过具体实例,让学生了解如何从实际问题中筛选信息,建立简单
的数学模型,并解决实际问题。

例如,通过分析“租车方案”的问题,让学生了解如何根据实际情况选择合适的租车方案,并计算出各种方案的费用。

3.实践应用:让学生尝试解决一些实际问题,如“购物中的打折问题”、“如何选择
合适的旅游方案”等,让学生学会从实际问题中筛选信息,建立简单的数学模型,并解决实际问题。

4.归纳小结:通过回顾本节课学习的内容,总结如何从实际问题中筛选信息,建
立简单的数学模型,并解决实际问题。

5.布置作业:根据学生的实际情况,布置适当的课后练习题,并要求学生在规定
的时间内完成。

6.教学反思:根据学生的学习情况,对教学方法和过程进行反思和总结,发现问
题并及时改进。

人教版八年级数学 下册教案设计:19.3课题学习 方案选择

人教版八年级数学 下册教案设计:19.3课题学习 方案选择

方式B:y2=50x3100,(50)x x≤≤⎧⎨->⎩,(050);方式C:y3=120(x≥0).提问:用什么方法比较函数y1,y2,y3 的大小呢?学生独立思考, 有的学生可能会用不等式或方程考虑,但发现由于y1,y2 是分段函数,用不等式或方程比较麻烦,此时教师引导学生还可以借助函数图象来分析问题和解决问题.教师解析:(1)设上网时间为x h,方式A上网费用为y1元,方式B上网费用为y2元,方式C 上网费用为y3元,则y1=y2=y3=120(x≥0).问题转化为比较y1,y2,y3 的大小.(2)引导学生画出函数的图象:由函数图象可知:(1)函数y1=3x-45与函数y2=50的图象的交点横坐标满足:3x-45=50,故交点的横坐标为x=31,(2)函数y2=3x-100与函数y3=120的图象的交点横坐标满足:3x-100=120, 故交点的横坐标为x=73.由数形结合思想可知:当上网时间不超过31小时40分钟时,选择方式A最省钱;当上网时间为31小时40分钟至73小时20分钟时,选择方案B最省钱;当上网时间超过73小时20分钟时,选择方案C最省钱.引导学生写出详细的解答过程:解:设上网时间为x h,方式A上网费用为y1元,方式B上网费用为y2元,方式C 上网费用为y3元,则y1=y2=y3=120(x≥0).(1)令y1=y2,即3x-45=50,解方程,得x=31.(2)令y2=y3,即3x-100=120,解方程,得x=73.画出函数的图象如下图:结合函数的图象可知:当上网时间不超过31小时40分时,选择方案A最省钱;当上网时间为31小时40分至73小时20分时,选择方案B最省钱;当上网时间超过73小时20分时,选择方案C最省钱.2.怎样租车问题二:某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师.现有甲、乙两种大客车,它们的载客量和租金如表所示 :甲种客车乙种客车载客量(人/辆) 45 30租金(元/辆) 400 280(1)共需租多少辆汽车?(2)给出最节省费用的租车方案.引导学生阅读教师给出的材料,并思考下列问题:(1)租车的方案有几种?(2)如果单独租甲种车需要多少辆?单独租乙种车需要多少辆?(3)如果甲、乙两种车都租,你能确定租车的车辆范围吗?(4)要保证240名师生有车坐,则汽车总数不能小于.要使每辆汽车上至少有1名教师,则汽车总数不能大于.综合起来可知汽车总数为.学生根据教师所提出的问题进行思考,利用分类讨论的数学思想进行求解.解:(1)要保证240名师生有车坐,由甲种客车每辆载客45人可知汽车总数不能小于6;要使每辆汽车上至少有1名教师,有6名教师可知汽车总数不能大于6.综合起来可知汽车总数为6.(2)若单独租甲种车,需要费用:400×6=2400(元),不满足总费用2300元的限额. 若租甲、乙两种车,设租用x辆甲种客车,则租用(6-x)辆乙种客车,则车费y与 x 的函数关系式为y=400x+280(6-x)=120x+1680.由题意可知x应满足:_____________________________________.解这个不等式组,得4≤x≤.∵x为正整数,∴x=4或5.综上可知:共有两种方案:方案一:租4辆甲种客车,2辆乙种客车,y=120×4+1680=2160(元).方案二:租5辆甲种客车,1辆乙种客车,y=120×5+1680=2280(元).故应选择方案一,它的费用最少,为2160元.三、课堂小结1.本节课学习了用一次函数解决实际问题的基本思路:2.本节课渗透的数学思想方法.(建立数学模型、数形结合、分类讨论)3.在选择方案时,往往需要从数学角度进行分析,涉及变量的问题常用到函数.解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.四、板书设计1.怎样选取上网收费方式例12.怎样租车例2作业设计必做教材第105页活动1.选做教材第105页活动2.教学反思。

全国初中数学优质课一等奖《课题学习选择方案》教学设计及说明

全国初中数学优质课一等奖《课题学习选择方案》教学设计及说明

19.3课题学习选择方案(1)教学设计及说明一、教学内容及内容解析:本节内容选择了贴近生活实际的一个方案(怎样解决上网收费方式)。

在此之前学生已经学习了一元一次方程、二元一次方程组、一元一次不等式的解法和应用,一次函数的图像和性质,一次函数与一元一次方程、二元一次方程组、一元一次不等式之间的关系等相关知识。

由于本节内容具有较强的实际背景,分析实际背景中所包含的变量及其对应关系较复杂,且方法多,即可用学过的方程不等式又可用刚学过的函数知识,又要选择最优化的方案,因此是对以前知识的综合应用和升华。

目的是提高综合应用所学知识分析和解决实际问题的能力,从而体会一次函数在分析和解决实际问题中的重要作用,进一步感受建立数学模型重要性。

在授课过程中,采用了师生共同发现问题,提出问题,利用函数、数形结合以及分类讨论的思想方法解决问题,并用发现的方法解决问题的教学主线,解决了选择方案中的一次函数问题和简单分段函数的问题,为高中学习分段函数奠定基础。

二、教学目标及目标解析:根据学生实际和教材特点制定如下目标:1、进一步巩固一次函数的相关知识,初步学会从数学的角度提出问题,理解问题,并能综合运用所学知识和技能解决问题,发展应用意识。

2、能根据一次函数的性质,用代数法和图像法解决选择方案的问题,培养学生分析问题解决问题的能力与优化方案的意识,渗透数学建模的思想方法。

3、通过解决实际问题体会数学与生活的联系,激发学生学习数学的兴趣。

在数学学习中学会独立思考及与他人合作学习共同获得经验。

4、将所学的知识应用到解决实际问题中去选择合适的方案,体会数学的实用价值,帮助学生获得生活经验,并树立正确的人生观和价值观。

教学重点:建立数学模型,利用代数法和图像法解决选择方案的实际问题。

教学难点:从实际问题中抽象出分段函数模型,并用方程、不等式知识或借助函数图像的性质进行综合分析问题,从而解决实际生活中方案选择问题。

三、教学问题诊断分析:初中生活泼好动,注意力易分散,抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。

《课题学习选择方案》

《课题学习选择方案》

分析问题
要比较三种收费方式的费用,需要做什么? 分别计算每种方案的费用. 怎样计算费用?
费用 = 月使用费 + 超时费 超时费 = 超时使用价格 × 超时时间
分析问题
A,B,C 三种方案中,所需要的费用是固定的还 是变化的?
方案C费用固定; 方案A,B的费用在超过一定时间后,随上网时间 变化,是上网时间的函数.
整理课件
分析问题
y
A
y1=
30, 0≤t≤25; 3t-45, t>25. 120
B y2=
50, 0≤t≤50; 3t-100,t>50. 50
30
C y3=120.
O 25
y1 y2 y3
50 75 t
分类:y1<y2<y3时,y1最小; y1=y2<y3时,y1(或y2)最小; y2<y1<y3时,y2最小; y1>y3,且y2>y3时,y3最小.
解决问题
解:令3t-100=120,解方程,得t
=73
1 3

令3t-100>120,解不等式,得t>73
1 3

当上网时间不超过31小时40分,选择方案A最省钱; 当上网时间为31小时40分至73小时20分,选择方案 B最省钱; 当上网时间超过73小时20分,选择方案C最省钱.
课后作业
小张准备安装空调,请你调查市场上不同节能级别 的空调的价格、耗电量,了解当地的电费价格,运用数 学知识进行分析,给小张提一个购买建议.把你的调查 分析及建议写成书面报告形式.
19.3 课题学习 选择方案(1)
课件说明
• 本课是在学习了函数概念、一次函数有关知识后, 让学生经历发现问题、提出问题、分析问题和解决 问题的全过程,学习建立一次函数模型解决问题的 方法,并通过比较几个一次函数的变化率来解决 方案选择问题.

人教版数学八年级下册19.3《课题学习选择方案》说课稿1

人教版数学八年级下册19.3《课题学习选择方案》说课稿1

人教版数学八年级下册19.3《课题学习选择方案》说课稿1一. 教材分析人教版数学八年级下册19.3《课题学习选择方案》这一节的内容,主要让学生了解和掌握如何运用概率知识解决实际问题。

通过实例分析,让学生学会如何列出事件的可能性,并计算出概率,从而做出最优选择。

这部分内容与生活实际紧密相连,旨在培养学生的实际问题解决能力。

二. 学情分析学生在学习这一节内容前,已经掌握了概率的基本知识,如事件的确定性和不确定性,以及概率的计算方法。

但学生在解决实际问题时,可能会遇到难以判断事件是否独立的情况,因此,如何在实际问题中正确运用概率知识,是本节课需要解决的问题。

三. 说教学目标1.让学生掌握运用概率知识解决实际问题的方法。

2.培养学生分析问题、解决问题的能力。

3.提高学生运用数学知识解决生活实际问题的意识。

四. 说教学重难点1.教学重点:如何运用概率知识解决实际问题。

2.教学难点:判断事件是否独立,以及如何在实际问题中运用概率知识。

五. 说教学方法与手段1.采用案例分析法,让学生在实例中学会运用概率知识。

2.采用问题驱动法,引导学生主动思考、探究问题。

3.利用多媒体辅助教学,直观展示实例,提高学生的学习兴趣。

六. 说教学过程1.导入:通过一个简单的概率问题,引发学生对运用概率知识解决实际问题的兴趣。

2.新课导入:介绍课题学习的内容,让学生明确本节课的目标。

3.案例分析:分析具体实例,引导学生运用概率知识解决问题。

4.讨论交流:让学生分小组讨论,分享各自解决问题的方法。

5.总结提升:对所学内容进行总结,引导学生掌握解决实际问题的方法。

6.课堂练习:布置一些实际问题,让学生独立解决,巩固所学知识。

七. 说板书设计板书设计如下:课题:选择方案1.事件的可能性与概率–确定性事件:必然发生,概率为1–可能性事件:发生与否不确定,概率介于0和1之间–不可能事件:一定不发生,概率为02.独立事件的概率–独立事件:一个事件的发生不影响另一个事件的发生概率–非独立事件:一个事件的发生影响另一个事件的发生概率3.实际问题解决方法–判断事件是否独立–列出事件的可能性–计算概率,做出最优选择八. 说教学评价1.学生对概率知识的掌握程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题学习选择方案
【教学目标】
1.巩固一次函数知识,灵活运用变量之间的关系建立函数模型。

2.让学生通过“选择上网收费方式”,提高运用函数知识解决实际问题的能力。

【教学重难点】
重点:提高运用函数知识解决实际问题的能力。

难点:灵活运用变量之间的关系建立函数模型。

【课时准备】
2课时
【教学过程】
【第一课时】
一、合作交流、解决困惑
(一)小组交流:
怎样选取上网收费方式。

(二)班级展示与教师点拔:
展示一:解决关于“方案选择”的实际问题,一般步骤有哪些?
展示二:(教师结合学生情况自主生成)
二、应用新知,解决问题
例甲、乙两商场以同样价格出售同样的商品,各自推出不同的优惠方案:甲商场累计购物超过100元后,超出100元的部分按九折收费;乙商场累计购物超过50元后,超出50元的部分按九五折收费,小红在同一商场累计购物超过了100元,她应该在哪家商场购物实际花费少?
三、巩固新知,当堂训练
某移动公司给顾客提供了A、B两种电话收费方式(见下表),你应该怎样选择通话方式
【第二课时】
一、合作交流、解决困惑
(一)小组交流:
怎样租车。

(二)班级展示与教师点拔:
展示一:解决含有多个变量的实际问题时,怎样选取自变量?如何列函数关系式?
展示二:(教师结合学生情况自主生成)
二、应用新知,解决问题
例:为了增加农民收入,村委会成立了蘑菇产销联合公司,小明家是公司成员之一,他家五月份收获干平菇42.5kg,干香菇35.5kg,按公司收购要求,需将两种蘑菇包装成简装型和
问:(1)为满足公司的收购要求,小明家有几种包装方案可供选择?
(2)哪种包装方案可以获得最大利润?最大利润是多少?
四、反思小结
本节课你学到了什么知识和方法?还有什么困惑?(小组交流,互助解决)。

相关文档
最新文档