热力学与统计物理教案:第七章 玻尔兹曼统计

合集下载

热力学与统计物理:第七章 玻耳兹曼统计

热力学与统计物理:第七章  玻耳兹曼统计

而由热力学理论,以T、V为自变量的特性函数为 自由能F
自由能F=U-TS可表示为:
F N ln Z NkT (ln Z ln Z )
NkT ln Z 或
F NkT ln Z kT ln N !
通常配分函数可由量子力学计算或实验数据得到。
E、不同统计理论下的热力学函数 1.定域系统
1 h2
2
d
0
e dp d p2 / 2I
0
e dp p2 / 2 I sin 2
4 2I
h2
0
s in d
8 2 I h2
转动能对内能的贡献:
U r N ln zr NkT
( v x2
v
2 y
v
2 z
)
dvx dvy dvz
进一步写成速率的形式:
dvxdvydvx v2 sin dvd d
2 / 2
且作 d d 0 /2
fdv 4n(
m
)
3
2
e
m 2kT
v2
v
2
dv
2kT
平均速率、方均根速率和最概然速率
v vf (v)dv vs v2 f (v)dv
CV
TV 2
KT
将实验测得的定压热容换算成定容热容,发现固体 高温下结果与理论符合,但低温下存在明显差别。
也有问题:低温下发生了什么?电子对热容的贡献?
4、空窖辐射
单色平面波在周期性边界条件下,波矢k的 三个分量的可能取值为:
kx
2
L
nx ,
ky
2
L
ny ,nx,ny ,nz
0, 1, 2,
kz
2
L
nz

热力学统计 第七章玻尔兹曼统计

热力学统计 第七章玻尔兹曼统计

al !
al lal ln ln N ! N ln N al ln al ! l l l x 1 ln x ! x ln x x S k ln S
0
设=1时,S=0 S0=0
ln Z S Nk (ln Z )
2.内能U与广义力Y的统计表达式
2.1 内能U的统计表达式
N N l U al l ll e Z Z l l N Z ln Z N Z
e l l
N al l e l Z Z l e l
配分函数Z :
l
Z l e l
l
分布在能级l 的粒子数:
N al l e l Z
已知(l, l),可求Z——并不容易!
经典粒子: 配分函数Z :
Z l e l
l
Z e
( q . p )
dqdp e D( )d r h
积分因子:
如果 X ( x, y )dx Y ( x, y )dy 不是全微分,但存在函数 ( x, y ) ,使得
( x, y ) X ( x, y )dx ( x, y )Y ( x, y )dy 为全微分, 即
( x, y ) X ( x, y )dx ( x, y )Y ( x, y )dy ds ( x, y )
S k ln
满足经典极限的非定域系统:
ln
l
la
l
al !
al S k N ln N al ln l l
S0
lal al ln ln N ln N al ln ln N ! l l al ! l

第7章(热力学与统计物理) 玻耳兹曼统计解析

第7章(热力学与统计物理) 玻耳兹曼统计解析

(V )1 3 h( 1 )1 2
N
2mkT
用分子的德布罗义波长
h p h 2m h 2mkT 分子数密度
N e Z1
U N ln Z1
Y
N
y
ln
Z1
S
Nk (ln
Z1
ln
Z1 )
k
ln
N!
S k ln M .B. N!
F NkT ln z1 kT ln N!
经典系统
Z1
l
el
l
h0r
el
d
h0r
e( p,q)
dq1dq2
dqrdp1dp2 h0r
dpr
N e Z1
U
N
ln
dW Ydy dy
l
l
y
al
l
al d l
考虑内能 U l al 的全微分 l
dU l dal al dl
l

ቤተ መጻሕፍቲ ባይዱ
与热力学第一定律
dU dQ dW dQ aldl
l
比较,有
dQ ldal
以上两式说明,在准静态过程中系统从外界吸收的热 量等于粒子在各能级重新分布所增加的内能:外界对系统 所作的功等于粒子分布不变时由于能级改变所引起的内能 变。 化。
l
与(6.6.4) ln N ln N al ln al al ln l
l
l
比较,有玻耳兹曼关系
S k ln
该关系反映了熵的统计意义。
自由能
由自由能的定义,
F U TS
N
ln
Z1
TNk (ln
Z1
ln
Z1 )
TNk ln Z1

热力学与统计物理教案:第七章 玻尔兹曼统计

热力学与统计物理教案:第七章 玻尔兹曼统计

非简并性条件 e 1 愈容易满足。
一般气体在常温,常压下 e 104 ,满足非简并性条件,可用玻尔兹曼统计。
1
1
e
1
,也可改写为
V N
3
h
1 2 mkT
2
(*)
分子的德布罗意波长 h h , 理解为分子热运动的平均能量 ~ 3 kT (可由以后的
al
N el Z1
l h0r
式中的 h0r 与配分函数 Z1 所含的 h0r 相互抵消,与 h0 无关。
一个粒子的运动状态处于 l 的概率:
68
Pl
al N
1 el Z1
l h0r
A
l
Pl Al
1 Z1
l
Al el
l h0r
1 Z1
Ae d h0r
U
N
ln Z1 及 Yi
N
yi
ln Z1 与 h0
第七章 玻尔兹曼统计
§7.1 热力学量的统计表达式
1、 配分函数
配分函数是统计物理中最重要的热力学特性函数,知道了它,就可以得到平衡态系统的所
有热力学量。
系统的总粒子数 N
al
e l l
e
el l
l
l
l
令 Z1
el l
l
【对单粒子能级求和】
es
【对单粒子量子态求和】
s
称为(单粒子)配分函数,则
N
!
由于 F 与 S 有关,从而与微观状态数有关,所以对于两种系统得出不同的结果。
经典近似
由量子玻尔兹曼分布 al
l e l
和经典玻尔兹曼分布 al
e l
l h0r

第七章玻耳兹曼统计教案分析

第七章玻耳兹曼统计教案分析

第七章玻⽿兹曼统计教案分析热⼒学与统计物理课程教案第七章玻⽿兹曼统计 7.1 热⼒学量的统计表达式⼀、定域系统的内能、⼴义⼒和熵统计表达式在§6.8说过,定域系统和满⾜经典极限条件的玻⾊系统都遵从玻⽿兹曼分布。

本章根据玻⽿兹曼分布讨论这两类系统的热⼒学性质。

本节⾸先推导热⼒学量的统计表达式。

内能是系统中粒⼦⽆规则运动总能量的统计平均值.所以 ∑∑--==lβεαl l ll l l e ωεεa U ①引⼊函数1Z :∑-=lβεl l e εZ 1 ②名为粒⼦配分函数。

由式∑--=lβεαl l e ωN ②,得:1Z e e ωe N αlβεl αl ---==∑ ③上式给出参量α与N 和1Z 的关系,可以利⽤它消去式①中的α。

经过简单的运算,可得:11ln Z βZ N e ωβe e ωεe U l βεl αl βεl l αll ???? ????-=???? ????-==∑∑---- ④式④是内能的统计表达式。

在热⼒学中讲过,系统在程中可以通过功和热量两种⽅法与外界交换能量。

在⽆穷⼩过程中,系统在过程前后内能的变化dU 等于在过程中外界对系统所作的功W d 及系统从外界吸收的热量Q d 之和:Q d W d dU +=。

如果过程是准静态的, W d 可以表达为Ydy 的形式,其中dy 是外参量的改变量,Y 是外参量y 相应的外界对系统的⼴义作⽤⼒。

粒⼦的能量是外参量的函数。

由于外参量的改变,外界施于处于能级l ε的⼀个粒⼦的⼒为yεl。

因此,外界对系统的⼴义作⽤⼒Y 为: 11ln 11Z y βN Z y βe e ωy βe e ωy εa y εY αl βεl αβεαl ll l ll l l ??-=-= -===-----∑∑∑⑤式⑤是⼴义作⽤⼒的统计表达式。

它的⼀个重要例⼦是:1ln Z VβN P ??=在⽆穷⼩的准静态过程中,当外参量有dy 的改变时,外界对系统所作的功是:l ll l llεd a a y εdy Ydy ∑∑=??= 将内能∑=ll l εa U 求全微分,有:l ll ll l da εεd a dU ∑∑+=上式指出,内能的改变可以分成两项,第⼀项是粒⼦分布不变时由于能级改变⽽引起的内能变化,第⼆项是粒⼦能级不变时由于粒⼦分布改变所引起的内能变化。

物理化学:第07章 统计热力学基础

物理化学:第07章 统计热力学基础
物理化学电子教案—第七章
上一内容 下一内容 回主目录
返回
第七章 统计热力学基础
§7.1 概论 §7.2 Boltzmann 统计 *§7.3 Bose-Einstein统计和Fermi-Dirac统计 §7.4 配分函数 §7.5 各配分函数的求法及其对热力学函数的贡献
*§7.6 晶体的热容问题 §7.7 分子的全配分函数
但 1能级上有 g1个不同状态,每个分子在1
能级上都有
g1
种放法,所以共有
g N1 1
种放法;
这样将N1个粒子放在 1能级上,共有
g N1 1
C N1 N
种微态数。依次类推,这种分配方式的微态数为:
上一内容 下一内容 回主目录
返回
有简并度时定位系统的微态数
t
(
g N1 1
C N1 N
)(
g N2 2
每种分配的 ti 值各不相同,但其中有一项最 大值 tm ,在粒子数足够多的宏观系统中,可 以近似用 tm 来代表所有的微态数,这就是最
概然分布。
问题在于如何在两个限制条件下,找出一种
合适的分布 Ni ,才能使 t 有极大值,在数学上
就是求(1)式的条件极值的问题。即:
t
N! Ni !
求极值,使 Ni N,
i
ln tm ln N ! ln Ni* !
i
上一内容 下一内容 回主目录
返回
熵和亥氏自由能的表达式
用Stiring公式展开:
( lnN!=N lnN N)
ln tm N ln N N Ni* ln Ni* Ni*
i
i
N ln N Ni* ln Ni*
( Ni* N)

第七章 玻尔兹曼统计

第七章 玻尔兹曼统计

1 宏观热力学量的统计表达式
1.1 单粒子配分函数 Z1 及其与参数 α 的关系
粒子数约束
N
al
w e l l
e
wl el
l
l
l
定义单粒子配分函数 Z1 为 Z1 wlel l
N e Z1 或
e N Z1
• 配分函数是统计物理的重要概念,甚至可以说是统计物理 的核心概念。如果知道某个系统的配分函数随热力学参量 (如温度 T ,压强 p 或体积 V )的函数,系统的物理量 都可以表达成为配分函数对某个参量的一次或高阶次偏微 分。
N
d
(
f1
)
(df1
f1d
)
Nd
f1
f1
(N const.)
即 也是 Q 的积分因子
概据微分方程关于积分因子的理论(参阅汪志诚书附录):
当微分方程有一个积分因子时,它就有无穷多个积分因 子,任意两个积分因子之比是 S 的函数(dS 是用积分因
子乘以变分 Q 后所得的完整微分)。
即有 1 k(S) 1
2.1 单粒子平均量与系统的宏观平均量的关系 由于整个系统是近独立系统
系统内能:U N : 一个粒子的平均能量
系统压强:p N p p : 一个粒子对器壁的压强贡献
2.2 近独立粒子玻尔兹曼系统的单粒子统计行为
微观状态由 μ 空间 (x, y, z, px , py , pz )的相格描述。
1
若将
V 3 N
理解为气体中分子的平均距离:d ave

则经典极限条件可以表述为:
d thermal _ ave
ave
若令 n N V
,则经典极限条件可以表述为:

第七章节-玻尔兹曼统计

第七章节-玻尔兹曼统计

在准静态过程中,系统从外界所吸收的热量等于 粒子在各能级重新分布所增加的内能. 根据热力学第二定律
dQ不是全微分,与过程有关,有一积分因子, 除以T后得全微分dS,dS是全微分
BEIJING NORMAL UNIVERSITY
BEIJING NORMAL UNIVERSITY
积分因子
熵的统计表达式
3 U = NkT 2
BEIJING NORMAL UNIVERSITY
麦克斯韦速度分布律
讨论气体分子作无规热运动时,气体分子质心的平移 运动速度所表现出来的统计分布规律。 一、麦克斯韦速度分布律 1859年,麦克斯韦在研究分子相互碰撞作无规则运 动时,得到了气体分子按其质心速度分布的统计规律 麦克斯韦速度分布律
物态方程
∂ ln Z 注:也可直接利用公式 p = NkT 计算 ∂V
⎛ ∂F ⎞ S = −⎜ ⎟ ⎝ ∂T ⎠V
2πmk 3 3 3 = Nk ln V + Nk ln 2 + Nk ln T + Nk 2 h 2 2
3 = Nk ln V + Nk ln T + S 0 2
BEIJING NORMAL UNIVERSITY
熵的统计表达式,Boltzmann 关系
BEIJING NORMAL UNIVERSITY
由于
特性函数,自由能
量子情况下,粒子不可分辨性带来的差别
BEIJING NORMAL UNIVERSITY
计算单原子分子理想气体的熵:
3 3 2πmkT S = Nk + Nk ln V + Nk ln( ) 2 2 2 h
(ⅰ)系统在热力学过程中的规律 (ⅱ)系统的基本热力学函数

热力学与统计物理教案

热力学与统计物理教案

导言一.热力学与统计物理学所研究的对象与任务相同对象:由大量微观粒子组成的宏观物质系统。

任务:研究热运动规律及热运动对物质宏观性质的影响。

一.热力学与统计物理学的研究方法不同1. 热力学方法-热运动的宏观理论热力学方法是从热力学三个定律出发,通过数学演绎,得到物质的各宏观性质之间的关系、宏观物理过程进行的方向和限度等一系列理论结论。

热力学方法的优点:其结论具有高度的可靠性和普遍性.因为热力学三定律是人们从大量的观测、实验中总结出来的基本规律,并为人们长期的生产实践所证实,非常可靠。

而且热力学三定律又不涉及物质的具体微观结构,它适用于一切物质系统,非常普遍。

热力学方法的局限性:由热力学不能导出具体物质的具体特性;也不能解释物质宏观性质的涨落现象;等等。

2。

统计物理学方法—热运动的微观理论统计物理学方法是从“宏观物质系统是由大量的微观粒子所组成的"这一基本事实出发,认为宏观物理量就是相应微观量的统计平均值.统计物理学的优点:能把热力学三个相互独立的基本规律归结于一个基本的统计原理,阐明三个定律的统计意义;可以解释涨落现象;而且在对物质的微观结构作了某些假设之后,还可以求得物质的具体特性;等等.统计物理学的局限性:由统计物理学所得到的理论结论往往只是近似的结果,这是因为对物质的微观结构一般只能采用简化模型所致。

总之,在热现象研究中,热力学和统计物理学两者相辅相成,相互补充。

一.主要参考书王竹溪:《热力学简程》、《统计物理学导论》第一章热力学的基本规律本章主要介绍热力学的基本规律以及常见的基本热力学函数。

但本章的大多数内容在普通物理的《热学》课程中已经较详细学习过,在此只作一个归纳。

因此,本章的各节将有所改变,与课本不完全一致.第一章热力学的基本规律§1.1 热平衡定律和温度一.热平衡定律热平衡定律也可称之为热力学第零定律。

它是建立温度概念的实验基础。

1。

热力学系统由大量微观粒子组成的有限的宏观客体称之为热力学系统,简称为系统。

热力学统计物理玻耳兹曼统计

热力学统计物理玻耳兹曼统计


粒子处在该
能级的几率
有效状 态数
al
N Z1
l
e
l
al
el l
N
Z1
el l el l
玻耳兹
曼因子 粒子总是优先占据较低能级;温度升高,占 据该能级的几率增大。
Z1——有效状态和 一个粒子所有可能达到的有效状态的总和。
热统 西华大学 理化学院
6
f e s
l 能量为εl的一个量子态s上的平均粒子数
p
3.粒子配分函数的经典表达式
处元于内能层的l 粒l内子,数运为动:状态处于相体积
al
l
h0r
fs
l h0r
e l
N Z1
l
h0r
el
l x
Z1
l
el l
h0r
al
N Z1
l
h0r
el
取 l 足够小,求和可化为积分:
Z1
el d
h0r
e ( p,q) dq1dq2 dqr dp1dp2 dpr h0r
l l
FD l l! BE
l
l
l
e l
ln
l l
l
对于满足非兼并条件的处
于平衡态(最可几分布) lnFD lnBE l ln l lnl !
的非定域(玻色、费米) 系统,通过对所对应的系 统微观状态数目取对数, 得到了微观状态数目的对 数ln与系统包含的粒子数
l
l
l ln l l ln l 1
玻尔兹曼、玻色、费米系统之间的关系
玻色粒子,玻色分布

e+
1
非兼并条件
e》1 l l
费密粒子,费密分布

统计物理学第7章

统计物理学第7章
ln Z1 ln Z1 ln Z1 d ( N ) N d ( )N d
(dU Ydy )
ln Z1 ln Z1 ln Z1 N d d (N ) N dy y
17
ln Z1 ln Z1 ln Z1 (dU Ydy) N d d (N ) N dy y
dQ 1 (dU Ydy ) dS T T
热力学基本方程
说明1/T是积分因子,根据积分因子的理论,1/T
与β应同为积分因子,两者相差一个常数 k,称为玻耳
兹曼常数:
1 kT ,
k R N0
16
dQ (dU Ydy )
ln Z1 N d ( ln Z1 ) N dy y
V 3 e h



2m
2 2 ( px p2 p y z)
dpx dp y dpz


2m
2 px
dpx e

2 px



2m
p2 y
dp y e

0


2m
2 pz
dpz
V 3 ( e h



2m
dpx )
3
I (0)
e
x 2
l
l
受到外界 的作用力
N 1 ( ) Z1 N e Z1 Z1 y
N ln Z 1 y
8
N Y ln Z1 y

Y p y V ,
时,
这时广义力的统计表达式简化为:
N p ln Z 1 V

热力学与统计物理 第七章 玻尔兹曼统计

热力学与统计物理 第七章 玻尔兹曼统计

e Z1 r dq1 dqr dp1 dpr h0
粒子自由度为3
e Z1 3 dxdydzdpx dp y dpz h0
15
Z1
V Z1 3 h0
方法一:
e

2 2 px p2 y pz
2m
h
3 0
dxdydzdp x dp y dp z
ln Z1 S Nk ln Z1
7
ln Z1 S Nk ln Z1 ln Z1 Nk ln Z1 T Nk ln Z1 自由能 F U TS N kT F NkT ln Z1
l l Z1 r e h0
体积元 l 取得足够小时,
l d dq1 dqr dp1 dpr
l l Z1 r e h0
Z1
e

h
r 0
dq1 dqr dp1 dpr
14
§7.2
理想气体的物态方程
N ln Z1 p V
Z1 l e l
Z1 l ln Z1 U N
l e l

l l e l l
2
三、广义力
Y 广义力
dW pdV
y
外参量
dW Ydy
Y l作用在该粒子上 当某个粒子处在 l 能级上,若有一“外力”
e

2 2 px p2 y pz
2m
dp x dp y dp z
V Z1 3 h0
4V Z1 3 h0

1 e t t 2 dt

热力学统计物理第七章

热力学统计物理第七章

U N ln Z1
由微观状态决定的物理量,与玻尔兹曼系统不同: 由玻尔兹曼关系
M . B. S k ln k ln Nk (ln Z1 ln Z1 ) k ln N! N!
F U TS NkT ln Z1 kT ln N !
Z1 l e l 配分函数的求法:
l
根据 Z1 定义,要求得粒子的能级和简并度,可通 过量子力学理论计算,或分析有关实验数据得到。
六、满足经典极限条件的玻色(费米)系统 由分布决定的物理量,与玻尔兹曼系统相同:
Z1 l e l
N e Z1
N Y ln Z1 y
7.2 理想气体的物态方程
一般气体满足经典极限条件,遵从玻耳兹曼分布。以 下将理想气体看作满足经典极限条件的粒子,用玻耳兹 曼分布导出单原子分子理想气体的物态方程。 一、理想气体的配分函数及物态方程 组成理想气体的一个单原子分子的能量:
1 2 2 2 ( px p y pz ) 2m
量子统计
n 能级 l ( 相格 h r )
连续 l ( 相格 h0 )
r
配分函数Z1
热力学量 U , P, S
经典统计 kT
能均分定理 表达式

内能U N
§7.1 热力学量的统计表达式
定域系统和满足经典极限条件的玻色系统和费米系统 都遵从玻尔兹曼分布,本章将讨论服从玻尔兹曼分布的 系统的热力学性质。 一、引入粒子配分函数
S Nk (ln Z1 ln Z1 )
熵的统计意义:
因为 N al e Z1
l
Z1 e N
两边取对数得 ln Z1 ln N

热力学统计物理第七章 玻耳兹曼统计

热力学统计物理第七章  玻耳兹曼统计

第七章 玻耳兹曼统计7.1 试根据公式lllp a Vε∂=-∂∑证明,对于非相对论粒子 ()222221222x y z p n n n m m L πε⎛⎫==++ ⎪⎝⎭, (),,0,1,2,,x y z n n n =±±有2.3U p V=上述结论对于玻耳兹曼分布、玻色分布和费米分布都成立. 解: 处在边长为L 的立方体中,非相对论粒子的能量本征值为()2222122x y zn n n x y z n n n m L πε⎛⎫=++ ⎪⎝⎭, (),,0,1,2,,x y z n n n =±± (1)为书写简便起见,我们将上式简记为23,l aV ε-= (2)其中3V L =是系统的体积,常量()()222222xy z a nn n mπ=++,并以单一指标l 代表,,x y z n n n 三个量子数.由式(2)可得511322.33aV V Vεε-∂=-=-∂ (3) 代入压强公式,有22,33l ll l llUp a a V VVεε∂=-==∂∑∑ (4) 式中l l lU a ε=∑是系统的内能.上述证明示涉及分布{}l a 的具体表达式,因此式(4)对玻耳兹曼分布、玻色分布和费米分布都成立.前面我们利用粒子能量本征值对体积V 的依赖关系直接求得了系统的压强与内能的关系. 式(4)也可以用其他方法证明. 例如,按照统计物理的一般程序,在求得玻耳兹曼系统的配分函数或玻色(费米)系统的巨配分函数后,根据热力学量的统计表达式可以求得系统的压强和内能,比较二者也可证明式(4).见式(7.2.5)和式(7.5.5)及王竹溪《统计物理学导论》§6.2式(8)和§6.5式(8). 将位力定理用于理想气体也可直接证明式(4),见第九章补充题2式(6).需要强调,式(4)只适用于粒子仅有平衡运动的情形. 如果粒子还有其他的自由度,式(4)中的U 仅指平动内能.7.2 试根据公式lllp a Vε∂=-∂∑证明,对于相对论粒子 ()122222xyzcp cnn nLπε==++, (),,0,1,2,,x y z n n n =±±有1.3Up V=上述结论对于玻耳兹曼分布、玻色分布和费米分布都成立.解: 处在边长为L 的立方体中,极端相对论粒子的能量本征值为()122222x y zn n nxyzcnn nLπε=++ (),,0,1,2,,x y z n n n =±± (1)用指标l 表示量子数,,,x y z n n n V 表示系统的体积,3V L =,可将上式简记为13,l aV ε-= (2)其中()122222.xyza c n n nπ=++由此可得4311.33l l aV V Vεε-∂=-=-∂ (3) 代入压强公式,得1.33l ll l llUp a a V V V εε∂=-==∂∑∑ (4) 本题与7.1题结果的差异来自能量本征值与体积V 函数关系的不同. 式(4)对玻耳兹曼分布、玻色分布和费米分布都适用.7.3 当选择不同的能量零点时,粒子第l 个能级的能量可以取为l ε或*.l ε以∆表示二者之差,*.l l εε∆=-试证明相应配分函数存在以下关系*11Z e Z β-∆=,并讨论由配分函数1Z 和*1Z 求得的热力学函数有何差别.解: 当选择不同的能量零点时,粒子能级的能量可以取为l ε或*.l l εε=+∆显然能级的简并度不受能量零点选择的影响. 相应的配分函数分别为1,ll lZ e βεω-=∑ (1) **1l ll ll lZ eeeβεβεβωω---∆==∑∑1,e Z β-∆= (2) 故*11ln ln .Z Z β=-∆ (3)根据内能、压强和熵的统计表达式(7.1.4),(7.1.7)和(7.1.13),容易证明*,U U N =+∆ (4)*,p p = (5)*,S S = (6)式中N 是系统的粒子数. 能量零点相差为∆时,内能相差N ∆是显然的. 式(5)和式(6)表明,压强和熵不因能量零点的选择而异. 其他热力学函数请读者自行考虑.值得注意的是,由式(7.1.3)知*,ααβ=-∆所以l l l a e αβεω--=与***l l l a e αβεω--=是相同的. 粒子数的最概然分布不因能量零点的选择而异. 在分析实际问题时可以视方便选择能量的零点.7.4 试证明,对于遵从玻耳兹曼分布的定域系统,熵函数可以表示为ln ,s s sS Nk P P =-∑式中s P 是粒子处在量子态s 的概率,1,s ss e e P N Z αβεβε---==s∑是对粒子的所有量子态求和.对于满足经典极限条件的非定域系统,熵的表达式有何不同? 解: 根据式(6.6.9),处在能量为s ε的量子态s 上的平均粒子数为.s s f e αβε--= (1)以N 表示系统的粒子数,粒子处在量子态s 上的概率为1.s ss e e P N Z αβεβε---== (2)显然,s P 满足归一化条件1,s sP =∑ (3)式中s∑是对粒子的所有可能的量子态求和. 粒子的平均能量可以表示为.s s sE P ε=∑ (4)根据式(7.1.13),定域系统的熵为()()1111ln ln ln ln s s sS Nk Z Z Nk Z Nk P Z βββεβε⎛⎫∂=- ⎪∂⎝⎭=+=+∑ln .s s sNk P P =-∑ (5)最后一步用了式(2),即1ln ln .s s P Z βε=-- (6)式(5)的熵表达式是颇具启发性的. 熵是广延量,具有相加性. 式(5)意味着一个粒子的熵等于ln .s s sk P P -∑ 它取决于粒子处在各个可能状态的概率s P . 如果粒子肯定处在某个状态r ,即s sr P δ=,粒子的熵等于零. 反之,当粒子可能处在多个微观状态时,粒子的熵大于零. 这与熵是无序度的量度的理解自然是一致的. 如果换一个角度考虑,粒子的状态完全确定意味着我们对它有完全的信息,粒子以一定的概率处在各个可能的微观状态意味着我们对它缺乏完全的信息. 所以,也可以将熵理解为信息缺乏的量度. 第九章补充题5还将证明,在正则系综理论中熵也有类似的表达式. 沙农(Shannon )在更普遍的意义上引进了信息熵的概念,成为通信理论的出发点. 甄尼斯(Jaynes )提出将熵当作统计力学的基本假设,请参看第九章补充题5. 对于满足经典极限条件的非定域系统,式(7.1.13′)给出11ln ln ln !,S Nk Z Z k N ββ⎛⎫∂=-- ⎪∂⎝⎭上式可表为0ln ,s s sS Nk P P S =-+∑ (7)其中()0ln !ln 1.S k N Nk N =-=--因为,s s f NP =将式(7)用s f 表出,并注意,ssfN =∑可得ln .s s sS k f f Nk =-+∑ (8)这是满足玻耳兹曼分布的非定域系统的熵的一个表达式. 请与习题8.2的结果比较.7.5 因体含有A ,B 两种原子. 试证明由于原子在晶体格点的随机分布引起的混合熵为()()()()!ln!1!ln 1ln 1,N S k Nx N x Nk x x x x =-⎡⎤⎣⎦=-+--⎡⎤⎣⎦其中N 是总原子数,x 是A 原子的百分比,1x -是B 原子的百分比. 注意1x <,上式给出的熵为正值.解: 玻耳兹曼关系给出物质系统某个宏观状态的熵与相应微观状态数Ω的关系:ln .S k Ω= (1)对于单一化学成分的固体(含某种元素或严格配比的化合物),Ω来自晶格振动导致的各种微观状态. 对于含有A ,B 两种原子的固体,则还存在由于两种原子在晶体格点上的随机分布所导致的Ω。

《热力学·统计物理学》教学大纲

《热力学·统计物理学》教学大纲

《热力学·统计物理学》教学大纲课程性质:专业基础课课程编码:适用专业:物理学教育本科编制时间:2007年2月修改时间:2008年8月一、预备知识:普通物理课程《力学》、《热学》、《光学》、《电磁学》和《原子物理》,以及《高等数学》,还有《理论力学》的学习,《热学》是其前期课程。

二、教学目的:热力学与统计物理学课程是高等学校物理学科主干课程体系中四大力学之一,其主要内容都是后续课程中不可或缺的基础,是有承上启下的知识连接作用。

通过本课程的学习,通过本课程的学习,应使学生在《热学》的基础上,较深入地掌握热力学与统计物理学的基本概念,系统地理解研究热现象的宏观与微观理论,基本掌握运用有关理论处理具体问题的方法,在逻辑思维和演义推理方面得到进一步训练,提高分析问题和解决问题的能力。

结合一些物理学史的介绍,使学生了解如何由分析物理实验结果出发、建立物理模型,进而建立物理理论体系的过程,了解微观物理学对现代科学技术重大影响和各种应用,了解并适当涉及正在发展的学科前沿,扩大视野,引导学生勇于思考、乐于探索发现,培养其良好的科学素质。

三、教学要求:本课程是后续多门专业课程,特别是固体物理学与半导体物理学的基础。

课程的学习有别于中学课程的学习,要求学生掌握科学的学习方法,培养学生独立的思考能力。

该课程重物理概念和基本原理,轻数学计算(热力学方面要求熟练运用雅可比行列式,统计物理学方面会运用玻耳兹曼分布和配分函数)。

在热力学方面要求学生掌握热力学的系统描述参量及其性质;热力学中的基本实验规律与三大定律;状态函数的本质及其在其他学科的应用;了解相变的基本规律和描述方法。

在统计物理学方面要求学生能够用物理学微观的统计方法把物理系统的宏观性质与微观粒子的统计规律联系起来。

掌握统计物理的基本理论,学会用来解决一些基本的和与专业有关的一些热运动方面的问题。

掌握热力学的基本规律和统计物理的基本理论,重点为三种分布函数及其关系;学会由配分函数导出系统的热力学函数和其他的物理量。

热力学统计物理第七章

热力学统计物理第七章
3/ 2 mv 2 2 kT 2 0
三,最可几速率,平均速率,方均根速率 1,最概然速率 m 。 使速率分布函数取极大值的速率称为最概然速率, 用 表示
v
v
m
由: 得:
d e v 0 dv
mv 2 2 kT 2
2kT v m
m
2, 分子的平均速率
m v 4 2kT
x y z
x
v fdv dv dv
x x y



z
v
v dt
x
dA
1 kT nv n 2m 4
小结 麦克斯韦速度分布律
m f (v , v , v )dv dv dv n e 2kT
x y z x y z
3/ 2



1
U e e e e N Z N ln Z Z
l l l l l 1 1
1
二,广义力的统计表达式: 在热力学中有:dU dQ dW 准静态过程: dW Ydy Y 对于p,V,T系统,外参量为:V
( X ) ( Y ) 满足完整微分条件: y x
dz 是一个完整微分,
称为 dz 的积分因子
dz ds
如果 是 dz 的积分因子,则 ( s) 也必是 其中 是s的任意函数。因为: (s)dz (s)ds d
dz 的积分因子
当微分式有一个积分因子时,它就有无穷多个积分因子。 任意两积分因子的比是s 的函数。 例: 验证 ( x, y) x y 是方程 (3 y 4 xy )dx (2 x 3x y)dy

第七章玻尔兹曼统计

第七章玻尔兹曼统计

分子光谱学:通过玻尔兹曼分布解释光谱线强度和偏振现象
化学反应动力学:通过玻尔兹曼分布描述反应速率常数和活化能
在生物学中的应用
分子动力学模拟
蛋白质折叠研究
生物膜与跨膜运输
基因表达调控
在其他领域的应用
物理学:描述气体分子在平衡态时的分布情况
化学:研究反应速率和化学平衡
工程学:热传导、热力学等领域
信息科学:数据压缩、信息编码等方面
1896年:玻尔兹曼提出了熵的概念,为热力学第二定律提供了微观解释
1900年:玻尔兹曼提出了玻尔兹曼统计,用于描述气体分子的分布状态
重要人物和事件
背景:对气体分子运动的研究
影响:奠定了统计力学的理论基础
人物:路德维希·玻尔兹曼
事件:1877年提出玻尔兹曼统计
理论的意义和影响
玻尔兹曼统计的方法和思想对其他学科领域的发展也产生了积极的影响,如化学反应动力学、材料科学等。
玻尔兹曼统计在复杂系统中的应用
玻尔兹曼统计与机器学习算法的结合
对未来发展的展望和预测
新的理论框架的建立
跨学科研究的融合
人工智能和大数据的应用
实验验证和观测技术的发展
汇报人:XX
感谢观看
05
玻尔兹曼统计的局限性和发展
理论局限性和不足之处
玻尔兹曼统计不适用于描述具有高度非线性的复杂系统
玻尔兹曼统计无法准确描述微观粒子的量子行为
玻尔兹曼统计无法解释某些特殊系统的相变现象
玻尔兹曼统计在处理多体问题时存在困难
理论的发展和改进方向
统计力学的其他理论:如微正则分布、巨正则分布等,可作为玻尔兹曼统计的补充或替代。
玻尔兹曼统计的提出为现代科学和技术的发展奠定了重要的基础。

热力学统计物理_第七章_玻耳兹曼统计

热力学统计物理_第七章_玻耳兹曼统计

ln Z ' S S Nk ln Z
ln Z S' S Nk ln Z U Nk ln N S ' N k N ln N N U S '
Z1 l e l
l
粒子 配分 函数
1 kT
热统 西华大学 理化学院
e

N Z1
6
2、粒子配分函数的物理意义
粒子处在该 能级的几率
有效状 态数
N l al l e Z1
玻耳兹 曼因子
al l e N Z1
l
l e l e
S k N ln N N U S '
lnMB N ln N N U
lnFD lnBE N U N
S MB k ln MB
e ' S k ( N ln N N ) Nk ln N
14 热统 西华大学 理化学院
我们已经学习了什么?
1、粒子运动状态的描述
经典粒子:-空间、相轨道的概念、 量子粒子:量子数、可能量子状态数目的计算
2、系统微观状态的经典和量子描述
经典系统:-空间中的N个点 量子系统:定域和非定域、全同性、统计特性
3、等几率原理
平衡状态下系统的任何微观状态出现的几率都相等
4、系统的微观状态数 目的计算及其关系

对于遵从玻尔兹曼分 U=-N lnZ 布的定域系统、满足 经典极限条件的玻色、 费米系统,从玻尔兹 N Y - lnZ 曼分布得到系统的内 y 能和广义力的统计表 达式: 可分辨粒子系统:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l
Pl Al
1 Z1
l
All e l
s
Ps As
1 Z1
s
As e s
2、 热力学公式 (1)内能
内能是系统中粒子无规则运动总能量的统计平均值,所以
U
all
l
e l ll
e
l
l
ll el
e
l
el l
N Z1
Z1
N
ln
Z1
这是内能的统计表达式,粒子平均能量
k 1.3811023 J K 1 玻尔兹曼常数
玻尔兹曼常数 k 在统计物理学中所起的作用相当于普朗克常数 在量子力学中所起的作用。
dS
dQ T
k dQ
Nkd
ln
Z1
ln Z1
积分得
S
Nk
ln
Z1
ln Z1
熵的统计表达式
其中积分常数选为零,以后将看到这是自然的选择。 熵的统计意义:
63
U N
ln Z1
ll el
l
el l
e l
l
l
l
l el
l
al l
al
l
al N
l
l
Pl l
l
l
l
llel
统计表达式: l
el l
Pll
l
l
一个粒子处于量子态 S 上的概率: Ps
es et
e s e t
fs N
t
t
一个粒子处于 l 的概率为 Pl
无穷多个积分因子,任意二个积分因子之比是 S 的函数( dS 是用积分因子乘微分式 d Q 后所
得的全微分)可以证明 仅为温度 T 的函数(习题 6.5)所以 k 不可能是熵 S 的函数,而只是
一个与系统性质无关的普适常量,以后将把理论用到理想气体,可得 k R , N0
N0 6.0231023 mol 1 阿伏伽德罗常数 R 8.314J K 1 mol 1 理想气体常数
,作用系统的广义力 Yi 等于作用于所有粒子上的广义
力之和,所以
Yi
l
al fil
l
al
l yi
l
l yi
l
e
l
e
1
yi
l
el l
N Z1
1
yi
Z1
N
yi
ln
Z1
每个粒子所受的平均广义力为
fi
Yi N
1
yi
ln Z1
1
1 Z1
Z1 yi
1
64
d W Yidyi
i
i
l
al
l yi
dyi
l
al
i
l yi
dyi
l
al dl
N
i
ln Z1 yi
dyi
将内能U lal 进行全微分,得 l
dU aldl ldal
l
l
这表明,内能的改变分为二项,第一项是粒子数分布不变,由于粒子能级发生改变而引起的
内能的变化,由上面知这一项是在准静态过程中外界对系统所作的功,第二项是粒子能级不
l
i yi
el l
em m
l
l yi
el l em m
m
m
l
l yi
Pl
l
fil Pl
这是广义力的统计表达式,它给出物态方程,它的一个重要例子是取 Y P, y V ,则:
P
N
V
ln
Z1
给出 P,V 系统的物态方程。
在无穷小准静态过程中,当外参量有 dyi i 1, 2, 的改变时,外界对系统所作的功为
N
e Z1 , e
N Z1
al
e l l
N Z1
el l
【粒子按能级分布】
fs
e s
N es Z1
【粒子按量子态分布】
Pl
al N
1 Z1
l
e
l
为一个粒子处于第 l 个能级 l 上的概率。
Ps
fs N
1 Z1
es
为一个粒子处于能级 s 上的一个量子态 s 的概率。
热力学量 A 的平均值: A
第七章 玻尔兹曼统计
§7.1 热力学量的统计表达式
1、 配分函数
配分函数是统计物理中最重要的热力学特性函数,知道了它,就可以得到平衡态系统的所
有热力学量。
系统的总粒子数 N
al
e l l
e
el l
l
l
l
令 Z1
el l
l
【对单粒子能级求和】
es
【对单粒子量子态求和】
s
称为(单粒子)配分函数,则
e
Z1 N
, ln Z1
ln N
,E
U
N
ln Z1
S
k
N
ln
Z1
N
ln Z1
k
N
ln
N
N
U
kNln源自Nllal
al
e l l
l
ln l al
S
k
N
ln
N
l
al
ln
l al
k
N
ln
N
l
al ln l
l
al
ln
al
k
ln
玻尔兹曼关系: S k ln , 为玻尔兹曼分布所对应的系统的微观状态数。
上式给出熵函数的明确的统计意义,某个宏观态的熵等于玻尔兹曼常数乘以相应的系统的微
观状态数的对数,最概然分布(玻尔兹曼分布)对应的系统的微观状态数 非常接近于系统 的全部可能的微观状态数 ,k ln 与 k ln 的差别可以忽略不计,仅表现为涨落,某个宏
dyi
dU
i
Yi dyi
N
d
ln Z1
N
i
ln Z1 yi
dyi
Z1 是 和 yi 的函数(l 是 yi 的函数), Z1 Z1 , yi
d
ln
Z1
ln Z1
d
i
ln Z1 yi
dyi
i
ln Z1 yi
dyi
d
ln
Z1
ln Z1
d
dU
i
Yi dyi
Nd
ln Z1
变时,由于粒子数分布改变所引起的内能变化,这一项代表在准静态过程中系统从外界吸收
的热量,即是说,在准静态过程中系统从外界吸收的热量等于粒子在各能级重新分布所增加
的内能,粒子受热激发从一个能级跃迁至另一能级,跃迁至高能级的粒子所增加的能量减去
跃迁至低能级的粒子所降低的能量,即为吸收的热量。热量是在热现象中所特有的宏观量,
el l em m
e l l e m m
al N
m
m
(2)广义力和功
粒子的能量是外参量的函数,外参量可以是系统占有的体积V 、磁场强度 H 或电场强度 E 等
等,例如在体积V 内的自由粒子能量是体积V 的函数,若第 i 个外参量 yi 改变,则外界作用
于能级 l
上的一个粒子的力为
fil
l yi
N
ln Z1
d
Nd
ln
Z1
Nd
ln Z1
Nd
ln
Z1
Nd
ln
Z1
ln Z1
d
ln Z1
d
ln Z1
ln Z1
d
65
d
Q
Nd
ln
Z1
ln Z1
与 1 一样也是 d Q 的积分因子。可以令 1 。
T
kT
根据微分方程中关于积分因子的理论(附录 A 的最后)当微分式有一个积分因子时,它就有
没有对应的微观量,它与内能U 和广义力 Yi 不同。这是热力学第一定律的微观解释。
(3)熵
由热力学知热量 d Q 不是全微分,但它乘以积分因子 1 后,便成为熵函数的全微分 T
dS
dQ T
1 T
dU
i
Yidyi
而 d Q dU
i
Yi dyi
Nd
ln Z1
N
i
ln Z1 y1
相关文档
最新文档