2017年全国2卷理数(精美图片版)

合集下载

2017年全国高考2卷理科数学试题及答案

2017年全国高考2卷理科数学试题及答案

2017年全国高考2卷理科数学试题及答案2017年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的1. =++ii 13( ) A 、i 21+ B 、i 21- C 、i +2 D 、i -2 2、设集合}04|{},4,2,1{2=+-==m x x x B A ,若}1{=B A ,则=B ( )A 、}3,1{-B 、}0,1{C 、}3,1{D 、}5,1{3、我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 ( ) A 、1盏 B 、3盏 C 、5盏 D 、9盏4、如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截取一部分所得,则该几何体的体积为 ( ) A 、90π B 、63π C 、42π D 、36π5、设y x ,满足约束条件⎪⎩⎪⎨⎧≥+≥+-≤-+0303320332y y x y x ,则y x z +=2的最小值为 ( )A 、15-B 、9-C 、1D 、96、安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有 ( )A 、12种B 、18种C 、24种D 、36种 7、甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩。

老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩。

看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 ( )A 、乙可以知道四人的成绩B 、丁可以知道四人的成绩C 、乙、丁可以知道对方的成绩D 、乙、丁可以23 B 、515 C 、510 D 、3311、若2-=x 是函数12)1()(--+=x e ax x x f 的极值点,则)(x f 的极小值为 ( )A 、1-B 、32--e C 、35-e D 、112、已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(+⋅的最小值是 ( )A 、2-B 、23-C 、34- D 、1- 二、填空题:13、一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX = . 14、函数])2,0[(43cos 3sin )(2π∈-+=x x x x f 的最大值是 .15、等差数列}{na 的前n 项和为n S ,10,343==S a,则=∑=nk kS 11.16、已知F 是抛物线xyC 8:2=的焦点,M 是C 上一点,FM的延长线交y 轴于点N ,若M 为FN 的中点,则=FN .三、解答题:解答应写出文字说明、证明过程或演算步骤。

2017年高考理科数学全国2卷-含答案

2017年高考理科数学全国2卷-含答案

输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1。

31ii+=+() A .12i + B .12i - C .2i + D .2i -2。

设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53。

我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5。

设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96。

安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8。

执行右面的程序框图,如果输入的1a =-,则输出的S =() A .2 B .3 C .4 D .59。

(完整版)2017年高考理科数学全国2卷-含答案

(完整版)2017年高考理科数学全国2卷-含答案

输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =I ,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =() A .2 B .3 C .4 D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为()A .2B .3C .2D .2310.已知直三棱柱111C C AB -A B 中,C 120∠AB =o,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为()ABCD11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。

2017年普通高等学校招生全国统一考试——理科数学(全国II卷)(解析版)

2017年普通高等学校招生全国统一考试——理科数学(全国II卷)(解析版)

2017年普通高等学校招生全国统一考试——理科数学(全国II 卷)(解析版)一、选择题:本题共12小题,每小题5分,共60分。

在每小题中,只有一项是符合题目要求的。

1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i - 【答案】D 【解析】()()()()3i 1i 3i 2i 1i 1i 1i +-+==-++- 2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 【答案】C【解析】1是方程240x x m -+=的解,1x =代入方程得3m =∴2430x x -+=的解为1x =或3x =,∴{}13B =,3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 【答案】B【解析】设顶层灯数为1a ,2=q ,()7171238112-==-a S ,解得13a =.4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得, 则该几何体的体积为( )A .90πB .63πC .42πD .36π 【答案】B【解析】该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半.2211π310π3663π22=-=⋅⋅-⋅⋅⋅=V V V 总上5.设,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9 【答案】A【解析】目标区域如图所示,当直线-2y =x+z 取到点()63--,时, 所求z 最小值为15-.6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人 完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 【答案】D【解析】只能是一个人完成2份工作,剩下2人各完成一份工作.由此把4份工作分成3份再全排得2343C A 36⋅=7.甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 【答案】D【解析】四人所知只有自己看到,老师所说及最后甲说的话.甲不知自己成绩→乙、丙中必有一优一良,(若为两优,甲会知道自己成绩;两良亦然)→乙看了丙成绩,知自己成绩→丁看甲,甲、丁中也为一优一良,丁知自己成绩.8.执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .5 【答案】B【解析】0S =,1k =,1a =-代入循环得,7k =时停止循环,3S =.9.若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C的离心率为( )A .2BCD 【答案】A【解析】取渐近线by x a =,化成一般式0bx ay -=,圆心()20,=得224c a =,24e =,2e =.10.已知直三棱柱111C C AB -A B 中,C 120∠AB = ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A .2 B .5 C .5D .3 【答案】C【解析】M ,N ,P 分别为AB ,1BB ,11B C 中点,则1AB ,1BC 夹角为MN 和NP 夹角或其补角(异面线所成角为π02⎛⎤ ⎥⎝⎦,)可知112MN AB ==,112NP BC == 作BC 中点Q ,则可知PQM △为直角三角形.1=PQ ,12MQ AC =ABC △中,2222cos AC AB BC AB BC ABC =+-⋅⋅∠14122172⎛⎫=+-⨯⨯⋅-= ⎪⎝⎭,=AC则MQ =,则MQP △中,MP ==则PMN △中,222cos 2MN NP PM PNM MH NP+-∠=⋅⋅222+-==又异面线所成角为π2⎛⎤⎥⎝⎦,.11.若2x=-是函数21`()(1)xf x x ax e-=+-的极值点,则()f x的极小值为()A.1- B.32e-- C.35e- D.1【答案】A【解析】()()2121xf x x a x a e-'⎡⎤=+++-⋅⎣⎦,则()()32422101f a a e a-'-=-++-⋅=⇒=-⎡⎤⎣⎦,则()()211xf x x x e-=--⋅,()()212xf x x x e-'=+-⋅,令()0f x'=,得2x=-或1x=,当2x<-或1x>时,()0f x'>,当21x-<<时,()0f x'<,则()f x极小值为()11f=-.12.已知ABC∆是边长为2的等边三角形,P为平面ABC内一点,则()PA PB PC⋅+的最小值是()A.2- B.32- C.43- D.1-【答案】B【解析】几何法:如图,2PB PC PD+=(D为BC中点),则()2PA PB PC PD PA⋅+=⋅,要使PA PD⋅最小,则PA,PD方向相反,即P点在线段AD上,则min22PD PA PA PD⋅=-⋅,即求PD PA⋅最大值,又2PA PD AD+===,则22324PA PDPA PD⎛⎫+⎪⋅==⎪⎝⎭≤,则min332242PD PA⋅=-⨯=-.PCBA解析法:建立如图坐标系,以BC 中点为坐标原点,∴(0A ,()10B -,,()10C ,. 设()P x y ,, ()PA x y=--,()1PB x y =---,,()1PC x y =--,,∴()2222PA PB PC x y ⋅+=-+22324x y ⎡⎤⎛⎢⎥=+-- ⎢⎥⎝⎣⎦则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,y =.二、填空题:本题共4小题,每小题5分,共20分。

2017年高考理科数学全国2卷-含答案(K12教育文档)

2017年高考理科数学全国2卷-含答案(K12教育文档)

(完整word)2017年高考理科数学全国2卷-含答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)2017年高考理科数学全国2卷-含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)2017年高考理科数学全国2卷-含答案(word版可编辑修改)的全部内容。

a =a S =S +a ∙K 是否输入a S =0,K =1K ≤6开始2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 1.31ii+=+() A .12i + B .12i - C .2i + D .2i - 2。

设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53。

我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?"意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏 4。

如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A .90πB .63πC .42πD .36π 5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7。

2017年高考理科数学真题全国卷II详细解析图高清可直接印刷

2017年高考理科数学真题全国卷II详细解析图高清可直接印刷
重点考查基本量求通项及几种求和方法,若解答题为三角函数,一般是解三角形问题,此时
客观题中一般会有一道与三角函数性质有关的题目,同时客观题中会有两道数列题,一易一
难,数列客观题一般具有小巧活的特点。
【试卷解析】
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一
项是符合题目要求的。
层灯数是上一层灯数的2倍,则塔的顶层共有灯()
A.1盏B.3盏C.5盏D.9盏
4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平
面将一圆柱截去一部分所得,则该几何体的体积为()
A.90B.63C.42D.36
导数三小一大(或两小一大)。
2.注重对数学文化与数学应用的考查
教育部2017年新修订的《考试大纲(数学)》中增加了数学文化的考查要求。2017高考数学
全国卷II理科第3题以《算法统宗》中的数学问题为进行背景,理科19题、文科18题以以
养殖水产为题材,贴近生活。
3.注重基础,体现核心素养
2017年高考数学试卷整体上保持一定比例的基础题,试卷注重通性通法在解题中的运用,另
的面积与体积结合在一起考查,解答题一般分2进行考查。
3.解析几何知识:解析几何试题一般有3道,圆、椭圆、双曲线、抛物线一般都会涉及,双
曲线一般作为客观题进行考查,多为容易题,解答题一般以椭圆与抛物线为载体进行考查,
运算量较大,不过近几年高考适当控制了运算量,难度有所降低。
4.三角函数与数列:三角函数与数列解答题一般轮流出现,若解答题为数列题,一般比较容易,
2017年普通高等学校招生全国统一考试(新课标II理科)
【试卷点评】
【命题特点】

(完整版)2017年高考理科数学全国2卷-含答案

(完整版)2017年高考理科数学全国2卷-含答案

输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =I ,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =() A .2 B .3 C .4 D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为()A .2B .3C .2D .2310.已知直三棱柱111C C AB -A B 中,C 120∠AB =o,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为()ABCD11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。

2017年全国二卷理科数学高考真题及详解(全word版)

2017年全国二卷理科数学高考真题及详解(全word版)

2017年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项: 1.答题前,考生先将自己的XX 、XX 填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签 字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写 的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.=++i1i 3A .i 21+B .i 21-C .i 2+D .i 2-2.设集合{}4 2 1,,=A ,{}042=+-=m x x B ,若{}1=B A ,则=B A .{}3 1-, B. .{}0 1, C .{}3 1, D .{}5 1, 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?〞意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏 C .5盏 D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .π90 B .π63 C .π42 D .π365.设y x 、满足约束条件⎪⎩⎪⎨⎧≥+≥+-≤-+,,,0303320332y y x y x 则y x z +=2的最小值是A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C .24种D .36种理科数学试题第1页〔共4页〕7.甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1-=a ,则输出的=S A .2B .3C .4D .59.若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C 的离心率为A .2B .3C .2D .33210.已知直三棱柱111C B A ABC -中, 120=∠ABC , 2=AB , 11==CC BC , 则异面直线1AB 与1BC 所成角的余弦值为A .23 B .515 C .510 D .33 11.若2-=x 是函数12)1()(--+=x e ax x x f 的极值点,则)(x f 的极小值为A .1-B .32--eC .35-eD .112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(PC PB PA +⋅的最小值是A .2-B .23-C .34- D .1-二、填空题:本题共4小题,每小题5分,共20分。

2017全国高考Ⅱ卷-理科数学(含标准答案)

2017全国高考Ⅱ卷-理科数学(含标准答案)

弘德中学高三数学期末备考(五)理科数学一、选择题:本题共12小题,每小题5分,共60分.1.(5分)(2017•新课标Ⅱ)=()A.1+2iﻩB.1﹣2i C.2+i D.2﹣i2.(5分)(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3} B.{1,0} C.{1,3} D.{1,5}3.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏ﻩC.5盏ﻩD.9盏4.(5分)(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πﻩD.36π5.(5分)(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9ﻩC.1ﻩD.96.(5分)(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种ﻩC.24种D.36种7.(5分)(2017•新课标Ⅱ)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩ﻩB.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.(5分)(2017•新课标Ⅱ)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2B.3ﻩC.4ﻩD.59.(5分)(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2ﻩB.ﻩC. D.10.(5分)(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )A.ﻩB.ﻩC.ﻩD.11.(5分)(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,则f(x)的极小值为()A.﹣1ﻩB.﹣2e﹣3ﻩC.5e﹣3ﻩD.112.(5分)(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣1三、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX= .14.(5分)(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.。

2017年高考理科数学全国2卷(附答案)

2017年高考理科数学全国2卷(附答案)

学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2017年普通高等学校招生全国统一考试理科数学 全国II 卷(全卷共10页)(适用地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆、西藏) 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答案卡一并交回。

一、 选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的。

1. 3+i 1+i= A .1+2i B .1–2i C .2+i D .2–i2. 设集合A={1,2,4},B={x 2–4x +m=0},若A∩B={1},则B = A .{1,–3} B .{1,0} C .{1,3} D .{1,5} 3. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏 C .5盏 D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90π B .63π C .42π D .36π5. 设x 、y 满足约束条件⎩⎨⎧2x+3y–3≤02x–3y+3≥0y+3≥0,则z=2x+y 的最小值是A .–15B .–9C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C . 24种D .36种 7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩。

2017年高考全国2卷理科数学及答案

2017年高考全国2卷理科数学及答案

绝密★启用前2017年普通高等学校招生全国统一考试理科数学 全国II 卷(全卷共10页)(适用地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆、西藏)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答案卡一并交回。

一、 选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的。

1. 3+i 1+i=A .1+2iB .1–2iC .2+iD .2–i 2. 设集合A={1,2,4},B={x 2–4x +m=0},若A∩B={1},则B = A .{1,–3} B .{1,0} C .{1,3} D .{1,5}3. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90π B .63π C .42π D .36π5. 设x 、y 满足约束条件⎩⎨⎧2x+3y–3≤02x–3y+3≥0y+3≥0,则z=2x+y 的最小值是A .–15B .–9C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C . 24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩。

老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩。

2017高考理科数学全国2卷-含答案.pdf

2017高考理科数学全国2卷-含答案.pdf

A.1 盏
B. 3 盏
C. 5 盏
D. 9 盏
4.如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,
该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()
A. 90
B. 63
C. 42
D. 36
5.设 x , y 满足约束条件
2x 3y 3 0
2x 3y 3 0
y30
,则 z 2x y 的最小值是()
20.解
uuur NP ( 1)设 P( x,y) ,M ( x0,y0) ,设 N(x0,0) ,
uuuur x x0 , y , NM
0, y0
uuur 由 NP
uuuur 2 NM

x 0 =x,
y0
2 y2Biblioteka x2y21
因为 M ( x0,y0)在 C 上,所以 2 2
因此点 P 的轨迹方程为 x2 y2 2
A. 15
B. 9
C. 1
D. 9
6.安排 3 名志愿者完成 4 项工作,每人至少完成 1 项,每项工作由 1 人完成,则不同的安排方式共有()
A.12 种
B. 18 种
C. 24 种
D. 36 种
7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中 有 2 位优秀, 2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的
.若
I
1 ,则
()
A. 1, 3
B. 1,0
C. 1,3
D. 1,5
3.我国古代数学名著 《算法统宗》 中有如下问题: “远望巍巍塔七层, 红光点点倍加增, 共灯三百八十一,

2017年全国二卷理科数学高考真题及详解(全word版)(精编文档).doc

2017年全国二卷理科数学高考真题及详解(全word版)(精编文档).doc

【最新整理,下载后即可编辑】2017年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘 贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.=++i1i 3A .i 21+B .i 21-C .i 2+D .i 2-2. 设集合{}4 2 1,,=A ,{}042=+-=m x x B ,若{}1=B A ,则=B A .{}3 1-,B. .{}0 1, C .{}3 1, D .{}5 1,3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .π90 B .π63 C .π42 D .π365.设y x 、满足约束条件⎪⎩⎪⎨⎧≥+≥+-≤-+,,,0303320332y y x y x 则y x z +=2的最小值是 A .15- B .9- C .1 D .9 6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C . 24种D .36种理科数学试题 第1页(共4页)7.甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A .乙可以知道四人的成绩B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1-=a ,则输出的=SA .2B .3C .4D .59.若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C 的离心率为A .2B .3C .2D .33210.已知直三棱柱111C B A ABC -中, 120=∠ABC , 2=AB , 11==CC BC , 则异面直线1AB 与1BC 所成角的余弦值为A .23B .515 C .510D .33 11.若2-=x 是函数12)1()(--+=x e ax x x f 的极值点,则)(x f 的极小值为A .1-B .32--eC .35-eD .112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(+⋅的最小值是A .2-.34-D .1-二、填空题:本题共5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 3

f ( x0 ) 23 .
(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,按所做的第一题计分。 22.[选修 4-4:坐标系与参数方程](10 分) 在直角坐标系 xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线 C1 的极坐标方程为
郭大侠的数学江湖
2017 年普通高等学校招生全国统一考试 理科数学 一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目 要求的。
3i ( 1 i A. 1 2i
1.Βιβλιοθήκη ) B. 1 2i2.设集合 1, 2, 4 , x x 4 x m 0 .若 1 ,则 (
2 x 3 y 3 0 5.设 x , y 满足约束条件 2 x 3 y 3 0 ,则 z 2 x y 的最小值是( y 3 0

A. 15 B. 9 C. 1 D. 9 6.安排 3 名志愿者完成 4 项工作,每人至少完成 1 项,每项工作由 1 人完成,则不同的安排方式共有( ) A.12 种 B.18 种 C.24 种 D.36 种 7.甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有 2 位优秀,2 位良好, 我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成 绩.根据以上信息,则( ) A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的 a 1 ,则输出的 S ( A.2 B. 3 C.4 ) D. 5
1 AD, BAD ABC 900 , E 是 PD 的中点. 2 (1)证明:直线 CE / / 平面 PAB AB BC
(2)点 M 在棱 PC 上,且直线 BM 与底面 ABCD 所成锐角为 45 ,求二面角 M-AB-D 的余弦值.
0
每天一刻钟,数学点点通
4
郭大侠的数学江湖
3 3 2 2
每天一刻钟,数学点点通
5
三、解答题:共 70 分。解答应写出文字说明、解答过程或演算步骤。第 17~21 题为必做题,每个试题考生 都必须作答。第 22、23 题为选考题,考生根据要求作答。 (一)必考题:共 60 分。 17.(12 分)
ABC 的内角 A, B, C 的对边分别为 a, b, c ,已知 sin( A C ) 8sin 2
2

C. 2 i

D. 2 i ) D. 1,5
A. 1, 3
B. 1, 0
C. 1,3
3.我国古代数学名著《算法统宗》中有如下问题: “远望巍巍塔七层,红光点点倍加增,共灯三百八十一, 请问尖头几盏灯?”意思是:一座 7 层塔共挂了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯( ) A.1 盏 B. 3 盏 C.5 盏 D. 9 盏 4.如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截 去一部分所得,则该几何体的体积为( ) A. 90 B. 63 C. 42 D. 36
(1)求 cos B (2)若 a c 6 , ABC 面积为 2,求 b.
B . 2
18.(12 分) 淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取 100 个网箱,测量各箱水 产品的产量(单位:kg)某频率直方图如下:
旧养殖法
每天一刻钟,数学点点通
3
郭大侠的数学江湖
每天一刻钟,数学点点通
1
郭大侠的数学江湖
9.若双曲线 C : 的离心率为( A.2
x2 y2 2 2 1 ( a 0 , b 0 )的一条渐近线被圆 x 2 y 2 4 所截得的弦长为 2,则 C 2 a b
) B. 3

C. 2
D.
2 3 3
10.已知直三棱柱 C 11C1 中, C 120 , 2 ,C CC1 1 ,则异面直线 1 与 C1 所 成角的余弦值为( A. ) B.
3 ( x 0, )的最大值是 4 2

15.等差数列 an 的前 n 项和为 S n , a3 3 , S 4 10 ,则
2
S
k 1
n
1
k


16.已知 F 是抛物线 C : y 8 x 的焦点, 是 C 上一点,F 的延长线交 y 轴于点 .若 为 F 的中点, 则 F .
新养殖法 (1) 设两种养殖方法的箱产量相互独立,记 A 表示事件:旧养殖法的箱产量低于 50kg, 新养殖法的箱产 量不低于 50kg,估计 A 的概率; (2) 填写下面列联表,并根据列联表判断是否有 99%的把握认为箱产量与养殖方法有关: 箱产量<50kg 旧养殖法 新养殖法 (3) 根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到 0.01) 附: 箱产量≥50kg
2
3 2
15 5
x 1`
C.
10 5

D.
3 3
11.若 x 2 是函数 f ( x ) ( x ax 1)e A. 1 B. 2e
3
的极值点,则 f ( x ) 的极小值为( C. 5e
3
D.1
12.已知 ABC 是边长为 2 的等边三角形,P 为平面 ABC 内一点,则 PA ( PB PC ) 的最小值是( A. 2 B.


3 2
C.
4 3
D. 1
每天一刻钟,数学点点通
2
郭大侠的数学江湖
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。 13.一批产品的二等品率为 0.02 ,从这批产品中每次随机取一件,有放回地抽取 100 次, 表示抽到的二等 品件数,则 D . 14.函数 f x sin 2 x 3 cos x
cos 4 .
(1)M 为曲线 C1 上的动点,点 P 在线段 OM 上,且满足 OM OP 16 ,求点 P 的轨迹 C2 直角坐标方程; (2)设点 A 的极坐标为 (2,
) ,点 B 在曲线 C2 上,求 OAB 面积的最大值. 3
23.[选修 4-5:不等式选讲](10 分) 已知 a 0, b 0, a b 2 ,证明: (1) ( a b)( a b ) 4 ; (2) a b 2 .
20. (12 分) 设 O 为坐标原点, 动点 M 在椭圆 C: (1) 求点 P 的轨迹方程;
x2 过 M 做 x 轴的垂线, 垂足为 N, 点 P 满足 NP 2 NM . y 2 1 上, 2
(2) 设点 Q 在直线 x=-3 上,且 OP PQ 1 .证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F. 21.(12 分) 已知函数 f ( x ) ax ax x ln x, 且 f ( x ) 0 . (1)求 a ; (2)证明: f ( x ) 存在唯一的极大值点 x0 ,且 e
P( K 2 k ) k K2
19.(12 分)
0.050 3.841
0.010 6.635
0.001 10.828
n(ad bc ) 2 (a b)(c d )(a c)(b d )
如图,四棱锥 P ABCD 中,侧面 PAD 为等边三角形且垂直于底面 ABCD ,
相关文档
最新文档