小学数学六年级比的意义和性质单元练习题A
小学六年级数学上册比练习题
4.比练习一【知识要点】比的意义,比的各部分名称。
【课内检测】1、两个数( )又叫做两个数的( )。
2、 如果A ∶B=C ,那么A 是比的( ),B 是比的( ),C 是比的( )。
3、4÷5=( )∶( )=()()4、从A 地到B 地共180千米,客车要行2小时,货车要行3小时。
客车所行的路程与所用时间的比是( ),比值是( );客车所用的时间与货车所用的时间比是( ),比值是( );货车与客车的速度比是( ),比值是( );客车与货车所行的路程比是( ),比值是( )。
5、判断。
①53可以读作五分之三,也可以读作三比五。
( ) ②配制一种盐水,在200克水中放了20克盐,盐和盐水的比是1∶10。
( )③比值是0.8的比只有一个。
( )④甲数与乙数的比是3∶4,则乙数是甲数的34倍。
( )【课外训练】1、甲数除以乙数的商是1 .4,乙数与甲数的比是( )。
2、正方形的周长与边长的比是( ),比值是( )。
3、长方形的长比宽多51,长方形的长与宽的比是( )。
4、一杯糖水,糖占糖水的101,糖与水的比是( )。
5、女生人数与全班人数的比是4∶9,男生人数与女生人数的比是( )。
练习二【知识要点】比的基本性质,化简比。
【课内检测】1、判断:比的前项和后项同时乘一个相同的数,比值不变。
( )2、8∶5=24∶( ) 42∶18=( )∶33、化简下面各比。
21∶35 65∶ 94 0.8∶0.324、一辆汽车3小时行驶135千米,汽车所行的路程和时间的比是( ),化成最简整数比是( )。
5、一根绳子全长2.4米,用去0.6米。
用去的绳子和全长的比是( ),化简比是( )。
【课外训练】1、化简下面各比。
35140 0.4∶32 0.3吨∶150千克 0.6∶322、判断:最简单的整数比,就是比的前项和后项都是质数的比。
( )3、5∶12的前项增加15,要使比值不变,后项应增加( )。
【新】西师大版小学数学六年级上册第四单元第一课 《比的意义和性质》说课稿附板书含反思及课堂练习和答案
我的说课完毕,谢谢各位老师!
九、教学反思
本节课,我把教学内容在知识点不变的基础上,以发挥学生主动性,学生通 过比与除法、分数的联系,通过类比,很快地类推出比的基本性质。这样一来节省 了很多的时间,二来也让学生初步感知了新知识。 总之,在以后的教学中,我 们要不断地去探索、去实践,争取逐步提高自己的教学水平。引导学生用一系列的 猜想来提高兴趣,增强数学的趣味性,从而引发学生探求新知的欲望。有了兴趣做 支撑,后面的新课学习就积极主动。
今天,我们再来学习一种新的表示两个量间数量关系的方 法。
教师揭示课题——比的意义。
(二)、探究新知
1.初步认识比及比的读、写方法。
教师:请同学们看例1中的表格,根据表格中信息写出用分数或除法表示
两个量之间的倍数关系。
学生用分数或除法表示表中两个量之间倍数关系。
预设:240÷5;200÷4;240÷200;5÷4……。
四、说教学重难点
【教学重点】
理解比的意义,让学生对比分数的基本性质,找到两者之 间的区别与联系,有助于学生加深记忆,在学习上降低难
度对比的意义有一个进一步 的理解,并且能够熟练准确地的求出一个比的比值。
五、说教法学法
以教师的引导为主导,体现先导后教"、进而无为而教"的教学思想。 以学生的学习为主体,体现先做后学"、进而自主学习"的学习思想;主 要采用了探究发现法、讨论归纳法,反思自己的学习过程,领会学习方 法,获得数学学习的经验,教师的鼓励,使学生体验到成功的喜悦,极 大地调动了学生学习的积极性。
小学六年级数学上册练习题第四单元-比
小学六年级数学上册练习题第四单元-比第一课时 比的意义班级: 姓名:巩固达标 一、填空。
(1)在4:7=中,( )是比的前项,( )是比的后项,比值是( )。
(2)43=( )÷( ) =( ):( )(3)人体血液中,红细胞的平均寿命是120天,血小板的平均寿命是10天。
红细胞与血小板的寿命的比是( )。
(4)--辆“复兴号”高铁3小时行驶了1050km,这列高铁行驶的路程和时间的比是( ) :( ),比值是( ),比值表示( )。
(5)一条公路已修了全长的125,已修的和未修的比是( ),未修的和全长的比是( )。
(6)比与分数、除法的联系。
( )(7) 甲数是乙数的4倍,甲、乙两数的比是( ),乙数与两数和的比是( )。
(8)在100克水中加入10克盐,盐和盐水的比是( )。
二、判断。
(对的画“√”,错的画“X”)(1)在今年一场足球比赛中,法国1:0战胜比利时,所以比的后项为0。
( )(2) 小明的身高125cm,弟弟的身高是1m,小明和弟弟身高的比是125:1。
( )三、求下面各比的比值。
0.36 : 0.45 1.5t:400kg 32:9420分: 0.25时能力拓展应用题。
1、小明体重40千克,相当于小军的910,小华的体重是小军的65。
小华体重多少千克?2、修一条工路,第一天修了全长的,第二天修的比第一天的少50米,两周共修了160米,这条路一共有多长?3、学校有彩色粉笔48盒,比白粉笔的少3盒,学校有白粉笔多少盒?4、一满杯糖水正好是200 g,其中含糖20g 。
从杯中倒出20g 糖水后,再往杯里加满水,这时杯子里的糖与水的质量比是多少?第二课时 比的基本性质班级: 姓名:巩固达标 1、填空(1).填表后再说一说比与分数、除法有怎样的关系。
(2)如果把3: 7的前项加上12,要使比值不变,后项应加上( )。
(3)12:16=( ):4=18÷( )=( ):0.8=32(4)甲数的43等于乙数的32,那么甲、乙两数的最简整数比是( ):( )。
六年级数学下册《比例的意义和性质》练习题(附答案解析)
六年级数学下册《比例的意义和性质》练习题(附答案解析)学校:___________姓名:___________班级:____________一、选择题1.能与11:34组成比例的是()。
A.4∶3B.3∶4C.1:43D.1:342.下面每组中的四个数,不能组成比例的是()。
A.2,0.25,3,0.375B.18,8,5.4,24C.5452,,,3767D.30,25,6,1253.下面能与3∶8组成比例的是()。
A.8∶3B.15∶40C.0.2∶0.6 4.下列哪个选项中的四个数不能组成比例。
()A.3,5,9,15B.1,2,3,4C.12,13,16,19D.2,4,7,145.如果a、b都是不为0的数,且56a=78b,则a和b的大小关系是()。
A.a<b B.a=b C.a>b6.能与13∶14组成比例的是()。
A.4∶13B.13∶4C.4∶3D.3∶47.下面各比中,能与0.14∶0.1组成比例的是()。
A.0.8∶0.25B.28∶20C.13∶35D.14∶18.在比例里,两个外项的积等于两个内项的积。
这叫做()。
A.比例的基本性质B.比例C.比例的外项9.根据下图中的信息判断,下列等式不成立的是()。
A.a∶c=d∶b B.a b=c dC.b d=c a10.如果a×3=b×4,那么a∶b=()。
A.4∶3B.3∶4C.1∶12二、填空题11.12的因数共有______个,选择其中的4个因数,把它们组成一个比例是______。
12.在30的因数中选择4个奇数组成一个比例:( )。
根据比例的基本性质把它改写成乘法等式:( )。
13.比值是2的一个比例是( )。
14.如果2a=3b(a、b≠0),那么a∶b=( )∶( );如果a∶b=5∶2 ,那么a∶5=( )∶( )。
15.比值是35的两个比可以为( ),( ),这两个比组成比例是( ).16.一个比例,等号左边的比和等号右边的比一定是( )的。
专题05《比的意义、性质和应用题》六年级数学上册
(2023年秋季班苏教版六上)知识拓展考点培优讲练知识点一:比的意义、各个部分的名称1.两个数量之间的关系可以用两个数的比来表示。
2.在两个数的比中,“∶”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,比的前项除以后项所得的商叫做比值。
3.比的前项,后项和比值分别相当于除法算式中的:被除数,除数和商;分别相当于分数中的:分子、分母和分数值。
比的后项不能是0。
知识点二:比的基本性质和化简比1.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
2.化简比的方法:(1)化简整数比时,前、后项同时除以最大公因数。
(2)化简分数比时,前、后项同时乘它们分母的最小公倍数,转化成整数比,再化简。
(3)化简小数比:先把前、后项的小数点同时向右移动相同的位数,转化成整数比,再化简。
知识点三:按比分配按比分配的解题方法:方法一:把比看作份数之比。
先求每份是多少,再求几份是多少。
解题步骤:①求出总份数;②求出一份是多少;③求出各部分的数量。
方法二:把比转化成分率。
利用分数乘法解答。
解题步骤:①求出总份数;②求出各部分占总量的几分之几;③求出各部分的数量。
A.4∶3B.3∶4【变式1-4】(2017•东台市模拟)桃树的棵数比李树多,桃树棵数和李树棵数的比是(A.黄花、蓝花的总数比红花多20%B.三种花的总数是蓝花的6倍C.红花比黄花多买了10盆D.黄花和蓝花的数量比为3∶5【变式6-1】(2023•石河子)29.保洁阿姨用84消毒液与水按1∶80的比配制成消毒水对地面进行消毒,配制40毫升的消毒水需要()毫升84消毒液,()毫升水。
【变式6-2】(2023•洛阳)30.一个长方体的棱长总和是240厘米,它的长、宽、高的比是3∶2∶1,这个长方体的表面积是()平方分米,体积是()立方分米。
【变式6-3】(2023•淅川县)31.用同样长的铁丝围成两个长方形,甲长方形的长与宽之比为6∶1,乙长方形的长与宽之比为2∶1,那么,甲长方形的面积大于乙长方形的面积。
第6讲 比的意义和性质-六年级上册数学知识点汇总与错题专练(人教版)
第6讲比的意义和性质六年级上册数学知识点汇总与错题专练(易错梳理+易错举例+易错题演练)【易错梳理】1、比的意义和各个部分的名称。
(1)比:两个数相除也叫两个数的比;(2)比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
(3)比的读法、写法:a比b记作a:b,读作a比b。
注意:比值是没有单位名称的。
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式,但是不能用整数和小数来表示。
3、比和除法、分数的区别。
4、比的基本性质。
比的前项和后项同时乘或者除以相同的数(0 除外),比值不变。
5、化简比的意义。
把两个数的比化成最简单的整数比(比的前项和后项是互质数的比),叫作化简比,也叫作比的化简。
6、化简比的方法。
(1)整数比的化简方法。
比的前项和后项同时除以它们的最大公因数。
(2)分数比的化简方法。
比的前项和后项同时乘它们分母的最小公倍数,先转化成整数比,再进行化简。
(3)小数比的化简方法。
通常把比的前、后项的小数点同时向右移动相同的位数,先转化成整数比,再进行化简。
注意点:1、一个比的前、后两个数位置不能颠倒。
2、比值和比是有区别的,比值是一个具体的数,可以是分数、小数、整数,而比表示两个数的关系。
3、比、分数、除法三者是有区别的,它们之间不是“等于”的关系,而只能是“相当于”的关系。
4、比的基本性质不是指同时加或者减相同的数,也不是指同时乘或者除以不同的数(0除外)。
5、一般情况下,小数比的化简要先把前、后项扩大相同的倍数化成整数比,再化成最简单的整数比。
【易错举例】易错点1:比的后项有的时候可以是0。
判断:六(①)班和六(2)班足球比赛的比分是3:0),所以比的后项可以是0。
六年级比的意义和基本性质练习题
比的意义和基本性质练习题一、基本知识储备1、比的意义:两个数()又叫做两个数的比。
2、比与除法、分数之间的区别与联系。
3、比的基本性质:比的前项和( )同时乘上或( )相同的数(0除外),比值不变。
4、“化简比”与“求比值”的区别。
二、经典例题 例1:用字母表示三者之间的内在联系。
a ︰b =( )÷( )=()()()0b ≠,比的后项()为0。
(填“能”或“不能”)举一反三1:一袋洗衣粉重320克,一块香皂重80克。
洗衣粉与香皂的重量比是(),比值是();香皂与洗衣粉的重量比是(),比值是()。
例2:盐与水的比是1︰10,则盐︰盐水=(︰),水︰盐=(︰),盐水︰水=(︰)。
举一反三2:两个正方形边长比是1︰3,这两个正方形的周长比是(︰)面积比是(︰)。
例3:男生与女生的人数比是3︰4,男生比女生少() ()。
举一反三3:1、某班有男生20人,女生30人,男生与全班人数的比是(),女生比男生多() ()。
2、甲数除以乙数的商是43,甲数与乙数的比是()。
例4:易错题分析1、在4︰9中,如果比的前项加上8,要使比值不变,后项应加上()。
易错题分析2、A ︰B=2︰3,B ︰C=4︰5,那么A ︰B ︰C=(︰︰)。
易错题分析3、一项工程,甲单独完成需要6小时完成,乙单独完成需要5小时完成,甲、乙工作效率之比是(︰)。
举一反三4:1、在3︰8中,如果比的前项加上15,要使比值不变,后项应加上()。
2、A ︰B=3︰4,B ︰C=5︰6,那么A ︰B ︰C =(︰︰)。
3、一辆汽车从甲地开往乙地,3小时到达,返回时4小时到达,前往速度与返回速度的比是(︰)。
三、迁移拓展 例1、如果532CB A ==(其中A 、B 、C 都不等于0),那么A ︰B ︰C=(︰︰)。
举一反三7:如果2A=3B=4C (其中A 、B 、C 都不等于0),那么A ︰B ︰C=(︰︰)。
例2、有两个重叠的正方形,大正方形的边长是5厘米,小正方形的边长是4厘米,重叠部分的面积是9平方厘米,求阴影部分面积。
六年级上册数学第四单元比的意义练习题
比的意义练习题
一.填空。
1.两个数的比表示()。
2.在两个数的比中,比号前面的数叫比的(),比号后面的数叫(),
()叫比值。
3.比的前项相当于除法算式中的(),分数中的();比的后项相
当于除法算式中的(),分数中的(),比的后项不能()。
4.甲是乙的5倍,甲和乙的比是( ),乙和甲的比是()。
5. 3 :()= 0.6
():4 = 0.3
6.等腰直角三角形两个锐角的比是():()
7.等边三角形三个角的比是():():()
二.求比值。
1.0.9 : 1.8 =
=
2. 6 :1
7
3. 2.5km :50m =
4. 1.8t : 200kg =
5.2小时:45分钟=
6.6cm : 3m =
三.判断题。
1.比的前项不能为0.()。
2. 小红和妈妈去年的年龄比是5 :1,今年的年龄比与去年相同。
()。
3. 6cm : 2cm = 3cm : 1cm
4. 5km : 7km = 7
5
5. 比和比值的意义相同。
四.解决问题。
1. 五一班男生和女生的比是3:4,已知男生比女生少7人,男生和女生一
共有多少人?
2. 小明和小花年龄的比是3:5,已知他们的年龄的和是16岁,他们的年
龄分别是多少岁?
3. 妈妈和小玲今年的年龄分别是32和7岁,明年她们的年龄比是多少?。
人教版六年级数学下册4.1.1《比的意义》同步练习(含答案解析)
第四单元《比例》4.1.1《比的意义》同步练习一、填空题。
1.从36的因数中,选择四个因数,把它们组成一个比例是________。
2.比例中的四个数叫做这个比例的________。
其中两端的两个数叫做________,中间的两个数叫做________。
3.:的比值是________,8:18的比值是________,这两个比组成比例是________。
4.表示________的式子叫做比例。
5.用12的约数写出一个比例________。
6.= =24÷[ ]=[ ](填小数).二、单选题。
1.应用比例的意义,判断下面()中的两个比不可以组成比例.A. 6:10和9:15B. 20:5和4:1C. 5:1和6:22.能与3:8 组成比例的比是()A. 8:3B. 0.2:0.5C. 15:403.如果a∶b=c∶d,那么下面的比例错误的是()。
A. a∶c=b∶dB. c∶d=a∶bC. a∶d=b∶c4.下列比例正确的一组是()A. 12:6=2B. 0.8:0.2=1:4C. 16:4 =8:2三、判断题。
1.用2,3,2.5和1这四个数能组成比例。
()2.把15:14写成分数的形式是. ()3.比和比例的意义相同。
()4.比其实就是比例.()5.两个比值相等的比不一定能组成比例。
()四、解答题.1.判断下面每组中的两个比能否组成比例,把组成的比例写出来。
(1)9:12和0.8:0.6(2)6:5和(3)1.4:7和3:15(4)1:和1.8:0.6(5)和3:4(6)和2.2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。
在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。
(1)杨利伟展示的两面旗都是长15cm,宽10cm。
怎样用算式表示它们长和宽的关系?(2)“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。
人教版六年级上册数学讲义及练习-第4单元比的认识(含答案)
比的认识知识集结知识元比知识讲解知识点:比的意义,比与除法、分数的关系;一、比的意义1. 比的意义:两个数相除又叫做两个数的比.2. 在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.例如 15 :10 = 15÷10=(比值通常用分数表示,也可以用小数或整数表示)15 ∶ 10 =前项比号后项比值3. 比可以表示两个相同量的关系,即倍数关系.例:长是宽的几倍.也可以表示两个不同量的比,得到一个新量.例:路程÷速度=时间.二、比与除法、分数的关系1. 根据分数与除法的关系,两个数的比也可以写成分数形式.2. 比和除法、分数的联系:3. 比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系.4.根据比与除法、分数的关系,可以理解比的后项不能为0.5.体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系.三、比值1、求比值:用前项除以后项,结果最好是写为分数 .2、比值:相当于商,是一个数,可以是整数,分数,也可以是小数.知识点:比的基本性质一、比的基本性质:1.比的前项和后项同时乘或除以相同的数(0除外),比值不变.二、化简比:依据比的基本性质1.两个整数的比:用比的前项和后项同时除以它们的最大公因数.2.两个分数的比:用比的前项和后项同时乘分母的最小的公倍数,再按化简整数比的方法来化简.3.两个小数的比:先把小数化成整数,再按化简整数比的方法来化简.例如:15∶10 = 15÷10 === 3∶2 最简整数比是3∶2三、求比值:用求比值的方法:求比值的过程是通过前项除以后项,求出商.注意:最后结果要写成分数、小数或整数的形式.例如:15∶10 = 15÷10 ==(不能写成3:2)四、最简整数比:1.比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比.2.根据比的基本性质,可以把比化成最简单的整数比.3.比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位.知识点:按比例分配应用题一、按比例分配:1.按比例分配:把一个数量按照一定的比来进行分配.这种方法通常叫做按比例分配.二、按比例分配应用题:1.用分率解:按比例分配通常把总量看作单位一,即转化成分率.要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几.例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?1+4=5 糖占用25×得到糖的数量,水占用25×得到水的数量.2. 用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少.例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?糖和水的份数一共有1+4=5 一份就是25÷5=5 糖有1份就是5×1 水有4分就是5×4知识点:部分与部分的比转化为部分与整体的比部分与部分的比转化为部分与整体的比的方法:先求出所有部分之和,然后再根据比的意义进行比较即可.例如:甲数:乙数=2:3,求甲数:甲、乙两数之和=().应该先求出甲数和乙数之和,2+3=5,然后在进行相比即可.知识点:化连比问题三、连比的概念:三个量以及三个量以上的比的关系,叫做连比.比如:30:20:10 像这样的比叫做连比,其中30、10、20叫做连比的项.四、连比的性质:⑴如果a∶b=m∶n,b∶c=n∶k,则a∶b∶c=m∶n∶k;⑵如果k≠0,则a∶b∶c=ak∶bk∶ck=::利用连比的性质可以求连比,也可以化简连比.三、比”和“连比”得区别:1、比和连比是两个不同的概念,从意义上看比是表示两个数的倍数关系(或两个数相除).连比是两个以上数之间的各自所占的份数比,它不是以上两个数连除的关系.2、比和连比中的“项”也是不同的:3、从比值上看:比既能表示两个数的倍数关系,也可以求出比值.如:3:4的比值是,连比不是连除的意思,不可能求出商,也无法求出比值.四、连比的化法:例如:甲和乙的比是3∶4,乙和丙的比是6∶5,甲、乙、丙的连比应该是9∶12∶10.其中项统一过程如下:知识点:按比例分配问题进阶.一、按比例分配:按比例分配:把一个数量按照一定的比来进行分配.这种方法通常叫做按比例分配.二、按比例分配应用题:1、比的第一种应用:已知两个数量的差,两个或几个数的比,求这两个或这几个数量是多少?例如:六年级的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?解题思路:男生比女生多几份:7-5=2求每一份:20÷2=10(人)因此,男生有10×7=70(人),女生有10×5=50(人)2、比的第二中应用:转化连比解答按比分配的问题例如:一个学校篮球队和足球队人数之比为5:4,足球队和排球队之比为3:5.已知篮球队比足球队和排球队总和少34人,求各组人数.解题思路:转化连比:篮球队:足球队:排球队=15:12:20篮球队比足球对和排球对之和少几份:12+20-15=17每份人数:34÷17=2(人)篮球队:2×15=30(人)2×12=24(人)2×20=40(人)3、比的第三种应用:行程问题中的比的应用例如:客车和货车从A、B两地同时出发,速度比为3:4,相遇后继续前行,当货车到达A 地后,客车距B地还有20千米,求两地的距离.解题思路:同时出发,速度比等于路程比分析:相遇时,两车路程之和为A、B两地的距离.把A、B两地距离当坐单位“1”,货车到达A地时,恰好为“1”,客车行驶的占货车的,还有未行驶,因此全程为20÷=80(千米)4、比的第四种应用:列方程解决比的问题例如:哥哥和弟弟原有钱之比为7:5,如果哥哥给弟弟520元之后,弟弟和哥哥的钱数之比为4:3,现在哥哥有多少钱?解题思路:用常规方法解不出,考虑用方程解答解:设哥哥现在有x元,则弟弟现在有x,哥哥原有(x+520)元,弟弟原有(x-520)元,列方程为:x-520=(x+520)例题精讲比例1.一个三角形三个内角的度数比是1:1:2,这个三角形是( )三角形.【答案】等腰直角三角形例2.一块铁与锌的合金,铁占合金的,那么铁与锌的质量之比();合金的质量是锌的质量的()倍【答案】2:7例3.公园里柳树和杨树的棵数比是5∶3,柳树和杨树共40棵,柳树和杨树各有多少棵?【答案】柳树:25棵;杨树:15棵例4.甲数与乙数的比是3:4,乙数与丙数的比是6:7,甲数与丙数的比是多少?甲数、乙数与丙数三个数的比是多少?【答案】9:12:14.【解析】题干解析:根据连比的性质,进而求出甲数与丙数的比、甲数、乙数与丙数三个数的比,化简成最简整数比即可.例5.师徒二人共同加工一批零件,已知师傅与徒弟的工作效率的比是5:7,完成任务时,师傅比徒弟少做120个.这批零件共有多少个?(两种方法解答)【答案】720个【解析】题干解析:(1)由“工效比是5:7,”得出工作量的比也是5:7,把两人的工作量分别看作5份和7份,则相差7﹣5=2份,由此求出一份,进而求出(5+7)份表示的个数就是这批零件的个数.(2)用方程解答,设完成任务时,师傅完成了x 个,徒弟完成了120+x个,再把工作量相比就是5:7,列出方程求出师傅完成的个数,再求徒弟完成的个数,然后相加即可.当堂练习填空题练习1.甲乙两个小朋友做游戏,在一个边长1分米的正方形地上划地盘。
六年级下册数学总复习试题-比的性质、比与分数和除法的关系专项练 通用版(含答案)
比的性质、比与分数和除法的关系一、单选题1.在3:2中,如果前项加上6,要使比值不变,后项应( )A. 加上6B. 乘以6C. 乘以32.比的前项扩大到原来的2倍,后项不变,比值( )A. 不变B. 扩大到原来的4倍C. 扩大到原来的2倍 3.9()=2736 括号里应填的数是( )A. 8B. 10C. 12D. 24.________∶________= 178 =________÷________5.(2015•长沙)两个数的比值是1.2,如果比的前项扩大2倍,后项缩小两倍,比值是( )A. 1.2B. 2.4C. 4.8D. 9.66.化简比36∶42= ( )A. 8∶6B. 32C. 6∶7D. 5∶27.如果A :B= 19 ,那么(A×9):(B×9)=( )。
A. 1B. 19C. 1:1D. 无法确定8.80∶ =400∶50( )A. 8B. 10C. 12D. 29.100千克稻谷可以碾出大米75千克.则大米重量与稻谷重量的比是________,化成最简整数比是________.( )A. 55∶120,2∶3B. 100∶75,4∶3C. 75∶100,3∶4D. 95∶150,2∶510.选择题(1)甲数是乙数的 3344 ,则甲乙两数的最简整数比是( )A. 43B. 211C. 34D. 112(2)乙数是丙数的 22121 ,则乙丙两数的最简整数比是( )A. 43B. 211C. 34D. 112 二、判断题11.小明与小丽的年龄比是6﹕7,五年后他们的年龄比不变.12.判断对错.0.28:4=140:200.13.判断对错.3∶5的前项和后项都除以35,它们的比值不变.14.比的前项和后项都增加或减少相同的数,比值不变。
15.判断,正确的填“正确”,错误的填“错误”.化简下面各比。
(1)1m∶80cm=1∶80(2)1 2:18=416.比的前项和后项同时加上同一个不是0的数,比值不变.(判断对错)17.判断对错.除数不能为0,分母不能为0,比的后项也不能为0.18.判断对错.一个圆的半径与它的周长的比是1∶2π.19.判断对错.在4∶3的前项和后项同时加上18,比值不变.20.判断对错比的前项和后项都乘一个相同的数,比值不变.三、填空题21.3:4=________:32 0.8:5=________:15.22.4÷5=8/________=________/40=________/20=________填小数.23. ________/40=________÷24=0.375=________:________ =________%24. ________÷15= 23=10:________ =6/________.25.(2015·黑龙江齐齐哈尔) 35÷=________÷45=3:________=________%=________(填小数)=________折。
人教版六年级数学上册四单元比的知识点和习题练习
比的基本概念和化简一、比的基本概念1、比的意义:两个数的比表示两个数相除(旧:两个数相除又叫做两个数的比)两个同类量的比表示这两个量之间的倍数关系,两个有联系的不同类量的比表示一个新的量。
2、比的符号和读、写法37是分数形式的比,是比的另一种书写形式。
3、比的各部分名称(1)比的前项:在两个数的比中,比号前面的数; (2)比的后项:在两个数的比中,比号后面的数; (3)比值:比的前项除以后项所得的商。
4、求比值的计算方法:比的前项除以比的后项;比值可用分数、小数或整数表示。
5、比和比值的联系与区别都可以用分数形式表示:53既可表示3:5,又可表示3:5的比值;比表示两个数的一种关系;比值是一个数;比只能写成b a :或ba的形式,比值可以是分数、小数、整数。
6、比与分数、除法的关系 (1)联系 a:b=a ÷b=ba(b ≠0) 除法 被除数 ÷ 除数 商 分数 分子 — 分母 分数值 比 前项 : 后项 比值(2)区别①意义不同:比表示两个量的一种关系;除法是一种运算;分数则是一个数②表示方法不同:除法算式不能用分数表示;比可以用分数表示;但分数不一定表示两个量的比 ③结果表达不同:除法的结果为商;比的结果为比值;分数本身就是一个数值 7、求比中未知项的方法比的前项=比的后项×比值 比的后项=比的前项÷比值二、比的基本性质(与“商不变”性质类同)1、比的基本性质比的前项和后项同时乘或除以相同的数(0除外),比值不变。
同样适用于连比 2、化简比的意义(1)最简整数比:比的前项和后项是互质数的比 (2)化简比: 把两个数的比化成最简单的整数比3、整数比的化简方法:把比的前项和后项同时除以它们的最大公因数4、分数比的化简方法(1)比的前项和后项同时乘它们的分母的最小公倍数,变整数比,再化简 (2)先求比值,再把结果写成比的形式5、小数比的化简方法:先把前项和后项的小数点同时向右移动相同的位数,变成整数比,再化简6、求连比甲数和乙数的比是3:4,乙数和丙数的比是5:6,求甲、乙、丙的连比关键是找中间量(“桥梁”),显然为乙。
人教版六年级下册《41_比例的意义和基本性质》小学数学-有答案-同步练习卷(2)
人教版六年级下册《4.1 比例的意义和基本性质》小学数学-有答案-同步练习卷(2)一、填空题(共15小题,每小题3分,满分45分)1. 直接写出得数2. 写出两个比值是0.4的两个比组成比例________.3. 判断下面的比是否可以组成比例。
(对的在括号中划“√”,错的画“×”)(1)3:4和4.5:6()(2)12:3和9:4.5()(3)25:57和225:17()4. 应用比例的基本性质,把下列比例改写成乘法算式。
7.5:15=2:4________5 12=ab________2 3:8=115:45________5. 在2:5=6:15中,________是内项,________是外项。
6. 如果3A=4B(A,B不为0),那么AB =________,BA=________.7. 在比例里,两个内项互为倒数,那么两个内项的积是________,如果一个外项是45,另一个外项是________.8. 在比例里,两个外项的积减去两个内项的积,差为0.________.(判断对错)9. 如果4x=5y(x和y均不为0),那么4:x=5:y.________(判断对错)10. 18:30和0.3:0.5可以组成比例。
________(判断对错)11. 如果甲数的45与乙数的23相等,则甲数与乙数的比是5:6.________(判断对错)12. 把下面的等式,按比例的基本性质改写成比例式,看看你能写几个,并想想你发现了什么。
10×8=16×5a ×b =c ×d(a ,b ,c ,d 均不为0)13. 把25×4=50×2改写成比例是( )A.25:4=50:2B.25:2=4:50C.252=504D.4:25=50:214. 如果x 的34等于y 的45,且x 和y 均不为0,则x:y =( )A.34:45B.4:3C.15:16D.16:1515. 不能与4、5、8这三个数组成比例的数是( )A.10B.2.5C.6.4D.7参考答案与试题解析人教版六年级下册《4.1 比例的意义和基本性质》小学数学-有答案-同步练习卷(2)一、填空题(共15小题,每小题3分,满分45分)1.【考点】整数的除法及应用整数的乘法及应用小数的加法和减法小数乘法分数乘法【解析】根据整数、小数以及分数的加减乘除法的计算法则口算即可。
人教版六年级数学上册第四单元比(知识梳理课本例题练习)
比知识梳理一、比的意义❖ 两个数相除又叫做两个数的比。
❖ “:”是比号,读作“比”。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的后项不能为0。
❖ 比的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
例如 15 :10 = 15÷10=23=1.5 ❖ 比的意义两个同类量的比表示这两个量之间的倍数关系。
两个有联系的非同类量的比表示一个新的量。
例: 路程:速度表示时间。
❖ 区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
❖ 比和除法、分数的联系:1、比同除法相比较:比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比号相当于除法中的除号,比值相当于除法的商。
2、比同分数相比较:比的前项相当于分数中的分子,比的后项相当于分数中的分母,比号相当于分数中的分数线,比值相当于分数的分数值。
3、用字母表示:a b a =:÷()0≠=b ba b ❖ 比和除法、分数的区别1、意义不同:除法是一种运算,分数是一个数,比表示两个量(或数)的倍数关系。
2、表示方法不同:作为一种运算,除法算式不能用分数表示,比可以用分数表示,但分数不一定表示两个量的比。
除法一般要求出商,比只有求比值时才通过计算求出商,而分数本身就是一个数值,无需计算。
❖ 比和比值的关系联系:比和比值都可以用分数形式表示。
区别:(1)比表示两个数的倍数关系,比值是一个数。
(2)比只能写成的形式,比值可以是分数,也可以是小数。
注意:体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
二、比的基本性质❖ 根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
人教版六年级数学上册第四章《比》复习卷
二.填空题
13.0.6= 3 =12÷ 20 = 6 :10= 60 %= 六 成.
5
【分析】解答此题的关键是0.6,把0.6化成分数并化简是 ;根据分数与除法的关系, =3÷5,再根据商不 变的性质,被除数、除数都乘4就是12÷20;根据比与分数的关系, =3:5,再根据比的基本性质,比的前 、后项都乘2就是6:10;把0.6的小数点向右移动两位,添上百分号就是60;根据成数的意义,60%就是六 成.由此进行转化并填空. 【解答】解:0.6= =12÷20=6:10=60%=六成; 故答案为: ,20,6,60,六. 【点评】此题主要是考查除式、小数、分数、百分数、比、成数之间的关系及转化,利用它们之间的关系和 性质进行转化即可.
【解答】解:由于两个正方形的周长比是2:1 所以两个正方形的边长比是2:1 两个正方形的面积比是22:12=4:1 答:这两个正方形的面积比是4:1; 故选:C. 【点评】此题主要考查正方形的边长、周长比的关系,以及面积与边长之间的关系.
一.选择题
3.已知 =1.2, =1.2,则x和y比较( A )
【点评】此题主要考查零作除数无意义.
一.选择题
6.a÷b=1.2,则b:a=( A )
A.5:6
B.6:5
C.1:2
【分析】根据a÷b=1.2可得:a=1.2b,所以b:a=b:1.2b=1:1.2=10:12=5:6,据此即可选择.
【解答】解:根据a÷b=1.2可得:a=1.2b, 所以b:a=b:1.2b=1:1.2=10:12=5:6, 故选:A. 【点评】根据a÷b=1.2得出用b表示字母a的式子a=1.2b,再代入到b:a中化简即可解答.
小学数学人教版(2014秋)六年级上册第四单元 比比的意义-章节测试习题(3)
章节测试题1.【答题】如果A×=B×3,那么A:B=______.(求比值)【答案】15【分析】本题考查的是求比值.【解答】A×=B×3,那么A:B=3:=3×5=15.故本题的答案是15.2.【答题】若甲数比乙数多,则甲数与乙数的比是______:3.【答案】4【分析】设乙数为单位“1”,再计算甲数,最后计算两数的比.【解答】甲数比乙数多,设乙数为单位“1”,则甲数是:1×(1+)=,则甲数与乙数的比是:1=4:3.故本题的答案是4.3.【答题】5:8的前项是,后项是,比值是.【答案】5,8,【分析】本题考查的是比的意义以及求比值.【解答】在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.所以5:8的前项是5,后项是8,比值是:5÷8=.故本题的答案是5,8,.4.【答题】甲数比乙数多,则甲数与乙数的比是:,乙数比甲数少.【答案】9,7,【分析】本题考查的是比的应用.【解答】假设乙数为1,则甲数为+1=,甲:乙=9:7.因为甲:乙=9:7,假设甲为9,乙为7,乙比甲少.故本题的答案是9,7,.5.【答题】求比值.;0.12米:48厘米=.【答案】,【分析】求比值的方法:用比的前项除以后项求商.【解答】;0.12米:48厘米=12厘米:48厘米=12÷48=.故本题的答案是,.6.【答题】果园里桃树与杏树棵数比是2:3,桃树棵数是杏树的,杏树棵数比桃树多,桃树棵数比杏树少.【答案】,,【分析】本题考查的是比的意义.【解答】桃树与杏树的棵数比是2:3,假设桃树棵数是2,杏树棵数是3,则桃树棵数是杏树的;杏树棵数比桃树多;桃树棵数比杏树少.故本题的答案是,,.7.【答题】一个比的前项是40,比值是,比的后项是______;一个比的后项是40,比值是,比的前项是______.【答案】64,25【分析】两个数的比表示两个数相除.在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.【解答】比的后项=比的前项÷比值,比的前项=比的后项×比值,所以一个比的前项是40,比值是,则比的后项是:40÷=40×=64;一个比的后项是40,比值是,则比的前项是:40×=25.故本题的答案是64,25.8.【答题】糖与糖水的质量比是2:15,糖与水的质量比是:,糖的质量是水的,水的质量是糖的.【答案】2,13,,【分析】本题考查的是认识比的意义.【解答】已知糖与糖水的质量比是2:15,即一共15份,糖占2份,水占:15-2=13(份);水与糖水的质量比是13:15,即糖与水的质量比是2:13;糖的质量是水的,水的质量是糖的.故本题的答案是2,13,,.9.【答题】甲数是乙数的3倍,乙数与甲数的比是:,比值是.【答案】1,3,【分析】本题考查的是认识比.【解答】已知甲数是乙数的3倍,那么乙数与甲数的比是1:3,比值是.故本题的答案是1,3,.10.【答题】如图,红花种植面积占圆形花池面积的,占长方形花池面积的,种植的黄花与粉花的面积比是______:______.【答案】5,7【分析】假设红花种植面积为“2”,根据红花种植面积占圆形花池面积的几分之几和占长方形花池面积的几分之几求出圆形花池的面积和长方形花池的面积,从而求出种植黄花的面积和种植粉花的面积.【解答】假设红花种植面积为“2”,红花种植面积占圆形花池面积的,那么圆形花池的面积为7,黄花种植面积为:7-2=5;红花种植面积占长方形花池面积的,那么长方形花池的面积为9,粉花种植面积为:9-2=7,所以黄花的种植面积与粉花的种植面积比是5:7.故本题的答案是5,7.11.【答题】六(1)班男生25人,女生23人,男女生的人数比是:,男生和全班人数的比是:,女生占总人数的.【答案】25,23,25,48,【分析】本题考查的是比的意义.【解答】已知六(1)班男生25人,女生23人,所以男女生的人数比是25:23,全班人数是25+23=48(人),则男生和全班人数的比是25:48;要求女生占总人数的多少,用除法,列式计算为:23÷48=.故本题的答案是25,23,25,48,.12.【答题】一个比是:x,当x=时,比值是1;当x=时,比值是;当x=时,这个比无意义.【答案】,1,0【分析】本题考查的是比的意义以及求比中的未知项.【解答】根据比和除法的关系,已知比的前项、后项中的任意一项和比值,都可以求出第三项.∶x=1,即÷x=1,x=;一个数比1等于这个数,所以比值为时,x=1;比的后项不能为0.故本题的答案是,1,0.13.【答题】在200克盐水中,含盐40克,盐与盐水的比是40:______.【答案】200【分析】本题考查的是认识比.【解答】已知在200克盐水中,含盐40克,则盐与盐水的比是40:200.故本题的答案是200.14.【答题】读完同一本书,小华要4天,小明要6天,小华和小明读完这本书所用的时间比是:(不用化简),比值是.【答案】4,6,【分析】本题考查的是认识比和比值. 两个数的比表示两个数相除;两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.【解答】已知读完同一本书,小华要4天,小明要6天,小华和小明读完这本书所用的时间比是4:6,比值是.故本题的答案是4,6,.15.【答题】学校体育器材室篮球与排球个数的比是4:3,那么篮球个数是排球个数的,排球个数是两种球总个数的.【答案】,【分析】本题考查的是比的应用.【解答】已知学校体育器材室篮球与排球个数的比是4:3,则篮球个数是排球个数的,排球个数是两种球总个数的:.故本题的答案是,.16.【答题】文艺书和科技书本数的比是5:3,那么文艺书的本数比科技书多,科技书的本数比文艺书少.【答案】,【分析】本题考查的是比的应用.【解答】将文艺书本数分成5份,那么科技数本数为3份,文艺书的本数比科技书的本数多 2份,所以文艺书的本数比科技书的本数多;科技书的本数比文艺书的本数少 2份,所以科技书的本数比文艺书的本数少.故本题的答案是,.17.【答题】洞庭小学男、女生人数的比是6:5,那么男生人数与学生总人数的比是______:______,学生总人数与女生人数的比是______:______.【答案】6,11,11,5【分析】本题考查的是比的应用.【解答】已知洞庭小学男、女生人数的比是6:5,则男生人数与学生总人数的比是6:(6+5)=6:11;学生总人数与女生人数的比是:(6+5):5=11:5.故本题的答案是6,11,11,5.18.【答题】已知两个正方形的边长比是3:2,那么它们的面积比是______:______.【答案】9,4【分析】本题考查的是比的应用.【解答】已知两个正方形的边长比是3:2,设小正方形边长为2,则大正方形边长为3,那么大正方形的面积为3×3=9,小正方形的面积为:2×2=4,它们的面积比是 9:4.故本题的答案是9,4.19.【答题】盐占盐水质量的,那么盐与水的质量比是______:______.【答案】1,99【分析】盐的质量=盐水的质量×盐占盐水质量的几分之几;水的质量=盐水的质量-盐的质量.【解答】盐占盐水质量的,假设盐水的质量是100,则盐的质量是:100×=1,所以水的质量是:100-1=99,则盐与水的质量比是1:99.故本题的答案是1,99.20.【答题】一杯糖水,糖是糖水的,那么糖与水的比是______:______.【答案】1,7【分析】糖水是糖和水的混合液,糖是糖水的,也就是1份糖配7份水,合成8份的糖水.【解答】8份糖水-1份糖=7份水,所以糖与水的比是1:7.故本题的答案是1,7.。
小学数学北京版六年级下册第二单元 比和比例比的基本性质-章节测试习题(1)
章节测试题1.【答题】甲、乙两杯水,如从甲杯倒出到乙杯,则两杯水同样多.原甲、乙两杯水的比是().A.1:3B.2:3C.3:1D.3:2【答案】C【分析】把甲杯水看作单位“1”,由题意可知:乙杯水比甲杯水少,也就是说乙杯水是甲杯水的,进而依据比的意义即可得解.【解答】原甲、乙两杯水的比是.选C.2.【答题】一个平行四边形与一个三角形的底相等,它们高的比是1:2.它们面积的比是().A.2:1B.4:1C.1:1【答案】C【分析】平行四边形的面积=底×高,三角形的面积=底×高÷2,再据“平行四边形与一个三角形的底相等,它们的高的比是1:2”即可求得它们的面积比.【解答】设平行四边形的高是h,则三角形的高就是2h,平行四边形的面积=底×h,三角形的面积=底×2h÷2=底×h,所以平行四边形的面积:三角形的面积=1:1.选C.3.【答题】盐是10克,水是100克,则盐和水的比是().A.1:10B.1:11C.1:9【答案】A【分析】求盐和水的比,用盐的质量比水的质量,再化简即可.【解答】10:100=(10÷10):(100÷10)=1:10.所以盐和水的比是1:10.选A.4.【答题】若两个数的比是3:4,当前项加上12时,要使比值不变,那么后项应().A.扩大4倍B.加上16C.加上20【答案】B【分析】根据3:4的前项加上12,可知比的前项由3变成15,相当于前项乘5;根据比的基本性质,要使比值不变,后项也应该乘5,由4变成20,也可以认为是后项加上16.据此进行选择.【解答】3:4的前项加上12,3变成15,相当于前项乘5;要使比值不变,后项也应该乘5,由4变成20,相当于后项加上:20﹣4=16,所以后项应该乘5或加上16.选B.5.【答题】把化成最简单的整数比是______:______.【答案】3 2【分析】根据比的基本性质作答,即比的前项和后项同时乘或除以相同的数(0除外),比值不变.【解答】.故本题的答案是3、2.6.【答题】把14:3.5化成最简整数比是______:______,比值是______.【答案】4 1 4【分析】(1)根据比的基本性质作答,即比的前项和后项同时乘或除以相同的数(0除外),比值不变;(2)求比值,根据比值的含义,用比的前项除以后项即可.【解答】14:3.5=(14÷3.5):(3.5÷3.5)=4:1;14:3.5=14÷3.5=4.故本题的答案是4、1、4.7.【答题】把一个比的前项扩大到原来的2倍,后项缩小到原来的,比值就扩大到原来的______倍.【答案】4【分析】两数相除又叫做两数的比,所以比的前项相当于除法算式中的被除数,后项相当于除数,根据商的变化规律可得:被除数扩大到原来的2倍,除数缩小到原来的,那么商就会扩大到原来的2×2=4倍,由此即可解决.【解答】比的前项相当于除法算式中的被除数,后项相当于除数,根据商的变化规律可得:被除数扩大到原来的2倍,除数缩小到原来的,那么商就会扩大到原来的2×2=4倍,所以比值扩大到原来的4倍.8.【答题】把化成最简整数比得______:______.【答案】24 5【分析】根据比的基本性质作答,即比的前项和后项同时乘或除以相同的数(0除外),比值不变.【解答】,故本题的答案是24、5.9.【答题】如果5:8的前项扩大到原来的3倍,要使比值不变,后项应增加______.【答案】16【分析】比的基本性质是指比的前项和后项同时乘或除以相同的数(0除外),比值不变.据此分析解答.【解答】如果5:8的前项扩大到原来的3倍,要使比值不变,后项也应该扩大到原来的3倍,由8变成24,相当于后项增加24-8=16.故本题的答案是16.10.【答题】把1.2米:80厘米化成最简整数比是______:______,比值是______.(比值写小数)【答案】3 2 1.5【分析】(1)先把1.2米化为120厘米,再根据比的基本性质作答,即比的前项和后项同时乘或除以相同的数(0除外),比值不变;(2)先把1.2米化为120厘米,再用比的前项除以后项即可.【解答】1.2米:80厘米=120厘米:80厘米=3:2;1.2米:80厘米=120厘米÷80厘米=1.5.故本题的答案是3、2、1.5.11.【答题】—段路程,甲行完全程需4小时,乙行完全程需6小时.甲、乙两人速度的最简整数比为______:______.【答案】3 2【分析】把这一段路程看作单位“1”,根据速度=路程÷时间,要先表示出甲乙两人的速度,然后才能求出最简整数比.【解答】.故本题的答案是3、2.12.【答题】甲3分钟行千米,乙8分钟行千米,甲、乙两人速度的最简整数比是______:______.【答案】8 5【分析】根据速度=路程÷时间,先表示出甲、乙两人的速度,进而求出最简整数比.【解答】.故本题的答案是8、5.13.【答题】把化成最简整数比是______:______.【答案】4 5【分析】最简整数比是指比的前项和比的后项是互质数的比,化简比可根据比的基本性质化简.【解答】,故本题的答案是4、5.14.【答题】20:______=______:20==______(填小数).【答案】25 16 0.8【分析】根据比与分数的关系,再根据比的基本性质,比的前、后项都乘4就是16:20;比的前、后项都乘5就是20:25;=0.8.【解答】20:25=16:20==0.8.故本题的答案是25、16、0.8.15.【答题】从学校到电影院,甲用8分钟,乙用9分钟,甲和乙每分钟行的路程比是______:______,他们所用的时间的比是______:______.【答案】9 8 8 9【分析】(1)把从学校到电影院的路程看成单位“1”,甲和乙每分钟行的路程比就是甲和乙的速度比,根据速度=路程÷时间,写出相应的比,再根据比的基本性质化简即可;(2)根据“甲用8分钟,乙用9分钟”,直接写出甲与乙所用时间的比即可.【解答】甲和乙每分钟行的路程比是;甲与乙所用时间的比是8:9.故本题的答案是9、8、8、9.16.【答题】比的前项扩大到原来的3倍,后项扩大到原来的2倍,比值则扩大到原来的6倍.()【答案】×【分析】根据比的基本性质,可知比的前项扩大到原来的3倍,后项扩大到原来的2倍,比值则扩大到原来的倍.可以通过举例子进行验证.【解答】例如:4:1,比值是4:1=4÷1=4,比的前项扩大到原来的3倍,由4变成12,后项扩大到原来的2倍,由1变成2,比变成12:2,比值是12:2=12÷2=6,比值由4变成6,是扩大到原来的6÷4=.所以原题的说法是错误的.17.【答题】甲数的等于乙数的,甲数与乙数的比是6:5.()【答案】✓【分析】根据题意,设甲数×=乙数×=1,求出甲数与乙数,再根据比的意义,求出甲数与乙数的比.【解答】假设甲数×=乙数×=1,则甲数=6,乙数=5,所以甲数:乙数=6:5.所以原题说法是正确的.18.【答题】从甲地到乙地,小明要用10分钟,小红要用12分钟,则小明和小红平均每分钟走的路程比是6:5.()【答案】✓【分析】小明、小红每分钟所行的路程之比,就是求它们的速度比.把这段路程看成单位“1”,根据速度=路程÷时间,那么小明的速度就是,小红的速度就是,用小明的速度比上小红的速度即可.【解答】,所以小明和小红每分钟所行的路程之比是6:5.原题说法是正确的.19.【答题】甲数比乙数多,则甲、乙两数的比是7:5.()【答案】✓【分析】根据“甲数比乙数多”,把乙数设为1,那么甲数就是,甲、乙两数的比是,再化简比即可.【解答】,所以原题说法是正确的.20.【答题】一项工作,甲单独做5天完成,乙单独做每天完成这项工作的,甲、乙两人工作效率的最简整数比是5:4.()【答案】×【分析】可设工作总量为1,根据工作效率=工作总量÷时间,分别找出甲乙的工作效率,再化简比.【解答】设工作量为1,则甲的工作效率为,乙的工作效率为,,所以原题说法是错误的.。
六年级数学比的意义试题答案及解析
六年级数学比的意义试题答案及解析1.(6分)6:==9÷==+=×≈(保留2位小数).【答案】14,21,15,,7,0.43.【解析】解答此题的关键是,根据分数的基本性质,分子、分母都乘5就是;根据比与分数的关系=3:7,再根据比的基本性质,比的前、后项都乘2就是6:14;根据分数与除法的关系=3÷7,再根据商不变的性质,被除数、除数都乘3就是9÷21;根据加数与和之间的关系﹣=,由此得出+=;根据因数与积之间的关系÷=7,由此得出7×=;3÷7≈0.43.解:6:14=9÷21==+=7×≈0.43.故答案为:14,21,15,,7,0.43.点评:本题主要是考查除法、小数、分数、比之间的关系及加法各部分之间的关系、乘法各部分之间的关系等.利用它们之间的关系和性质进行转化即可.2.请按要求完成一下题目:(1)50÷81改写成比是______,用分数表示是______。
(2) 42÷63改写成比是______,用分数表示是______。
(3)55÷99改写成比是______,用分数表示是______。
【答案】(1)50:81;(2)42:63;(3)55:99;【解析】(1)50÷81改写成比是50:81;用分数表示是50÷81=(2)42÷63改写成比是42:63;用分数表示是42÷63=(3)55÷99改写成比是55:99;用分数表示是55÷99=3.请按要求完成一下题目:(1)七六折==______:______(2)():24=12÷()=【答案】(1)50;19;25(2)9;32【解析】七六折==19:25( 9 ):24=12÷( 32 )=4.从比和除法的关系来看,比的()相当于除法中的被除数,比的()相当于除法中的除数,比值相当于()。
人教版册数学比的意义和基本性质》练习题
人教版册数学《比的意义和基本性质》练习题 The document was prepared on January 2, 202139、比的意义和基本性质(一)一、细心填写:1、鸡有80只,鸭有100只,鸡和鸭只数的比是( ),比值是( )。
2、长方形长3分米,宽12厘米,长与宽的比是( ),比值是( )。
3、小李5小时加工60个零件,加工个数与时间的比是( ),比值是( )。
4、一本书读了55页,45页没有读,已读与总数的比是( ),比值是( )。
5、甲数相当于乙数的92,甲数与乙数的比是( ),乙数与甲数的比是( )。
6、三好学生占全班人数的81,三好学生与全班人数的比是( )。
7、白兔只数的31与黑兔相等。
白兔与黑兔的比是( ),白兔与黑兔的比是( )8、若A ÷B =5(A 、B 都不等于0)则A :B =( ):( )若A =B (A 、B 都不等于0) 则A :B =( ):( )二、求比值:32:94 : 3321:113 : 48:36 : 52 7: 3: 116 1: 9072 三、解决问题:1、一辆汽车从甲地到乙地,每小时行80千米,用了43小时,返回时只用了85小时。
返回时每小时行多少千米2、商店售出2筐橙子,每筐24千克。
售出的橙子占水果总数的116,售出的香蕉占水果总数的41。
售出香蕉多少千克40、比的意义和基本性质(二)一、细心填写:12)叫做比值。
3、43=( ):( ) =( )÷( ) 4、在100克水中加入10克盐,盐和盐水的比是( )。
5、男工人数是女工人数的52,男、女工人数的比是( )。
6、甲数是乙数的4倍,甲、乙两数的比是( ),乙数与两数和的比是( )。
7、甲数比乙数多41,甲数与乙数的比是( ),比值是( )。
二、求比值:12:8 :5: 41 : 31:65 32:910 :41 4: 41 三、解决问题:1、小明体重40千克,相当于小军的910,小华的体重是小军的65。
六年级数学比的意义试题
六年级数学比的意义试题1.请按要求完成一下题目:(1)0.5÷______==2:______。
(2)4:10==20÷______="______" (填小数)【答案】(1)2;8 (2)2;50;0.4【解析】(1)0.5÷2==2:8(2) 4:10==20÷50=0.42. 4:10==20÷______="______" (填小数).【答案】2;50;0.4【解析】4:10==20÷50=0.43. 5:4=______÷20=______%=【答案】25;80;12【解析】5:4=25÷20=80%=4.比与分数的关系是:比的前项相当于分数的(),比的后项相当于分数的(),比值相当于分数的()。
【答案】分子;分母;分数值【解析】由比和分数定义得。
5. 0.7:1的前项扩大10倍,要使比值不变,后项也应该( ),这是根据( )性质。
【答案】扩大10倍,比的基本性质【解析】前项0.7扩大10倍变为7,要想使比值不变,比的后项1也应该扩大10倍,这是比的基本性质。
【考点】比的基本性质规律总结:比的基本性质是比的前项和后项同时乘或除以相同的数(0除外),比值不变,注意必须是相同的数。
6.比的前项乘以,比的后项除以2,比值缩小4倍.【答案】×【解析】比的前项乘以,比的后项除以2,即比的前项和后项同时除以2,根据比的基本性质“比的前项和后项同时乘以或除以相同的数(零除外),比值不变”可知这个比的比值不变.解:根据比的基本性质,比的前项乘以,比的后项除以2,这个比的比值不变.7.(1.5分)(2014•成都)要使30:(9﹣3x)有意义,x不能是()A.0B.1C.2D.3【答案】D【解析】因为9﹣3x是比的后项,比的后项不能为0,所以9﹣3x≠0,由此求出x不能取的数.解:因为9﹣3x≠0,所以9≠3xx≠3,故选:D.点评:本题主要考查了比的后项不能为0这一知识点.8.(1分)(2014•江东区模拟)甲、乙两数的平均数是63,甲数与乙数的比为5:4,甲乙两数相差是.【答案】14【解析】用63乘2求出两数的和是多少,再根据比与分数的关键,求出甲数比乙数多了两数和的几分之几,再列式解答.解:63×2×(),=63×2×,=14.答:甲乙两数相差14.故答案为:14.点评:本题的关键是求出甲乙两数的和及甲数比乙数多了两数和的几分之几,再根据分数乘法的意义列式解答.9.(2分)(2014•玉溪模拟)把“4:”化成最简整数比得,比值是.【答案】24:5;【解析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可求其比值.解:4:=(4×6):(×6)=24:5;4:=24:5=24÷5=.故答案为:24:5;.点评:此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数,小数或分数.10.某班有男生15人,女生25人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学测练题(比的意义和性质A )
班级 姓名 评分
一.填空题。
30分
1、鸡有80只,鸭有100只,鸡和鸭只数的比是( ),比值是( )。
2、长方形长3分米,宽12厘米,长与宽的比是( ),比值是( )。
3、小李5小时加工60个零件,加工个数与时间的比是( ),比值是( )。
4、一本书读了55页,45页没有读,已读与总数的比是( ),比值是( )。
5、甲数相当于乙数的
9
2,甲数与乙数的比是( ),乙数与甲数的比是( )。
6、三好学生占全班人数的81,三好学生与全班人数的比是( )。
7、白兔24只,黑兔18只。
白兔与黑兔的比是( ),黑兔与白兔的比是( )
8、若A ÷B =5(A 、B 都不等于0)则A :B =( ):( ) 若A =B (A 、B 都不等于0) 则A :B =( ):( )
9、汽车商店销售小轿车140辆,面包车40辆。
面包车辆数是小轿车的( );小轿车和面包车辆数的比是( ),比值是( )。
10、药和水的比是1:100,药占药水的( ),水占药水的( )。
11、直角三角形,两个锐角度数比是1:2,这两个锐角的度数分别是( )和( )。
12、一本书已看10
3,已看页数和总页数的比是( ),已看页数和剩下页数的比是( ),剩下页数和总页数的比( )。
13、加工一批零件,按2:3:5分配个甲、乙、丙三人加工。
甲完成这批零件的( ),乙完成这批零件的( ),丙完成这批零件的( )。
14、两个正方形边长的比是5:3,周长的比是( ),面积的比是( )。
二.计算题: 1、求比值:8分
32:9
4 0.3:0.02 0.21:6.3 48:36 0.5: 52 7:3.
5 3: 11
6 1:0.125 2、化简比: 8分 35:45 360:450 0.3:0.15
18: 32 6:0.36 203:54 0.6:52 3
2:6
三.判断: 8分
1、5
4可以读作“4比5”。
( ) 2、比的前项和后项同时乘一个相同的数,比值不变。
( ) 3、20厘米:1米的比值是20。
( ) 4、比的前项乘5,后项除以5
1。
比值不变。
( ) 5、男生比女生多52,男生与女生人数的比是7:5。
( )6、5
9既可以看作分数,也可以看成一个比。
( ) 7、10克盐溶解在100克水中,这时盐和盐水的比是1:10。
( )8、3个43和3的4
3计算结果相同。
( ) 四、选择:6分
1、比的( )不能为零。
A 前项 B 后项 C 比值 D 无法确定
2、比的前项和后项都乘3
2,比值( )。
A 变大 B 变小 C 不变 D 无法确定
3、32:910的比值是( ),最简整数比是( )。
A 2720 B 35 C 5
3 D 3:5 4、在8:9中,如果前项增加16,要使比值不变,后项应( )。
A 增加16 B 乘2 C 不变 D 无法确定 5、糖占糖水的
51,糖与水的比是( ) A 1:5 B 1:4 C 1:6 D 无法确定 五、应用题: 40分
1、商店六月份与七月份销售额的比是5:6,七月份销售3000万元。
六月份销售多少万元?
2、甲工程队有150名工人,甲乙两个工程队人数比是3:2。
乙工程队有多少工人?
3、学校航模队有男生20人,女生15人。
男生是女生的几倍?女生人数是男生的几分之几?写出男生与女生人数的最简单的整数比,再求比值。
4、图书角中文艺书与故事书本数比是3:5,文艺书本数是故事书的几分之几?如果故事书有60本,文艺书有多少本?
5、六年级有250人,男生人数与女生人数的比是3:2,六年级有男生、女生各多少人?
6、小明身高1.5米,小红身高1米25厘米。
写出小红与小明身高的比,并化简。
7、小明体重40千克,相当于小军的
910,小华的体重是小军的65。
小华体重多少千克?
8、计划生产1800个零件,第一天生产了计划的
41,第二天生产了计划的61。
还剩下计划的几分之几没生产?还剩下多少个没生产?
9、一辆汽车从甲地到乙地,每小时行80千米,用了
43小时,返回时只用了85小时。
返回时每小时行多少千米?
10、商店售出2筐橙子,每筐24千克。
售出的橙子占水果总数的
116,售出的香蕉占水果总数的41。
售出香蕉多少千克?。