第二届全国大学生数学竞赛预赛试题及参考答案(非数学类)

合集下载

全国大学生数学竞赛(非数学类)大纲及历年预赛试卷

全国大学生数学竞赛(非数学类)大纲及历年预赛试卷
—1—
余弦函数,以及它们的和与积 7. 欧拉(Euler)方程. 8. 微分方程的简单应用 五、向量代数和空间解析几何 1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积. 2. 两向量垂直、平行的条件、两向量的夹角. 3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦. 4. 曲面方程和空间曲线方程的概念、平面方程、直线方程. 5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和
f ( y) x2[1 f ( y)]3
1 x2 (1 f ( y))
f ( y) [1 f ( y)]2 x2[1 f ( y)]3
解法 2 方程 xe f (y) ey ln 29 取对数,得 f ( y) ln x y ln ln 29
(1)
方程(1)的两边对 x 求导,得 f ( y) y 1 y x
4.设函数 y y(x) 由方程 xe f ( y) ey ln 29 确定,其中 f 具有二阶导数,且 f 1 ,

d2 y dx 2
________________.
解法 1 方程 xe f ( y) ey ln 29 的两边对 x 求导,得
e f ( y) xf ( y) ye f ( y) e y y ln 29

[ 1 f ( y) y]xe f ( y) ye y ln 29 x
因 e y ln 29 xe f ( y) 0 ,故 1 f ( y) y y,即 y
1
,因此
x
x(1 f ( y))
d2 y dx 2
y
1 x2 (1 f
( y))
f ( y) y x[1 f ( y)]2
点到直线的距离. 6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次

历届大学生高等数学竞赛真题及答案非数学类14页

历届大学生高等数学竞赛真题及答案非数学类14页

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x y x x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,令u t -=1,则21t u -=2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生竞赛历年试题名师精讲(非数学类)(2009——2013)第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.解因为()sin sin 2n π==……(2分);原式lim 1exp lim ln 1nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦=2.证明广义积分0sin xdx x ⎰不是绝对收敛的解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。

……………………(2分)因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。

…………(2分) 而()021n n π∞=+∑发散,故由比较判别法0n n a ∞=∑发散。

……………………………………(2分)3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。

解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………(1分)故()2222x x y y y x +'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………(2分) 将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………(2分)又()()()()()2222222222422x xy y y x x x y yy x y y x ''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-,故()01y=-为极大值,()21y-=为极小值。

第二届全国大学生数学竞赛预赛试卷(非数学类)

第二届全国大学生数学竞赛预赛试卷(非数学类)

22,x y +x x 2t te2111))[n n s s s s s14解:(简要过程)(简要过程)二阶导数为正,则一阶导数单增,f(x)先减后增,因为f(x)有小于0的值,所以只需在两边找两大于0的值。

的值。

将f(x)二阶泰勒展开二阶泰勒展开'''2()()(0)(0)2f f x f f x x x =++因为二阶倒数大于0,所以,所以lim ()x f x ®+¥=+¥,lim ()x f x ®-¥=-¥证明完成。

证明完成。

三、(15分)设函数()y f x =由参数方程22(1)()x t t t y t y ì=+>-í=î所确定,其中()t y 具有二阶导数,曲线()y t y =与22132t u y e du e -=+ò在1t =出相切,求函数()t y 。

解:(这儿少了一个条件22d y dx = )由()y t y =与22132t u y e du e-=+ò在1t =出相切得出相切得3(1)2ey =,'2(1)e y ='//()22dy dy dt dx dx dt t ty ==+ 22d y dx ='3''()(2(/)(/)//(22)2)2()d dy dx d dy dx dt dx dx d t t t t t y y ==++-=。

上式可以得到一个微分方程,求解即可。

上式可以得到一个微分方程,求解即可。

四、(15分)设10,,nn n k k a S a =>=å证明:证明:(1)当1a >时,级数1nn na S a +¥=å收敛;收敛; (2)当1a £且()ns n ®¥®¥时,级数1nn na S a +¥=å发散。

历年全国大学生高等数学竞赛真题及答案

历年全国大学生高等数学竞赛真题及答案

第一届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,共20分)1.计算____________,其中区域由直线与两坐标轴所围成三角形区域.解 令,则,,(*) 令,则,,,,2.设是连续函数,且满足, 则____________.解 令,则,,解得。

因此。

3.曲面平行平面的切平面方程是__________. 解 因平面的法向量为,而曲面在处的法向量为,故与平行,因此,由=--++⎰⎰y x yx x yy x Dd d 1)1ln()(D 1=+y x v x u y x ==+,v u y v x -==,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu u t-=121t u -=dt 2d t u -=42221t t u +-=)1)(1()1(2t t t u u +-=-⎰+--=0142d )21(2(*)t t t ⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t )(x f ⎰--=222d )(3)(x x f x x f =)(x f ⎰=2d )(x x f A23)(2--=A x x f A A x A x A 24)2(28d )23(22-=+-=--=⎰34=A 3103)(2-=x x f 2222-+=y x z 022=-+z y x 022=-+z y x )1,2,2(-2222-+=y x z ),(00y x )1),,(),,((0000-y x z y x z y x )1),,(),,((0000-y x z y x z y x )1,2,2(-,知,即,又,于是曲面在处的切平面方程是,即曲面平行平面 的切平面方程是。

第二届(2010年)全国大学生数学竞赛预赛试卷及参考答案(非数学类).docx

第二届(2010年)全国大学生数学竞赛预赛试卷及参考答案(非数学类).docx

第二届(2010年)全国大学生数学竞赛预赛试卷及参考答案(非数学类)(150分钟)一、(25分,每小题5分)(1)设£ = (1 +。

)(1 + /)•••(】 + a,"),其中|a|< 1,求limxn->xi、L(2)求lime"A 1+— o"I x)(3)设5>0 ,求/ = f X e^xx x ll dx(n = 1,2,.. j oJo(4)设函数/(/)有二阶连续导数,r = y/x2 + y2,y) = f一\r)⑸求直线述了。

与直线A字二宁弓的距离。

解:(1) £=(1 +。

)(1 + /)…(1 +旷)=兀=(1一。

)(1 + 0)(1 + /)・・・(1 + 旷)/(1-6/)=(1—cr)(1 + )・・・(1+)/(1—a)=・・・=(1—)/(1—a)・•. liinx 1HII(1 - ah) / (1 - a) = 1 / (1 - a) /?-^x⑵lim厂A->X 1+丄I X)f 1 2lnr"* (1+—)r x2 ln<l+—) -x =lim^ -r = limeA->X .V->X令x=l/t,则UnU+f)-f)原式=lime z: = lime 21 fTO fTO =lin* 丽77 =产/TO(3)/” = f 宀”故=(-|)f x"de~sx =(-》[x”严I; -J;严X]=(4)略(不难,难得写)(5)用参数方程求解。

答案好像是二、(15分)设函数/(X)在(-8,乜)上具有二阶导数,并且f\x) > 0, lim f\x) = a > 0, lun f\x) = 0 v 0,且存在一点x0,使得/(x0) < 0。

A->-X证明:方程/(x) = 0在(YO、*O)恰有两个实根。

解:(简要过程) 二阶导数为正,则一阶导数单增,f(x)先减后增,因为f(x)有小于0的值,所以只需在两边 找两大于0的值。

历届全国大学生高等数学竞赛真题及答案非数学类

历届全国大学生高等数学竞赛真题及答案非数学类

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

2023年历届全国大学生数学竞赛预赛试卷

2023年历届全国大学生数学竞赛预赛试卷

全国大学生数学竞赛预赛试卷(非数学类)2023年 第一届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,共20分)1.计算()ln(1)d yx y x y ++=⎰⎰____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足220()3()d 2f x x f x x =--⎰,则()f x =____________.3.曲面2222x z y =+-平行平面022=-+z y x 的切平面方程是__________.4.设函数)(x y y =由方程29ln )(y y f e xe =拟定,其中f 具有二阶导数,且1≠'f ,则=22d d x y________________. 二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,10()()g x f xt dt =⎰,且A xx f x =→)(lim,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx yx ye y xe x ye y xed d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly yx ye y xe.五、(10分)已知xxe xe y 21+=,xxexe y -+=2,xx x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试拟定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小.七、(15分)已知)(x u n 满足1()()1,2,n x nn u x u x x e n -'=+=,且neu n =)1(,求函数项级数∑∞=1)(n nx u之和.八、(10分)求-→1x 时,与∑∞=02n n x 等价的无穷大量.2023年 第二届全国大学生数学竞赛预赛试卷(非数学类)一、(25分,每小题5分) (1)设22(1)(1)(1)nn x a a a =+++,其中||1,a <求lim .n n x →∞(2)求21lim 1x xx ex -→∞⎛⎫+ ⎪⎝⎭. (3)设0s >,求0(1,2,)sx n n I e x dx n ∞-==⎰.(4)设函数()f t 有二阶连续导数,1(,)r g x y f r ⎛⎫== ⎪⎝⎭,求2222g g x y ∂∂+∂∂.(5)求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离. 二、(15分)设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0f x ''>,lim ()0x f x α→+∞'=>,lim ()0x f x β→-∞'=<,且存在一点0x ,使得0()0f x <. 证明:方程()0f x =在(,)-∞+∞恰有两个实根.三、(15分)设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所拟定,且22d 3d 4(1)y x t =+,其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ. 四、(15分)设10,nn n kk a S a=>=∑,证明:(1)当1α>时,级数1nn na S α+∞=∑收敛; (2)当1α≤且()n s n →∞→∞时,级数1nn na S α+∞=∑发散. 五、(15分)设l 是过原点、方向为(,,)αβγ,(其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c ++≤(其中0c b a <<<,密度为1)绕l 旋转. (1)求其转动惯量;(2)求其转动惯量关于方向(,,)αβγ的最大值和最小值.六、(15分)设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简朴闭曲线C 上,曲线积分422d ()d 0L xy x x yx y ϕ+=+⎰的值为常数.(1)设L 为正向闭曲线22(2)1x y -+=,证明422d ()d 0L xy x x yx y ϕ+=+⎰;(2)求函数()x ϕ;(3)设C 是围绕原点的光滑简朴正向闭曲线,求422d ()d C xy x x y x y ϕ++⎰.2023年 第三届全国大学生数学竞赛预赛试卷(非数学类)一、计算下列各题(本题共3小题,每小题各5分,共15分)(1)求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭;(2).求111lim ...12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (3)已知()2ln 1arctan tt x e y t e⎧=+⎪⎨=-⎪⎩,求22d d y x .二、(本题10分)求方程()()24d 1d 0x y x x y y +-++-=的通解.三、(本题15分)设函数()f x 在0x =的某邻域内具有二阶连续导数,且()()()0,0,0f f f '''均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()12320230lim0h k f h k f h k f h f h→++-=. 四、(本题17分)设2221222:1x y z a b c ∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值.五、(本题16分)已知S 是空间曲线22310x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z ≥)(取上侧),∏是S 在(,,)P x y z 点处的切平面,(,,)x y z ρ是原点到切平面∏的距离,,,λμν表达S 的正法向的方向余弦. 计算:(1)()d ,,SzS x y z ρ⎰⎰;(2)()3d Sz x y z S λμν++⎰⎰ 六、(本题12分)设()f x 是在(,)-∞+∞内的可微函数,且()()f x mf x '<,其中01m <<,任取实数0a ,定义1ln (),1,2,...n n a f a n -==,证明:11()n n n a a ∞-=-∑绝对收敛.七、(本题15分)是否存在区间[]0,2上的连续可微函数()f x ,满足(0)(2)1f f ==,()1f x '≤,2()d 1f x x ≤⎰?请说明理由.2023年 第四届全国大学生数学竞赛预赛试卷(非数学类)一、(本大题共5小题,每小题6分,共30分)解答下列各题(规定写出重要环节). (1)求极限21lim(!)n n n →∞.(2)求通过直线2320:55430x y z l x y z +-+=⎧⎨+-+=⎩的两个互相垂直的平面1π和2π,使其中一个平面过点(4,3,1)-.(3)已知函数(,)ax byz u x y e+=,且20ux y∂=∂∂. 拟定常数a 和b ,使函数(,)z z x y =满足方程20z z zz x y x y∂∂∂--+=∂∂∂∂. (4)设函数()u u x =连续可微,(2)1u =,且3(2)d ()d Lx y u x x u u y +++⎰在右半平面与途径无关,求(,)u x y . (5)求极限1lim x xx t +.二、(本题10分)计算20sin d x e x x +∞-⎰.三、(本题10分)求方程21sin 2501x x x=-的近似解,精确到0.001.四、(本题12分)设函数()y f x =二阶可导,且()0f x ''>,(0)0f =,(0)0f '=,求330()lim ()sin x x f u f x u→,其中u 是曲线()y f x =上点(,())P x f x 处的切线在x 轴上的截距. 五、(本题12分)求最小实数C ,使得满足10()d 1f x x =⎰的连续函数()f x 都有10f dx C ≤⎰.六、(本题12分)设()f x 为连续函数,0t >. 区域Ω是由抛物面22z x y =+和球面 2222x y z t ++=(0)z >所围起来的部分. 定义三重积分222()()d F t f x y z v Ω=++⎰⎰⎰,求()F t 的导数()F t ''.七、(本题14分)设1n n a ∞=∑与1n n b ∞=∑为正项级数,证明:(1)若()111lim 0n n n n n a a b b →∞++->,则级数1n n a ∞=∑收敛;(2)若()111lim 0n n n n n a a b b →∞++-<,且级数1n n b ∞=∑发散,则级数1n n a ∞=∑发散.2023年 第五届全国大学生数学竞赛预赛试卷(非数学类)一、解答下列各题(每小题6分,共24分,规定写出重要环节) 1.求极限(lim 1sin nn →∞+.2.证明广义积分0sin d xx x+∞⎰不是绝对收敛的. 3.设函数()y y x =由323322x x y y +-=拟定,求()y x 的极值.4.过曲线0)y x =≥上的点A 作切线,使该切线与曲线及x 轴所围成的平面图形的面积为34,求点A 的坐标. 二、(满分12分)计算定积分2sin arctan d 1cos xx x e I x xππ-⋅=+⎰.三、(满分12分)设()f x 在0x =处存在二阶导数(0)f '',且()lim0x f x x→=.证明:级数11n f n ∞=⎛⎫⎪⎝⎭∑收敛.四、(满分12分)设(),()0()f x f x m a x b π'≤≥>≤≤,证明2sin ()d baf x x m≤⎰. 五、(满分14分)设∑是一个光滑封闭曲面,方向朝外.给定第二型的曲面积分()()()333d d 2d d 3d d I x x y z y y z x z z x y ∑=-+-+-⎰⎰.试拟定曲面∑,使积分I 的值最小,并求该最小值.六、(满分14分)设22d d ()()a a C y x x yI r x y -=+⎰,其中a 为常数,曲线C 为椭圆222x xy y r ++=,取正向.求极限lim ()a r I r →+∞.七、(满分14分)判断级数()()1111212n n n n ∞=+++++∑的敛散性,若收敛,求其和.2023年 第六届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(共有5小题,每题6分,共30分)1.已知1x y e =和1x y xe =是齐次二阶常系数线性微分方程的解,则该方程是 .2.设有曲面22:2S z x y =+和平面022:=++z y x L . 则与L 平行的S 的切平面方程是 .3.设函数()y y x =由方程21sin d 4y xt x t π-⎛⎫= ⎪⎝⎭⎰所拟定.求d d x y x == .4.设1(1)!nn k kx k ==+∑,则=∞→n n x lim .5.已知130()lim 1xx f x x e x →⎛⎫++= ⎪⎝⎭,则=→20)(lim x x f x .二、(本题12分)设n 为正整数,计算21d 1cos ln d d n eI x x x π-⎛⎫= ⎪⎝⎭⎰. 三、(本题14分)设函数()f x 在]1,0[上有二阶导数,且有正常数,A B 使得()f x A ≤,|"()|f x B ≤. 证明:对任意]1,0[∈x ,有22|)('|BA x f +≤. 四、(本题14分)(1)设一球缺高为h ,所在球半径为R . 证明该球缺体积为2)3(3h h R -π,球冠面积为Rh π2;(2)设球体12)1()1()1(222≤-+-+-z y x 被平面6:=++z y x P 所截的小球缺为Ω,记球缺上的球冠为∑,方向指向球外,求第二型曲面积分d d d d d d I x y z y z x z x y ∑=++⎰⎰.五、(本题15分)设f 在],[b a 上非负连续,严格单增,且存在],[b a x n ∈,使得⎰-=b a nn n dx x f ab x f )]([1)]([.求n n x ∞→lim . 六、(本题15分)设2222212n n nnA n n n n =++++++,求⎪⎭⎫ ⎝⎛-∞→n n A n 4lim π.2023年 第七届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题6分,共5小题,满分30分)(1)极限2222sin sin sin lim 12n n n n n n n n πππ→∞⎛⎫⎪+++= ⎪+++ ⎪⎝⎭. (2)设函数(),z z x y =由方程,0z z F x y y x ⎛⎫++= ⎪⎝⎭所决定,其中(),F u v 具有连续偏导数,且0u v xF yF +≠则z zxy x y∂∂+=∂∂ .(3)曲面221z x y =++在点()1,1,3M -的切平面与曲面所围区域的体积是 .(4)函数()[)[)3,5,00,0,5x f x x ⎧∈-⎪=⎨∈⎪⎩在(]5,5-的傅立叶级数在0x =收敛的是 . (5)设区间()0,+∞上的函数()u x 定义域为()2xt u x e dt +∞-=⎰,则()u x 的初等函数表达式是 .二、(12分)设M 是以三个正半轴为母线的半圆锥面,求其方程.三、(12分)设()f x 在(),a b 内二次可导,且存在常数,αβ,使得对于(),x a b ∀∈,有()()()f x f x f x αβ'=+,则()f x 在(),a b 内无穷次可导.四、(14分)求幂级数()()30211!nn n x n ∞=+-+∑的收敛域及其和函数.五、(16分)设函数()f x 在[]0,1上连续,且()()110,1f x dx xf x dx ==⎰⎰. 试证:(1)[]00,1x ∃∈使()04f x >; (2)[]10,1x ∃∈使()14f x =.五、(16分)设(),f x y 在221x y +≤上有连续的二阶偏导数,且2222xx xy yy f f f M ++≤. 若()()()0,00,0,00,00x y f f f ===,证明:()221,4x y f x y dxdy +≤≤⎰⎰.2023年 第八届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,满分30分) 1、若()f x 在点x a =可导,且()0f a ≠,则()1lim nn f a n f a →∞⎛⎫⎛⎫+ ⎪⎪⎝⎭⎪= ⎪⎪⎝⎭__________. 2、若()10f =,()1f '存在,求极限()()220sin cos tan3lim1sin x x f x x xI ex→+=-.3、设()f x 有连续导数,且()12f =,记()2x z f e y =,若zz x∂=∂,求()f x 在0x >的表达式.4、设()sin 2x f x e x =,求02n a π<<,()()40f .5、求曲面22 2x z y =+平行于平面220x y z +-=的切平面方程.二、(14分)设()f x 在[]0,1上可导,()00f =,且当()0,1x ∈,()01f x '<<,试证当()0,1a ∈,()()()230d d aaf x xf x x >⎰⎰.三、(14分)某物体所在的空间区域为222:22x y z x y z Ω++≤++,密度函数为222x y z ++,求质量()222d d d M x y z x y z Ω=++⎰⎰⎰.四、(14分)设函数()f x 在闭区间[]0,1上具有连续导数,()00f =,()11f =, 证明:()10111lim 2n n k k n f x dx fn n →∞=⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭∑⎰.五、(14分)设函数()f x 在闭区间[]0,1上连续,且()1d 0I f x x =≠⎰,证明:在()0,1内存在不同的两点12,x x ,使得()()12112f x f x I+=. 六、(14分)设()f x 在(),-∞+∞可导,且()()()23f x f x f x =+=+.用Fourier 级数理论证明()f x 为常数.2023年 第九届全国大学生数学竞赛预赛试卷(非数学类)一、1. 已知可导函数满足⎰+=+xx tdt t f x xf 01sin )(2)(cos ,则()f x =_________.2. 求⎪⎭⎫ ⎝⎛+∞→n n n 22sin lim π.3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数. 则21xx yy w w c-=_________. 4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则240(sin )lim x f x x→=____. 5. 不定积分sin 2sin 2(1sin )x e x I dx x -=-⎰=________. 6. 记曲面222z x y =+和z =围成空间区域为V ,则三重积分Vzdxdydz ⎰⎰⎰=___________.二、(本题满分14分) 设二元函数(,)f x y 在平面上有连续的二阶偏导数. 对任何角度α,定义一元函数()(cos ,sin )g t f t t =ααα.若对任何α都有(0)0dg dtα=且22(0)0d g dt α>. 证明)0,0(f 是(,)f x y 的极小值. 三、(本题满分14分) 设曲线Γ为在2221x y z ++=,1x z +=,0,0,0x y z ≥≥≥上从(1,0,0)A 到(0,0,1)B 的一段. 求曲线积分⎰Γ++=xdz zdy ydx I .四、(本题满分15分) 设函数()0f x >且在实轴上连续,若对任意实数t ,有||()1t x e f x dx +∞---∞≤⎰,则,()a b a b ∀<,2()2b a b a f x dx -+≤⎰. 五、(本题满分15分) 设{}n a 为一个数列,p 为固定的正整数。

第一届和第二届大学生全国数学竞赛试题

第一届和第二届大学生全国数学竞赛试题

证法二: (1)根据 Green 公式,将曲线积分化为区域 D 上的二重积分
∫ xe
L
sin y
dy − ye − sin x dx = ∫∫ (esin y + e − sin x )d δ
D
∫ xe
L
− sin y
dy − ye
sin x
dx = ∫∫ (e − sin y + esin x )d δ
e x + e2 x + 二、求极限 lim( x →0 n
+ e nx
)
e x
,其中 n 是给定的正整数.
e e x + e2 x + 解:原式 = lim exp{ ln( x →0 x n = exp{lim
x →0
+ e nx
)}
e(ln(e x + e 2 x + x
+ e nx ) − ln n)
t 2n ≥ 2 + t2 n = 0 (2n)!
∫ xe
L
sin y
5 dy − ye− sin x dx = ∫∫ (esin y + e− sin x )dδ = ∫∫ (esin x + e− sin x )dδ ≥ π 2 . 2 D D
x 2x
x −x x 2x 五、已知 y1 = xe + e , y2 = xe + e , y3 = xe + e
(4)设函数 y = y ( x) 由方程 xe
f ( y)
= e y ln 29 确定,其中 f 具有二阶导数,
d2y 且 f ′ ≠ 1 ,则 =____________________. dx 2

历届全国大学生高等数学竞赛真题及答案非数学类.docx

历届全国大学生高等数学竞赛真题及答案非数学类.docx

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解:令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

历届全国大学生数学竞赛预赛试题

历届全国大学生数学竞赛预赛试题

全国大学生数学竞赛预赛试卷(非数学类)2009年 第一届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,共20分)1.计算()ln(1)d yx y x y ++=⎰⎰,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足22()3()d 2f x x f x x =--⎰,则()f x =.3.曲面2222x z y =+-平行平面022=-+z y x 的切平面方程是.4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy.二、(5分)求极限x enx x x x ne e e )(lim 20+++→Λ,其中n 是给定的正整数. 三、(15分)设函数)(xf 连续,10()()g x f xt dt =⎰,且A x x f x =→)(lim 0,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小. 七、(15分)已知)(x u n 满足1()()1,2,n x n n u x u x x e n -'=+=L ,且ne u n =)1(,求函数项级数∑∞=1)(n n x u 之和.八、(10分)求-→1x 时,与∑∞=02n n x 等价的无穷大量.2010年 第二届全国大学生数学竞赛预赛试卷(非数学类) 一、(25分,每小题5分)(1)设22(1)(1)(1)nn x a a a =+++L ,其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭. (3)设0s >,求0(1,2,)sx n n I e x dx n ∞-==⎰L .(4)设函数()f t 有二阶连续导数,1(,)r g x y f r ⎛⎫== ⎪⎝⎭,求2222g gx y∂∂+∂∂. (5)求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离.二、(15分)设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0f x ''>,lim ()0x f x α→+∞'=>,lim ()0x f x β→-∞'=<,且存在一点0x ,使得0()0f x <. 证明:方程()0f x =在(,)-∞+∞恰有两个实根.三、(15分)设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,且22d 3d 4(1)y x t =+, 其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ.四、(15分)设10,nn n k k a S a =>=∑,证明:(1)当1α>时,级数1nn na S α+∞=∑收敛;(2)当1α≤且()n s n →∞→∞时,级数1n n na S α+∞=∑发散.五、(15分)设l 是过原点、方向为(,,)αβγ,(其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c ++≤(其中0c b a <<<,密度为1)绕l 旋转.(1)求其转动惯量;(2)求其转动惯量关于方向(,,)αβγ的最大值和最小值. 六、(15分)设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422d ()d 0Lxy x x yx y ϕ+=+⎰Ñ的值为常数.(1)设L 为正向闭曲线22(2)1x y -+=,证明422d ()d 0L xy x x yx yϕ+=+⎰Ñ; (2)求函数()x ϕ;(3)设C 是围绕原点的光滑简单正向闭曲线,求422d ()d C xy x x yx y ϕ++⎰Ñ.2011年 第三届全国大学生数学竞赛预赛试卷(非数学类) 一、计算下列各题(本题共3小题,每小题各5分,共15分)(1)求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭;(2).求111lim ...12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (3)已知()2ln 1arctan ttx e y t e⎧=+⎪⎨=-⎪⎩,求22d d yx.二、(本题10分)求方程()()24d 1d 0x y x x y y +-++-=的通解. 三、(本题15分)设函数()f x 在0x =的某邻域内具有二阶连续导数,且()()()0,0,0f f f '''均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()12320230lim0h k f h k f h k f h f h →++-=. 四、(本题17分)设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值. 五、(本题16分)已知S 是空间曲线22310x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z ≥)(取上侧),∏是S 在(,,)P x y z 点处的切平面,(,,)x y z ρ是原点到切平面∏的距离,,,λμν表示S 的正法向的方向余弦. 计算: (1)()d ,,SzS x y z ρ⎰⎰;(2)()3d Sz x y z S λμν++⎰⎰ 六、(本题12分)设()f x 是在(,)-∞+∞内的可微函数,且()()f x mf x '<,其中01m <<,任取实数0a ,定义1ln (),1,2,...n n a f a n -==,证明:11()n n n a a ∞-=-∑绝对收敛.七、(本题15分)是否存在区间[]0,2上的连续可微函数()f x ,满足(0)(2)1f f ==,()1f x '≤,2()d 1f x x ≤⎰?请说明理由.2012年 第四届全国大学生数学竞赛预赛试卷(非数学类) 一、(本大题共5小题,每小题6分,共30分)解答下列各题(要求写出重要步骤). (1)求极限21lim(!)n n n →∞. (2)求通过直线2320:55430x y z l x y z +-+=⎧⎨+-+=⎩的两个互相垂直的平面1π和2π,使其中一个平面过点(4,3,1)-. (3)已知函数(,)ax byz u x y e+=,且20ux y∂=∂∂. 确定常数a 和b ,使函数(,)z z x y =满足方程20z z zz x y x y∂∂∂--+=∂∂∂∂.(4)设函数()u u x =连续可微,(2)1u =,且3(2)d ()d L x y u x x u u y +++⎰在右半平面与路径无关,求(,)u x y .(5)求极限1lim x x x t +. 二、(本题10分)计算20sin d x e x x +∞-⎰.三、(本题10分)求方程21sin 2501x x x=-的近似解,精确到0.001.四、(本题12分)设函数()y f x =二阶可导,且()0f x ''>,(0)0f =,(0)0f '=,求330()lim ()sin x x f u f x u→,其中u 是曲线()y f x =上点(,())P x f x 处的切线在x 轴上的截距.五、(本题12分)求最小实数C ,使得满足10()d 1f x x =⎰的连续函数()f x都有10f dx C ≤⎰.六、(本题12分)设()f x 为连续函数,0t >. 区域Ω是由抛物面22z x y =+和球面 2222x y z t ++=(0)z >所围起来的部分. 定义三重积分222()()d F t f x y z v Ω=++⎰⎰⎰,求()F t 的导数()F t ''.七、(本题14分)设1n n a ∞=∑与1n n b ∞=∑为正项级数,证明:(1)若()111lim 0n n n n n a a b b →∞++->,则级数1n n a ∞=∑收敛; (2)若()111lim 0n n n n n a a b b →∞++-<,且级数1n n b ∞=∑发散,则级数1n n a ∞=∑发散.2013年 第五届全国大学生数学竞赛预赛试卷(非数学类) 一、解答下列各题(每小题6分,共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.2.证明广义积分0sin d xx x+∞⎰不是绝对收敛的. 3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值. 4.过曲线0)y x =≥上的点A 作切线,使该切线与曲线及x 轴所围成的平面图形的面积为34,求点A 的坐标.二、(满分12分)计算定积分2sin arctan d 1cos xx x e I x xππ-⋅=+⎰.三、(满分12分)设()f x 在0x =处存在二阶导数(0)f '',且()lim 0x f x x→=.证明:级数11n f n ∞=⎛⎫⎪⎝⎭∑收敛.四、(满分12分)设(),()0()f x f x m a x b π'≤≥>≤≤,证明2sin ()d baf x x m ≤⎰.五、(满分14分)设∑是一个光滑封闭曲面,方向朝外.给定第二型的曲面积分()()()333d d 2d d 3d d I xx y z y y z x z z x y∑=-+-+-⎰⎰.试确定曲面∑,使积分I 的值最小,并求该最小值.六、(满分14分)设22d d ()()a aC y x x y I r x y -=+⎰,其中a 为常数,曲线C 为椭圆222x xy y r ++=,取正向.求极限lim ()a r I r →+∞. 七、(满分14分)判断级数()()1111212n n n n ∞=+++++∑L 的敛散性,若收敛,求其和.2014年 第六届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(共有5小题,每题6分,共30分)1.已知1x y e =和1x y xe =是齐次二阶常系数线性微分方程的解,则该方程是 .2.设有曲面22:2S z x y =+和平面022:=++z y x L . 则与L 平行的S 的切平面方程是 .3.设函数()y y x =由方程21sin d 4y xt x tπ-⎛⎫= ⎪⎝⎭⎰所确定.求d d x y x== .4.设1(1)!nn k kx k ==+∑,则=∞→n n x lim . 5.已知13()lim 1xx f x x e x →⎛⎫++= ⎪⎝⎭,则=→20)(lim x x f x . 二、(本题12分)设n 为正整数,计算21d 1cos ln d d n eI x x x π-⎛⎫= ⎪⎝⎭⎰. 三、(本题14分)设函数()f x 在]1,0[上有二阶导数,且有正常数,A B 使得()f x A ≤,|"()|f x B ≤. 证明:对任意]1,0[∈x ,有22|)('|BA x f +≤. 四、(本题14分)(1)设一球缺高为h ,所在球半径为R . 证明该球缺体积为2)3(3h h R -π,球冠面积为Rh π2;(2)设球体12)1()1()1(222≤-+-+-z y x 被平面6:=++z y x P 所截的小球缺为Ω,记球缺上的球冠为∑,方向指向球外,求第二型曲面积分d d d d d d I x y z y z x z x y ∑=++⎰⎰.五、(本题15分)设f 在],[b a 上非负连续,严格单增,且存在],[b a x n ∈,使得⎰-=b a nn n dx x f ab x f )]([1)]([.求n n x ∞→lim . 六、(本题15分)设2222212n n n n A n n n n =++++++L ,求⎪⎭⎫ ⎝⎛-∞→n n A n 4lim π.2015年 第七届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题6分,共5小题,满分30分)(1)极限2222sin sin sin lim 12n n n n n n n n πππ→∞⎛⎫⎪+++= ⎪+++ ⎪⎝⎭L . (2)设函数(),z z x y =由方程,0z z F x y yx ⎛⎫++= ⎪⎝⎭所决定,其中(),F u v 具有连续偏导数,且0u v xF yF +≠则z z x y xy∂∂+=∂∂ .(3)曲面221z x y =++在点()1,1,3M -的切平面与曲面所围区域的体积是 . (4)函数()[)[)3,5,00,0,5x f x x ⎧∈-⎪=⎨∈⎪⎩在(]5,5-的傅立叶级数在0x =收敛的是 .(5)设区间()0,+∞上的函数()u x 定义域为()20xt u x e dt +∞-=⎰,则()u x 的初等函数表达式是 .二、(12分)设M 是以三个正半轴为母线的半圆锥面,求其方程. 三、(12分)设()f x 在(),a b 内二次可导,且存在常数,αβ,使得对于(),x a b ∀∈,有()()()f x f x f x αβ'=+,则()f x 在(),a b 内无穷次可导. 四、(14分)求幂级数()()30211!nn n x n ∞=+-+∑的收敛域及其和函数.五、(16分)设函数()f x 在[]0,1上连续,且()()11000,1f x dx xf x dx ==⎰⎰. 试证:(1)[]00,1x ∃∈使()04f x >; (2)[]10,1x ∃∈使()14f x =.五、(16分)设(),f x y 在221x y +≤上有连续的二阶偏导数,且2222xx xy yy f f f M ++≤. 若()()()0,00,0,00,00x y f f f ===,证明:()221,4x y f x y dxdy +≤≤⎰⎰.2016年 第八届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,满分30分) 1、若()f x 在点x a =可导,且()0f a ≠,则()1lim nn f a n f a →∞⎛⎫⎛⎫+ ⎪ ⎪⎝⎭ ⎪= ⎪⎪⎝⎭. 2、若()10f =,()1f '存在,求极限()()220sin cos tan3lim1sin x x f x x xI ex→+=-.3、设()f x 有连续导数,且()12f =,记()2x z f e y =,若z z x∂=∂,求()f x 在0x >的表达式.4、设()sin 2xf x ex =,求02n a π<<,()()40f .5、求曲面22 2x z y =+平行于平面220x y z +-=的切平面方程.二、(14分)设()f x 在[]0,1上可导,()00f =,且当()0,1x ∈,()01f x '<<,试证当()0,1a ∈,()()()2300d d aaf x xf x x >⎰⎰.三、(14分)某物体所在的空间区域为222:22x y z x y z Ω++≤++,密度函数为222x y z ++,求质量()222d d d M xy z x y z Ω=++⎰⎰⎰.四、(14分)设函数()f x 在闭区间[]0,1上具有连续导数,()00f =,()11f =,证明:()10111lim 2nn k k n f x dx f n n →∞=⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭∑⎰.五、(14分)设函数()f x 在闭区间[]0,1上连续,且()10d 0I f x x =≠⎰,证明:在()0,1内存在不同的两点12,x x ,使得()()12112f x f x I+=. 六、(14分)设()f x 在(),-∞+∞可导,且()()(2f x f x f x =+=.用级数理论证明()f x 为常数.2017年 第九届全国大学生数学竞赛预赛试卷(非数学类) 一、1. 已知可导函数满足⎰+=+xx tdt t f x xf 01sin )(2)(cos ,则()f x .2. 求⎪⎭⎫ ⎝⎛+∞→n n n 22sin lim π.3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c为非零常数. 则21xx yy w w c-. 4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则240(sin )lim x f x x →. 5. 不定积分sin 2sin 2(1sin )x e xI dx x -=-⎰. 6. 记曲面222z x y =+和224z x y =--围成空间区域为V ,则三重积分Vzdxdydz ⎰⎰⎰.二、(本题满分14分) 设二元函数(,)f x y 在平面上有连续的二阶偏导数. 对任何角度α,定义一元函数()(cos ,sin )g t f t t =ααα.若对任何α都有(0)0dg dtα=且22(0)0d g dt α>. 证明)0,0(f 是(,)f x y 的极小值.三、(本题满分14分) 设曲线Γ为在2221x y z ++=,1x z +=,0,0,0x y z ≥≥≥上从(1,0,0)A 到(0,0,1)B 的一段. 求曲线积分⎰Γ++=xdz zdy ydx I .四、(本题满分15分) 设函数()0f x >且在实轴上连续,若对任意实数t ,有||()1t x ef x dx +∞---∞≤⎰,则,()a b a b ∀<,2()2ba b a f x dx -+≤⎰. 五、(本题满分15分) 设{}n a 为一个数列,p 为固定的正整数。

2021年历届全国大学生高等数学竞赛真题及答案非数学类

2021年历届全国大学生高等数学竞赛真题及答案非数学类

前三届高数竞赛初赛试题(非数学类)(参加高等数学竞赛同窗最核心是好好复习高等数学知识,适当看某些辅导书及有关题目,核心是某些各大高校试题。

)第一届全国大学生数学竞赛初赛试卷 一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 和两坐标轴所围成三角形区域.解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是持续函数,且满足⎰--=2022d )(3)(x x f x x f ,则=)(x f ____________.解:令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 切平面方程是__________. 解:因平面022=-+z y x 法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 和)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 切平面方程是0122=--+z y x 。

历届全国大学生高等数学竞赛真题及答案非数学类.docx

历届全国大学生高等数学竞赛真题及答案非数学类.docx

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解:令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

第二届全国大学生数学竞赛预赛试卷(附答案)

第二届全国大学生数学竞赛预赛试卷(附答案)

1
2e
2e
ψ ′(1) = 2 . e
………………(11 分)
4
所以 u
t =1

′(1)
=
2 e
,知 C1
=
1 e

3.
∫ ∫ ψ (t) =
(1 + t)(3t + C1)dt =
(3t 2
+
(3 +
C1)t
+ C1)dt
=t 3
+
3 + C1 2
t2
+ C1t
+ C2
,由
ψ (1) =
3 2e
d = a ⋅ (l1 × l2 ) = | −2 + 1 − 18 | = 19 = 19
l1 × l2
1 + 1 + 36 38 2
二(本题共 15 分)、 设函数 f (x) 在 (−∞,+∞) 上具有二阶导数,并且
f
′′( x)
>
0,
lim
x→+∞
f
′(x)

>0,
lim
x→−∞
f
′(x)
其中 a < ξ < x , a < η < x . 注意到 f ′′(η ) > 0 (因为 f ′′(x) > 0 ),则
3
f (x) > f (a) + f ′(a)(x − a) (x > a)
又因 f ′(a) > 0, 故存在 b > a ,使得
f (b) > f (a) + f ′(a)(b − a) > 0

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)

一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(__ ,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(yy f e xe=确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy_____.二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 25d d π⎰≥--L y y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u xn n n, 且n eu n =)1(, 求函数项级数∑∞=1)(n n x u 之和. 八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量.一、(25分,每小题5分) (1)设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭。

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生竞赛历年试题名师精讲(非数学类)(2009-—2013)第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1。

求极限(lim 1sin nn →∞+。

解因为()sin sin 2sinn ππ==……(2分);原式lim 1exp lim ln 1sin nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦…exp lim n n →∞⎛= ⎝2.证明广义积分0sin xdx x ⎰不是绝对收敛的解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。

……………………(2分)因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰.…………(2分) 而()021n n π∞=+∑发散,故由比较判别法nn a∞=∑发散。

……………………………………(2分)3。

设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。

解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………(1分)故()2222x x y y y x+'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………(2分) 将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………(2分)又()()()()()2222222222422x xy y y x x x y yy x y y x ''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-, 故()01y =-为极大值,()21y -=为极小值.…………………………(3分)4.过曲线)0y x ≥上的点A 作切线,使该切线与曲线及x 轴所围成的平面图形的面积为34,求点A 的坐标. 解 设切点A的坐标为(t ,曲线过A点的切线方程为y -=令0y =,由切线方程得切线与x 轴交点的横坐标为02x t =-。

全国大学生数学竞赛初赛2010年第二届《非数学专业》竞赛题目及答案解析高清无水印版

全国大学生数学竞赛初赛2010年第二届《非数学专业》竞赛题目及答案解析高清无水印版

的 对 称 式 方 程 为 l1 :
1
1
0
,记两直线的方向向量分别为
l1 1, 1, 0 ,l2 4, 2, 1 ,两直线上两定点分别为P1(0, 0, 0), P2(2, 1, 3),并记
a
P1P2
2, 1, 3 ,l1
l2
1, 1,6;
a
l1
l2
| 2 1 18 |
19
其中 x, y, z | x2 y2 z2 1 而
a2 b2 c2
x2dV a x2 dx
a
y2 z2
dy dz
x2
a x2
a
ab 1
x2 a2
dx
4a 3bc 15
.
1
b2 c2
a2
4
或者使用换元法,有
x2dV
2
d
d
1
a
2r
2
0
0
0
sin2
cos2
abcr2
x2
dy
D
4xd x
dy
0.
6
C
x4 y2
的值为常数.
(1) 设 L 为正向闭曲线(x 2)2 y2 1 . 证明:
2xy d x (x)d y 0;
L
x4 y2
2xy d x (x)d y
(2) 求函数(x) ; (3) 设C 是围绕原点的光滑简单正向闭曲线,求
C
x4 y2
.
2xy d x (x)d y
【参考答案】设
L
x4 y2
I ,将曲线L 分割成两段L L1 L2 。设L0 不经过原点的
光滑曲线,使得 L0 L1 和 L0 L2 分别组成围绕原点的分段光滑闭曲线. 由已知条件可知 L0 L1 和

第二届大学生数学竞赛(非数学专业组)试卷

第二届大学生数学竞赛(非数学专业组)试卷

广东第二师范学院第二届大学生数学竞赛(非数学专业组)试卷( A )卷姓名学号 系级班别试题 一 二 三 四 五 总分 分值 100分 得分评卷教师(签名)考试有关事项说明考试日期:2013年9月14日 考试用时:150分钟考试地点:花都校区教学楼、海珠校区综合楼 考试形式:闭卷一、填空题(每题4分,共28分) 分值 28 得分1.0ln(1)lim1cos x x x x→+=-.2.设函数231sin ,0,(),x t dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .3.设函数()y y x =由方程1yy xe =-确定,则=x dx dy= . 4.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是______________.5.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.6.设函数()f x 在(0,)+∞连续,对任意正数,a b ,积分()abaf x dx ⎰与a 无关,且(1)1f =,则()f x = ____.7.设椭圆22:143x y L +=的周长为a ,则22(234)Lxy x y ds ++=⎰ . 二、计算题(每题8分,共64分) 分值 64 得分1.求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数.2.若)0()1ln(sin lim 30≠=+-⎰→c c dtt t xax x b x ,试确定常数c b a ,,的值.3.求二重积分max(,1)d d Dxy x y ⎰⎰,其中{(,)02,02}D x y x y =≤≤≤≤.4.设抛物线c bx ax y ln 22++=过原点,当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31,试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.5.设函数)(x y y =由方程29ln )(y y f e xe=确定,其中f 具有二阶导数,且1≠'f ,求22d ydx.6. 已知连续函数)(x f 满足0()()()xf x x f t x t dt =+-⎰,判定级数11n f n ∞=⎛⎫⎪⎝⎭∑的敛散性,并求极限02()lim 11xx f t dtx +→+-⎰.7. 求级数21(1)(1)nn x x n n ∞=+++∑的收敛域8.计算曲线积分22(1)(1)L ydx x dyI x y --=-+⎰ ,其中L 为椭圆22194x y +=的正向.三、证明题(每小题8分,共8分)1. 设),(y x z z =由方程(,)0z zF x y y x++=给出,且,F z 都可微, 证明:z zx y z xy x y∂∂+=-∂∂.分值 8得分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档