直流调速系统设计
基于单片机的直流电机调速系统设计
![基于单片机的直流电机调速系统设计](https://img.taocdn.com/s3/m/37a7cc742e60ddccda38376baf1ffc4fff47e21f.png)
直流电机转速 :
根据基尔霍夫第二定律,得到电枢电压电动势平衡方程式 U=Ea+Ia(Ra+Rc)……………式1
式1中,Ra为电枢回路电阻,电枢回路串联保绕阻与电刷 接触电阻的总和;Rc是外接在电枢回路中的调节电阻
由此可得到直流电机的转速公式为:
n=(Ua-IR)/CeΦ ………………………式2
式2中, Ce为电动势常数, Φ是磁通量。 由1式和2式得
n=Ea/CeΦ ……………………………式3
由式3中可以看出, 对于一个已经制造好的电机, 当励磁电压和 负载转矩恒定时, 它的转速由回在电枢两端的电压Ea决定, 电 枢电压越高, 电机转速就越快, 电枢电压降低到0V时, 电机就 停止转动;改变电枢电压的极性, 电机就反转。
PWM脉宽调速
PWM(脉冲宽度调制)是通过控制固定电压的 直流电源开关频率, 改变负载两端的电压, 从 而达到控制要求的一种电压调整方法。在PWM 驱动控制的调整系统中, 按一个固定的频率 来接通和断开电源, 并且根据需要改变一个 周期内“接通”和“断开”时间的长短。通 过改变直流电机电枢上电压的“占空比”来 达到改变平均电压大小的目的, 从而来控制 电动机的转速。也正因为如此, PWM又被称为 “开关驱动装置”。
, 软件简单。但每个按键需要占用一个输入口线, 在 按键数量较多时, 需要较多的输入口线且电路结构复杂, 故此种键盘适用于按键较少或操作速度较高的场合。
数码管显示部分 本设计使用的是一种比较常用的是四位数码 管, 内部的4个数码管共用a~dp这8根数据线, 为使用提供了方便, 因为里面有4个数码管, 所以它有4个公共端, 加上a~dp, 共有12个引 脚, 下面便是一个共阴的四位数码管的内部 结构图(共阳的与之相反)
直流电机调速系统的设计
![直流电机调速系统的设计](https://img.taocdn.com/s3/m/dae732496d85ec3a87c24028915f804d2a16874a.png)
直流电机调速系统的设计直流电机调速系统是控制直流电机转速的一个重要工程应用领域。
在很多工业领域中,直流电机的转速控制是非常重要的,因为直流电机的转速对于机械设备的运行效率和稳定性有着重要影响。
本文将详细介绍直流电机调速系统的设计原理和步骤。
一、直流电机调速系统的基本原理直流电机调速系统的基本原理是通过改变电机的电压和电流来控制电机的转速。
一般来说,直流电机的转速与电机的电压和负载有关,转速随电压增加而增加,转速随负载增加而减小。
因此,当我们需要调节直流电机的转速时,可以通过改变电机的电压和负载来实现。
二、直流电机调速系统的设计步骤1.确定设计要求:在设计直流电机调速系统之前,首先需要确定系统的设计要求,包括所需的转速范围、响应速度、控制精度和负载要求等。
这些设计要求将指导系统的设计和选择适当的控制器。
2.选择控制器:根据设计要求,选择适当的控制器。
常见的直流电机调速控制器有PID控制器、模糊控制器和自适应控制器等。
根据实际情况,选择最合适的控制器来实现转速调节。
3.选择传感器:为了实时监测电机的转速和位置,需要选择合适的传感器来进行测量。
常见的传感器有光电编码器、霍尔效应传感器和转速传感器等。
根据实际需求,选择合适的传感器进行安装和测量。
4.搭建电路:根据控制器的要求,搭建合适的电路来实现控制和测量功能。
通常需要安装电压和电流传感器来实时监测电机的电压和电流,并将测量结果反馈给控制器。
5.调试和测试:在电路搭建完成后,需要进行调试和测试来验证系统的性能。
首先调整控制器的参数,使得系统能够按照设计要求进行转速调节。
然后进行负载试验,测试系统在不同负载下的转速调节性能。
对系统进行调试和测试,可以发现问题并及时解决,确保系统能够正常工作。
6.性能优化:根据测试结果,对系统进行性能优化。
根据实际需求,调整控制器的参数和传感器的位置,改善系统的转速调节性能和响应速度。
优化后的系统将更好地满足设计要求。
三、直流电机调速系统的工程应用总结:本文详细介绍了直流电机调速系统的设计原理和步骤。
双闭环直流调速系统的设计
![双闭环直流调速系统的设计](https://img.taocdn.com/s3/m/c431e9055727a5e9856a61bd.png)
双闭环直流调速系统设计一、系统组成与数学建模1)系统组成为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。
二者之间实行嵌套(或称串级)联接如下图所示。
L+-图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。
这就形成了转速、电流双闭环调速系统。
为了获得良好的静、动态性能,转速和电流两个调节器一般都采用P I 调节器,这样构成的双闭环直流调速系统的电路原理图示于下图。
图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压U c为正电压的情况标出的,并考虑到运算放大器的倒相作用。
2)数学建模图中W ASR(s)和W ACR(s)分别表示转速调节器和电流调节器的传递函数。
如果采用PI调节器,则有ss K s W i i iACR 1)(ττ+= ss K s W n n nASR 1)(ττ+=二、 设计方法采用工程设计法 1、设计方法的原则: (1)概念清楚、易懂; (2)计算公式简明、好记;双闭环直流调速系统的动态结构图(3)不仅给出参数计算的公式,而且指明参数调整的方向; (4)能考虑饱和非线性控制的情况,同样给出简单的计算公式; (5)适用于各种可以简化成典型系统的反馈控制系统。
2、工程设计方法的基本思路:(1)选择调节器结构,使系统典型化并满足稳定和稳态精度。
(2)设计调节器的参数,以满足动态性能指标的要求。
一般来说,许多控制系统的开环传递函数都可表示为∏∏==++=n1i irm1j j )1()1()(s T ss K s W τ上式中,分母中的 sr 项表示该系统在原点处有 r 重极点,或者说,系统含有 r 个积分环节。
根据 r=0,1,2,……等不同数值,分别称作0型、I 型、Ⅱ型、……系统。
直流电机调速系统设计与实现
![直流电机调速系统设计与实现](https://img.taocdn.com/s3/m/56270838a517866fb84ae45c3b3567ec102ddc09.png)
直流电机调速系统设计与实现直流电机调速系统是一种常见的电机控制系统,通过调节电机的转速和输出功率,可以实现对机械设备的精准控制。
在工业生产和机械设备中得到广泛应用。
本文将介绍直流电机调速系统的设计和实现过程。
一、系统设计1. 电机选择:首先需要选择适合的直流电机作为调速系统的执行器。
根据需要的输出功率和转速范围,选择合适的电机型号和规格。
2. 电机驱动器选择:电机驱动器是控制电机转速的核心设备。
根据电机的额定电流和电压,选择合适的电机驱动器。
常见的电机驱动器包括PWM调速器、直流电机驱动模块等。
3. 控制器选择:控制器是调速系统的大脑,负责接收输入信号,并输出控制信号来调节电机转速。
常见的控制器包括单片机、PLC等。
4. 传感器选择:为了实现闭环控制,通常需要使用传感器来检测电机的转速和位置。
根据具体的需求选择合适的传感器,如编码器、霍尔传感器等。
5. 调速算法设计:根据应用需求,设计合适的调速算法。
常见的调速算法包括PID控制、模糊控制等。
二、系统实现1. 硬件连接:根据设计需求,将电机、电机驱动器、控制器和传感器等硬件设备连接起来。
确保电气连接正确无误。
2. 软件编程:根据设计的调速算法,编写控制程序。
在控制器上实现信号的采集、处理和输出,实现电机的闭环控制。
3. 参数调试:在系统搭建完成后,进行参数调试。
根据实际效果,调节PID参数等,使电机能够稳定运行并达到设计要求的转速和功率输出。
4. 性能测试:进行系统的性能测试,包括转速稳定性、响应速度等。
根据测试结果对系统进行优化和改进。
5. 系统应用:将设计好的直流电机调速系统应用到具体的机械设备中,实现精准的控制和调节。
根据实际应用情况,对系统进行进一步调优和改进。
通过以上设计和实现过程,可以建立一个稳定可靠的直流电机调速系统,实现对电机转速和功率的精确控制。
在工业生产和机械领域中得到广泛应用,提高了生产效率和设备的精度。
希望本文对直流电机调速系统的设计和实现有所帮助,让读者对这一领域有更深入的了解。
双闭环直流调速系统设计
![双闭环直流调速系统设计](https://img.taocdn.com/s3/m/bf9809fc1b37f111f18583d049649b6649d70968.png)
双闭环直流调速系统设计1.电机数学模型的建立首先要建立电机的数学模型,这是设计双闭环直流调速系统的基础。
根据电机的参数和运动方程,可以得到电机的数学模型,一般为一组耦合的非线性微分方程。
2.速度内环设计速度内环负责实现期望速度的跟踪控制。
常用的设计方法是采用比例-积分(PID)控制器。
PID控制器的输出是速度的修正量,通过与期望速度相减得到速度误差,然后根据PID算法计算控制器输出。
PID控制器的参数调节是一个关键问题,可以通过试探法、经验法或优化算法等方法进行调节,以实现最佳的速度跟踪性能。
3.电流外环设计电流外环的作用是保证电机的电流输出与速度内环控制输出的一致性。
一般采用PI调节器进行设计。
PI调节器的参数通过试探法、经验法或优化算法等方法进行调节,以实现电流输出的稳定性。
4.稳定性分析与系统稳定控制设计好速度内环和电流外环后,需要对系统的稳定性进行分析。
稳定性分析可以通过线性化方法、根轨迹法、频率响应法等方法进行。
分析得到系统的自然频率、阻尼比等参数后,可以根据稳定性准则进行系统稳定控制。
常用的控制方法包括模型预测控制、广义预测控制、滑模控制等。
5.鲁棒性设计在双闭环直流调速系统设计中,鲁棒性是一个重要的指标。
通过引入鲁棒性设计方法,可以提高系统对参数扰动和外部干扰的抑制能力。
常用的鲁棒性设计方法包括H∞控制、μ合成控制等。
以上是双闭环直流调速系统设计的一般步骤,具体的设计过程可能因实际应用和控制要求的不同而有所差异。
设计双闭环直流调速系统需要深入了解电机的特性和系统的控制需求,综合运用控制理论和工程方法,通过模拟仿真和实验验证来不断调整和优化控制参数,以实现系统的高性能调速控制。
转速电流双闭环直流调速系统设计
![转速电流双闭环直流调速系统设计](https://img.taocdn.com/s3/m/779649babb0d4a7302768e9951e79b8968026897.png)
转速电流双闭环直流调速系统设计一、引言直流调速系统是控制直流电机转速的一种常用方法。
在实际应用中,为了提高系统性能,通常采用双闭环控制结构,即转速环和电流环。
转速环用于控制电机转速,电流环用于控制电机电流。
本文将对转速、电流双闭环直流调速系统进行详细设计。
二、转速环设计转速环的主要功能是通过控制电机的转矩来实现对转速的精确控制。
转速环设计步骤如下:1.系统建模:根据电机的特性曲线和转矩方程,建立电机数学模型。
通常采用转速-电压模型,即Tm=Kt*Ua-Kv*w。
2.设计转速环控制器:选择适当的控制器类型和参数,比如PID控制器。
根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。
确定控制器增益Kp、Ki和Kd。
3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。
4.实际系统调试:将设计好的转速环控制器实施到实际系统中,进行调试和优化。
根据实际情况对控制器参数进行微调。
三、电流环设计电流环的主要功能是控制电机的电流,以确保电机输出的转矩能够满足转速环的要求。
电流环设计步骤如下:1.系统建模:根据电机的特性曲线和电流方程,建立电机数学模型。
通常采用电流-电压模型,即Ia=(Ua-R*Ia-Ke*w)/L。
2.设计电流环控制器:选择适当的控制器类型和参数,比如PID控制器。
根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。
确定控制器增益Kp、Ki和Kd。
3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。
4.实际系统调试:将设计好的电流环控制器实施到实际系统中,进行调试和优化。
根据实际情况对控制器参数进行微调。
四、双闭环控制系统设计在转速环和电流环都设计好的基础上,将两个闭环控制器连接起来,形成双闭环控制系统。
具体步骤如下:1.控制系统结构设计:将电流环置于转速环的前端,形成串级控制结构。
2.系统建模:将转速环和电流环的数学模型进行串联,建立双闭环控制系统的数学模型。
基于PWM控制的直流电机自动调速系统设计
![基于PWM控制的直流电机自动调速系统设计](https://img.taocdn.com/s3/m/3823502eb94ae45c3b3567ec102de2bd9605de27.png)
基于PWM控制的直流电机自动调速系统设计一、引言直流电机是工业中最常见的电动机之一,其工作原理简单,结构紧凑,控制方便,广泛应用于各行各业。
为了满足不同工况下的运行需求,需要设计一个自动调速系统来调整直流电机的转速。
本文将基于PWM控制方法设计一个直流电机自动调速系统。
二、系统设计1.系统结构直流电机自动调速系统的基本结构包括传感器、控制器、电源和执行器。
传感器用于检测电机的转速,控制器根据检测到的转速信号进行处理,并通过PWM控制方法调整电机的输入电压,从而实现自动调速。
2.传感器选择直流电机的转速检测一般使用霍尔效应传感器来实现。
霍尔传感器可以直接测量电机转子的位置,并根据位置变化来计算转速。
传感器输出的信号经过放大和处理后,可以作为控制器的输入信号。
3.控制器设计控制器是整个自动调速系统的核心部分。
控制器接收传感器的转速信号,并通过PID算法对电机的转速进行调节。
PID算法是一种经典的控制方法,可以根据当前的偏差、偏差变化率和偏差积分值来计算控制量。
在本系统中,控制器输出的控制量即为PWM信号。
4.PWM控制方法PWM(Pulse Width Modulation)控制方法是一种通过调整脉冲宽度来控制输出电压的方法。
在本系统中,PWM控制方法可以通过改变PWM信号的占空比来调整电机的输入电压。
当需要提高电机转速时,增加PWM信号的占空比;当需要降低电机转速时,减小PWM信号的占空比。
通过反馈控制,控制器可以根据实际转速信号不断调整PWM信号的占空比,从而实现电机的自动调速。
5.电源选择在直流电机自动调速系统中,电源需要提供稳定的直流电压以供电机正常工作。
一般可选择线性稳压器或开关稳压器来提供所需的直流电压。
在选择电源时,需要考虑电机的功率和电源的效率,以确保系统的稳定性和可靠性。
6.执行器选择执行器是将控制信号转换为实际操作的部分。
在直流电机自动调速系统中,执行器可选择光耦隔离器和驱动芯片来实现PWM信号控制。
晶闸管直流电动机调速系统设计设计
![晶闸管直流电动机调速系统设计设计](https://img.taocdn.com/s3/m/252bb78f27fff705cc1755270722192e45365836.png)
晶闸管直流电动机调速系统设计目录1设计概述 (1)1.1 设计意义及要求 (1)1.2 方案分析 (1)1.2.1 可逆调速方案 (1)1.2.2 控制方案的选择 (2)2主电路的设计与分析 (3)2.1 整流电路 (3)2.2 斩波调速电路 (4)3控制电路的设计与分析 (5)3.1 触发电路的设计与分析 (6)3.2脉宽调制(PWM)控制的设计与分析 (6)3.2.1 欠压锁定功能 (7)3.2.2系统的故障关闭功能 (7)3.2.3软起动功能 (7)3.2.4 波形的产生及控制方式分析 (8)3.3 延时、驱动电路的设计 (8)3.4 ASR和ACR调节器设计 (9)3.4.1 ASR(速度调节器) (9)3.4.2 ACR(电流调节器) (10)结束语 (12)参考文献 (12)附录 (13)晶闸管直流电动机调速系统设计1设计概述1.1 设计意义及要求有许多生产机械要求电动机既能正转,又能反转,而且常常还需要快速地起动和制动,这就需要电力拖动系统具有四象限运行的特性,也就是说,需要可逆的调速系统。
改变电枢电压的极性,或改变励磁磁通的方向,都能够改变直流电机的旋转方向。
当电机采用电力电子装置供电时,由于电力电子器件的单向导电性,需要专用的可逆电力电子装置和自动控制系统1.2 方案分析1.2.1 可逆调速方案使电机能够四象限运行的方法有很多,可以改变直流电机电枢两端电压的方向,可以改变直流电机励磁电流的方向等等,即电枢电压反接法和电枢励磁反接法。
电枢励磁反接方法需要的晶闸管功率小,适用于被控电机容量很小的情况,励磁电路中需要串接很大的电感,调速时,电机响应速度较慢且需要设计很复杂的电路,故在设计中不采用这种方式。
电枢电压反接法可以应用在电机容量很的情况下,且控制电路相对简单电枢反接反向过程很快,在实际应用中常常采用,本设计中采用该方法。
电枢电压反接电路可以采用两组晶闸管反并联的方式,两组晶闸管分别由不同的驱动电路驱动,可以做到互不干扰。
直流双闭环调速系统设计与仿真
![直流双闭环调速系统设计与仿真](https://img.taocdn.com/s3/m/351380b9710abb68a98271fe910ef12d2af9a906.png)
直流双闭环调速系统设计与仿真一、直流双闭环调速系统的基本原理电流环用于控制电机的电流,通过测量电机的电流反馈信号与给定的电流信号进行比较,得到误差信号,然后经过PID控制器计算控制信号,最后通过逆变器输出给电机控制电流。
二、直流双闭环调速系统的设计1.确定系统参数:包括电机的转矩常数,转矩惯量,电感,电阻等参数。
2.设计速度环控制器:根据转速信号和转速误差信号,设计速度环控制器的传递函数。
可以选择PID控制器,也可以选择其他类型的控制器。
3.设计电流环控制器:根据电流信号和电流误差信号,设计电流环控制器的传递函数。
同样可以选择PID控制器或其他类型的控制器。
4.进行系统仿真:将设计好的速度环和电流环控制器加入电机模型,进行系统仿真。
通过调整控制器参数,观察系统的响应特性,可以优化系统性能。
5.调整控制参数:根据仿真结果,调整控制器的参数,使系统响应更加快速、稳定。
三、直流双闭环调速系统的仿真1.定义系统模型:建立直流电机的状态方程,包括速度环和电流环的动态方程。
2.设定系统初始条件和输入信号:设置电机的初始状态和给定的转速信号以及电流信号。
3.选择控制器类型和参数:根据设计要求,选择控制器类型和参数。
可以选择PID控制器,并根据调试经验选择合适的参数。
4.搭建控制系统模型:将速度环和电流环的控制器模型和电机模型连接在一起,构建闭环控制系统模型。
5.进行系统仿真:利用MATLAB或其他仿真软件进行系统仿真,根据给定的转速信号和电流信号,观察系统的响应特性。
四、直流双闭环调速系统的优化1.参数调整:根据仿真结果,调整控制器的参数,使系统的性能得到优化。
可以通过试探法或自适应调节方法进行参数调整。
2.饱和处理:考虑到电机的饱和特性,可以在控制器中添加饱和处理模块,以提高系统的稳定性和抗干扰能力。
3.鲁棒性设计:考虑到系统参数的不确定性,可以采用鲁棒控制方法,提高系统的鲁棒性能。
4.死区补偿:在电机控制中常常会出现死区现象,可以在控制器中添加死区补偿模块,以减小死区对系统性能的影响。
PWM直流电机调速系统设计
![PWM直流电机调速系统设计](https://img.taocdn.com/s3/m/aabcfb6459fb770bf78a6529647d27284a733763.png)
PWM直流电机调速系统设计PWM(脉宽调制)直流电机调速系统设计是通过改变电机输入电压的有效值和频率,以控制电机转速的一种方法。
本文将介绍PWM直流电机调速系统的原理、设计过程和实施步骤。
一、PWM直流电机调速系统原理1.电机:PWM直流电机调速系统使用的电机一般是带有永磁励磁的直流电机,其转速与输入电压成正比。
2.传感器:传感器主要用于检测电机转速和转速反馈。
常用的传感器有霍尔传感器和编码器。
3.控制器:控制器通过接收传感器反馈信号,并与用户输入信号进行比较来调整电机输入电压。
控制器一般包括比较器、计数器、时钟和PWM 发生器。
4.功率电源:功率电源负责提供PWM信号的电源。
PWM直流电机调速系统的工作原理是:先将用户输入转速转化为电压信号,然后通过比较器将输入信号与传感器反馈信号进行比较,再将比较结果输入给计数器,由计数器根据输入信号的边沿通过时钟控制PWM发生器,最后通过功率电源提供PWM信号给电机。
二、PWM直流电机调速系统设计过程1.确定电机类型和参数:根据实际需要确定使用的直流电机类型和技术参数,包括额定电压、额定转速、功率等。
2.选择传感器:根据调速要求选择合适的传感器,常用的有霍尔传感器和编码器。
3.设计控制器:根据电机类型和传感器选择合适的控制器,设计比较器、计数器、时钟和PWM发生器电路,并进行连线连接。
4.设计功率电源:根据控制器和电机的电压和电流要求设计适当的功率电源电路。
5.总结设计参数:总结所选器件和电路的技术参数,确保设计完整。
三、PWM直流电机调速系统实施步骤1.进行电路连线:根据设计图将所选器件和电路进行连线连接,包括控制器、传感器、电机和功率电源。
2.进行参数调整:根据需要进行控制器参数的调整,如比较器的阈值、计数器的初始值等。
3.进行调速测试:连接电源后,通过用户输入信号和传感器反馈信号进行调速测试。
根据测试结果进行参数调整。
4.优化系统性能:根据测试结果优化系统性能,如改进控制器参数、调整电机参数等。
基于单片机的直流调速系统设计终
![基于单片机的直流调速系统设计终](https://img.taocdn.com/s3/m/cc5aacb205a1b0717fd5360cba1aa81145318f52.png)
基于单片机的直流调速系统设计终直流电机是目前应用最广泛的电机之一,直流调速系统是指通过调节电源电压或电机绕组连接方式来实现电机转速调节的一种控制系统。
而基于单片机的直流调速系统是指利用单片机来实现对直流电机的调速控制。
在设计基于单片机的直流调速系统之前,首先需要了解直流电机的工作原理和调速原理。
直流电机是通过改变电枢绕组中的电流或电势差来控制电机的转速的。
调速原理一般分为电压调速和极数切换调速两种。
在基于单片机的直流调速系统设计中,主要包括以下几个方面:1.电源模块设计:设计一个稳定的直流电源供电给直流电机。
通常采用相关电路来实现,如整流电路、滤波电路和调压电路等。
2.传感器模块设计:为了能够实时地监测电机的转速和电流等参数,需要设计相关的传感器模块。
可以采用霍尔元件或光电传感器来检测电机的转动情况,采用电流传感器来检测电机的电流。
3.控制模块设计:单片机作为控制中心,需要设计相应的控制模块。
可以通过PWM信号来控制电机的转速,通过采样电机参数来实时调节PWM 信号的占空比。
4.软件程序设计:设计单片机的软件程序,实现对直流电机的调速控制。
可以采用PID控制算法来调节电机的转速。
在进行基于单片机的直流调速系统设计时,需要考虑以下几个关键问题:1.硬件选型:选择合适的单片机和其他外围器件,保证系统的可靠性和稳定性。
2.电路设计:根据需求确定电机的功率和电压等参数,设计合适的电路以满足要求。
3.系统安全性设计:设计过流、过载和过温等保护机制,确保系统的安全性。
4.程序设计:编写单片机的程序代码,实现对直流电机的调速控制和保护功能。
5.系统测试:在完成硬件设计和软件编程后,进行系统测试和调试,确保系统的正常运行。
基于单片机的直流调速系统设计需要综合运用电机控制原理、电路设计、单片机应用等多个知识领域,需要耐心和细心的设计和调试工作。
在实际应用中,可以根据具体需求对系统进行定制和优化,如添加显示功能、通信功能等,以满足不同的应用场景需求。
直流电机PWM调速控制系统设计
![直流电机PWM调速控制系统设计](https://img.taocdn.com/s3/m/a774cfd66aec0975f46527d3240c844769eaa02b.png)
直流电机PWM调速控制系统设计一、引言直流电机是一种常见的电动机,广泛应用于工业生产中的机械传动系统。
为了实现对直流电机的调速控制,可以采用PWM(脉宽调制)技术。
PWM调速控制系统通过控制脉冲宽度的变化来调整输出信号的平均电压,从而改变电机的转速。
本文将详细介绍直流电机PWM调速控制系统的设计原理、电路设计和控制算法等方面。
二、设计原理1、PWM调制原理PWM调制是一种通过改变脉冲宽度来控制平均电压的技术。
在PWM调速控制系统中,主要是通过改变脉冲的占空比来改变输出信号的平均电压,从而调整电机的转速。
2、直流电机调速原理直流电机的转速与电源电压成正比,转速调节的基本原理是改变电机的供电电压。
在PWM调速控制系统中,通过改变PWM信号的占空比,即每个周期高电平的时间占总周期时间的比例,来改变电机的供电电压,从而控制电机的转速。
三、电路设计1、输入电源电压变换电路为了适应不同的输入电源电压,需要设计输入电源电压变换电路。
该电路的功能是将输入电源电压通过变压器等元件进行变压或变换,使其适应电机的工作电压要求。
2、PWM信号发生电路PWM信号发生电路主要是负责产生PWM信号。
常用的PWM信号发生电路有555定时器电路和单片机控制电路等。
3、驱动电路驱动电路用于控制电机的供电电压。
常见的驱动电路有晶闸管调压电路、MOSFET驱动电路等。
通过改变驱动电路的控制信号,可以改变电机的转速。
四、控制算法在PWM调速控制系统中,需要设计相应的控制算法,来根据系统输入和输出变量进行调速控制。
常见的控制算法有PID控制算法等。
PID控制算法是一种经典的控制算法,通过对系统的误差、误差变化率和误差积分进行综合调节,来控制输出变量。
在PWM调速控制系统中,可以根据电机的转速反馈信号和设定转速信号,计算出误差,并根据PID 控制算法调节PWM信号的占空比,从而实现对电机转速的精确控制。
五、系统实现根据上述设计原理、电路设计和控制算法,可以实现直流电机PWM调速控制系统的设计。
直流电机调速控制系统设计
![直流电机调速控制系统设计](https://img.taocdn.com/s3/m/5728fa7630126edb6f1aff00bed5b9f3f90f7235.png)
直流电机调速控制系统设计1.引言直流电机调速控制系统是一种广泛应用于工业生产与生活中的电气控制系统。
通过对直流电机进行调速控制,可以实现对机械设备的精确控制,提高生产效率和能源利用率。
本文将介绍直流电机调速控制系统的设计原理、控制策略以及相关技术。
2.设计原理直流电机调速控制系统的基本原理是通过调整电压或电流来改变电机的转速。
在直流电机中,电压和电流与转速之间存在一定的关系。
通过改变电压或电流的大小,可以实现对电机转速的调节。
为了实现精确的调速控制,通常采用反馈控制的方式,通过测量电机转速,并与设定值进行比较,控制输出电压或电流,以达到期望的转速。
3.控制策略开环控制是指在没有反馈的情况下,直接控制输出电压或电流的大小,来实现对电机转速的调节。
开环控制的优点是简单、成本低,但缺点是无法考虑到外界的扰动和电机的非线性特性,使得控制精度较低。
闭环控制是指在有反馈的情况下,测量电机转速,并与设定值进行比较,控制输出电压或电流。
闭环控制的优点是能够考虑到外界的扰动和电机的非线性特性,提高控制精度。
常用的闭环控制策略有PID控制、模糊控制和神经网络控制等。
其中,PID控制是最为常用的一种控制策略,具有调节速度快、控制精度高的优点。
4.相关技术在直流电机调速控制系统的设计中,还需要用到一些相关的技术,如编码器、传感器和驱动器等。
编码器是一种测量旋转角度和速度的装置,可以用来测量电机的转速。
根据编码器的测量结果,可以对电机进行控制。
传感器可以用来检测电机的电流、电压和转速等参数,以获得电机的实时状态。
通过对这些参数的测量和分析,可以实现对电机转速的控制。
驱动器是将控制信号转换为电机运行的电路,可以根据输入的电压或电流信号控制电机的运行状态。
5.总结直流电机调速控制系统是一种重要的电气控制系统,可以实现对机械设备的精确控制。
在设计过程中,需要合理选择控制策略和相关技术,以实现期望的控制效果。
通过不断的研究和实践,可以进一步提高直流电机调速控制系统的性能和稳定性,满足不同领域的需求。
直流电机PWM调速系统的设计与仿真
![直流电机PWM调速系统的设计与仿真](https://img.taocdn.com/s3/m/871ef61c814d2b160b4e767f5acfa1c7aa00822b.png)
直流电机PWM调速系统的设计与仿真一、引言直流电机是电力传动中最常用的一种电动机,具有调速范围广、响应快、结构简单等优点。
而PWM(脉宽调制)技术是一种有效的电机调速方法,可以通过改变占空比控制电机的转速。
本文将介绍直流电机PWM调速系统的设计与仿真,包括建模分析、控制策略、电路设计和仿真实验等内容。
二、建模分析1.直流电机的模型直流电机的数学模型包括电动势方程和电机转矩方程。
电动势方程描述电机的输出电动势与供电电压之间的关系,转矩方程描述电机的输出转矩与电机转速之间的关系。
2.PWM调速系统的控制策略PWM调速系统的控制策略主要包括PID控制和模糊控制两种方法。
PID控制是一种经典的控制方法,通过比较实际输出与期望输出,计算出控制量来调整系统。
模糊控制则是一种基于模糊逻辑的控制方法,通过模糊推理,将输入量映射为输出量。
三、电路设计1.电机驱动电路设计电机驱动电路主要由电流传感器、逆变器和滤波器组成。
电流传感器用于测量电机的电流,逆变器将直流电压转换为交流电压,滤波器用于消除电压中的高频噪声。
2.控制电路设计控制电路主要由控制器、比较器和PWM信号发生器组成。
控制器接收电机转速的反馈信号,并与期望转速进行比较,计算出控制量。
比较器将控制量与三角波进行比较,生成PWM信号。
PWM信号发生器将PWM信号转换为对应的脉宽调制信号。
四、仿真实验1.系统建模与参数设置根据直流电机的模型,建立MATLAB/Simulink仿真模型,并根据实际参数设置电机的转矩常数、转矩常数、电机阻抗等参数。
2.控制策略实现使用PID控制和模糊控制两种方法实现PWM调速系统的控制策略。
通过调节控制参数,比较不同控制方法在系统响应速度和稳定性上的差异。
3.仿真实验结果分析通过仿真实验,分析系统的静态误差、动态响应和稳定性等性能指标。
比较不同控制方法的优缺点,选择合适的控制方法。
五、结论本文介绍了直流电机PWM调速系统的设计与仿真,包括建模分析、控制策略、电路设计和仿真实验等内容。
直流调速系统设计
![直流调速系统设计](https://img.taocdn.com/s3/m/807395205fbfc77da369b180.png)
摘要整流电路在工业生厂上应用极广。
将交流电变换为直流电称为AC/DC变换,这种变换的功率流向是由电源传向负载,称之为整流。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。
整流电路的种类有很多,有单相半波整流电路、单相全波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
把交流电变换成大小可调的单一方向直流电的过程称为可控整流。
整流器的输入端一般接在交流电网上,为了适应负载对电源电压大小的要求或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1变成二次侧电压U2。
本设计采用三相桥式可控整流(既三相桥式全控整流),从而实现为1台额定电压220V、功率为3kW的直流电动机提供直流可调电源,以实现直流电动机的调速。
关键词:整流电路;变压器;晶闸管;触发电路。
目录第1章绪论 (1)1.1电力电子技术概况 (1)1.2本文研究内容 (2)第2章三相桥式可控整流电路设计 (3)2.1三相桥式可控整流电路总体设计方案 (3)2.2具体电路设计 (5)2.2.1主电路设计 (5)2.2.2触发电路设计 (7)2.2.3保护电路设计 (10)2.3元器件型号选择 (12)2.4系统仿真分析 ............................................... 错误!未定义书签。
第3章课程设计总结.. (17)参考文献 (18)第1章绪论1.1电力电子技术概况电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。
PWM控制的直流电动机调速系统设计
![PWM控制的直流电动机调速系统设计](https://img.taocdn.com/s3/m/6390aafbfc0a79563c1ec5da50e2524de518d0c5.png)
PWM控制的直流电动机调速系统设计PWM(脉宽调制)控制的直流电动机调速系统是一种常用于工业和家用电机控制的方法。
它可以通过调整输出脉冲宽度来控制电机的转速。
本文将详细介绍PWM控制的直流电动机调速系统的设计原理和步骤。
一、设计目标本文所设计的PWM控制的直流电动机调速系统的设计目标如下:1.实现电机的精确转速控制。
2.提供多种转速档位选择。
3.实现反转功能。
4.提供过载保护功能。
二、设计原理具体的设计原理如下:1.产生PWM信号:使用微控制器或单片机的计时器/计数器模块来产生固定频率的脉冲信号,频率一般选择在20kHz左右。
通过调整计时器的计数值来改变脉冲的宽度,从而实现不同的电机转速。
2.控制电机转速:将微控制器或单片机的PWM输出信号经过电平转换电路后,接入电机的电源线,通过控制PWM信号的高电平时间来控制电机的转速。
3.实现不同的转速档位选择:通过增加多个PWM信号输出通道,可以实现多个转速档位的选择。
通过选择不同的PWM信号输出通道,可以实现不同的转速设定。
4.实现反转功能:通过改变PWM信号的极性可以实现电机的正转和反转操作。
正转时,PWM信号的高电平时间大于低电平时间;反转时,PWM信号的高电平时间小于低电平时间。
5.过载保护功能:通过添加电机负载的电流检测电路和电流限制功能,可以实现对电机过载时的自动保护。
三、设计步骤1.确定电机的额定电压和额定转速。
2.选择合适的微控制器或单片机作为控制核心,并编写PWM信号产生程序。
3.选择合适的驱动电路,将PWM信号转换成电机所需的电流和电压。
常用的驱动电路有H桥驱动电路和MOSFET驱动电路。
4.搭建电路原型,并进行电路调试和测试。
5.编写控制程序,实现转速档位选择、反转和过载保护功能。
6.进行系统整合和调试,确保系统的各项功能正常。
7.进行性能测试,并根据测试结果对系统进行调整和优化。
8.最后对系统进行稳定性测试,并记录测试结果。
四、总结本文详细介绍了PWM控制的直流电动机调速系统的设计原理和步骤。
直流电机调速控制系统设计
![直流电机调速控制系统设计](https://img.taocdn.com/s3/m/43fa6f0f7f1922791788e8b2.png)
成绩电气控制与PLC课程设计说明书直流电机调速控制系统设计.Translate DC motor speed Control system design学生王杰学号学院班级信电工程学院13自动化专业名称电气工程及其自动化指导教师肖理庆2016年6月14日目录1 ××11.1 ××××××11.1.1 ××××错误!未定义书签。
1.1.2 ××××1……1.2 ××××××11.2.1 ××××8……2 ×××××82.1 ××××××102.1.1 ××××10……3 ×××××123.1 ××××××123.1.1 ××××12……参考文献13附录14附录114附录2141 直流电机调速控制系统模型1.1 直流调速系统的主导调速方法根据直流电动机的基础知识可知,直流电动机的电枢电压的平衡方程为:R I E U a +=式(1.1)公式中:U 为电枢电压;E 为电枢电动势;R I a 为电枢电流与电阻乘积。
由于电枢反电势为电路感应电动势,故:n C E φe =式(1.2)式中:e C 为电动势常数;φ为磁通势;n 为转速。
由此得到转速特性方程如下:φe a C R I U /)(n -=式(1.3)由式(1.3)可以看出,调节直流电动机的转速有以下三种方法:1.改变电枢回路的电阻R ——电枢回路串电阻调速。
PWM可逆直流调速系统设计
![PWM可逆直流调速系统设计](https://img.taocdn.com/s3/m/6bf7400432687e21af45b307e87101f69e31fbad.png)
PWM可逆直流调速系统设计1. 引言PWM(脉冲宽度调制)可逆直流调速系统是一种常用的电机调速系统,广泛应用于工业生产和家电领域。
本文将介绍PWM可逆直流调速系统的设计原理、主要组成部分以及工作原理。
2. 设计原理PWM可逆直流调速系统的设计原理基于脉冲宽度调制技术和电机控制原理。
通过调整PWM信号的脉冲宽度,可以控制电机的转速和运行方向。
主要原理包括: - 电源供应:系统通过电源为电机提供电能。
- PWM信号生成:通过数字控制器或单片机产生PWM 信号。
- H桥驱动电路:将PWM信号转换为适合电机的驱动信号。
- 电机控制:根据PWM信号调整电机的转速和运行方向。
3. 主要组成部分PWM可逆直流调速系统主要由以下几个组成部分构成:3.1 电源供应电源供应是系统的功率来源,可以选择直流电源或交流电源。
直流电源常用的电压范围为12V或24V,交流电源则需要将交流电转换为直流电。
3.2 PWM信号生成PWM信号生成是通过数字控制器或单片机来产生PWM信号的过程。
通过控制PWM信号的占空比,可以改变电机的转速。
3.3 H桥驱动电路H桥驱动电路是将PWM信号转换为适用于电机驱动的信号的关键部分。
H桥由4个开关管组成,根据PWM信号的输入情况控制开关管的导通与关闭,从而改变电机的转速和运行方向。
3.4 电机控制电机控制是根据PWM信号调整电机的转速和运行方向的过程。
通过增大或减小PWM信号的占空比,可以控制电机的速度;通过改变PWM信号的极性,可以改变电机的运行方向。
4. 工作原理PWM可逆直流调速系统的工作原理如下:1.首先,电源供应向系统提供电能,为后续的电机驱动做准备。
2.数字控制器或单片机根据预设的参数生成PWM信号,并将其输入到H桥驱动电路。
3.H桥驱动电路根据PWM信号的输入情况控制开关管的导通与关闭,从而改变电机的转速和运行方向。
4.电机控制模块根据PWM信号的占空比调整电机的转速,根据PWM信号的极性改变电机的运行方向。
直流速度环调速系统设计
![直流速度环调速系统设计](https://img.taocdn.com/s3/m/8cab9c19e3bd960590c69ec3d5bbfd0a7956d52d.png)
直流速度环调速系统设计直流速度环调速系统是一种常见的电机调速控制系统,其主要作用是通过控制电机的转速来实现对机械设备的精准控制。
下面将详细介绍直流速度环调速系统的设计。
1. 系统组成直流速度环调速系统主要由以下组成部分构成:(1)电机:作为被控对象,其转速可以通过控制器进行调节。
(2)传感器:用于测量电机的转速和位置等参数,并将这些参数反馈给控制器。
(3)控制器:根据传感器反馈的数据,计算出电机应该输出的转矩大小,并通过驱动器将信号发送给电机。
(4)驱动器:用于将控制器输出的信号转换为适合电机使用的信号,以驱动电机正常运行。
2. 系统设计在设计直流速度环调速系统时,需要考虑以下因素:(1)传感器选择:选择合适的传感器可以提高系统测量精度。
常用的传感器有编码器、霍尔元件和光电开关等。
(2)控制算法:选择合适的算法可以提高系统响应速度和稳定性。
常用的算法有比例积分微分(PID)算法和模糊控制算法等。
(3)驱动器选择:选择合适的驱动器可以保证系统输出信号的质量,常用的驱动器有晶闸管、场效应管和三极管等。
(4)电源设计:为系统提供稳定的电源是保证系统正常运行的关键。
需要根据电机功率和驱动器类型选择合适的电源,并进行合理的布线和保护。
3. 系统调试在完成直流速度环调速系统设计后,需要进行调试以确保系统正常运行。
主要包括以下步骤:(1)传感器校准:根据传感器类型,进行相应的校准操作,以保证测量精度。
(2)控制参数调整:通过修改PID参数等控制算法参数,优化系统响应速度和稳定性。
(3)驱动器调整:根据电机类型和负载情况,调整驱动器输出信号波形以达到最佳效果。
(4)系统性能测试:对系统进行一系列测试,包括转速响应时间、转速精度、负载能力等指标测试,并进行记录和分析。
通过以上步骤,可以有效地完成直流速度环调速系统设计和调试工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流调速系统设计电气工程学院)摘要:转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。
具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。
常用的电机调速系统有转速闭环控制系统和电流闭环控制系统,二者都可以在一定程度上克服开环系统造成的电动机静差率,但是不够理想。
实际设计中常采用转速、电流双闭环控制系统,一般使电流环(ACR)作为控制系统的内环,转速环(ASR)作为控制系统的外环,以此来提高系统的动态和静态性能。
本文是按照工程设计的方法来设计转速和电流调节器的。
使电动机满足所要求的静态和动态性能指标。
电流环应以跟随性能为主,即应选用典型Ⅰ型系统,而转速环以抗扰性能为主,即应选用典型Ⅱ型系统为主。
关键词:直流双闭环调速系统电流调节器转速调节器1 设计任务及要求1、1设计任务设计V-M双闭环直流可逆调速系统1、1、1技术数据:•直流电动机:额定电枢电压=400V,额定功率1、9kW,额定电枢电流=6、9A,额定转速=855r/min,电动机电动势系数Ce=0、1925Vmin/r,允许过载倍数λ=1、5;•晶闸管装置放大系数:Ks=40;整流装置平均滞后时间常数=0、00167s,•电枢回路总电阻:R=11、67Ω;•电枢回路电感110mH,电力拖动系统机电时间常数Tm=0、075s;•电枢电流反馈系数:β=0、121V/A(≈10V/1、5),电流滤波时间常数=0、002s;•转速反馈系数α=0、01 V、min/r(≈10V/);转速滤波时间常数=0、01s;1、2设计要求:(1)根据试凑法设计电流调节器和转速调节器参数进行仿真,电流超调量≤5%;实现转速无静差,空载起动到额定转速时的转速超调量≤5%;(2)试利用Matlab仿真软件中的Simulink或Simulink中的Power system模块进行仿真,在Matlab仿真软件中构建仿真模型;(3)用Plot函数绘制理想空载启动到设定转速500r/min下电机启动过程,转速达到设定值后经过20s给定反向信号=-10V时正反转启动过程中转速、电枢电流波形。
(4)对仿真波形及结果进行分析。
2 V-M双闭环调速系统的设计改变电枢两端的电压能使电动机改变转向。
尽管电枢反接需要较大容量的晶闸管装置,但是它反向过程快,由于晶闸管的单向导电性,需要可逆运行时经常采用两组晶闸管可控整流装置反并联的可逆线路,电动机正转时,由正组晶闸管装置VF供电;反转时,由反组晶闸管装置VR供电。
如图1所示两组晶闸管分别由两套触发装置控制,可以做到互不干扰,都能灵活地控制电动机的可逆运行,所以本设计采用两组晶闸管反并联的方式。
并且采用三相桥式整流。
虽然两组晶闸管反并联的可逆V-M系统解决了电动机的正、反转运行的问题,但是两组装置的整流电压同时出现,便会产生不流过负载而直接在两组晶闸管之间流通的短路电流,,称作环流,一般地说,这样的环流对负载无益,只会加重晶闸管和变压器的负担,消耗功率。
环流太大时会导致晶闸管损坏,因此应该予以抑制或消除。
为了防止产生直流平均环流,应该在正组处于整流状态、Udof为正时,强迫让反组处于逆变状态、使Udor为负,且幅值与Udof相等,使逆变电压Udor把整流电压Udof顶住,则直流平均环流为零。
于是有:=又由于:其中,αr和αf分别为VF和VR的控制角。
由于两组晶闸管装置相同,两组的最大输出电压Umaxdo是一样的,因此,当直流平均环流为零时,应有,。
如果反组的控制角用逆变角βr表示,则αr=βr按照这样控制就可以消除环流。
图1 两组晶闸管可控整流装置反并联可逆线路系统设计的一般原则为:先内环后外环。
即从内环开始,逐步向外扩展。
在这里,首先设计电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器。
图2为转速、电流双闭环调速系统的原理图,图3为双闭环调速系统的结构图。
图中两个调节器ASR和ACR分别为转速调节器和电流调节器,二者串级连接,即把电流调节器的输出作为转速调节器的输入,再用转速调节器的输出去控制电力电子变换器UPE。
两个调节器的输出都是带限幅作用的。
转速调节器ASR的输出限幅电压U*im决定了电流给定电压的最大值;转速调节器ASR的输出限幅电压Ucm限制了电力电子变换器的最大输出电压Udm。
为了获得良好的静、动态性能,转速和电流两个调节器一般都采用PI调节器。
其中主电路中串入平波电抗器,以抑制电流脉动,消除因脉动电流引起的电机发热以及产生的脉动转矩对生产机械的不利影响。
图2转速、电流双闭环调速系统的原理图图3双闭环调速系统的结构图3电流调节器设计3、1电流环结构框图的化简电流环结构图的简化分为忽略反电动势的动态影响、等效成单位负反馈系统、小惯性环节的近似处理等环节。
图4 电流环的简化结构图3、2电流环参数的计算3、2、1确定时间常数(1)整流装置滞后时间常数Ts。
按表1,三相桥式电路的平均失控时间Ts=0、00167s。
(2)电流滤波时间常数本设计初始条件已给出,即Toi=0、002s。
(3)电流环小时间常数之和T∑=Ts+Toi=0、00367s(4)电磁回路时间常数Tl=L/R=0、01s表1 各种整流装置的失控时间3、2、2电流调节器结构的选择从稳态要求上看,希望电流无静差,以得到理想的堵转特性,采用 I 型系统就够了。
从动态要求上看,实际系统不允许电枢电流在突加控制作用时有太大的超调,以保证电流在动态过程中不超过允许值,而对电网电压波动的及时抗扰作用只是次要的因素,为此,电流环应以跟随性能为主,应选用典型I型系统。
电流环的控制对象是双惯性型的,要校正成典型 I 型系统,显然应采用PI型的电流调节器,其传递函数可以写成式中 Ki 电流调节器的超前时间常数。
检查对电源电压的抗扰性能:参照典型Ⅰ型系统动态抗扰性能指标与参数的关系表格,可以看出各项指标都是可以接受的。
3、2、3计算电流调节器参数电流调节器超前时间常数:ti=Tl=0、07s。
电流环开环增益:要求δi<5%时,应取KIT∑i=0、5,因此于是,ACR的比例系数为:3、2、4校验近似条件电流环截止频率:ci=KI=135、14s-1。
晶闸管整流装置传递函数的近似条件:满足近似条件忽略反电动势变化对电流环动态影响的条件满足近似条件电流环小时间常数近似处理条件满足近似条件3、2、5计算调节器电阻和电容运算放大器取R0=40k,各电阻和电容值为按照上述参数,电流环可以达到的动态跟随性能指标为δi=4、3%<5%,满足设计要求。
4转速调节器的设计4、1转速环结构框图电流环经简化后可视作转速环中的一个环节,接入转速环内,电流环等效环节的输入量应为Ui*(s),用电流环的等效环节代替电流环后,再把时间常数为1 / KI 和 T0n 的两个小惯性环节合并起来,近似成一个时间常数为的惯性环节,最后转速环结构简图为图4所示。
图5 等效转速环结构框图4、2转速环参数的计算4、2、1确定时间常数(1)电流环等效时间常数1/KI。
由电流环参数可知KIT∑i=0、5,则(2)转速滤波时间常数Ton。
根据已知条件可知Ton=0、01s(3)转速环小时间常数T∑n。
按小时间常数近似处理,取4、2、2选择转速调节器结构为了实现转速无静差,在负载扰动作用点前面必须有一个积分环节,它应该包含在转速调节器 ASR 中,在扰动作用点后面已经有了一个积分环节,转速环开环传递函数应共有两个积分环节,所以应该设计成典型Ⅱ 型系统,这样的系统同时也能满足动态抗扰性能好的要求。
ASR也应该采用PI调节器,其传递函数为:式中 Kn转速调节器的超前时间常数。
4、2、3计算转速调节器参数按跟随和抗扰性能都较好的原则,取h=5,则ASR的超前时间常数为转速环开环增益为:ASR的比例系数为:4、2、4检验近似条件转速环截止频率为(1)电流环传递函数简化条件为满足近似条件(2)转速环小时间常数近似处理条件为满足近似条件4、2、5计算调节器电阻和电容取R0=40k,则4、2、6校核转速超调量当h=5时,查询典型Ⅱ型系统阶跃输入跟随性能指标的表格可以看出,不能满足设计要求。
实际上,上述表格是按照线性系统计算的,而突加阶跃给定时,ASR饱和,不符合线性系统的前提,应该按ASR退饱和的情况重新计算超调量(空载Z=0)。
此时超调量为:取h=3,则ASR的超前时间常数为转速环开环增益为:ASR的比例系数为:转速环截止频率为(1)电流环传递函数简化条件为满足近似条件(2)转速环小时间常数近似处理条件为满足近似条件此时超调量为:5试凑法调节电流调节器和转速调节器参数PI控制器各校正环节的作用如下:(1)比例环节:成比例地反映控制系统的偏差信号,偏差一旦产生,控制器立即产生控制作用,以减少偏差。
(2)积分环节:主要用于消除稳态误差,提高系统的型别。
积分作用的强弱取决于积分时间常数,越大,积分作用越弱,反之则越强。
调整前参数经过反复调整得到如下参数:电流环转速环调整前Ki3、260、01Kn0、520、087调整后Ki250、0625Kn0、651、766仿真结果及分析6、1参数调整前的仿真框图及结果从图中可以明显的的看出系统的超调量较大不符合要求,但最后的转速稳定在给定处,符合要求。
6、2参数调整后的仿真框图及结果从图中可以明显的的看出系统的超调量很小符合要求,最后的转速稳定在给定处,符合要求。
理想空载启动到设定转速500r/min下电机启动过程,转速达到设定值后经过20s给定反向信号=-8、55V时正反转启动过程中转速、电枢电流波形。
从图中可以明显的的看出系统的超调量很小符合要求,最后的转速稳定在给定处,符合要求。
6、3 Plot函数绘制仿真结果用Plot函数绘制理想空载启动到设定转速500r/min下电机启动过程,转速达到设定值后经过20s给定反向信号=-8、55V时正反转启动过程中转速、电枢电流波形。
将Simulink的仿真结果存到工作区,并命名为B。
则Plot函数程序如下:plot(B(:,1),B(:,2),B(:,1),B(:,3));运行结果如下:从图中可以明显的的看出系统的超调量很小符合要求,最后的转速稳定在给定处,符合要求。
并且与Simulink的仿真结果一致。
7设计心得通过这次课程设计,我进一步了解了晶闸管-直流电动机系统的组成与工作原理、控制单元的工程设计方法等。
本设计包含了运动控制课程直流调速系统的核心环节外,同时还涉及到《电力电子技术》、《自动控制原理》、《电子技术基础》(模拟、数字)等相关课程,为了完成本次课程设计,我又对相关知识进行了一次复习。
设计过程中,我仔细查阅了相关资料,经过努力后终于拿出了设计方案。