高考物理复习专题训练题34---平抛运动与斜面、圆周运动相结合问题 含解析

合集下载

高中物理精品试题: 与抛体运动相关的功能问题(基础篇)(解析版)

高中物理精品试题: 与抛体运动相关的功能问题(基础篇)(解析版)

2021年高考物理100考点最新模拟题千题精练第六部分机械能专题6.21与抛体运动相关的功能问题(基础篇)一.选择题1.(2020安徽阜阳期末)如图所示,a、b、c分别为固定竖直光滑圆弧轨道的右端点、最低点和左端点,Oa为水平半径,c点和圆心O的连线与竖直方向的夹角a=53°,现从a点正上方的P点由静止释放一质量m=1kg的小球(可视为质点),小球经圆弧轨道飞出后以水平速度v=3m/s通过Q点,已知圆弧轨道的半径R=1m,取重力加速度g=10m/s2,sin53°=0.8,cos53°=0.6,不计空气阻力,下列分析正确的是()A. 小球从P点运动到Q点的过程中重力所做的功为4.5JB. P、a两点的高度差为0.8mC. 小球运动到c点时的速度大小为4m/sD. 小球运动到b点时对轨道的压力大小为43N【参考答案】AD【名师解析】小球c到Q的逆过程做平抛运动,在c点,则有:小球运动到c点时的速度大小v c==m/s=5m/s,小球运动到c点时竖直分速度大小v cy=v tanα=3×m/s=4m/s 则Q、c两点的高度差h==m=0.8m。

设P、a两点的高度差为H,从P到c,由机械能守恒得mg(H+R cosα)=,解得H =0.65m小球从P点运动到Q点的过程中重力所做的功为W =mg[(H+R cosα)-h]=1×10×[(0.65+1×0.6)-0.8]J=4.5J,故A正确,BC错误。

从P到b,由机械能守恒定律得mg(H+R)=小球在b点时,有N-mg=m联立解得N =43N ,根据牛顿第三定律知,小球运动到b 点时对轨道的压力大小为43N ,故D 正确。

【关键点拨】。

采用逆向思维,小球c 到Q 的逆过程做平抛运动,结合平行四边形定则得出小球在c 点的速度和竖直分速度,从而求得Q 、c 两点的高度差。

从P 到c ,由机械能守恒定律求出P 、a 两点的高度差,即可求得小球从P 点运动到Q 点的过程中重力所做的功。

抛体运动(原卷版)-2023年高考物理压轴题专项训练(全国通用)

抛体运动(原卷版)-2023年高考物理压轴题专项训练(全国通用)

压轴题02抛体运动考向一/选择题:平抛运动与斜面相结合的问题考向二/选择题:平抛运动的临界与极值的问题考向三/选择题:斜抛运动考向一:平抛运动与斜面相结合的问题图示方法基本规律运动时间分解速度,构建速度的矢量三角形水平v x =v 0竖直v y =gt 合速度v =v x 2+v y 2由tanθ=v 0v y =v 0gt 得t =v 0g tan θ分解位移,构建位移的矢量三角形水平x =v 0t 竖直y =12gt 2合位移x 合=x 2+y 2由tanθ=y x =gt 2v 0得t =2v 0tan θg在运动起点同时分解v 0、g 由0=v 1-a 1t,0-v 12=-2a 1d 得t =v 0tan θg ,d =v 02sin θtan θ2g分解平行于斜面的速度v由v y =gt 得t =v 0tan θg考向二:平抛运动的临界与极值的问题擦网压线既擦网又压线由21122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 得:()h H g x v -=211由222122121⎪⎪⎭⎫⎝⎛+==v x x g gt H 得:()Hgx x v 2212+=由20122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 和202122121⎪⎪⎭⎫ ⎝⎛+==v x x g gt H 得:()22121x x x H hH +=-考向三:斜抛运动处理方法水平竖直正交分解化曲为直最高点一分为二变平抛运动逆向处理将初速度和重力加速度沿斜面和垂直斜面分解基本规律水平速度:θcos 0v v x =tv x ⋅=θcos 0竖直速度:gtv v y -=θsin 02021sin gt t v y -=θ最高点:()gv h m2sin 20θ=最高点:速度水平θcos 00v v x =垂直斜面:αcos 1g g =t g v v ⋅-=101cos θ21021cos t g t v y -=θ沿着斜面:αsin 2g g =t g v v ⋅+=202sin θ22021sin t g t v x +=θ最高点:()1202cos g v h mθ=1.如图,滑雪运动员从高度h 的A 点静止滑下,到达B 点后水平飞出,落到足够长的斜坡滑道C 点,已知O 点在B 点正下方,OC=CD ,不计全程的摩擦力和空气阻力,若运动员从高度4h处由静止开始滑下,则运动员()A.可能落到CD之间B.落到斜面瞬间的速度大小可能不变C.落到斜面瞬间的速度方向可能不变D.在空中运动的时间一定小于原来的两倍2.为探究斜面上平抛运动的规律,第一次从平台上的P点,以不同水平初速抛出可视为质点的小球,小球分别落在平台下方倾角为 的斜面上的A、B两点,两落点处小球的速度方向与斜面间的夹角记为αA、αB,如图所示。

高考物理生活中的圆周运动题20套(带答案)含解析

高考物理生活中的圆周运动题20套(带答案)含解析
(3)P、Q和弹簧组成的系统动量守恒,
则有
mvP=MvQ
解得
vP=1 m/s
对P、Q和弹簧组成的系统,由能量守恒定律有
解得
Ep=3 J
9.如图所示,将一质量m=0.1 kg的小球自水平平台顶端O点水平抛出,小球恰好无碰撞地落到平台右侧一倾角为α=53°的光滑斜面顶端A并沿斜面下滑,斜面底端B与光滑水平轨道平滑连接,小球以不变的速率过B点后进入BC部分,再进入竖直圆轨道内侧运动.已知斜面顶端与平台的高度差h=3.2 m,斜面高H=15 m,竖直圆轨道半径R=5 m.取sin 53°=0.8,cos 53°=0.6,g=10 m/s2,求:
F=59.04N
由牛顿第三定律得:粘合体S对轨道的压力F′=59.04N,方向沿OB向下。
8.如图所示,在光滑水平桌面EAB上有质量为m=2 kg的小球P和质量为M=1 kg的小球Q,P、Q之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边缘E处放置一质量也为M=1 kg的橡皮泥球S,在B处固定一与水平桌面相切的光滑竖直半圆形轨道。释放被压缩的轻弹簧,P、Q两小球被轻弹簧弹出,小球P与弹簧分离后进入半圆形轨道,恰好能够通过半圆形轨道的最高点C;小球Q与弹簧分离后与桌面边缘的橡皮泥球S碰撞后合为一体飞出,落在水平地面上的D点。已知水平桌面高为h=0.2 m,D点到桌面边缘的水平距离为x=0.2 m,重力加速度为g=10 m/s2,求:
小物块经过B点时,有:
解得:
根据牛顿第三定律,小物块对轨道的压力大小是62N
(2)小物块由B点运动到C点,根据动能定理有:
在C点,由牛顿第二定律得:
代入数据解得:
根据牛顿第三定律,小物块通过C点时对轨道的压力大小是60N
(3)小物块刚好能通过C点时,根据

平抛运动的基本规律和与斜面曲面相结合问题(解析版)

平抛运动的基本规律和与斜面曲面相结合问题(解析版)

平抛运动的基本规律和与斜面曲面相结合问题特训目标特训内容目标1平抛运动基本规律(1T -4T )目标2平抛运动与斜面相结合的问题(5T -8T )目标3平抛运动与圆面相结合的问题(9T -12T )目标4平抛运动与任意曲面相结合的问题(13T -16T )【特训典例】一、平抛运动基本规律1如图,正在平直公路行驶的汽车紧急刹车,位于车厢前端、离地高度分别为H ≈3.2m 、h ≈2.4m 的两件物品,因没有固定而散落到路面,相距L ≈1m 。

由此估算刹车时的车速最接近()A.40km /hB.50km /hC.70km /hD.90km/h【答案】A【详解】汽车紧急刹车后物品做平抛运动,平抛初速度等于汽车碰撞瞬间的行驶速度,设为v 。

对于物品A ,水平方向上,有x A =vt 1竖直方式上,有h =12gt 21对于物品B ,水平方向上,有x B =vt 2竖直方式上,有H =12gt 22根据题图分析可知L =x B -x A 解得汽车的行驶速度v =9.33m/s =33.6km/h所以刹车时的车速最接近40km/h 故选A 。

2如图所示,空间有一底面处于水平地面上的长方体框架ABCD -A 1B 1C 1D 1,已知:AB :AD :AA 1=1:1:2,从顶点A 沿不同方向平抛小球(可视为质点)。

关于小球的运动,则()A.所有小球单位时间内的速率变化量均相同B.落在平面A 1B 1C 1D 1上的小球,末动能都相等C.所有击中线段CC 1的小球,击中CC 1中点处的小球末动能最小D.当运动轨迹与线段AC 1相交时,在交点处的速度偏转角均为60°【答案】C【详解】A .所有小球都是做平抛运动,只受重力,加速度为重力加速度g ,所有小球单位时间内的速度变化率相同,故A 错误;B .所有落在平面A 1B 1C 1D 1上的小球,下落高度相同,由t =2h g可知下落时间相同,而落到C 1点的小球水平位移最大,所以落到C 1点的小球的抛出初速度v 0最大,所以落到C 1点的小球的末速度最大,即落到C 1点的小球的末动能最大,故B 错误;C .所有击中线段CC 1的小球水平位移相同,设为x ,击中线段CC 1某点的小球的位移偏转角为θ,那么下落到该点的高度h 为h =x tan θ又由平抛规律和动能定理有h =12gt 2;x =v 0t ;mgh =E k -12mv 20联立上式得E k =mgx tan θ+14tan θ可知当tan θ=12时,E k 有最小值,再结合题目的几何关系知该点应为线段CC 1的中点,故C 正确;D .当运动轨迹与线段AC 1相交时,所有小球的位移偏转角相同,其正切值为tan θ=1再根据平抛推论知,所有小球速度偏转角相同,其正切值为tan ∂=2tan θ=2由此可知在交点处的速度偏转角均不为60°,故D 错误;故选C 。

专题34机械能+圆周运动+平抛运动模型-2023年高考物理机械能常用模型最新模拟题精练(解析版)

专题34机械能+圆周运动+平抛运动模型-2023年高考物理机械能常用模型最新模拟题精练(解析版)

高考物理《机械能》常用模型最新模拟题精练专题34机械能+圆周运动+平抛运动模型1.(2022四川遂宁重点高中质检)25.(20分)倾斜直轨道AB 和圆轨道BCD 组成了竖直平面内的光滑轨道ABCD ,如图甲所示。

AB 和BCD 相切于B 点,C 、D 为圆轨道的最低点和最高点,O 为圆心,OB 与OC 夹角为37°小滑块从轨道ABC 上离C 点竖直高度为h 的某点由静止滑下,用力传感器测出滑块经过C 点时对轨道的压力为F ,多次改变高度得到如图乙所示的压力F 与高度h 的关系图像(该图线纵轴截距为2N ),重力加速度210m/s g =求:(1)滑块的质量和圆轨道的半径;(2)若要求滑块在圆轨道上运动时,在圆弧CD 间不脱离轨道,则h 应满足的条件;(3)是否存在某个h 值,使得滑块经过最高点D 飞出后恰好落在B 处?若C 存在,请求出h 值;若不存在,请计算说明理由。

【名师解析】.(1)当0H =时,由图象截距可知:2N F mg ==得:0.2kgm =有图象可知,当10.5m =H 时,对轨道的压力17NF =21112mgH mv =211v F mg mR=-解得:0.4mR =(2)不脱离轨道分两种情况:其一是到圆心等高处速度为零,有能量守恒可知,滑块从静止开始下滑高度10.4mh R ≤=其二是通过最高点,通过最高点的临界条件只有重力提供重力,由:2Dv mg mR=解得:D v gR=设下落高度为0H ,由动能定理:()20122D mg H R mv -=解得:01mH =则应该满足下落高度差:21mh ≥(3)过B 点作BE 垂直于OC 与点E ,则:sin 370.24mDE R =︒=假设小球从D 点以最小速度抛出后落在与B 等高的水平面上,有:()211cos372R gt +︒=水平位移:D x v t=联立并带入数据解得:0.76m 0.24m x DE ≈>=故不能落到B 处。

专题22 平抛运动规律、 平抛运动与约束面相结合问题(解析版)

专题22 平抛运动规律、 平抛运动与约束面相结合问题(解析版)

2023届高三物理一轮复习多维度导学与分层专练专题22 平抛运动规律、平抛运动与约束面相结合问题导练目标导练内容目标1平抛运动的基本规律与推论目标2平抛运动与斜面相结合目标3平抛运动与圆面相结合目标4平抛运动与竖直面相结合一、平抛运动的基本规律与推论1.四个基本规律飞行时间由t=2hg知,时间取决于下落高度h,与初速度v0无关水平射程x=v02hg,即水平射程由初速度v0和下落高度h共同决定,与其他因素无关落地速度v=v x2+v y2=v02+2gh,落地速度也只与初速度v0和下落高度h有关速度改变量任意相等时间间隔Δt内的速度改变量Δv=gΔt相同,方向恒为竖直向下,如图所示.两个重要推论(1)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其速度方向与水平方向的夹角为α,位移方向与水平方向的夹角为θ,则tan α=2tan θ。

(2)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点为OB 的中点。

【例1】如图所示,某一小球以020m /s v =的速度水平抛出,在落地之前经过空中A 、B 两点。

在A 点小球速度方向与水平方向的夹角为45,在B 点小球速度方向与水平方向的夹角为60(空气阻力忽略不计,g 取10m/2s )。

以下判断中正确的是( )A .小球经过A 点时竖直方向的速度为3B .小球经过A 、B 两点间的时间为231s t =()C .A 、B 两点间的高度差45m h =D .A 、B 两点间的水平位移相差320m 【答案】B【详解】AB .根据平行四边形定则知020m/s Ay v v ==;0tan 60203m/s By v v ==则小球由A 到B 的时间间隔203202(31)s By Ayv v t g--∆==故A 错误,B 正确; C .A 、B 的高度差221200400m 40m 2210By Ayv v h g--===⨯故C 错误;D .A 、B 两点间的水平位移相差0202(31)m=40(31)m x v t ∆=∆=⨯故D 错误。

2021物理统考版二轮复习学案:专题复习篇 专题1 第3讲 抛体运动与圆周运动含解析

2021物理统考版二轮复习学案:专题复习篇 专题1 第3讲 抛体运动与圆周运动含解析

2021高考物理统考版二轮复习学案:专题复习篇专题1 第3讲抛体运动与圆周运动含解析抛体运动与圆周运动[建体系·知关联][析考情·明策略]考情分析近几年高考对本讲的考查集中在平抛运动与圆周运动规律的应用,命题素材多与生产、生活、体育运动学结合,题型以选择题为主.素养呈现1.运动合成与分解思想2。

平抛运动规律3.圆周运动规律及两类模型素养落实1.掌握渡河问题、关联速度问题的处理方法2。

应用平抛运动特点及规律解决相关问题3.掌握圆周运动动力学特点,灵活处理相关问题考点1|曲线运动和运动的合成与分解1.曲线运动的分析(1)物体的实际运动是合运动,明确是在哪两个方向上的分运动的合成.(2)根据合外力与合初速度的方向关系判断合运动的性质。

(3)运动的合成与分解就是速度、位移、加速度等的合成与分解,遵守平行四边形定则。

2.渡河问题中分清三种速度(1)合速度:物体的实际运动速度。

(2)船速:船在静水中的速度。

(3)水速:水流动的速度,可能大于船速。

3.端速问题解题方法把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解,常见的模型如图所示。

甲乙丙丁[典例1]如图所示的机械装置可以将圆周运动转化为直线上的往复运动.连杆AB、OB可绕图中A、B、O三处的转轴转动,连杆OB在竖直面内的圆周运动可通过连杆AB使滑块在水平横杆上左右滑动。

已知OB杆长为L,绕O点做逆时针方向匀速转动的角速度为ω,当连杆AB与水平方向夹角为α,AB杆与OB杆的夹角为β时,滑块的水平速度大小为()A.错误!B.错误!C.错误!D.错误![题眼点拨]①“连杆OB在竖直平面的圆周运动"表明B点沿切向的线速度是合速度,可沿杆和垂直杆分解.②“滑块在水平横杆上左右滑动”表明合速度沿水平横杆。

D[设滑块的水平速度大小为v,A点的速度的方向沿水平方向,如图将A点的速度分解:滑块沿杆方向的分速度为v A分=v cos α,B点做圆周运动,实际速度是圆周运动的线速度,可以分解为沿杆方向的分速度和垂直于杆方向的分速度,设B的线速度为v′,则v′=Lω,v B=v′·cos θ=v′cos(β-90°)=Lωsin β,又二者沿分杆方向的分速度是相等的,即v A分=v B分,联立解得v=错误!,故本题正确选项为D。

2020高考物理重难点04 平抛运动与圆周运动(解析版)

2020高考物理重难点04 平抛运动与圆周运动(解析版)

重难点04 平抛运动与圆周运动【知识梳理】考点一 平抛运动基本规律的理解 1.飞行时间:由ght 2=知,时间取决于下落高度h ,与初速度v 0无关. 2.水平射程:x =v 0t =v 0gh2,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3.落地速度:gh v v v v x y x 2222+=+=,以θ表示落地速度与x 轴正方向的夹角,有2tan v ghv v xy ==θ,所以落地速度也只与初速度v 0和下落高度h 有关. 4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt ;相同,方向恒为竖直向下,如图所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ. 【重点归纳】1.在研究平抛运动问题时,根据运动效果的等效性,利用运动分解的方法,将其转化为我们所熟悉的两个方向上的直线运动,即水平方向的匀速直线运动和竖直方向的自由落体运动.再运用运动合成的方法求出平抛运动的规律.这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,是处理曲线运动问题的一种重要的思想方法.2.常见平抛运动模型的运动时间的计算方法 (1)在水平地面上空h 处平抛: 由221gt h =知ght 2=,即t 由高度h 决定. (2)在半圆内的平抛运动(如图),由半径和几何关系制约时间t :221gt h =t v h R R 022=-+联立两方程可求t . (3)斜面上的平抛问题: ①顺着斜面平抛(如图)方法:分解位移 x =v 0t221gt y =x y=θtan可求得gv t θtan 20=②对着斜面平抛(如图)方法:分解速度 v x =v 0 v y =gttan v gt v v xy ==θ 可求得gv t θtan 0=(4)对着竖直墙壁平抛(如图)水平初速度v 0不同时,虽然落点不同,但水平位移相同.vd t =3.求解多体平抛问题的三点注意(1)若两物体同时从同一高度(或同一点)抛出,则两物体始终在同一高度,二者间距只取决于两物体的水平分运动.(2)若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同,二者间距由两物体的水平分运动和竖直高度差决定.(3)若两物体从同一点先后抛出,两物体竖直高度差随时间均匀增大,二者间距取决于两物体的水平分运动和竖直分运动.考点二圆周运动中的运动学分析描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:1.传动装置(1)高中阶段所接触的传动主要有:①皮带传动(线速度大小相等);②同轴传动(角速度相等);③齿轮传动(线速度大小相等);④摩擦传动(线速度大小相等).(2)传动装置的特点:(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同;(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等.2.圆周运动各物理量间的关系(1)对公式v =ωr 的理解 当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比.(2)对a =rv 2=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比. 考点三 竖直平面内圆周运动的绳模型与杆模型问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”. 2.绳、杆模型涉及的临界问题竖直面内圆周运动的求解思路(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同. (2)确定临界点:gr v =临,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N表现为支持力还是拉力的临界点.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向. (5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程. 【限时检测】(建议用时:30分钟)1.(2019·新课标全国Ⅱ卷)如图(a ),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。

高考物理复习---《平抛运动的临界、极值问题》基础知识梳理与专项练习题

高考物理复习---《平抛运动的临界、极值问题》基础知识梳理与专项练习题

高考物理复习---《平抛运动的临界、极值问题》基础知识梳理与专项练习题基础知识梳理1.平抛运动的临界问题有两种常见情形:(1)物体的最大位移、最小位移、最大初速度、最小初速度;(2)物体的速度方向恰好达到某一方向.2.解题技巧:在题中找出有关临界问题的关键字,如“恰好不出界”、“刚好飞过壕沟”、“速度方向恰好与斜面平行”、“速度方向与圆周相切”等,然后利用平抛运动对应的位移规律或速度规律进行解题.例2如图8所示,窗子上、下沿间的高度H=1.6 m,竖直墙的厚度d=0.4 m,某人在距离墙壁L=1.4 m、距窗子上沿h=0.2 m 处的P点,将可视为质点的小物件以垂直于墙壁的速度v水平抛出,要求小物件能直接穿过窗口并落在水平地面上,不计空气阻力,g=10 m/s2.则可以实现上述要求的速度大小是( )图8A.2 m/s B.4 m/sC.8 m/s D.10 m/s答案 B解析小物件做平抛运动,恰好擦着窗子上沿右侧墙边缘穿过时速度v最大.此时有:L=v max t1,h=12gt12代入数据解得:v max=7 m/s小物件恰好擦着窗口下沿左侧墙边缘穿过时速度v最小,则有:L +d =v min t 2,H +h =12gt 22, 代入数据解得:v min =3 m/s ,故v 的取值范围是 3 m/s ≤v ≤7 m/s ,故B 正确,A 、C 、D 错误.专项练习题1、(平抛运动的极值问题)(2019·广东五校一联)某科技比赛中,参赛者设计了一个轨道模型,如图9所示.模型放到0.8 m 高的水平桌子上,最高点距离水平地面2 m ,右端出口水平.现让小球由最高点静止释放,忽略阻力作用,为使小球飞得最远,右端出口距离桌面的高度应设计为( )图9A .0B .0.1 mC .0.2 mD .0.3 m 答案 C解析 小球从最高点到右端出口,满足机械能守恒,有mg (H -h )=12mv 2,从右端出口飞出后小球做平抛运动,有x =vt ,h =12gt 2,联立解得x =2H -h h ,根据数学知识知,当H -h =h 时,x 最大,即h =1 m 时,小球飞得最远,此时右端出口距离桌面高度为Δh =1 m -0.8 m =0.2 m ,故C 正确.本课结束。

2020届高考物理复习练习题(八):平抛、斜抛、类平抛问题的解决办法 专题训练

2020届高考物理复习练习题(八):平抛、斜抛、类平抛问题的解决办法 专题训练

专题八平抛、斜抛、类平抛问题的解决办法1.(分解位移法)如图所示,小球以v0正对倾角为θ的斜面水平抛出,若小球到达斜面的位移最小,则飞行时间t为(重力加速度为g)( )A.v0tan θB.g(2v0tan θ) C.gtan θ(v0) D.gtan θ(2v0)【答案】: D【解析】:如图所示,过抛出点作斜面的垂线,垂足为B,当小球落在B点时,位移最小,设运动的时间为t,则水平方向x=v0t,竖直方向y=2(1)gt2,根据几何关系有tan θ=y(x)=gt2(1),解得t=gtan θ(2v0),故D正确,A、B、C错误。

2.(分解速度法)如图所示,以水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角为θ的斜面上,则AB 之间的水平位移与竖直位移之比为()A. B C. D【答案】:B【解析】:物体垂直撞到斜面上,可见在B点的速度方向与斜面垂直,对B 点小球的速度进行分解,如图所示,结合矢量三角形的关系可得:,,得;,,联立以上各式得:3.如图所示,B为竖直圆轨道的左端点,它和圆心O的连线与竖直方向的夹角为α.一小球在圆轨道左侧的A点以速度v0平抛,恰好沿B点的切线方向进入圆轨道.已知重力加速度为g,则AB之间的水平距离为()A. B. C. D.【答案】:B【解析】:小球抛出后做平抛运动,小球恰好从轨道的B端沿切线方向进入轨道,说明小球的末速度应该沿着B点切线方向,将平抛末速度进行分解,根据几何关系得:,,;;故B 对4.(分解位移)如图所示,AB为斜面,BC为水平面,从A点以水平速度v0抛出一小球,其第一次落点到A的水平距离为S1;从A点以水平速度3v0抛出小球,其第一次落点到A的水平距离为S2,不计空气阻力,则S1︰S2不可能等于()A.1︰3 B.1︰6 C:1:9 D:1:12【答案】:D【解析】:小球做平抛运动的落点分为3种情况,有可能两次都落在斜面上,有可能水平速度较大的落在斜面以外,速度较小的落在斜面上,也有可能两次都落在水平面上;情况1、如图所示,小球均落在斜面上;如果小球落在斜面上,可以确定小球的位移一定是沿斜面方向的;分解位移可得:;求得;可见如果小球落在斜面上,影响小球飞行时间的因素是斜面的倾角与小球抛出时的初速度;所以;;情况2:如果两次小球均落在水平面上,则小球下落的高度相同,,所以小球在空中飞行的时间相同即;;情况3:如果小球一次落在水平面上一次落在斜面上则小球产生的水平位移之比必然介于二者之间;所以本题只有D 选项不可能;5.(分解速度)如图所示,在水平放置的半径为R的圆柱体的正上方的P点将一小球以水平速度v0沿垂直于圆柱体的轴线方向抛出,小球飞行一段时间后恰好从圆柱体的Q点沿切线飞过,测得O、Q连线与竖直方向的夹角为θ,那么小球完成这段飞行的时间是( )A.gtan θ(v0)B.v0(gtan θ) C.v0(Rsin θ) D.v0(Rcos θ)【答案】: C【解析】:小球做平抛运动,tan θ=v0(vy)=v0(gt),则时间t=g(v0tan θ),选项A、B错误;在水平方向上有R sin θ=v0t,则t=v0(Rsin θ),选项C正确,D错误。

2022年新高考物理一轮复习练习:专题34 竖直面内的圆周运动 (含解析)

2022年新高考物理一轮复习练习:专题34 竖直面内的圆周运动 (含解析)

专题34竖直面内的圆周运动1.如图所示,轻质且不可伸长的细绳一端系一质量为m的小球,另一端固定在天花板上的O点.则小球在竖直平面内摆动的过程中,以下说法正确的是()A.小球在摆动过程中受到的外力的合力即为向心力B.在最高点A、B,因小球的速度为零,所以小球受到的合力为零C.小球在最低点C所受的合力,即为向心力D.小球在摆动过程中绳子的拉力使其速率发生变化2.[2021·石家庄联考]球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短.将两球拉起,使两绳均被水平拉直,如图所示,将两球由静止释放.在各自轨迹的最低点()A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度3.如图所示,在粗糙水平木板上放一个物块,使水平板和物块一起在竖直平面内沿逆时针方向做匀速圆周运动,ab为水平直径,cd为竖直直径.在运动过程中木板始终保持水平,物块相对木板始终静止,则()A.物块始终受到两个力作用B.只有在a、b、c、d四点,物块受到的合外力才指向圆心C.从a到b,物块所受的摩擦力先增大后减小D.从b到a,物块处于超重状态4.[2021·厦门双十中学测试](多选)在竖直平面内的光滑管状轨道中,有一可视为质点的质量为m=1kg的小球在管状轨道内部做圆周运动,当以2m/s和6m/s通过最高点时,小球对轨道的压力大小相等,g=10m/s2,管的直径远小于轨道半径,则根据题中的信息可以求出() A.在最高点时轨道受到小球的压力大小为8NB.在最高点时轨道受到小球的压力大小为16NC .轨道半径R =2mD .轨道半径R =1m5.(多选)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m ,运动半径为R ,角速度大小为ω,重力加速度为g ,则座舱( )A .运动周期为2πR ωB .线速度的大小为ωRC .受摩天轮作用力的大小始终为mgD .所受合力的大小始终为mω2R6.[2021·山东淄博实验中学一诊](多选)如图甲所示,一长为l 的轻绳,一端固定在过O 点的水平转轴上,另一端固定一质量未知的小球,整个装置绕O 点在竖直面内转动.小球通过最高点时,绳对小球的拉力与其速度平方的关系如图乙所示,重力加速度为g ,下列判断正确的是( )A .F 与v 2的关系式为F =m v 2l+mg B .重力加速度g =b lC .绳长不变,用质量较小的球做实验,得到的图线斜率变大D .绳长不变,用质量较小的球做实验,图乙中b 点的位置不变7.[2021·全国甲卷]“旋转纽扣”是一种传统游戏.如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现.拉动多次后,纽扣绕其中心的转速可达50r /s ,此时纽扣上距离中心1cm 处的点向心加速度大小约为( )A .10m /s 2B .100m /s 2C .1000m /s 2D .10000m /s 2 8.[2021·哈六中测试](多选)如图所示,质量为3m 的竖直光滑圆环A 的半径为r ,固定在质量为2m 的木板B 上,B 的左右两侧各有一表面光滑的竖直挡板固定在地上,B 不能左右运动.在环的最低点静止放有一质量为m 的小球C.现给C 一个水平向右的初速度v 0,C 会在环A 内侧做圆周运动.为保证C 能通过环的最高点,且不会使环在竖直方向上跳起,下面关于初速度v 0的最大值和最小值,其中正确的是( )A .最小值为4grB .最大值为3grC .最小值为5grD .最大值为10gr9.[2021·荆州中学测试](多选)如图甲所示,轻杆一端固定在O 点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F ,小球在最高点的速度大小为v ,其F -v 2图像如图乙所示,则( )A .小球的质量为aR bB .v 2=2b 时,小球受到的弹力与重力大小相等C .v 2=c 时,小球对杆的弹力方向向上D .当地的重力加速度大小为R b10.[2021·江西省吉安市段考]如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5m 处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10m /s 2,则ω的最大值是( ) A .5rad /sB .3rad /sC .1.0rad /sD .0.5rad /s11.(多选)如图,在一半径为R 的球面顶端放一质量为m 的物块,现给物块一初速度v 0,则( )A .若v 0=gR ,则物块落地点离A 点2RB .若球面是粗糙的,当v 0<gR 时,物块可能会沿球面下滑一段,再斜抛离球面C .若v 0<gR ,则物块落地点离A 点为RD .若v 0≥gR ,则物块落地点离A 点至少为2R专题34 竖直面内的圆周运动1.C 小球摆动过程中速率大小始终变化向心力为合力的一个分力,A 错误;在最高点A 和B ,小球速率为零,向心力为零,重力沿切向的分力为合外力,不为零,B 错误;小球在最低点拉力和重力的合力提供向心力,C 正确;小球在摆动过程中,由于绳子的拉力与速度方向垂直,不做功,拉力不会致使小球速率变化,D 错误.2.C 小球从水平位置摆动至最低点,由动能定理得,mgL =12m v 2, 解得v =2gL ,因L P <L Q ,故v P <v Q ,选项A 错误;因为E k =mgL ,又m P >m Q ,L P <L Q ,则两小球的动能大小无法比较,选项B 错误;对小球在最低点受力分析得,F T -mg =m v 2L,可得F T =3mg ,选项C 正确;由a n =v 2L=2g 可知,两球的向心加速度相等,选C. 3.D 在c 、d 两点,物块只受重力和支持力,在其他位置物块受到重力、支持力、静摩擦力三个力作用,故A 错误;物块做匀速圆周运动,合外力提供向心力,所以合外力始终指向圆心,故B 错误;从a 运动到b ,物块的加速度的方向始终指向圆心,水平方向的加速度先减小后反向增大,根据牛顿第二定律可得,物块所受木板的静摩擦力先减小后增大,故C 错误;从b 运动到a ,向心加速度有向上的分量物块处于超重状态,故D 正确.4.AC 当v 1=2m/s 时有mg -F N =m v 21 R ,若v 2=6m/s 时有mg +F N =m v 22 R,解得R =2m ,C 正确;把R =2m 代入方程解得F N =8N ,A 正确.5.BD 本题考查匀速圆周运动的角速度、周期、线速度、向心力等知识点,意在考查了考生的理解能力和推理能力.由题意可知座舱运动周期为T =2πω、线速度为v =ωR 、受到的合力为F =mω2R ,选项BD 正确,A 错误;座舱的重力为mg ,座舱做匀速圆周运动受到的向心力(即合力)大小不变,方向时刻变化,故座舱受摩天轮的作用力大小时刻在改变,选项C 错误.6.BD 当小球运动到最高点时,合力提供向心力,F +mg =m v 2l,因此F -v 2的关系式为F =m v 2l -mg ,故A 项错误.当F =0,v 2=b 时,m b l =mg ,解得g =b l,故B 项正确.图像的斜率为m l,绳长l 不变,质量m 变小时,得到图线的斜率变小,故C 项错误.b =gl ,因此绳长不变,只改变小球的质量,题图乙中b 点的位置不变,故D 项正确.7.C 由题目所给条件可知纽扣上各点的角速度ω=2πn =100πrad/s ,则纽扣上距离中心1cm 处的点向心加速度大小a =ω2r =(100π)2×0.01m/s 2≈1000m/s 2,故选项A 、B 、D 错误,选项C 正确.8.CD 9.ABC 10.C 11.BD。

高考物理专题平抛运动与斜面、圆周运动相结合问题

高考物理专题平抛运动与斜面、圆周运动相结合问题

四、平抛运动与斜面、圆周运动相结合问题平抛运动问题经常会与斜面、圆周等相结合,此类问题的运动情景与规律方法具有一定的规律性,总结如下:运动情景物理量分析方法归纳v y =gt,tan θ=v 0v y =v 0gt →t=v 0gtanθ→求x 、y分解速度,构建速度三角形,确定时间,进一步分析位移x=v 0t,y=12gt 2→ tan θ=y x →t=2v 0tanθg→求v 0,v y分解位移,构建位移三角形tan θ=v y v 0=gt v 0 →t=v 0tanθgP 点处速度与斜面平行,分解速度,求离斜面最远的时间落到斜面合速度与水平方向夹角φ→ tan φ=gt v 0=gt 2v 0t =2yx=2 tan θ→α=φ-θ 小球到达斜面时的速度方向与斜面的夹角α为定值,与初速度无关tan θ=v y v 0=gt v 0 →t=v 0tanθg小球平抛时沿切线方向进入凹槽时速度方向与水平方向夹角为θ,可求出平抛运动时间在半圆内的平抛运动(如图),由半径和几何关系知时间t,h=12gt 2,R+√R 2-h 2=v 0t联立两方程可求t水平位移、竖直位移与圆半径构筑几何关系可求运动时间几何约束与平抛规律结合的问题是平抛问题的常见题型,解答此类问题除要运用平抛的位移和速度规律外,还要充分运用几何,找出满足的其他关系,从而使问题顺利求解。

典例1 (多选)如图所示,从倾角为θ的足够长的斜面上的某点先后将同一小球以不同初速度水平抛出,小球均落到斜面上,当抛出的速度为v 1时,小球到达斜面时的速度方向与斜面的夹角为α1,当抛出的速度为v 2时,小球到达斜面时的速度方向与斜面的夹角为α2,则( )A.当v 1>v 2时,α1>α2B.当v 1>v 2时,α1<α2C.无论v 1、v 2大小如何,均有α1=α2D.2 tan θ= tan (α1+θ)答案 CD 建立数学模型,写出v 的函数表达式,讨论v 与α的关系。

高考物理一轮复习 专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)(含解析)-人教版高

高考物理一轮复习 专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)(含解析)-人教版高

专题22 应用力学两大观点分析平抛运动与圆周运动组合问题1.如下列图,AB是倾角为30θ=︒的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R,一个质量为m的物体〔可以看做质点〕从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动。

P点与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ。

求:〔1〕物体做往返运动的整个过程中在AB轨道上通过的总路程;〔2〕最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力;〔3〕为使物体能顺利到达圆弧轨道的最高点D,释放点距B点的距离L′至少多大。

【答案】〔1〕Rμ;〔2〕(33)mg-;〔3〕(33)13Rμ+-【解析】【名师点睛】此题综合应用了动能定理求摩擦力做的功、圆周运动与圆周运动中能过最高点的条件,对动能定理、圆周运动局部的内容考查的较全,是圆周运动局部的一个好题.①利用动能定理求摩擦力做的功;②对圆周运动条件的分析和应用;③圆周运动中能过最高点的条件.2.如下列图,足够长的光滑斜面与水平面的夹角为037θ=,斜面下端与半径0.50R m =的半圆形轨道平滑相连,连接点为C ,半圆形轨道最低点为B ,半圆形轨道最高点为A ,sin 0.637=,0cos 0.837=,当地的重力加速度为210/g m s =。

〔1〕假设将质量为0.10m kg =的小球从斜面上距离C 点为 2.0L m =的斜面上D 点由静止释放,如此小球到达半圆形轨道最低点B 时,对轨道的压力多大?〔2〕要使小球经过最高点A 时不能脱离轨道,如此小球经过A 点时速度大小应满足什么条件? 〔3〕当小球经过A 点处的速度大小为多大时,小球与斜面发生一次弹性碰撞后还能沿原来的运动轨迹返回A 点?【答案】〔1〕 6.2N N = 〔2〕 2/C v m s ≥ 〔3〕12/C v m s =如此x 轴方向的分加速度为37x a gsin =-°,y 轴方向的分加速度为37y a gcos =︒且有0x A v a t +=,2122y R a t =联立解得 12/C v m s =【名师点睛】解决此题的关键理清物块的运动过程,把握隐含的临界条件,明确小球到达A 点的临界条件是轨道对小球没有作用力,由重力的径向分力提供向心力.小球只有垂直撞上斜面,才能沿原路返回.对斜抛要灵活选择坐标系,使得以简化。

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:20 1142()sT mgH L L⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,在水平桌面上离桌面右边缘3.2m处放着一质量为0.1kg的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F=1.0N作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A点飞出,恰好落到竖直圆弧轨道BCD的B端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D.已知∠BOC=37°,A、B、C、D四点在同一竖直平面内,水平桌面离B端的竖直高度H=0.45m,圆弧轨道半径R=0.5m,C点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D点时的速度大小v D;(2)若铁球以v C=5.15m/s的速度经过圆弧轨道最低点C,求此时铁球对圆弧轨道的压力大小F C;(计算结果保留两位有效数字)(3)铁球运动到B点时的速度大小v B;(4)水平推力F作用的时间t。

高考物理专题34功率与机车启动的两个模型练习含解析

高考物理专题34功率与机车启动的两个模型练习含解析

专题34 功率与机车启动的两个模型1.公式P =W t 一般用来计算平均功率,瞬时功率用公式P =Fv cos θ进行计算,若v 取平均速度,则P =Fv cos θ为平均功率.2.分析机车启动问题时,抓住两个关键:(1)汽车的运动状态,即根据牛顿第二定律找出牵引力与加速度的关系;(2)抓住功率的定义式,即牵引力与速度的关系.3.机车启动四个常用规律:(1)P =Fv ;(2)F -F f =ma ;(3)v =at (a 恒定);(4)Pt -F f x =ΔE k (P 恒定).1.(2020·湖北随州市3月调研)如图1所示,一半圆槽固定在水平面上,A 、B 两点为最高点,O 为最低点,一个小球在外力控制下沿AOB 做匀速圆周运动,下列说法正确的是( )图1A .半圆槽对小球的支持力先做正功后做负功B .合力对小球先做负功后做正功C .小球在最低点O 时,所受合力的功率最大D .整个过程中小球重力的功率先减小后增大答案 D解析 小球在外力控制下沿AOB 做匀速圆周运动,半圆槽对小球的支持力与其速度一直垂直,故支持力不做功,故A 错误;小球做匀速圆周运动,合力提供向心力,指向圆心,方向始终与速度方向垂直,合力不做功,功率为零,故B 、C 错误;小球在运动过程中,竖直分速度先减小后增大,故小球重力的功率先减小后增大,故D 正确.2.(2020·河南洛阳市一模)为了人民的健康和社会的长远发展,我国环保部门每天派出大量的洒水车上街进行空气净化除尘,已知某种型号的洒水车的操作系统是由发动机带动变速箱,变速箱带动洒水泵产生动力将罐体内的水通过管网喷洒出去,假设行驶过程中车受到的摩擦阻力与其质量成正比,受到的空气阻力与车速成正比,当洒水车在平直路面上匀速行驶并且匀速洒水时,以下判断正确的是( )A .洒水车的动能保持不变B .发动机的功率保持不变C .牵引力的功率随时间均匀减小D .牵引力大小跟洒水时间成反比答案 C解析 以车和车内的水为研究对象,受力分析可知,水平方向受牵引力、摩擦阻力和空气阻力作用,由题意,车受到的摩擦阻力与其质量成正比,受到的空气阻力与车速成正比,洒水车匀速行驶,合力为零,整体的质量在减小,故摩擦阻力在减小,空气阻力恒定不变,则由F -F f -F 阻=0知,牵引力减小,E k =12mv 2,洒水车的质量减小,速度不变,故动能减小,故A 错误.发动机的功率P =Fv ,牵引力减小,速度不变,则发动机的功率减小,故B 错误.牵引力F =F f +F 阻,洒水车的质量随时间均匀减小,则牵引力的大小随洒水时间均匀减小,不成反比,故D 错误.牵引力的功率随洒水时间均匀减小,故C 正确.3.(多选)(2020·陕西宝鸡中学第三次模拟)我国高铁技术处于世界领先水平.和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车.假设动车组各车厢的质量均为m ,动车的额定功率都为P ,动车组在水平直轨道上运行过程中阻力恒为车重的k 倍.某列动车组由8节车厢组成,其中第1、5节车厢为动车,其余为拖车,则该动车组( )A .启动时乘客受到车厢作用力的方向与车运动的方向相同B .加速运动时,第3、4节与第7、8节车厢间的作用力之比为1∶1C .无论是匀加速启动还是以恒定功率启动,行驶的最大速度v m 都为P 8kmgD .以恒定功率启动达到最大速度v m 的过程中,动车组的平均速度大于12v m 答案 BD解析 启动时乘客受到车厢的作用力包括两部分,一部分提供乘客前进的动力,与运动方向相同,另一部分对乘客的竖直向上的支持力与重力平衡,因此乘客受到车厢的作用力应该是这两部分力的合力,方向与乘客运动方向不同,A 错误;由于第1、5节车厢为动车,其余为拖车,根据对称性,第4、5节车厢间不存在作用力,第3、4节与第7、8节车厢间的作用力相等,B 正确;设每节动车的功率为P ,每一节车厢的质量是m ,阻力为kmg ,以恒定的功率启动时,最后做匀速运动,牵引力等于阻力时速度达到最大;以恒定的加速度启动,先达到额定功率,再保持功率不变,最后达到最大速度时,牵引力也与阻力相等,最后的速度与恒定功率启动的速度相等.根据功率定义可知2P =8kmgv m ,可得最大速度均为v m =P4kmg,C 错误;以恒定功率启动时,做加速度逐渐减小的加速运动,其v -t 图象是斜率越来越小的曲线,其与时间轴围成的面积比匀加速运动围成的面积大,匀加速的平均速度为12v m ,因此以恒定功率启动时的平均速度大于12v m ,D 正确. 4.(2020·江西南昌市三校联考)汽车以额定功率P 在平直公路上以速度v 1=10 m/s 匀速行驶,在某一时刻突然使汽车的功率变为2P ,并保持该功率继续行驶,汽车最终以速度v 2匀速行驶(设汽车所受阻力不变),则( )A .v 2=10 m/sB .v 2=20 m/sC .汽车在速度v 2时的牵引力是速度v 1时的牵引力的两倍D .汽车在速度v 2时的牵引力是速度v 1时的牵引力的一半答案 B解析 汽车匀速行驶,阻力等于牵引力,汽车受到的阻力为F f =P v 1,若汽车的功率变为2P ,当牵引力等于阻力时,速度最大为v 2,已知阻力不变,故牵引力不变,v 2=2P F f=2v 1=20 m/s ,故A 、C 、D 错误,B 正确.5.如图2所示,质量为m 的小球以初速度v 0水平抛出,恰好垂直打在倾角为θ的斜面上,则球落在斜面上时重力的瞬时功率为(不计空气阻力,重力加速度为g )( )图2A .mgv 0tan θB.mgv 0tan θC.mgv 0sin θ D .mgv 0cos θ答案 B解析 小球落在斜面上时重力的瞬时功率为P =mgv y ,而v y tan θ=v 0,所以P =mgv 0tan θ,B 正确;本题中若直接应用P =mgv 求解可得P =mgv 0sin θ,则得出错误答案C. 6.(2020·甘肃威武市三诊)仰卧起坐是《国家学生体质健康标准》中规定的女生测试项目之一.根据该标准高三女生一分钟内完成 55 个以上仰卧起坐记为满分.如图3所示,若某女生一分钟内做了 50 个仰卧起坐,其质量为 50 kg ,上半身质量为总质量的 0.6 倍,仰卧起坐时下半身重心位置不变,g 取10 m/s 2 .则测试过程中该女生克服重力做功的平均功率约为( )图3A .10 WB .40 WC .100 WD .200 W答案 C解析 该同学身高约1.6 m ,则每次上半身重心上升的距离约为14×1.6 m=0.4 m ,则她每一次克服重力做的功W =0.6mgh =0.6×50×10×0.4 J=120 J1 min 内她克服重力所做的总功W 总=50W =50×120 J=6 000 J她克服重力做功的平均功率为P =W t =6 00060W =100 W ,故C 正确,A 、B 、D 错误. 7.(2020·超级全能生24省11月联考)张家界百龙天梯(如图4甲)是吉尼斯世界纪录记载世界最高的户外观光电梯,百龙天梯垂直高度差335 m ,运行高度326 m ,用时66 s 就能从地面把人带到山顶.某次观光电梯空载测试由静止开始以a =5 m/s 2的加速度向上做匀加速直线运动,当输出功率达到其允许的最大值时(t =1 s),保持该功率继续向上加速,其运动的a -t 图象如图乙所示.则0~1 s 和1~2 s 牵引力对电梯所做的功之比为( )图4A .1∶2B .2∶1C .1∶1D .条件不足,无法确定答案 A解析 由题意可知,0~1 s 内观光电梯做匀加速运动,此过程牵引力恒定,设为F ,由牛顿第二定律可知,此过程牵引力做的功为W 1=F ·12at 2=2.5F (J),输出功率最大值为P =F ·at =5F (W).1~2 s 内保持功率不变,此过程牵引力做的功为W 2=Pt =5F (J),所以W 1∶W 2=1∶2,故A 正确.8.(多选)(2019·山西晋中市适应性调研)如图5甲所示,足够长的固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,沿杆方向给环施加一个拉力F ,使环由静止开始运动,已知拉力F 及小环速度v 随时间t 变化的规律如图乙、丙所示,重力加速度g 取10 m/s 2.则以下判断正确的是( )图5A .小环的质量是1 kgB .细杆与地面间的倾角是30°C .前3 s 内拉力F 的最大功率是2.25 WD .前3 s 内拉力对小环做的功为5.75 J答案 AD解析 由速度-时间图象得到环先匀加速上升,然后匀速运动,由题图可得:第 1 s 内,a =Δv t =0.51m/s 2=0.5 m/s 2,加速阶段:F 1-mg sin θ=ma ;匀速阶段:F 2-mg sin θ=0,联立以上三式解得:m =1 kg ,sin θ=0.45,故A 正确,B 错误;第1 s 内,速度不断变大,拉力的瞬时功率也不断变大,第1 s 末,P =Fv 1=5×0.5 W=2.5 W ;第1 s 末到第3 s 末,P =Fv 1=4.5×0.5 W=2.25 W ,即拉力的最大功率为2.5 W ,故C 错误;从速度-时间图象可以得到,第1 s 内的位移为0.25 m,1~3 s 内的位移为1 m ,前3 s 内拉力做的功为:W =5×0.25 J+4.5×1 J=5.75 J ,故D 正确.9.(2019·吉林五地六校期末)一辆汽车在水平路面上由静止启动,在前5 s 内做匀加速直线运动,5 s 末达到额定功率,之后保持额定功率继续运动,其v -t 图象如图6所示.已知汽车的质量为m =2×103 kg ,汽车受到地面的阻力为车重的110,g 取10 m/s 2,则( )图6A .汽车在前5 s 内的阻力为200 NB .汽车在前5 s 内的牵引力为6×103NC .汽车的额定功率为40 kWD .汽车的最大速度为20 m/s答案 B解析 汽车受到地面的阻力为车重的110,则阻力F f =110mg =110×2×103×10 N=2 000 N ,选项A 错误;由题图知前5 s 的加速度a =Δv Δt=2 m/s 2,由牛顿第二定律知前5 s 内的牵引力F =F f +ma ,得F =(2 000+2×103×2) N =6×103 N ,选项B 正确;5 s 末达到额定功率P 额=Fv 5=6×103×10 W=6×104W =60 kW ,最大速度v max =P 额F f =6×1042 000 m/s =30 m/s ,选项C 、D 错误.10.(2019·安徽黄山市一模)一辆F1赛车含赛车手的总质量约为600 kg ,在一次F1比赛中赛车在平直赛道上以恒定功率加速,受到的阻力不变,其加速度a 和速度的倒数1v的关系如图7所示,则赛车在加速的过程中( )图7A .速度随时间均匀增大B .加速度随时间均匀增大C .输出功率为240 kWD .所受阻力大小为24 000 N答案 C解析 由题图可知,加速度变化,则赛车做变加速直线运动,故A 错误;a -1v的函数方程a =(400v-4) m/s 2,赛车加速运动,速度增大,加速度减小,故B 错误;对赛车及赛车手整体受力分析,受重力、支持力、牵引力和摩擦力,根据牛顿第二定律有F -F f =ma ,其中F =Pv,联立解得a =P mv -F f m ,当物体的速度最大时,加速度为零,故结合图象可知,a =0时,1v m=0.01 s/m ,v m =100 m/s ,所以最大速度为100 m/s ;由图象可知F f m =4 m/s 2,解得F f =4 m/s 2·m=4×600 N=2 400 N ,故D 错误;0=1600 kg ·P 100 m/s-4 m/s 2,解得P =240 kW ,故C 正确.11.(2020·江苏省如皋中学、徐州一中、宿迁中学三校联考)如图8(a)所示,在水平路段AB 上有质量为1×103 kg 的汽车,正以10 m/s 的速度向右匀速行驶,汽车前方的水平路段BC 因粗糙程度与AB 段不同引起阻力变化,汽车通过整个ABC 路段的v -t 图象如图(b)所示,t =15 s 时汽车刚好到达C 点,并且已做匀速直线运动,速度大小为5 m/s.运动过程中汽车发动机的输出功率保持不变,假设汽车在AB 路段上运动时所受的恒定阻力为F f =2 000 N ,下列说法正确的是( )图8A .汽车在BC 段牵引力增大,所以汽车在BC 段的加速度逐渐增大B .汽车在AB 、BC 段发动机的额定功率不变都是1×104 WC .由题所给条件不能求出汽车在8 m/s 时加速度的大小D .由题给条件可以求出汽车在BC 段前进的距离答案 D解析 由v -t 图象斜率代表加速度可知,BC 段图象斜率逐渐减小,则加速度逐渐减小,故A 错误;当在AB 段匀速运动时牵引力与摩擦力相等,则有P =Fv =F f v =2 000×10 W=2×104 W ,故B 错误;由B 选项可知汽车额定功率P =2×104 W ,当汽车在C 点时,已做匀速运动,牵引力与摩擦力相等,P =F ′v ′=F f ′v ′,F f ′=P v ′=2×104 W 5 m/s =4×103 N ,当汽车速度为8 m/s 时,则此时的牵引力F 1=P v 1=2×1048 N =2 500 N ,则此时加速度为a =F 1-F f ′m=2 500-4 0001×103 m/s 2=-1.5 m/s 2,故C 错误;设从B 到C 的距离为x ,由动能定理可知12mv C 2-12mv B 2=Pt -F f ′x ,解得x =59.375 m ,故D 正确. 12.高速连续曝光照相机可在底片上重叠形成多个图象.现利用这架照相机对MD -2 000家用汽车的加速性能进行研究,如图9为汽车做匀加速直线运动时三次曝光的照片,图中汽车的实际长度为4 m ,照相机每两次曝光的时间间隔为2.0 s .已知该汽车的质量为1 000 kg ,额定功率为90 kW ,汽车运动过程中所受的阻力始终为1 500 N.图9(1)试利用图示,求该汽车的加速度大小;(2)若汽车由静止开始以此加速度做匀加速运动,匀加速运动状态最多能保持多长时间?(3)汽车所能达到的最大速度是多大?(4)若该汽车从静止开始运动,牵引力不超过3 000 N ,求汽车运动2 400 m 所用的最短时间(汽车已经达到最大速度).答案 (1)1.5 m/s 2(2)20 s (3)60 m/s (4)70 s解析 (1)由题图可得汽车在第1个2.0 s 时间内的位移x 1=9 m ,第2个2.0 s 时间内的位移x 2=15 m汽车的加速度a =Δx T 2=1.5 m/s 2.(2)由F -F f =ma 得,汽车牵引力F =F f +ma =(1 500+1 000×1.5) N =3 000 N 汽车做匀加速运动的末速度v =P 额F =90×1033×103 m/s =30 m/s.匀加速运动保持的时间t 1=v a =301.5 s =20 s.(3)汽车所能达到的最大速度v m =P 额F f =90×1031.5×103 m/s =60 m/s.(4)由(1)、(2)知匀加速运动的时间t 1=20 s ,运动的距离x 1′=v 2t 1=302×20 m=300 m所以,后阶段以恒定功率运动的距离x 2′=(2 400-300) m =2 100 m对后阶段以恒定功率运动,有:P 额t 2-F f x 2′=12m (v m 2-v 2)解得t 2=50 s所以最短时间为t 总=t 1+t 2=(20+50) s =70 s .。

高考物理轮精细复习 (压轴题)平抛运动(含解析)

高考物理轮精细复习 (压轴题)平抛运动(含解析)

避躲市安闲阳光实验学校平抛运动(基础知识夯实+综合考点应用+名师分步奏详解压轴题,含精细解析)平抛运动及其规律[想一想]如图4-2-1所示,甲、乙、丙三小球分别位于如图所示的竖直平面内,甲、乙在同一条竖直线上,甲、丙在同一条水平线上,P点在丙球正下方。

某时刻,甲、乙、丙同时开始运动,甲以水平速度v0平抛,乙以水平速度v0沿水平面向右做匀速直线运动,丙做自由落体运动,若甲、乙、丙三球同时到达P 点,试说明甲球所做的平抛运动在水平方向和竖直方向的分运动各是什么运动?图4-2-1提示:若甲、乙、丙三球同时到达P点,则说明甲在水平方向的运动与乙的运动相同,为匀速直线运动,甲在竖直方向的运动与丙的运动相同,为自由落体运动。

[记一记]1.特点(1)运动特点:初速度方向水平。

(2)受力特点:只受重力作用。

2.性质平抛运动是加速度恒为重力加速度的匀变速曲线运动,轨迹为抛物线。

3.研究方法用运动的合成与分解方法研究平抛运动。

水平方向:匀速直线运动竖直方向:自由落体运动。

4.运动规律(如下表所示)水平方向v x=v0x=v0t竖直方向v y=gt,y=12gt2合速度大小v=v2x+v2y=v20+g2t2方向与水平方向的夹角tan α=v yv x=gtv0合位移大小s=x2+y2方向与水平方向的夹角tan θ=yx=gt2v0轨迹方程y=g2v20x2[1.从高度为h处以水平速度v0抛出一个物体,要使该物体的落地速度与水平地面的夹角较大,则h与v0的取值应为下列四组中的哪一组( ) A.h=30 m,v0=10 m/sB .h =30 m ,v 0=30 m/sC .h =50 m ,v 0=30 m/sD .h =50 m ,v 0=10 m/s解析:选D 要使落地速度与水平方向夹角较大,应使tan θ=v y v 0=2ghv 0中θ较大,应使自由下落的高度h 较大,同时使水平速度v 0较小,故选项D 正确。

34道精选高中物理题(含详解答案)

34道精选高中物理题(含详解答案)

的质量都是m,并都可看作质点,且m<M<2m。

三物块用细线通过滑轮连接,物块B与物块C的距离和物块C到地面的距离都是L。

现将物块A下方的细线剪断,若物块A距滑轮足够远且不计一切阻力。

求:(1)物块A上升时的最大速度;(2)物块A上升的最大高度。

2、如图所示,粒子源S可以不断地产生质量为m、电荷量为+ q的粒子(重力不计)。

粒子从O1孔进入(初速度为零)一个水平方向的加速电场,再经小孔O2进入相互正交的匀强电场和匀强磁场区域,电场强度大小为E,磁感应强度大小为B1,方向如图。

虚面PQ、MN之间的立体空间内存在着水平向右的匀强磁场区域,磁感应强度大小为B2(图中未画出)。

有一块对折后成直角的硬质塑料板abc(不带电,宽度很窄,厚度不计)放置在PQ、MN之间(截面图如图),a、c两点恰好分别位于PQ、MN上,ab、bc的中点与O1、O2、O3在同一水平线上,ab = bc = L , = 45°。

若粒子恰能沿图中虚线O2、O3进入PQ、MN之间的区域。

(1)求加速电压U1;(2)假设粒子与硬质塑料板碰后,速度大小不变,方向变化遵守光的反射定律。

求粒子在PQ、MN之间的区域中运动的时间。

3、如图2所示,半径为r的绝缘细圆环的环面固定在水平面上,场强为E的匀强电场与环面平行。

一电量为+q、质量为m的小球穿在环上,可沿环作无摩擦的圆周运动,若小球经A点时,速度v A的方向恰与电场垂直,且圆环与小球间沿水平方向无力的作用,试计算:(1)速度v A的大小;(2)小球运动到与A点对称的B点时,对环在水平方向的作用力。

4、假设若干年后,宇航员站在了火星表面。

宇航员要乘坐返回舱返回距离火星中心r的轨道舱(围绕火星运动的舱体)。

为了安全,返回舱与轨道舱对接时,必须具有相同的速度。

如果宇航员在火星上时,自头顶自由释放一个小球,经时间t,小球恰好落到火星表面。

且已知火星的半径为R,万有引力常数为G,宇航员的高为h,返回舱与人的总质量为m,返回过程中需克服火星引力做功W=mgR(1-R/r),g为火星表面的重力加速度。

专题2.5 直线、(类)平抛圆周组合模型(解析版)

专题2.5 直线、(类)平抛圆周组合模型(解析版)

高考物理备考微专题精准突破专题2.5直线、(类)平抛圆周组合模型【专题诠释】1.模型特点:物体在整个运动过程中,经历直线运动、圆周运动和平抛运动或三种运动两两组合.2.表现形式:(1)直线运动:水平面上的直线运动、斜面上的直线运动、传送带上的直线运动.(2)圆周运动:绳模型圆周运动、杆模型圆周运动、拱形桥模型圆周运动.(3)平抛运动:与斜面相关的平抛运动、与圆轨道相关的平抛运动.3.应对策略:这类模型一般不难,各阶段的运动过程具有独立性,只要对不同过程分别选用相应规律即可,两个相邻的过程连接点的速度是联系两过程的纽带.很多情况下平抛运动末速度的方向是解决问题的重要突破口.【高考领航】【2018·新课标全国I卷】如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R:bc是半径为R的四分之一的圆弧,与ab相切于b点。

一质量为m的小球。

始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动,重力加速度大小为g。

小球从a点开始运动到其他轨迹最高点,机械能的增量为()A.2mgR B.4mgR C.5mgR D.6mgR【答案】C【解析】本题考查了运动的合成与分解、动能定理等知识,意在考查考生综合力学规律解决问题的能力。

设小球运动到c点的速度大小为v C,则对小球由a到c的过程,由动能定理得:F·3R–mgR=12mv c2,又F=mg,解得:v c2=4gR,小球离开c点后,在水平方向做初速度为零的匀加速直线运动,竖直方向在重力作用力下做匀减速直线运动,由牛顿第二定律可知,小球离开c点后水平方向和竖直方向的加速度大小均为g,则由竖直方向的运动可知,小球从离开c点到其轨迹最高点所需的时间为:t=v C/g,小球在水平方向的加速度a=g,在水平方向的位移为x=12at2=2R。

由以上分析可知,小球从a点开始运动到其轨迹最高点的过程中,水平方向的位移大小为5R,则小球机械能的增加量ΔE=F·5R=5mgR,选项C正确ABD错误。

高考物理生活中的圆周运动试题(有答案和解析)含解析

高考物理生活中的圆周运动试题(有答案和解析)含解析

高考物理生活中的圆周运动试题(有答案和解析)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 32gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。

高考物理复习专题三 平抛运动与圆周运动单元练习题(含详细答案)

高考物理复习专题三 平抛运动与圆周运动单元练习题(含详细答案)

高考物理复习专题三平抛运动与圆周运动一、单选题1.特战队员在进行素质训练时,抓住一端固定在同一水平高度的不同位置的绳索,从高度一定的平台由水平状态无初速开始下摆,如图所示,在到达竖直状态时放开绳索,特战队员水平抛出直到落地。

不计绳索质量和空气阻力,特战队员可看成质点。

下列说法正确的是()A.绳索越长,特战队员落地时的水平位移越大B.绳索越长,特战队员在到达竖直状态时绳索拉力越大C.绳索越长,特战队员落地时的水平速度越大D.绳索越长,特战队员落地时的速度越大2.如图所示是倾角为45°的斜坡,在斜坡底端P点正上方某一位置Q处以速度v0水平向左抛出一个小球A,小球恰好能垂直落在斜坡上,运动时间为t1.小球B从同一点Q处自由下落,下落至P点的时间为t2.不计空气阻力,则t1:t2=()A. 1:2B. 1:C. 1:3D. 1:3.如图,质量相同的钢球①,②分别放在A,B盘的边缘,A,B两盘的半径之比为2:1,a,b分别是与A盘,B盘同轴的轮,a,b轮半径之比为1:2。

当a,b两轮在同一皮带带动下匀速转动时,钢球①,②受到的向心力大小之比为( )A. 2:1B. 4:1C. 1:4D. 8:14.关于平抛运动,下列说法正确的是()A.不论抛出位置多高,抛出速度越大的物体,其水平位移一定越大B.不论抛出位置多高,抛出速度越大的物体,其飞行时间一定越长C.不论抛出速度多大,抛出位置越高,其飞行时间一定越长D.不论抛出速度多大,抛出位置越高,飞得一定越远5.在空中某一高度将一小球水平抛出,取抛出点为坐标原点,初速度方向为轴正方向,竖直向下为y轴正方向,得到其运动的轨迹方程为y=ax2(a为已知量),重力加速度为g。

则根据以上条件可以求得()A.物体距离地面的高度B.物体作平抛运动的初速度C.物体落地时的速度D.物体在空中运动的总时间6.某游乐场开发了一个名为“翻天滚地”的游乐项目。

原理图如图所示:一个3/4圆弧形光滑圆管轨道ABC,放置在竖直平面内,轨道半径为R,在A点与水平地面AD相接,地面与圆心O等高,MN是放在水平地面上长为3R,厚度不计的减振垫,左端M正好位于A点.让游客进入一个中空的透明弹性球,人和球的总质量为m,球的直径略小于圆管直径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x=v0t,y=12gt2→
tan
θ=y→t=2v0‫݊ܽݐ‬θ
x
g

分解位移,构建位移三角形
求 v0,vy
tan θ=vy=gt →t=v0‫݊ܽݐ‬θ
v0 v0
g
P 点处速度与斜面平行,分解速度,求离斜 面最远的时间
落到斜面合速度与水平方向夹角 φ→ tan 小球到达斜面时的速度方向与斜面的夹角
高考物理复习专题训练题
四、平抛运动与斜面、圆周运动相结合问题
平抛运动问题经常会与斜面、圆周等相结合,此类问题的运动情景与规律方法
具有一定的规律性,总结如下:
运动情景
物理量分析
方法归纳
vy=பைடு நூலகம்t,tan
θ=v0=v0→t= v0 →求 vy gt g‫݊ܽݐ‬θ
x、y
分解速度,构建速度三角形,确定时间,进 一步分析位移
2
视为质点的小球,经 t=0.4 s 小球落到半圆上。已知当地的重力加速度 g=10 m/s , 据此判断小球的初速度可能为( )
A.1 m/s B.2 m/s C.3 m/s D.4 m/s
12
答案 AD 由 h=2gt ,可得 h=0.8 m<1 m,如图所示,小球落点有两种可能,若小
0.4
球落在左侧,由几何关系得平抛运动水平距离为 0.4 m,初速度 v0=0.4 m/s=1 m/s;
面时的速度方向与斜面的夹角为 α1,当抛出的速度为 v2 时,小球到达斜面时的速度 方向与斜面的夹角为 α2,则( )
A.当 v1>v2 时,α1>α2 B.当 v1>v2 时,α1<α2 C.无论 v1、v2 大小如何,均有 α1=α2 D.2 tan θ= tan (α1+θ) 答案 CD 建立数学模型,写出 v 的函数表达式,讨论 v 与 α 的关系。 建立物理模型,如图。
1.6
若小球落在右侧,平抛运动的水平距离为 1.6 m,初速度 v0=0.4 m/s=4 m/s,A、D 项
正确。
何关系知时间
t,h=1gt2,R+ටRଶ 2
-hଶ
=v0t
系可求运动时间
联立两方程可求 t
几何约束与平抛规律结合的问题是平抛问题的常见题型,解答此类问题除要
运用平抛的位移和速度规律外,还要充分运用几何,找出满足的其他关系,从而使
问题顺利求解。
典例 1 (多选)如图所示,从倾角为 θ 的足够长的斜面上的某点先后将同一小 球以不同初速度水平抛出,小球均落到斜面上,当抛出的速度为 v1 时,小球到达斜
φ=gt=gt2=2y=2 tan θ→α=φ-θ v0 v0t x
α 为定值,与初速度无关 小球平抛时沿切线方向进入凹槽时速度方
tan θ=vy=gt →t=v0‫݊ܽݐ‬θ
v0 v0
g
向与水平方向夹角为 θ,可求出平抛运动 时间
在半圆内的平抛运动(如图),由半径和几
水平位移、竖直位移与圆半径构筑几何关
以任一速度 v 抛出后,落到斜面上用时 t,由平抛运动知识得
12
x=vt y=2gt
‫ݕ‬
tan θ=‫ݔ‬ v 合分解为 vy=gt 又由图可知
‫ݕݒ‬
tan (θ+α)= ‫ݒ‬ 以上方程联立可得 2 tan θ= tan (θ+α) 故 α 为一恒量,A、B 错误,C、D 正确。 典例 2 (多选)如图所示,从半径为 R=1 m 的半圆 PQ 上的 P 点水平抛出一个可
相关文档
最新文档