趣味数学-幻方

合集下载

(完整版)趣味数学-幻方

(完整版)趣味数学-幻方

13 14 15 16 第四行和=58 多了24
第 第第 第 一 二三 四 对角线和=34 列 列 列 列 和 和和 和
对角线和=34
=40 =36 =32 =28
少6 少2 多2 多6
根据刚才的情况我们发现对角线上的 4个数和就是幻和,那么就让它们位置都不变。
1 2 34 56 78 9 10 11 12 13 14 15 16
数4个的请让数4它个的们分数4别个的交数换4个的吧!
和 和 和和
=
=
==
34 34 34 34
4个数和= 34
4个数和= 34 1.我先我变是个魔中师心, 点 4个我数可和是= 3有4 魔法的
现在我们来指引 24.个数每数字中你列和2心们的和=点去数334与相字把谁对每和关行相于等
3.数字5和9谁关于 中心点相对
把1,2,3…9这9个数填入3×3的方格里,变成三阶幻方
1 42 7 53 86
9
换位
9 42
三阶幻方有技巧,
3 5 7 3数斜着先排好,
86 1
上下左右要交换, 然后各自归位了!
归位
5:如何填幻方(幻方的构成) 2)三阶幻方构成方法之二 画格辅助 九子斜排 送子回家 清除辅助
1
4
2
7
5
3
8
6
三、四阶幻方
五阶幻方
六阶幻方
3、探究幻方的规律(1):
49 2 35 7 8 16
1、所有行、列、对角线上的数 之和均为15;
2、偶数位于角上,奇数在中间;
3、5位于中心点,相对的两个端 点数和为10。因为9个数之和是45, 所以中间的数的5。
3、探究幻方的规律(2):

趣味数学—数阵图与幻方

趣味数学—数阵图与幻方

三年级奥数--数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。

三年级趣味数学奥数《幻方》罗伯法

三年级趣味数学奥数《幻方》罗伯法

4
例3. 请编出一个三阶幻方,使其幻和是24。
中间数:24÷3=8 4 5 6 7 8 9 10 11 12
4
5
例3. 请编出一个三阶幻方,使其幻和是24。
中间数:24÷3=8 4 5 6 7 8 9 10 11 12
4 6 5
例3. 请编出一个三阶幻方,使其幻和是24。
中间数:24÷3=8 4 5 6 7 8 9 10 11 12
10 12
2
3
9
思维跳板:用 1 至 25 个数排成五行五列,使 每行、每列和对角线上五数之和为65。
“罗伯法“
17 5 4 11 1 6 13 8 15 7 14 16
10 12
2
3
9
思维跳板:用 1 至 25 个数排成五行五列,使 每行、每列和对角线上五数之和为65。
“罗伯法“
17 5 4 1 6 13 8 15 7 14 16
跟踪训练:请把2~10九个数字填入下图中, 要求每行、每列和每条对角线上三个数的和 都要等于18。
“罗伯法“
9 4 5 2 6 10 7 8 3
思维跳板:用 1 至 25 个数排成五行五列,使 每行、每列和对角线上五数之和为65。
“罗伯法“
思维跳板:用 1 至 25 个数排成五行五列,使 每行、每列和对角线上五数之和为65。
“罗伯法“
1 3 4 2
例2.请把1~9九个数字填入下图中,要求每行 、每列和每条对角线上三个数的和都要等于 15。
“罗伯法“
1 3 4 5 2
例2.请把1~9九个数字填入下图中,要求每行 、每列和每条对角线上三个数的和都要等于 15。
“罗伯法“
自下放
1 3 4 5

《有趣的小学数学—幻方问题》

《有趣的小学数学—幻方问题》

幻方知识点:1、幻方:在一个正方形中,将其分为n n 个(九个、十六个、二十五个、三十六个……)小方格,填上给定的数(九个、十六个、二十五个、三十六)个数字,使每一横行、每一竖行以及每一斜行上的n 个数相加的和都相等。

像这样的正方形,我们把它叫做n 阶幻方。

在幻方中这个相等的和就叫做幻和。

2、三阶幻方:如果一个3×3的方阵中,每一横行、每一竖列及两条对角线上数的和都相等,那么这个方阵称为三阶幻方(又叫九宫格或九宫图),这个相等的和叫做幻和,填在幻方中心位置的数称为中间数或中心数。

3、三阶幻方的性质:(1)幻和=中心数×3;中心数=幻和÷3; (2)幻和=填入的所有数总和÷3; (3)“斜T 法”:在三阶幻方中,四个角上的数,等于它对角上相邻两旁两个数的平均数(例如:i 位置的数=(b 位置的数+d 位置的数)÷2;a 和f 、h 位置也有此规律)。

(4)在三阶幻方中,最大与最小的数不能填在对角线上;(5)一个三阶幻方,经过翻折,或者旋转90°以后,仍为幻方.例题1:下面是幻方吗?是的在括号里打“√”,不是在括号里打“×”。

( )123456789( )191817161514131211【答案】×;√;【分析】要求每行、每列、两条对角线上的和都相等。

例题2:在下图中,填上适当的数,使每行、每列及两条对角线上三个数的和都相等。

【答案】如图所示【分析】我们知道幻和是中心数的三倍,因此6+12=18是中心数的2倍,由此可知,中心数为:18÷2=9,幻和为:9×3=27。

接着一一填出各个空格中的数。

例题3:如图,填上适当的数,使每行、每列及两条对角线上三个数的和都相等。

【答案】如图所示 【分析】先根据斜T 法算出右下角(27+15)÷2=21;中心数=(17+21)÷2=19;幻和=19×3=57。

三年级上册趣味数学(8)幻方(九宫格九宫阵)

三年级上册趣味数学(8)幻方(九宫格九宫阵)

三年级趣味数学(8)九宫格与阵班级姓名1.在1——9这九个数中,取其中3个不同的数相加,使和为15,你能写出哪些三组数?(例如1,5,9。

1+5+9=15)1+5+9=15 2+4+9=15 3+4+8=15 1+6+8=15 2+5+8=15 3+5+7=15 2+6+7=15 4+5+6=153.探索三阶幻方的特点(1)对角线上三个数之间有什么关系?(2)“十”字形中纵列或横行三个数之间有什么关系? (3)中宫数(最中间的数)与九个数之间有什么关系? (4)研究特殊的等腰三角形数之间的关系。

4.利用掌握三阶幻方的特点制作三阶幻方。

2 9 4 7 5 3 6 1 86 7 2 1 5 9 8 3 48 1 6 3 5 7 4 9 24 3 8 9 5 1 2 7 6 6 1 8 7 5 3 2 9 42 7 6 9 5 1 43 87 22 13 22 16 10 19 4 257 8 12 14 9 4 6 10 1110 21 8 11 13 15 18 5 165.九宫阵(俗称数独)。

将1——9这九个数填入每行、每列、每个九宫格的小方格内。

每个数字在每行、每列、每个九宫格内只能出现一次。

13 15 108 11541057 4 13 981 6 92 3 68 2 95 7 46 47 23 1 982 7 1 68 4 532 5 9 7 3165 7342 48 9 1 73 9 16 8 2 4287 9 81 2 54 96 325 68 5 7 6 41 37 5 9294 8 7 637 1 56 5 3 14 298 5 67 74 1 3 9 8 2 56 52 3147 89。

趣味数学课件-幻方

趣味数学课件-幻方

神龟背洛书
神龟背洛书
在公元前23世纪,大 禹治水的时侯,在黄 河支流洛水中,有一 天忽然浮现出一个大 乌龟,当时,大禹与 治水士兵正在河 边观
察洛河水情,商议治理黄河大计,遇 到乌龟在河里上下翻腾十分奇怪。只 见此龟行走水面,游来游去,身形庞 大,甲背平圆。近处仔细观看,
甲背上有9种花点的图案, 大禹让士兵们将图案中的 花点记了下来,带回去作 了认真的研究,他惊奇地 发现9种花点数正巧是, 1—9这9个数,各数的位置排列也相 当奇巧,各线上三数之和皆为15, 既均衡又对称,奇偶交替变化之中似 有一种周转运动之妙,大禹受到启发 ,用此原理治理黄河,获得成功。
而在国外,公元130年,希腊人塞翁 才第一次提起幻方。我国不仅拥用 幻方的发明权,而且是对幻方进行 深入研究的国家。公元13世纪的数 学家杨辉已经编制出3-10阶幻方, 记载在他1275年写的《续古摘厅算 法》一书中。在欧洲,直到574年, 德国著名画家丢功才绘制出了完整 的4阶幻方。
一般地, 将1,2,3...n 2填入到一个n n的表格中 使得 , 每行, 列以及两对角线上的 个数字之和相等 称这 n , 样数表为n阶幻方.
26 21 22 7 12 13 111
19 23 27 10 14 18 111
24 25 20 15 16 11 111
84 84 84 138 138 138
六阶幻方填法
35 3 31 8 30 4 111 35 4 1 32 9 28 5 36 111 32 5 6 7 2 33 34 29 111 2 33 26 21 22 17 12 13 111 17 22 19 23 27 10 14 18 111 14 23 24 25 20 15 16 11 111 11 24 111 111 111 111 111 111 111 111

趣味数学-幻方共50页文档

趣味数学-幻方共50页文档
趣味数学-幻方
1、 舟 遥 遥 以 轻飏, 风飘飘 而吹衣 。 2、 秋 菊 有 佳 色,裛 露掇其 英。 3、 日 月 掷 人 去,有 志不获 骋。 4、 未 言 心 相 醉,不 再接杯 酒。 5、 黄 发 垂 髫 ,并怡 然自乐 。

谢谢!
50
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

Байду номын сангаас
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华

趣味数学之幻方小诀窍

趣味数学之幻方小诀窍

趣味数学之幻方小诀窍在趣味数学的探讨中,重要的题材之一是魔方阵。

魔术方阵是由西方的"Magic square"翻译过来的,当然,东方也有不同的别称。

在中国我们称之为幻方,我国古代则有纵横图之称,而日本则称之为魔方阵。

所谓n阶魔方阵,乃是将1到n2个整数排成一个nXn阶方阵,使得下面2n+2个和相等:(1)每一列中n个数之和,共得n个和;(2)每一行中n个数之和,共得n个和;(3)每一对角在线n个数之和,共得两个和。

此每一个和称为魔数=2)1(2nn。

(一)由计算机测试的结果知道,二阶幻方不存在,当阶数由三阶增至四阶时,幻方个数由8个增至7040个,可见幻方数目增加得十分快速。

(二)(1)奇数阶幻方的建构法,中西方都有不同的成就,最著名的有杨辉法和达拉卢庇法,以下依序说明:杨辉法:以方阵的中间位置之下一格做为出发点,再向右下方依序填入数字。

若右下格已有数字则往下退两格,再继续往下填数字,直到填完为止,若超出格子便跳到方阵的另一头。

达拉卢庇法:以方阵中间一行最上方的一格为出发点,再向右上方依序填入数字,若右上格已有数字则往下退一格,再继续往下填数字,直到填完为止,若超出格子便跳到方阵的另一头。

(2)由杨辉法与达拉卢庇法的推广可以得到两对正交的拉丁方阵(两个方阵之中的符号两两配对后,没有重复的配对,称为正交),可以推出许多不同的幻方,但仍受制于对角线,若改以正交对角线拉丁方阵构做,应可产生更多种幻方。

(二)由四阶幻方造法推广得到偶数阶幻方的造法,因为偶数阶自然方阵中各行、各列之和成等差关系,由于n是偶数故可得一个左右对称的和(若以上下各数之和来讨论,也可以得到上下对称的结果),且两对角线的和恰等于魔数,所以可以利用行与行、列与列(对称于中心轴)的互换而造出幻方。

在我十来年的数学教育教学中,每当学生接触到幻方时,他们都对幻方近乎着迷,为大千数学世界中的这些毫不起眼的数字而折服。

于是通过我自己的教学不断总结,下面对幻方的小诀窍予以说明。

三年级上册趣味数学(8)幻方(九宫格九宫阵)ys

三年级上册趣味数学(8)幻方(九宫格九宫阵)ys

三年级趣味数学(8)
九宫格与阵
班级姓名
1.在1——9这九个数中,取其中3个不同的数相加,使和为15,你能写出哪些三组数?(例如1,5,9。

1+5+9=15)
2.如右图把一个正方形划分为3行3列9个方格,我们俗称“九宫
格”。

每个方格填一个数,使横行、数列以及对角线上三个数的和相
等。

这样的九宫格成为三阶幻方。

把上面的1——9这九个数填入格子中,使横行、数列以及对角线上
三个数相加的和为15,怎样填呢?
3.探索三阶幻方的特点
(1)对角线上三个数之间有什么关系?
(2)“十”字形中纵列或横行三个数之间有什么关系?(3)中宫数(最中间的数)与九个数之间有什么关系?(4)研究特殊的等腰三角形数之间的关系。

4.利用掌握三阶幻方的特点制作三阶幻方。

5.九宫阵(俗称数独)。

将1——9这九个数填入每行、每列、每个九宫格的小方格内。

每个数字在每行、每列、每个九宫格内只能出现一次。

趣味数学119:幻方的故事

趣味数学119:幻方的故事

幻方的故事前面,在“《射雕英雄传》里的数学故事”一文中,曾经谈到了“洛书”,它有三行三列,每行、每列、每条对角线上三个数的和都相等。

后来,人们逐步把具有类似性质的数阵扩展到四行四列、五行五列……通称为“纵横图”。

宋代数学家杨辉对纵横图做了深入的研究,取得了辉煌的成就,并且打破常规,把幻方从正方形推广到多边形和圆。

15世纪,西方数学家摩索普拉把我国的纵横图介绍到欧洲,并取名为“魔幻正方形”简称“幻方”。

“幻”含有梦幻、神奇、美妙、理想的意思。

由于幻方有着变幻莫测的性质,所以幻方一词逐渐为大众所接受。

占星家还将其作为护身符,至今仍有许多印度少女把“洛书”佩在胸前。

下面这个幻方被称为“魔鬼幻方”,因为它除了每行、每列、每条对角线上四个数的和相等以外,四个角上,以及任意由四个方格或九个方格组成的正方形四个角上四个数的和竟然也都相等, 真是妙不可言!现存欧洲最古老的幻方,是公元1514年德国画家丢勒在他著名的铜板画《忧郁》上刻的图. 有趣的是,他还把创作年份1514也塞了进去。

下图是印度太苏神庙石碑上的幻方,刻于十一世纪。

这个幻方也是一个魔鬼幻方。

更为奇特的是。

如果把幻方边上的行或列,挪到另一边去,所得到的仍是幻方。

一百年前的1910年,一位叫阿当斯的青年人,对六角幻方产生了浓厚兴趣。

他先去填简单的一层六角幻方(每边两个数),没有成功。

经过研究,这种幻方是不存在的。

于是,阿当斯便将精力集中在两层的六角幻方上(每边3个数)。

他趁着在铁路公司阅览室当职员之便,利用一些空闲时间,去摆弄从1到19这19个数。

冬去春来,度过了漫长的47个年头。

经过了无数次的挫折、失败,使他由一个英俊少年,变成了白发苍苍的老头,但是他仍然不甘心失败,这就是兴趣的魔力。

1957年的一天,病中的阿当斯,在病床上无意中将六角幻方排列成功了。

他惊喜万分,连忙找纸记录下来,了却了他多年的宿愿。

几天后,他病愈出院。

到家后却不幸地发现,他填的宝图不见了。

趣味数学—数阵图与幻方

趣味数学—数阵图与幻方

三年级奥数--数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。

趣味数学—数阵图与幻方讲课教案

趣味数学—数阵图与幻方讲课教案

趣味数学—数阵图与幻方三年级奥数--数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们. 四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。

世界数学难题、趣味数学、幻方

世界数学难题、趣味数学、幻方

世界数学难题——哥尼斯堡七桥问题18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡(今俄罗斯加里宁格勒),那里的普莱格尔河上有七座桥。

将河中的两个岛和河岸连结,城中的居民经常沿河过桥散步,于是提出了一个问题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题………… 这就是哥尼斯堡七桥问题,一个著名的图论问题。

1727年在欧拉20岁的时候,被俄国请去在圣彼得堡(原列宁格勒)的科学院做研究。

他的德国朋友告诉了他这个曾经令许多人困惑的问题。

欧拉并没有跑到哥尼斯堡去走走。

他把这个难题化成了这样的问题来看:把二岸和小岛缩成一点,桥化为边,于是“七桥问题”就等价于下图中所画图形的一笔画问题了,这个图如果能够一笔画成的话,对应的“七桥问题”也就解决了。

经过研究,欧拉发现了一笔画的规律。

他认为,能一笔画的图形必须是连通图。

连通图就是指一个图形各部分总是有边相连的,这道题中的图就是连通图。

但是,不是所有的连通图都可以一笔画的。

能否一笔画是由图的奇、偶点的数目来决定的。

那么什么叫奇、偶点呢?与奇数(单数)条边相连的点叫做奇点;与偶数(双数)条边相连的点叫做偶点。

如下图中的①、④为奇点,②、③为偶点。

1.凡是由偶点组成的连通图,一定可以一笔画成。

画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。

例如下图都是偶点,画的线路可以是:①→③→⑤→⑦→②→④→⑥→⑦→①2.凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。

画时必须把一个奇点为起点,另一个奇点终点。

例如下图的线路是:①→②→③→①→④3.其他情况的图都不能一笔画出。

聪明的博友们,想必你们已经知道哥尼斯堡七桥问题的答案了吧!留一道作业:下面的五环标志可否一笔画成?如何画?数学长联前几天在网上发现一个数学长联,写的非常好,可以说是对数学的一个简单概括,并且还加了注释,对了解古今数学的发展很有帮助,现转载如下:宏著传中外,但以立言,心灵独得。

趣味数学118:幻立方

趣味数学118:幻立方

这里给网友再介绍一件与幻方有关的数学珍品。

下面是一个由1到27的自然数构成的“3阶幻立方”。

它的每一行、每一列3个数的和都是42。

幻立方的严格定义是:用1至n3的自然数,填入n3个小立方体,使得由这n3个小立方体所组成的大立方体,每行、每列、每条对角线,以及四条对角线上各自的n个数的和都等于定数。

上面的“3阶幻立方”虽然不完全符合要求,只能说是一个“准3阶幻立方”。

不过,能做到每一行、每一列(还有部分对角线)3个数的和都是42,已经极其难能可贵了。

更何况已经证明,3阶幻立方根本就不存在呢?。

趣味数学-幻方

趣味数学-幻方

泛对角线幻方
将数字按照一定的规律填 充到格子中,使得每条泛 对角线上的数字之和相等。
正交幻方
将数字按照一定的规律填 充到格子中,使得每条正 交线上的数字之和相等。
03 幻方的数学原理
数学基础
代数基础
幻方是在一定规则下,将数字填 入一个正方形网格中,每个数字 代表一个坐标,通过代数运算找
出对应的数字。
04 幻方的应用与拓展
幻方在游戏中的应用
数独
这是一种基于幻方原理的数字游戏,玩家需要将数字1-9填入一个3x3的格子中, 使得每行、每列以及每个3x3的子格中都包含这9个数字。
棋盘游戏
一些棋盘游戏如井字游戏(Tic Tac Toe)和连珠(Gomoku)也可以视为幻方 在游戏中的应用,玩家需要在棋盘上放置棋子,使得满足特定的排列规则。
趣味数学-幻方
目录
• 幻方简介 • 制作幻方的方法 • 幻方的数学原理 • 幻方的应用与拓展 • 趣味数学与幻方
01 幻方简介
幻方的定义
01
幻方是一种将数字、图形或符号 按照特定规则排列在正方形网格 中的数学游戏。
02
幻方要求每一行、每一列以及对 角线上的数字或符号之和都相等 ,或者遵循特定的数学关系。
偶数阶幻方的构造公式
将n阶幻方看作是一个n×n的矩阵,矩 阵中的元素可以用坐标表示,通过代数 运算和矩阵变换,可以得出偶数阶幻方 的构造公式。
幻方的数学证明
奇数阶幻方的。
偶数阶幻方的证明
通过数学归纳法和代数运算,可 以证明偶数阶幻方的构造方法是 正确的。
幻方的历史与起源
幻方最早可以追溯到中国的洛书, 据传为黄帝时期的大臣洛所创。
在中世纪,幻方逐渐传播到欧洲, 成为数学家和哲学家们研究的对

趣味数学游戏——幻方

趣味数学游戏——幻方

趣味数学游戏——幻方当你还是个小学生的时候,也许就玩过这样一种数学益智游戏,就是把1、2、3、4、5、6、7、8、9这九个数字,分别填在3×3的方格里,使之横、竖、对角线的数字相加都等于15(如下图),这样的“填数”的问题,在数学语言里就叫“幻方”。

而填在3×3方格里的,就叫3阶幻方。

3阶幻方是最简单的幻方。

历代数学家们,都喜欢研究幻方,现在的幻方种类很多,有平面幻方,还有立体幻方、高次幻方等,平面幻方又分三角幻方,六角幻方(蜂窝幻方)等。

这里要重点介绍的,还是平面正方形幻方,3阶正方形幻方的等值是15,,这个等值是不可改变的,即是说你永远都无法设计出等值是14或者16的3阶幻方,对于4阶、5阶幻方乃至n阶幻方都一样,其等值都是唯一的、确定的。

其中4阶幻方的等值是34,5阶幻方的等值是65,对于任意n阶幻方,其等值为(n3+n)÷2。

其实,任意阶幻方构造法,任意维幻方构造法,任意次幻方构造法,数学家们都早已找到,不存在最大阶幻方的世界纪录之类的说法。

对平面幻方的构造,分为三种情况:N为奇数、N为4的倍数、N为其它偶数(4n+2的形式)1、N 为奇数时,最简单(1)将1放在第一行中间一列;(2)从2开始直到n×n止各数依次按下列规则存放:按45°方向行走,如向右上,每一个数存放的行比前一个数的行数减1,列数加1(3)如果行列范围超出矩阵范围,则回绕。

例如1在第1行,则2应放在最下一行,列数同样加1;(4) 如果按上面规则确定的位置上已有数,或上一个数是第1行第n列时,则把下一个数放在上一个数的下面。

2、N为4的倍数时采用对称元素交换法。

首先把数1到n×n按从上至下,从左到右顺序填入矩阵然后将方阵的所有4×4子方阵中的两对角线上位置的数关于方阵中心作对称交换,即a(i,j)与a(n-1-i,n-1-j)交换,所有其它位置上的数不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

百子回归碑是一幅 十阶幻方,中央四 数连读 “1999 · 12 · 20 ”, 标示澳门回归日。
百子回归碑是一部 百年澳门简史,可 查阅四百年来澳门 沧桑巨变的重大历 史事件以及有关史 地、人文资料等。
中间两列上部(系十九
世纪):“ 1887 ” 年《中葡条约》正式 签署,从此成为葡人 上百年(距今 100 余 13 年)“永久管理澳 门”的法律依据。又 如中间两列下部(系 二十世纪):“ 49 ” 年中华人民公和国成 立,从此中国人民站 起来了;“ 97 ”年香 港回归祖国。
(1)先算幻和: 幻和=(1+2+…+16)÷4= 34
三阶幻方的幻和可以用9个数的和除以3; 那么四阶幻方的幻和也可以用16个数的和除以4
原理与步骤:(1 )幻和=34 (2)分析列表
1 2 3 4 第一行和=10 少了24
5 6 7 8 第二行和=26 少了8
9 10 11 12 第三行和=42 多了8
49 2 35 7 8 16
357+753= 1100 951+159= 1100
456+654= 1100 852+258= 11700
6)每列每行每一条对角线上看成的三位数 和它逆转之后的三位数之和相等。
(7)幻和=九个数之和÷3, (8)中间数=幻和÷3. (9)C=(A+B)÷2 (如右图)
它就是对称交换法
数字依次先排好, 上下中间交叉换,左对右中间交叉换,其他地方不要变
以前

现在
12 3 4
一 下
1 15 14 4
56 7 8
了 12 6 7 9
9 10 11 12
, 哪
8 10 11 5
13 14 15 16 些 13 3 2 16

1 2 3 4位
56

7 8有
9 10 11 12 变
4+5+6=15
每行、每列、对角线上的三个数的和都相等的方格,叫 “幻方”。这个相等的和叫三阶幻方的幻和。
练习1 它们是幻方么?你怎样来判别?
20 2 6 7 15 8 4 3 15
15 8 1 6 15 3 5 7 15
9 1 5 15
4 9 2 15
19 11 15 11 不是
15 15 15 15 是
上下对开并交换 仍是一个四阶幻方
纵向切开,交换后再接起来
横切一刀,交换后再接起来
41
距 离 幻 方 中 心
九阶幻方
将 幻 方 按 图 中
的 任 何 中 心 对 称 位 置 上 两 数 和 都 为
粗 线 分 成 九 块 , 即 为 九 个 三 阶 幻 方
82
若把上述九个三阶幻方的每个幻方的“幻和”值写在九宫格中,又构成一个新的三阶幻方
数4个的请让数4它个的们分数4别个的交数换4个的吧!
和 和 和和
=
=
==
34 34 34 34
4个数和= 34
4个数和= 34 1.我先我变是个魔中师心, 点 4个我数可和是= 3有4 魔法的
现在我们来指引 24.个数每数字中你列和2心们的和=点去数334与相字把谁对每和关行相于等
3.数字5和9谁关于 中心点相对
把1,2,3…9这9个数填入3×3的方格里,变成三阶幻方
1 42 7 53 86
9
换位
9 42
三阶幻方有技巧,
3 5 7 3数斜着先排好,
86 1
上下左右要交换, 然后各自归位了!
归位
5:如何填幻方(幻方的构成) 2)三阶幻方构成方法之二 画格辅助 九子斜排 送子回家 清除辅助
1
4
2
7
5
3
8
6
探究一
龟背上的这些数填到表格中,你能发现什么?
49 2 35 7 8 16
每一行,每一列,每一条对角线上的三个 数的和,有什么特点?
1、幻方的定义(三阶8+5幻+2=方15 )
49 2
35 7
8 16
49 2 35 7 +8 +1 +6 15 15 15
4+9+2=15 3+5+7=15 8+1+6=15
1 83
1、利用每一行,每一列,每一条对角线上的 三个数的和相等的特点。
3,如果幻方的和全是15,看谁填得又对又快:
81 6 57 2
83 5
67 2
2、幻方的分类
• 按照纵横各有数字的个数,可以分为: 三阶幻方、 四阶幻方、 五阶幻方、 六阶幻方… …
按照纵横数字数量奇偶的不同,可以分为: 奇阶幻方 偶阶幻方
每行每列斜着的三个数的和是否都相等,来判断是不是幻方。
2、填幻方:
1)这只龟姐姐背上的有些图案看不清了,你能帮它 找出来吗?
92
4 3
5
7
81 6
1、利用每一行,每一列,每一条对角线上的 三个数的和相等的特点。
4、填幻方: 2)看!又来了一只龟爷爷,背上的图案缺得 更多了,请你帮帮它好吗?
72 9
24-8-7=9
10 9 5
24-9-5=10 24-10-8=6
本课小结
每行、每列、对角线上的三个数的和都相 等方格,叫“幻方”。 所有行、列、对角线上的数之和均为15。 偶数位于角上;奇数在中间。
5位于中心点,相对的两个端点数和为10。
49 2 35 7 8 16
4、如何改变幻方:
改变数的位置还有可能满足上述规律吗?
4 92 357 816
8 16 357 492
2 94 753 618
6 18 753 294
上下换 左右换 上下左右换
4、探究改变幻方的规律: 共有8种:
4 92 357 816
83
59 2
618 7 53 2 94
耆那幻方。
耆那幻方:
是在印度耆那教寺庙门前一块石牌上刻的,是12 -13世纪的产物。它的任何2×2的方块内的4个数 字和也是34。
5:如何编幻方(幻方的构成)
四阶幻方构成方法
数字依次先排好, 上下中间交叉换, 左右中间交叉换, 其他地方不要变!
原理与步骤:
1 2 34 567 8 9 10 11 12 13 14 15 16
三、四阶幻方
五阶幻方
六阶幻方
3、探究幻方的规律(1):
49 2 35 7 8 16
1、所有行、列、对角线上的数 之和均为15;
2、偶数位于角上,奇数在中间;
3、5位于中心点,相对的两个端 点数和为10。因为9个数之和是45, 所以中间的数的5。
3、探究幻方的规律(2):
49 2 35 7 8 16 Nhomakorabea13 14 15 16 第四行和=58 多了24
第 第第 第 一 二三 四 对角线和=34 列 列 列 列 和 和和 和
对角线和=34
=40 =36 =32 =28
少6 少2 多2 多6
根据刚才的情况我们发现对角线上的 4个数和就是幻和,那么就让它们位置都不变。
1 2 34 56 78 9 10 11 12 13 14 15 16
阶幻方中:
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
11 25 24 14 22 16 17 19 18 20 21 15 23 13 12 26
26 12 13 23 15 21 20 18 19 17 16 22 14 24 25 11
补充1:左右对开并交换, 也是一个四阶幻方

13 14 15 16
练习:填四阶幻方:
把3,4,5,6,…..18这16个数字编成一个四阶幻方.
数字依次先排好, 上下中间交叉换, 左右中间交叉换, 其他地方不要变!
3 4 5 6 42 7 8 9 10 42 11 12 13 14 42
15 16 17 18 42
42 42 42 42
所以 幻和=42
276+951+438= 1665 672+159+834= 1665
2762+9512+4382= 1172421 6722+1592+8342= 1172421
4)每列看成的三位数和 =它逆转之后的三位数。
5)每列看成的三位数的平方和 =它逆转之后的三位数平方和
行也成立
3、探究幻方的规律(3):
27 6 951 438
8 16 357 492
6 72 159 834
2 94 753 618
4 38 753 276
将幻方围绕中心,向右旋转90度一次、二次、三次
向右旋转90度一次、二次、三次后将幻方上下对换。
5:如何编幻方(幻方的构成)
1)三阶幻方构成方法之一
九子斜排 上下对易 左右更替 四维挺出
★下面是一个四阶幻方,求a=_1_3
3接跟5+下a23有来+3关你=1的们9+有看b+哪看25些幻行和b=, 17
35 5
能哪幻求些和出列=5来或+2吗哪3+?些15对+2角9=线74?
11 23
17
幻a=和74-不(35能+2求3+出3)=来13 ….
19 1b7 a 25 3 但可以表示出来:
29 33 3
35+23+3+a 1
幻和
19+b+25+a 3
2
1
一.三阶幻方的编制和补充
二.四阶幻方的编制和补充

三阶幻方有技巧, 和 3数斜着先排好, 上下左右要交换, 然后各自归位了!
相关文档
最新文档