中考第二次模拟考试数学试题(含答案)

合集下载

2024年福建省厦门市双十中学中考二模数学试题(含答案)

2024年福建省厦门市双十中学中考二模数学试题(含答案)

厦门双十中学2023—2024学年下初三中考模拟考试试卷数学(试卷满分:150分考试时间:120分钟)准考证号______姓名______班级座位号______注意事项:1.全卷三大题,25小题,试卷共5页,另有答题卡;2.答案一律写在答题卡上,否则不予得分;3.可直接用2B 铅笔画图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.-2024的相反数是( )A .2024B .C.D .-20242.图①是2024年1月7日厦门市全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台的主视图是()图1图2A .B .C .D .3.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4.如图所示的是一杆杆秤,杆秤是利用杠杆原理来称质量的简易衡器,由木制的带有秤星的秤杆、金属秤砣、秤钩、提绳等组成.在称物品时,提绳AB 与秤砣绳CD 互相平行,若,则的度数为()A .B .C .D .5.在相同条件下的多次重复试验中,一个随机事件发生的频率为f ,该事件的概率为P .下列说法正确的是()A .试验次数越多,f 越大B .f 与P 都可能发生变化C .试验次数越多,f 越接近于PD .当试验次数很大时,f 在P 附近摆动,并趋于稳定6.下列运算正确的是()12024-1202492α∠=︒β∠88︒90︒92︒86︒A.3a+4b=7ab B.C.D.7.某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵,则下列方程正确的是()A.B.C.D.8.如图,在中,,,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则弧AD的长为()A.B.C.D.9.综合实践课上,小明画出△ABD,利用尺规作图找一点C,使得四边形ABCD为平行四边形.(1)~(3)是其作图过程.(1)分别以点B,D为圆心,大于长为半径作弧,相交于两点,作过这两点的直线交BD于O(2)连接AO并延长,再以O为圆心,OA长为半径作弧,交AO延长线于点C(3)连接DC,BC,则四边形ABCD即为所求.在小明的作法中,可以直接用于判定四边形ABCD为平行四边形的依据是()(1)(2)(3)A.两组对边分别平行B.两组对边分别相等C.一组对边平行且相等D.对角线互相平分10.如图,将一块等腰直角三角板ABC放在平面直角坐标系中,点,直角顶点,点B在第二象限.将△ABC沿x轴正方向平移后得到,点A,B的对应点,恰好落在双曲线上,()32622b b=()2224a a+=+1266a a a÷=40030050x x=-30040050x x=-40030050x x=+30040050x x=+Rt ABC△90C∠=︒30B∠=︒π4π35π32π12BD()0,1A()2,0C-A B C'''△A'B'kyx=则平移的距离等于( )A .4B .6C .8D .10二、填空题(本大题有6小题,每小题4分,共24分)11.如图,数轴上的点A 、B 分别对应实数a 、b ,则a +b ______0.(用“>”“<”或“=”填空)12.2025年,6G 将在中国进行标准化制定,预计2030年左右,实现商用.其理论数据传输速率1TB 每秒,1TB 约等于1100000000KB ,将1100000000用科学记数法表示为______13.若一个多边形内角和等于,则这个多边形的边数为______.14.小明记录了自己一周内每天的校外体育活动时间,制作了如下折线统计图,这周小明活动时间的中位数是______15.台球是用球杆在台上击球,依靠计算得分确定比赛胜负的室内高雅体育运动.如图是一张宽为m 米,长为2m 米的矩形台球桌ABCD ,某球员击位于AB 的中点E 处的球,球沿EF 射向边AD ,然后反弹到C 点的球袋,球的反弹规律满足光的反射定律.若球的速度为v 米/秒,则球从出发到入袋的时间等于______(用含m 和v ,的式子表示)16.已知点,,抛物线上,且a <b <m -1.则n 的取值范围是______.三、解答题(本大题有9小题,共86分)17.(本题满分818.(本题满分8分)已知:如图,点B ,F ,C ,E 在一条直线上,BF =CE ,AC =DF ,且.720︒()2,A n a -()4,B b (),C n a 221y x mx m =++-1122-⎛⎫+ ⎪⎝⎭AC DF ∥求证:∠B =∠E19.(本题满分8分)解不等式组:20.(本题满分8分)化简.下面是小红和小莉两位同学的部分运算过程:小红的解法:解:原式……小莉的解法:解:原式……(1)小红的解法依据是______;小莉的解法依据是______.(填序号)①等式的基本性质;②分式的基本性质;③乘法交换律;④乘法分配律.(2)若,请任选一种解法,求出代数式的值.21.(本题满分8分)随着经济快速发展,环境问题越来越受到人们的关注,某校为了了解节能减排、垃圾分类等知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”、“了解”、“了解较少”、“不了解”四类,并将结果绘制成以下两幅不完整的统计图,请根据统计图回答下列问题:(1)估计这所学校3000名学生中,“不了解”的人数是多少人.(2)“非常了解”的4人中有,,两名男生,,,两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图或列表的方法,求恰好抽到2名男生的概率.22.(本题满分10分)如图1,在四边形ABCD 中,AB =AD =CD ,以AB 为直径的经过点C ,连接AC 、OD 交于点E .(1)证明:AE =CE()32252123x x x x +≥+⎧⎪⎨--<⎪⎩①②21122a a a a -⎛⎫+÷ ⎪++⎝⎭222122122222aa a a a a a a a a +-+-⎛⎫=+÷=÷= ⎪+++++⎝⎭2222221121211a a a a a a a a a a +++⎛⎫=+⋅=⋅+⋅=⎪+-+--⎝⎭1a =1A 2A 1B 2B O(2)若AC=2BC①证明:DA是的切线②如图2连接BD交于点F,连接EF,求∠DEF的度数图1图223.(本题满分10分)根据以下素材,探索完成任务.探究遮阳伞下的影子长度素材1(1)图3是某款自动旋转遮阳伞,伞面完全张开时张角呈,图4是其侧面示意图.(2)已知支架AB长为2.5米,且垂直于地面BC,悬托架AE=DE=0.5米,点E固定在伞面上,且伞面直径DF是DE的4倍.当伞面完全张开时,点D,E,F始终共线.(3)为实现遮阳效果最佳,伞面装有接收器可以根据太阳光线的角度变化,自动调整手柄D沿着AB移动,以保证太阳光线与DF始终垂直.图3 图4素材2某地区某天下午不同时间的太阳高度角(太阳光线与地面的夹角)参照表:时刻12点13点14点15点16点17点太阳高度角(度)907560453015素材3小明坐在露营椅上的高度(头顶到地面的距离)约为1米,如图2,小明坐的位置记为点Q.问题解决任务1确定影子长度某一时刻测得AD=0.8米,①DF=______;______②请求出此时影子GH的长度;任务2判断是否照射到这天14点,小明坐在离支架3米处的Q点,请判断此时小明是否会被太阳光照射到?请你说明理由;任务3探究合理范围小明打算在这天14:00—15:00露营休息,为保证小明全程不被太阳光照射到,请你通过计算后直接写出BQ的取值范围:______24.(本题满分13分)OO180︒αtan ADE∠=在中,,AD 平分∠BAC ,点E 是段BD 上的动点(不与B ,D 重合)(1)如图5,若AE ⊥AC ,求证:图5(2)如图6,点F 是线段DB 延长线上的一点,且BF =2DE ①求证E 是CF 的中点②将线段DE 绕点E 顺时针旋转得到线段EH ,连接AH ,FH ,求证AH ⊥FH图625.(本题满分13分)顶点为D 的抛物线过和(1)求抛物线的函数表达式;(2)直线交抛物线于点A 和B (A 在B 的左边),交y 轴于C ;直线AD 交x 轴于点P ,①若的面积是面积的2倍,求k 的值;②连接BP ,过点B 作BQ ⊥AP ,交y 轴于Q ,用等式表示CQ 和BP 的数量关系,并证明.厦门双十中学2023—2024学年下初三中考模拟考试试卷数学参考答案(试卷满分:150分考试时间:120分钟)一、选择题(本大题有10小题,每小置4分,共40分.)题号12345678910选项A CB A D DB B D B 二、填空题(本大题有6小题,每小题4分,共24分)11.>12.13.814.63ABC △ABC C α∠=∠=()045α<<︒2AD DE BD=⋅2α2y ax c =+()2,3-()0,2-():40AB y kx k =-<POD △ADC △91.110⨯15.16.3<n<4或n>6(对一半给2分,有n>3给1分)三、解答题(本大题共9小题,共86分)17.(本题满分8分)原式18.(本题满分8分)证明:∵BF=CE,∴BF+CF=CE+CF即BC=EF∵,∴∠ACB=∠DFE,又∵AC=DF,∴,∴∠B=∠E.19.(本题满分8分)解:由①得,由②得,∴不等式组的解集为20.(本题满分8分)解(1)②;④(2)小红的解法:原式小莉的解法:原式,当时,原式21.(本题满分8分)解:(1)本次调查的学生总人数为20÷40%=50“不了解”对应的百分比,估计该校3000名学生中“不了解”的人数是3000×30%=900(人)(2)画树状图如下:52mv22=+=AC DF∥()SASACB DFE≌△△3625x x+≥+1x≥-3624x x-<-2x<12x-≤<()222121122222aa a a aa a a a a++--⎛⎫=+÷=÷⎪+++++⎝⎭()()()()()()21112122222111a a a a aa a a a a a++-++=÷=⋅=++++--2222221121211a a a a aa a a a a+++⎛⎫=+⋅=⋅+⋅⎪+-+--⎝⎭()()()22212211111aa aa a a a a++=+==--+--1a=+===()504112030%50-++=由图可知共有12种可能的结果,恰好抽到2名男生的结果有2个,∴P (抽到2名男生) 22.(本题满分10分)(1)解法1:证明:如图1,连接OC ,∵AO =CO ,AD =CD ,OD =OD ,∴∴∠AOD =∠COD ,∵OA =OC ,∴AE =CE ;解法2:连接OC∵AO =CO ,AD =CD ,∴点O ,D 在AC 的垂直平分线上∴OD 垂直平分AC ,∴AE =CE ;(2)证明:解法1:∵AB 是的直径,∴,∴∵AE =CE ,∴AC =2AE ,∵AC =2BC ,∴BC =AE ,∴,∴∠ABC =∠DAE ,∵∴,∴OA ⊥AD ∵OA 是半径,∴DA 是的切线;(3)解法1:如图2,连接AF,21126==()SSS ADO CDO ≌△△O 90ACB ∠=︒90ACB AED ∠=∠=︒()Rt Rt HL ACB DEA ≌△△90ABC BAC ∠+∠=︒90BAC DAE OAD ∠=∠=∠=︒O∵AB 为直径,∴,∵,∴E ,F 都在以AD 为直径的圆上∴A 、E 、F 、D 四点共圆∵DF =DF ,∴∠DEF =∠DAF ,∵AB =AD ,∴,∴解法2连接AF 和CF∵AB =AD ,,∴∵,∴,∴BF =AF ,∵CF =CF ,∴∠CBF =∠FEA ,∵BC =AE ,∴,∴FC =FE ,∠BFC =∠AFE ,∴∴,∴24.(本题满分13分)(1)∵AB =AC ,AD 平分∠BAC ,∴AD ⊥BC ,BD =CD ∴∵AE ⊥AC ,∴,∴∵,∴∠EAD =∠C ∴,∴∴,∴(2)①设DE =m ,BF =2m ,BD =CD ∴CE =m +n ,DF =2m ∴EF =2m +n —m =m +n90AFB ∠=︒90AED ∠=︒90BAD ∠=︒1452DAF BAD ∠=∠=︒45DEF ∠=︒90BAD ∠=︒45ABF ADB ∠=∠=︒90AFB ∠=︒45ABF BAF ∠=∠=︒FCE FEA ≌△△90EFC ∠=︒45CEF ECF ∠=∠=︒45DEF ∠=︒90ADE ADC ∠=∠=︒90CAE ∠=︒90EAD CAD ∠+∠=︒90C CAD ∠+∠=︒ADE CDA ∽△△AD DECD AD=2AD CD DE =⋅2AD BD DE =⋅∴EF =CE ∴E 是CF 的中点②将线段DE 绕点E 顺时针旋转得到线段EH ,连接AH ,FH ,求证AH ⊥FH方法一:取AF 的中点O ,连接EO ,HO ,DO∵点O 是AF 的中点,E 是CF 的中点,∴OE 是△ACF 的中位线∴,∴∵线段DE 绕点E 顺时针旋转得到线段EH ∴DE =EH ,∴∴∴∴∠OED =∠OEH ,∴∴OD =OH ,∵,∴AO =FO =OD ∴AO =FO =OH∴点H 在以O 为圆心,AF 为直径的圆上∴,∴AH ⊥FH方法二:延长FH 至G 使FH =GH ,连接AG ,CG∵线段DE 绕点E 顺时针旋转得到线段EH ,∴∴∵点E 是CF 的中点,H 是FG 的中点∴EH 是△FCG的中位线,∴2αOE AC ∥OEF C α∠=∠=2α2DEH α∠=1802FEH α∠=︒-1802180OEH ααα∠=︒-+=︒-()3601802180OED ααα∠=︒-︒--=︒-OED OEH ≌△△90ADF ∠=︒90AHF ∠=︒2α2DEH α∠=1802FEH α∠=︒-EH CG∥∴∴∴,∴∠ABF =∠ACG∵DE =EH ,BF =2DE ,∴BF =2EH ,∵CG =2EH ,∴BF =CG ,又∵AB =AC ,∴,∴AF =AG ,∴AH ⊥FH方法三:作EG ⊥DH 于G ,∵线段DE 绕点E 顺时针旋转得到线段EH∴DE =EH ,∴,∴∵DH =2DG ,BF =2DE ,∴,∵,∴,∴,∴,∵,,∴,∴,∠BAF =∠DAH ,∴,∠BAD =∠FAH ,∴,∴,∴AH ⊥FH25.(本题满分13分)(1)∵抛物线过∴c =-2,∴又∵抛物线过∴4a -2=-3,,∴1802FEH FCG α∠=∠=︒-1802180ACG ααα∠=︒-+=︒-180ABF α∠=︒-ABF ACG ≌△△2α2DEH α∠=12DEG DEH α∠=∠=sin sin DG DEG DEα∠==sin DH BF α=90ADB ∠=︒sin AD ABD AB∠=sin AD AB α∠=AD BF AB=9090180ADH DE EDH αα∠=∠+∠=︒+︒-=︒-180ABF α∠=︒-ABF ADH ∽△△AD AH AB AF=AD AB AH AF=ADB AHF ∽△△90ADB AHF ∠=∠=︒()0,2-22y ax =-()2,3-14a =-2124y x =--(2)①由题得,∴,∴CD =OD =2作AM ⊥y 轴于M∵的面积是面积的2倍,∴OP =2AM∵,∠ADM =∠PDO ,∴∴即,∴DM =1,∴OM =1+2=3,∴,∴,∴,∴,②由得,∴,∴∵,∴,∴,解得∴,∴∴轴,∴()0,2-()0,4C -2124y x =--POD △ADC △90POD AMD ∠=∠=︒ADM PDO ∽△△AM DO OP DM =122DM =3A M y y ==-21234A x --=-2A x =-()2,3A --243k --=-12k =-21244y x y kx ⎧=--⎪⎨⎪=-⎩21424kx x -=--2480x kx +-=8A B x x ⋅=-1B Ax x =-ADM PDOS ∽△△AM DO OP DM=212242A x x OP ⎛⎫---- ⎪-⎝⎭=8A OP x =-8,0A P x ⎛⎫- ⎪⎝⎭P B x x =BP y ∥221102244B B BP x x ⎛⎫=---=+ ⎪⎝⎭作BN ⊥y 轴于N∵BQ ⊥AP ,,∴∠BQN +∠PDO =∠OPD +∠PDO =,∴∠BQN =∠PDO .∴∵∴∴∴∴BP =CQ .90POD ∠=︒90︒tan tan BQN OPD∠=∠22tan P BDO OPD PO x x ∠===22tan 112244B B B Q B Q B Q B x x x BN BQN ON y y y x y x ∠====-⎛⎫++--- ⎪⎝⎭22124B B Q B x x y x =++2124Q B y x =-()221124244B B CQ x x =---=+。

初中二模数学试题及答案

初中二模数学试题及答案

初中二模数学试题及答案一、选择题(本题共8小题,每小题3分,共24分。

每小题只有一个选项符合题意)1. 下列各数中,最小的数是()A. -3B. -2C. 0D. 22. 已知一个角的补角是120°,则这个角的度数是()A. 60°B. 120°C. 180°D. 240°3. 计算下列代数式的值:(x-2)^{2}-(x+2)^{2},其中x=1()A. 0B. 4C. 6D. 84. 若a、b、c是三个连续的自然数,且a<b<c,那么下列不等式中正确的是()A. a-b<0B. b-c>0C. b-a>0D. c-b<05. 已知等腰三角形的两边长分别为5和10,则该三角形的周长为()A. 20B. 25C. 30D. 无法确定6. 一个不透明的袋子中有3个红球和2个白球,随机摸出一个球,摸到红球的概率是()A. 0.3B. 0.4C. 0.5D. 0.67. 已知函数y=-2x+3,当x=2时,y的值为()A. -1B. 1C. 3D. 58. 一个圆柱的底面半径为2cm,高为6cm,其体积为()A. 75.36cm^{3}B. 150.72cm^{3}C. 251.2cm^{3}D. 376.8cm^{3}二、填空题(本题共4小题,每小题3分,共12分)9. 一个等腰三角形的底角为45°,则其顶角为_90°_。

10. 已知一个直角三角形的两条直角边长分别为3和4,则其斜边长为_5_。

11. 一个数的相反数是-5,则这个数为_5_。

12. 一个数的绝对值是3,则这个数可以是_±3_。

三、解答题(本题共6小题,共64分)13. 解方程:2x-3=7。

(6分)解:移项得2x=7+3,即2x=10,所以x=5。

14. 已知一个三角形的两边长分别为6和8,且这两边的夹角为60°,求该三角形的面积。

(6分)解:根据三角形面积公式S=1/2×底×高,其中底为6,高为8×sin60°=4√3,所以S=1/2×6×4√3=12√3。

2022年人教版中考第二次模拟检测《数学卷》含答案解析

2022年人教版中考第二次模拟检测《数学卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共8小题)1. 如图是圆规示意图,张开的两脚所形成的角大约是()A. 90°B. 60°C. 45°D. 30°2. 实数m,n在数轴上对应点的位置如图所示,若mn<0,且|m|<|n|,则原点可能是( )A. 点AB. 点BC. 点CD. 点D3. 如果a﹣b=3,那么代数式2b aaa a b⎛⎫-⋅⎪+⎝⎭的值为( )A. ﹣3B. 3C. 3D. 234. 若正多边形的内角和是540︒,则该正多边形的一个外角为( )A. 45︒B. 60︒C. 72︒D. 90︒5. 今年是我国建国70周年,回顾过去展望未来,创新是引领发展的第一动力,北京科技创新能力不断增强,下面的统计图反映了2010﹣2018年北京市每万人发明专利申请数与授权数的情况.根据统计图提供的信息,下列推断合理的是( ) A. 2010﹣2018年,北京市毎万人发明专利授权数逐年增长B. 2010﹣2018年,北京市毎万人发明专利授权数的平均数超过10件C. 2010年申请后得到授权的比例最低D. 2018年申请后得到授权的比例最高6. 弹簧原长(不挂重物)15cm ,弹簧总长L (cm )与重物质量x (kg )的关系如下表所示: 弹簧总长L (cm ) 16 17 18 19 20 重物重量x (kg )0.51.01.52.02.5当重物质量为5kg (在弹性限度内)时,弹簧总长L (cm )是( ) A. 22.5B. 25C. 27.5D. 307. 如图,抛物线2815y x x =-+与轴交于、两点,对称轴与轴交于点,点(0,2)D -,点(0,6)E -,点是平面内一动点,且满足90DPE ∠=︒,M 是线段PB 的中点,连结CM .则线段CM 的最大值是( ).A. 3B.412C.72D. 58. 如图,点A ,B ,C 是⊙O 上的三个点,点D 在BC 的延长线上.有如下四个结论:①在∠ABC 所对的弧上存在一点E ,使得∠BCE =∠DCE ;②在∠ABC 所对的弧上存在一点E ,使得∠BAE =∠AEC ;③在∠ABC 所对的弧上存在一点E ,使得EO 平分∠AEC ;④在∠ABC 所对的弧上任意取一点E (不与点A ,C 重合) ,∠DCE=∠ABO +∠AEO 均成立.上述结论中,所有..正确结论的序号是( )A. ①②③B. ①③④C. ②④D. ①②③④二.填空题(共8小题)9. 质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为10. 用一组,,的值说明命题”若ac bc =,则a b =“是错误的,这组值可以是a =__________,b =__________,c =__________.11. 如图,某人从点A 出发,前进5m 后向右转60°,再前进5m 后又向右转60°,这样一直走下去,当他第一次回到出发点A 时,共走了_____m .12. 如图所示的网格是正方形网格,△ABC 是_____三角形.(填”锐角”“直角”或”钝角”)13. 如图,过⊙O 外一点P 作⊙O 的两条切线P A ,PB ,切点分别为A ,B ,作直线BC ,连接AB ,AC ,若∠P =80°,则∠C =_____°.14. 如图,在矩形ABCD 中,过点B 作对角线AC 的垂线,交AD 于点E ,若AB =2,BC =4,则AE =_____.15. 2019年2月,全球首个5G 火车站在上海虹桥火车站启动.虹桥火车站中5G 网络峰值速率为4G 网络峰值速率的10倍.在峰值速率下传输8千兆数据,5G 网络比4G 网络快720秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 千兆数据,依题意,可列方程为___.16. ▱ABCD 中,对角线AC 、BD 相交于点O ,E 是边AB 上的一个动点(不与A 、B 重合),连接EO 并延长,交CD 于点F ,连接AF ,CE ,下列四个结论中: ①对于动点E ,四边形AECF 始终是平行四边形;②若∠ABC <90°,则至少存在一个点E ,使得四边形AECF 是矩形; ③若AB >AD ,则至少存在一个点E ,使得四边形AECF 菱形; ④若∠BAC =45°,则至少存在一个点E ,使得四边形AECF 是正方形. 以上所有正确说法的序号是_____.三.解答题(共12小题)17.计算:052sin 60(2019)π-︒--18. 解不等式组: 4(21)31385x x x x -<+⎧⎪-⎨<⎪⎩19. 已知:如图1,直线,所成的角跑到画板外面去了,你有什么办法作出这两条直线所成角的角平分线? 小明的做法是: (1)如图2,画PC a ∥;(2)以为圆心,任意长为半径画圆弧,分别交直线,PC 于点,; (3)连结AD 并延长交直线于点;请你先完成下面的证明,然后完成第(4)步作图: ∵PC a ∥∴1PDA ∠=∠( )∵以圆心,任意长为半径画圆弧,分别交直线,PC 于点, ∴PA PD =∴PAB ∠=∠ ∴1PAB ∠=∠∴以直线,的交点和点、为顶点所构成的三角形为等腰三角形( ) 根据上面的推理证明完成第(4)步作图(4)请在图2画板内作出”直线,所成的跑到画板外面去的角”的平分线(画板内的部分),尺规作出图形,并保留作图痕迹.第(4)步这么作图的理论依据是: .20. 已知关于的方程mx2+(2m-1)x+m-1=0(m≠0) .(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数的值.21. 如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.(1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若∠ABE=30°,AE=2,求EF的长.22. 在平面直角坐标系xOy中,直线l:y=x+b与x轴交于点A(﹣2,0),与y轴交于点B.双曲线ykx =与直线l交于P,Q两点,其中点P的纵坐标大于点Q的纵坐标(1)求点B的坐标;(2)当点P的横坐标为2时,求k的值;(3)连接PO,记△POB的面积为S.若112S<<,结合函数图象,直接写出k的取值范围.23. 如图,AB是O的直径,CB与O相切于点B.点D在O上,且BC BD=,连接CD交O于点E.过点E作EF⊥AB于点H,交BD于点M,交O于点F.(1)求证:∠MED=∠MDE.(2)连接BE,若3ME=,MB=2.求BE的长.24. 为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛,该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息.a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100)b.乙部门成绩如下:40 52 70 70 71 73 77 78 80 8182 82 82 82 83 83 83 86 91 94c.甲、乙两部门成绩的平均数、方差、中位数如下:平均数方差中位数甲79.6 36.84 78.5乙77 147.2 md.近五年该单位参赛员工进入复赛的出线成绩如下:2014年2015年2016年2017年2018年出线成绩(百79 81 80 81 82分制)根据以上信息,回答下列问题:(1)写出表中m值;(2)可以推断出选择部门参赛更好,理由为;(3)预估(2)中部门今年参赛进入复赛的人数为.25. 如图,P是直径AB上的一点,AB=6,CP⊥AB交半圆AB于点C,以BC为直角边构造等腰Rt△BCD,∠BCD=90°,连接OD.小明根据学习函数的经验,对线段AP,BC,OD的长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:(1)对于点P在AB上的不同位置,画图、测量,得到了线段AP,BC,OD的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置…AP 0.00 1.00 2.00 3.00 4.00 5.00 …BC 6.00 5.48 4.90 4.24 3.46 2.45 …OD 6.71 7.24 7.07 6.71 6.16 5.33 …在AP,BC,OD的长度这三个量中,确定________的长度是自变量,________的长度和________的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当OD=2BC时,线段AP的长度约为________.26. 在平面直角坐标系xOy中,抛物线y=mx2﹣6mx+9m+1(m≠0).(1)求抛物线的顶点坐标;(2)若抛物线与x轴的两个交点分别为A和B点(点A在点B的左侧),且AB=4,求m的值.(3)已知四个点C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若抛物线与线段CD和线段EF都没有公共点,请直接写出m的取值范围.27. 已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P在射线CM上,连接P A,PQ,记BQ=kCP.(1)若α=60°,k=1,①如图1,当Q为BC中点时,求∠P AC的度数;②直接写出P A、PQ的数量关系;(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.28. 对于平面直角坐标系xOy中的点P,Q,给出如下定义:若P,Q为某个三角形的顶点,且边PQ上的高h,满足h=PQ,则称该三角形为点P,Q的”生成三角形”.(1)已知点A(4,0);①若以线段OA为底的某等腰三角形恰好是点O,A的”生成三角形”,求该三角形的腰长;②若Rt△ABC是点A,B“生成三角形”,且点B在x轴上,点C在直线y=2x﹣5上,则点B的坐标为;(2)⊙T的圆心为点T(2,0),半径为2,点M的坐标为(2,6),N为直线y=x+4上一点,若存在Rt△MND,x的取值范围.是点M,N的”生成三角形”,且边ND与⊙T有公共点,直接写出点N的横坐标N答案与解析一.选择题(共8小题)1. 如图是圆规示意图,张开的两脚所形成的角大约是()A. 90°B. 60°C. 45°D. 30°【答案】B【解析】【分析】观察图形,直接判断结果.【详解】解:观察图形,张开的两脚所形成的角大约是60,故选B.【点睛】本题考查了角的概念,正确的识别图形是解题的关键.2. 实数m,n在数轴上对应的点的位置如图所示,若mn<0,且|m|<|n|,则原点可能是( )A. 点AB. 点BC. 点CD. 点D【答案】B【解析】【分析】由若mn<0可知,m、n异号,所以原点可能是点B或点C,而又由|m|<|n|即可根据距离正确判断.【详解】解:∵mn<0∴m、n异号∴原点可能是点B或点C又由|m|<|n|,观察数轴可知,原点应该是点B.故选B.【点睛】本题考查的是绝对值的意义,利用数形结合的思想研究绝对值会让问题更加明确清晰,是一种常用的方法.3. 如果a ﹣b 2b a a a a b ⎛⎫-⋅ ⎪+⎝⎭的值为( )A. C. 3 D. 【答案】A【解析】【分析】先化简分式,然后将a ﹣b =代入计算即可. 【详解】解:原式=22b a a a a b⋅-+ =()()a b a b a a a b-+-⋅+ =﹣(a ﹣b ),∵a ﹣b,故选A .【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.4. 若正多边形的内角和是540︒,则该正多边形的一个外角为( )A. 45︒B. 60︒C. 72︒D. 90︒【答案】C【解析】【分析】根据多边形的内角和公式()2180n -•︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】正多边形的内角和是540︒,多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,多边形的每个外角360572÷︒==.故选.【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.5. 今年是我国建国70周年,回顾过去展望未来,创新是引领发展第一动力,北京科技创新能力不断增强,下面的统计图反映了2010﹣2018年北京市每万人发明专利申请数与授权数的情况.根据统计图提供的信息,下列推断合理的是( )A. 2010﹣2018年,北京市毎万人发明专利授权数逐年增长B. 2010﹣2018年,北京市毎万人发明专利授权数的平均数超过10件C. 2010年申请后得到授权的比例最低D. 2018年申请后得到授权的比例最高【答案】B【解析】【分析】根据统计图得出各年的具体数据,依据增长情况和百分比概念逐一判断即可得.【详解】解:A .2010﹣2018年,北京市毎万人发明专利授权数在2012﹣2013年不变,此选项错误; B .2010﹣2018年,北京市毎万人发明专利授权数的平均数为5.989.99.910.916.319.121.222.39++++++++≈13.7,超过10件,此选项正确; C .2014年申请后得到授权的比例最低,此选项错误;D .2017年申请后得到授权的比例最高,此选项错误;故选B .【点睛】本题考查条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.6. 弹簧原长(不挂重物)15cm ,弹簧总长L (cm )与重物质量x (kg )的关系如下表所示:弹簧总长L (cm )16 17 18 19 20 重物重量x (kg ) 0.5 1.0 1.5 2.0 2.5当重物质量为5kg (在弹性限度内)时,弹簧总长L (cm )是( )A. 22.5B. 25C. 27.5D. 30【答案】B【解析】【分析】根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x =5时,代入函数解析式求值即可.【详解】设弹簧总长L (cm )与重物质量x (kg )的关系式为L =kx +b , 将(0.5,16)、(1.0,17)代入,得:0.51617k b k b +=⎧⎨+=⎩, 解得:k 2b 15=⎧⎨=⎩, ∴L 与x 之间的函数关系式为:L =2x +15;当x =5时,L =2×5+15=25(cm ) 故重物为5kg 时弹簧总长L 是25cm ,故选B .【点睛】此题主要考查根据实际问题列一次函数关系式,解决本题的关键是得到弹簧长度的关系式,难点是得到x 千克重物在原来基础上增加的长度.7. 如图,抛物线2815y x x =-+与轴交于、两点,对称轴与轴交于点,点(0,2)D -,点(0,6)E -,点是平面内一动点,且满足90DPE ∠=︒,M 是线段PB 的中点,连结CM .则线段CM 的最大值是( ).A. 3B. 412C.72D. 5【答案】C【解析】【分析】解方程x2−8x+15=0得A(3,0),利用抛物线的性质得到C点为AB的中点,再根据圆周角定理得到点P 在以DE为直径的圆上,圆心Q点的坐标为(−4,0),接着计算出AQ=5,⊙Q的半径为2,延长AQ交⊙Q于F,此时AF的最大值为7,连接AP,利用三角形的中位线性质得到CM=12AP,从而得到CM的最大值.【详解】解方程x2−8x+15=0得x1=3,x2=5,则A(3,0),∵抛物线的对称轴与x轴交于点C,∴C点为AB的中点,∵∠DPE=90°,∴点P在以DE为直径的圆上,圆心Q点的坐标为(−4,0),AQ=2234=5,⊙Q的半径为2,延长AQ交⊙Q于F,此时AF最大,最大值为2+5=7,连接AP,∵M是线段PB的中点,∴CM为△ABP为中位线,∴CM=12 AP,∴CM的最大值为72.故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和圆周角定理.8. 如图,点A,B,C是⊙O上的三个点,点D在BC的延长线上.有如下四个结论:①在∠ABC所对的弧上存在一点E,使得∠BCE=∠DCE;②在∠ABC所对的弧上存在一点E,使得∠BAE=∠AEC;③在∠ABC所对的弧上存在一点E,使得EO平分∠AEC;④在∠ABC所对的弧上任意取一点E(不与点A,C重合),∠DCE=∠ABO +∠AEO均成立.上述结论中,所有..正确结论的序号是( )A. ①②③B. ①③④C. ②④D. ①②③④【答案】D【解析】【分析】①当BE是⊙O的直径时,根据圆周角定理和邻补角的定义得到结论;②当AE∥BC时,得到弧AB=弧CE,根据圆周角定理得到结论;③当点E是弧AC的中点时,根据角平分线的定义得到结论;④根据圆内接四边形的性质和四边形的内角和得到结论.【详解】解:①当BE是⊙O的直径时,∠BCE=∠DCE=90°,故①正确;②当AE∥BC时,弧AB=弧CE,∴弧BCE=弧ABC,∴∠BAE=∠AEC;故②正确;③当点E是弧AC的中点时,EO平分∠AEC;故正确;④如图2,∵∠A=∠ECD,∠A+12∠BOE=180°,∴∠ABO+∠AEO=360°-∠A-∠BOE=360°-∠DCE-2(180°-∠COE),∴∠DCE=∠ABO+∠AEO,故正确;故选D .【点睛】本题考查圆周角定理,解题关键是正确的理解题意.二.填空题(共8小题)9. 质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为 【答案】12 【解析】【分析】向上一面的数字是偶数的情况数除以总情况数6即为所求的概率.【详解】解:正方体骰子,六个面上分别刻有的1,2,3,4,5,6六个数字中,偶数为2,4,6,则向上一面的数字是偶数的概率为3162=. 【点睛】明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比. 10. 用一组,,的值说明命题”若ac bc =,则a b =“是错误的,这组值可以是a =__________,b =__________,c =__________.【答案】 (1). -1 (2). -2 (3). 0【解析】【分析】根据题意选择a 、b 、c 的值即可.【详解】当c =0,a =−1,b =−2,所以ac =bc ,但a ≠b ,当c =0,a =3,b =−2,所以ac =bc ,但a ≠b ,故答案不唯一;故答案为:-1;-2,0.【点睛】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11. 如图,某人从点A出发,前进5m后向右转60°,再前进5m后又向右转60°,这样一直走下去,当他第一次回到出发点A时,共走了_____m.【答案】30【解析】【分析】从A点出发,前进5m后向右转60°,再前进5m后又向右转60°,…,这样一直走下去,他第一次回到出发点A时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.【详解】解:依题意可知,某人所走路径为正多边形,设这个正多边形的边数为n,则60n=360,解得n=6,∴他第一次回到出发点A时一共走了:5×6=30(m),故答案为30.【点睛】本题考查了多边形的外角和,正多边形的判定与性质.关键是根据每一个外角判断多边形的边数.12. 如图所示的网格是正方形网格,△ABC是_____三角形.(填”锐角”“直角”或”钝角”)【答案】锐角【解析】【分析】根据三边的长可作判断.【详解】解:∵AB2=32+12=10,AC2=12+42=17,BC2=32+42=25,∴AB2+AC2>BC2,∴△ABC为锐角三角形,故答案为锐角.【点睛】本题考查了三边的关系,会利用三边关系确定三角形的形状:若三角形的三边分别为a、b、c,①当a2+b2>c2时,△ABC为锐角三角形;②当a2+b2<c2时,△ABC为钝角三角形;③当a2+b2=c2时,△ABC为直角三角形.13. 如图,过⊙O外一点P作⊙O的两条切线P A,PB,切点分别为A,B,作直线BC,连接AB,AC,若∠P=80°,则∠C=_____°.【答案】50【解析】【分析】根据切线的性质得出∠P AO=∠PBO=90°,求出∠AOB的度数,根据圆周角定理求出∠C即可.【详解】解:连接OA,∵过⊙O外一点P作⊙O的两条切线P A,PB,切点分别为A,B,∴∠P AO=∠PBO=90°,∵∠P=80°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,∴∠C=12AOB=50°,故答案为50.【点睛】本题考查了切线的性质,圆周角定理等知识点,能求出∠AOB的度数和根据圆周角定理得出∠C=12AOB是解此题的关键.14. 如图,在矩形ABCD中,过点B作对角线AC的垂线,交AD于点E,若AB=2,BC=4,则AE=_____.【答案】1【解析】【分析】根据矩形的性质得到∠DAB=∠ABC=90°,AD=BC=4,根据勾股定理得到AC=22AB BC+=25,设AC与BE交于F,根据相似三角形的性质即可得到结论.【详解】解:∵四边形ABCD是矩形,∴∠DAB=∠ABC=90°,AD=BC=4,∴AC=22AB BC+=25,设AC与BE交于F,∵BE⊥AC,∴AB2=AF•AC,∴AF=2225525=,∴CF=AC﹣AF=855,∵AE∥BC,∴△AEF∽△CBF,∴AE AF BC CF=,∴255 4855AE=,∴AE=1,故答案为1.【点睛】本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,熟练掌握正方形的性质是解题的关键.15. 2019年2月,全球首个5G火车站在上海虹桥火车站启动.虹桥火车站中5G网络峰值速率为4G网络峰值速率的10倍.在峰值速率下传输8千兆数据,5G网络比4G网络快720秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x千兆数据,依题意,可列方程为___.【答案】8872010x x-=【解析】【分析】设4G网络的峰值速率为每秒传输x千兆,则5G网络的峰值速率为每秒传输10x千兆,根据在峰值速率下传输8千兆数据,5G网络快720秒列出方程即可.【详解】解:设4G网络的峰值速率为每秒传输x千兆,则5G网络的峰值速率为每秒传输10x千兆,根据题意,得8872010x x-=.故答案为8872010x x-=.【点睛】本题考查了由实际问题抽象出分式方程,理解题意,找到等量关系列出方程是解题的关键.16. ▱ABCD中,对角线AC、BD相交于点O,E是边AB上的一个动点(不与A、B重合),连接EO并延长,交CD于点F,连接AF,CE,下列四个结论中:①对于动点E,四边形AECF始终是平行四边形;②若∠ABC<90°,则至少存在一个点E,使得四边形AECF是矩形;③若AB>AD,则至少存在一个点E,使得四边形AECF是菱形;④若∠BAC=45°,则至少存在一个点E,使得四边形AECF是正方形.以上所有正确说法的序号是_____.【答案】①③④【解析】分析】①根据平行四边形的性质得AB∥DC,OA=OC,再由平行线的性质和对顶角相等可得∠OAE=∠OCF,∠AOE=∠COF,根据ASA来判定△AOE≌△COF,推出AE=CF,由此可判断四边形为平行四边形;②根据矩形的判定定理可知,当CE⊥AB时,四边形AECF为矩形,而图2-2中,AB<AD时,点E不在线段AB上;③根据菱形的判定定理可知:当EF⊥AC时,四边形AECF为菱形;④当CE⊥AB且∠BAC=45°时,四边形AECF为正方形,在AB上一定存在一点E【详解】解:(1)如图1,∵四边形ABCD为平行四边形,对角线AC与BD交于点O,∴AB∥DC,AB=DC,OA=OC,OB=OD,∴∠OAE=∠OCF,∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形,即E在AB上任意位置(不与A、B重合)时,四边形AECF恒为平行四边形,故选项①正确;(2)如图2,当∠ABC<90°,当CE⊥AB时,四边形AECF为矩形,在图2中,AB>AD时,存在一点E, 使得四边形AECF是矩形;而图2-2中,AB<AD时,点E不在线段AB上;故选项②不正确.(3)如图3,当EF⊥AC时,四边形AECF为菱形,∵AB>AD,∴在AB 上一定存在一点E, 使得四边形AECF 是矩形;故选项③正确.(4)如图4,当CE ⊥AB 且∠BAC =45°时,四边形AECF 为正方形,故选项④正确.故答案为:①③④.【点睛】本题主要考查平行四边形以及几种特殊平行四边形的判定.熟悉平行四边形、矩形、菱形、正方形的判定方法是解答此题的关键.三.解答题(共12小题)17. 计算:05122sin 60(2019)π-︒-- 【答案】4 3.+【解析】【分析】原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用利用特殊角的三角函数值计算,第四项利用零指数幂法则计算,最后进行加减运算即可. 【详解】()05122sin602019π-︒--, =35321+-, =4 3.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 18. 解不等式组: 4(21)31385x x x x -<+⎧⎪-⎨<⎪⎩ 【答案】4x 1-<<.【解析】【分析】分别解出两不等式的解集,再求其公共解.【详解】()42131385x x x x ⎧-+⎪⎨-⎪⎩<①<② 解不等式①得:x <1,解不等式②得:x >-4,所以不等式组的解集为:-4<x <1.【点睛】此题考查解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19. 已知:如图1,直线,所成的角跑到画板外面去了,你有什么办法作出这两条直线所成角的角平分线? 小明的做法是:(1)如图2,画PC a ∥;(2)以为圆心,任意长为半径画圆弧,分别交直线,PC 于点,;(3)连结AD 并延长交直线于点;请你先完成下面的证明,然后完成第(4)步作图:∵PC a ∥∴1PDA ∠=∠( )∵以为圆心,任意长为半径画圆弧,分别交直线,PC 于点,∴PA PD =∴PAB ∠=∠∴1PAB ∠=∠∴以直线,的交点和点、为顶点所构成的三角形为等腰三角形( )根据上面的推理证明完成第(4)步作图(4)请在图2画板内作出”直线,所成的跑到画板外面去的角”的平分线(画板内的部分),尺规作出图形,并保留作图痕迹.第(4)步这么作图的理论依据是: .【答案】两直线平行,同位角相等;PDA ;等角对等边;等腰三角形三线合一【解析】【分析】根据平行线的性质及圆的特点得到1PAB ∠=∠,故可得以直线,的交点和点、为顶点所构成的三角形为等腰三角形,然后根据等腰三角形三线合一即可作图.【详解】(1)如图2,画PC a ∥;(2)以为圆心,任意长为半径画圆弧,分别交直线,PC 于点,;(3)连结AD 并延长交直线于点;请你先完成下面的证明,然后完成第(4)步作图:∵PC a ∥∴1PDA ∠=∠(两直线平行,同位角相等)∵以为圆心,任意长为半径画圆弧,分别交直线,PC 于点,∴PA PD =∴PAB ∠=∠PDA∴1PAB ∠=∠∴以直线,的交点和点、为顶点所构成的三角形为等腰三角形(等角对等边)根据上面的推理证明完成第(4)步作图(4)请在图2画板内作出”直线,所成的跑到画板外面去的角”的平分线(画板内的部分),尺规作出图形,并保留作图痕迹.第(4)步这么作图的理论依据是:等腰三角形三线合一故答案为:两直线平行,同位角相等;PDA ;等角对等边;等腰三角形三线合一.【点睛】此题主要考查复杂尺规作图,解题的关键是熟知平行线的性质、圆的基本性质及等腰三角形的判定与性质.20. 已知关于的方程mx 2+(2m-1)x+m-1=0(m≠0) .(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数的值.【答案】(1)证明见解析(2)m=1或m=-1【解析】试题分析:(1)由于m≠0,则计算判别式的值得到1=,从而可判断方程总有两个不相等的实数根;(2)先利用求根公式得到1211,1x xm=-=-,然后利用有理数的整除性确定整数的值.试题解析:(1)证明:∵m≠0,∴方程为一元二次方程,2(21)4(1)10m m m=---=>,∴此方程总有两个不相等的实数根;(2)∵(21)12mxm--±=,1211,1x xm∴=-=-,∵方程的两个实数根都是整数,且m是整数,∴m=1或m=−1.21. 如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.(1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若∠ABE=30°,AE=2,求EF的长.【答案】(1)证明见解析27.【解析】【分析】(1)由AE∥BD,且AE=BD可得四边形AEBD是平行四边形,再根据AB=AC,D为BC中点,可知AD⊥BC 即可得出四边形AEBD是矩形.(2)根据30°所对的直角边是斜边的一半即可求出EB,再根据矩形的性质求出BC即可利用勾股定理求出EC,由题意可证△AEF∽△BCF,再根据对应边成比例即可求出结果.【详解】(1)证明:∵AE∥BD,AE=BD,∴四边形AEBD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADB=90°,∴四边形AEBD是矩形.(2)解:∵四边形AEBD是矩形,∴∠AEB=90°,∵∠ABE=30°,AE=2,∴BE=23,BC=4,∴EC=27,∵AE∥BC,∴△AEF∽△BCF,∴12 EF AECF BC,∴EF13=EC=273.【点睛】本题为矩形与等腰三角形的结合题型,关键在于熟练掌握矩形与等腰三角形的性质.22. 在平面直角坐标系xOy中,直线l:y=x+b与x轴交于点A(﹣2,0),与y轴交于点B.双曲线ykx =与直线l交于P,Q两点,其中点P的纵坐标大于点Q的纵坐标(1)求点B的坐标;(2)当点P的横坐标为2时,求k的值;(3)连接PO,记△POB的面积为S.若112S<<,结合函数图象,直接写出k的取值范围.【答案】(1)点B的坐标为(0,2);(2)k的值为8;(3)54<k<3.【解析】【分析】(1)有点A的坐标,可求出直线的解析式,再由解析式求出B点坐标.(2)把点P的横坐标代入直线解析式即可求得点P的纵坐标,然后把点P代入反比例函数解析式即可得k值.(3)根据△POB的面积为S的取值范围求点P的横坐标取值,然后把横坐标代入直线解析式,即可求得点P 纵坐标的取值范围,进而求得k的取值范围.【详解】解:(1)∵直线l:y=x+b与x轴交于点A(﹣2,0)∴﹣2+b=0∴b=2∴一次函数解析式为:y=x+2∴直线l与y轴交于点B为(0,2)∴点B的坐标为(0,2);(2)∵双曲线ykx=与直线l交于P,Q两点∴点P在直线l上∴当点P的横坐标为2时,y=2+2=4 ∴点P的坐标为(2,4)∴k=2×4=8∴k的值为8(3)如图:S△BOP12=⨯2×x p=x p,∵11 2S<<,∴12<x p<1,∴52<y p<3,∴54<k<3【点睛】本题主要涉及一次函数与反比例函数相交的知识点.根据交点既在一次函数上又在反比例函数上,即可解决问题.23. 如图,AB 是O 的直径,CB 与O 相切于点B .点D 在O 上,且BC BD =,连接CD 交O 于点E .过点E 作EF ⊥AB 于点H ,交BD 于点M ,交O 于点F . (1)求证:∠MED=∠MDE .(2)连接BE ,若3ME =,MB=2.求BE 的长.【答案】(1)证明见解析;(2)10【解析】【分析】(1)由题意得//EF BC ,则C DEM ∠=∠,又C MDE ∠=∠,则结论得证;(2)连BE ,BE BF =,可得BEF D ∠=∠,可证BEM BDE ∆∆∽,则2BE BM BD =,可求BE 的长.【详解】(1)证明:CB 与O 相切于点,OB BC ∴⊥,EF AB ⊥,//EF BC ∴,DEM C ∴∠=∠,BC BD =,C MDE ∴∠=∠,MED MDE ∴∠=∠;(2)EF AB ⊥,AB 是O 的直径,BE BF =,D BEF ∴∠=∠,EBM DBE ∠=∠,BEM BDE ∆∆∽,BE BD BM BE=,即2BE BM BD =, MED MDE ∠=∠3∴==ME MDBM=,2BD MB MD∴=+=5BE=.10【点睛】本题主要考查了等腰三角形和平行线之间的角度转化以及圆周角定理和相似综合,熟练的在圆中找出对应的相似三角形是求解本题的关键.24. 为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛,该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息.a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100)b.乙部门成绩如下:40 52 70 70 71 73 77 78 80 8182 82 82 82 83 83 83 86 91 94c.甲、乙两部门成绩的平均数、方差、中位数如下:平均数方差中位数甲79.6 36.84 78.5乙77 147.2 md.近五年该单位参赛员工进入复赛的出线成绩如下:2014年2015年2016年2017年2018年出线成绩(百79 81 80 81 82分制)。

2024年中考数学二模试卷(上海卷)(全解全析)

2024年中考数学二模试卷(上海卷)(全解全析)

2024年中考第二次模拟考试(上海卷)数学·全解全析第Ⅰ卷一、选择题(本大题共6个小题,每小题4分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.在下列图形中,为中心对称图形的是()A .等腰梯形B .平行四边形C .正五边形D .等腰三角形【答案】B【分析】根据中心对称与轴对称的概念和各图形的特点即可求解.【详解】中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A 、C 、D 都不符合;是中心对称图形的只有B .故选B .2.下列方程有实数根的是A .4x 20+=B 2x 21-=-C .2x +2x −1=0D .x 1x 1x 1=【答案】C【详解】A .∵x 4>0,∴x 4+2=0无解,故本选项不符合题意;B .∵22x -≥0,∴22x -=−1无解,故本选项不符合题意;C .∵x 2+2x −1=0,∆=8>0,方程有实数根,故本选项符合题意;D .解分式方程1x x -=11x -,可得x =1,经检验x =1是分式方程的增根,故本选项不符合题意.故选C .3.计算:AB BA += ()A .AB ;B .BA ;C .0 ;D .0.【答案】C【分析】根据零向量的定义即可判断.【详解】AB BA += 0 .故选C .4.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠BAC=∠BCDC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC【答案】C【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【详解】解:A,不能,只能判定为矩形,不符合题意;B,不能,只能判定为平行四边形,不符合题意;C,能,符合题意;D,不能,只能判定为菱形,不符合题意.故选C.5.下列命题中,假命题是()A.如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦;B.如果一条直线平分弦所对的两条弧,那么这条直线经过圆心,并且垂直于这条弦;C.如果一条直线经过圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.【答案】C【分析】利用垂径定理及其推论逐个判断即可求得答案.【详解】A.如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦,正确,是真命题;B.如果一条直线平分弦所对的两条弧,那么这条直线一定经过圆心,并且垂直于这条弦,正确,是真命题;C.如果一条直线经过圆心,并且平分弦,那么该直线不一定平分这条弦所对的弧,不一定垂直于这条弦,例如:任意两条直径一定互相平分且过圆心,但不一定垂直.错误,是假命题;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧,正确,是真命题.故选C.【点睛】本题考查了垂径定理及其推论,对于一个圆和一条直线来说如果一条直线具备下列,①经过圆心,②垂直于弦,③平分弦(弦不是直径),④平分弦所对的优弧,⑤平分弦所对的劣弧,五个条件中的任何两个,那么也就具备其他三个.6.如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP 相切,半径长为5的⊙B与⊙A内含,那么OB的取值范围是()A .4<OB <7B .5<OB <7C .4<OB <9D .2<OB <7【答案】A 【分析】作⊙A 半径AD ,根据含30度角直角三角形的性质可得4OA =,再确认⊙B 与⊙A 相切时,OB 的长,即可得结论.【详解】解:设⊙A 与直线OP 相切时的切点为D ,∴AD OP ⊥,∵∠POQ =30°,⊙A 半径长为2,即2AD =,∴24OA AD ==,当⊙B 与⊙A 相切时,设切点为C ,如下图,∵5BC =,∴4(52)7OB OA AB =+=+-=,∴若⊙B 与⊙A 内含,则OB 的取值范围为47OB <<.故选:A .【点睛】本题主要考查了圆与圆的位置关系、切线的性质、含30度角的直角三角形的性质等知识,熟练掌握圆与圆内含和相切的关系是解题关键.二、填空题(本大题共12个小题,每小题4分,共48分)7.分解因式:2218m -=.【答案】()()233m m +-/()()233m m -+【分析】原式提取2,再利用平方差公式分解即可.【详解】解:2218m -=2(m 2-9)=2(m +3)(m -3).故答案为:2(m +3)(m -3).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8.2x x +=-的解是.【答案】x =﹣1.【分析】把方程两边平方后求解,注意检验.【详解】把方程两边平方得x +2=x 2,整理得(x ﹣2)(x +1)=0,解得:x =2或﹣1,经检验,x =﹣1是原方程的解.故本题答案为:x =﹣1.【点睛】本题考查无理方程的求法,注意无理方程需验根.9.函数2x y x =-中自变量x 的取值范围是.【答案】0x ≥且2x ≠【分析】根据二次根式中被开方数大于等于0及分母不为0即可求解.【详解】解:由题意可知:020x x ≥⎧⎨-≠⎩,解得:0x ≥且2x ≠,故答案为:0x ≥且2x ≠.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.10.△ABC 中,AD 是中线,G 是重心,,AB a AD b == ,那么BG =(用a b 、表示).【答案】23a b -+ .【详解】试题分析:∵在△ABC 中,点G 是重心,AD b = ,∴23AG b =,又∵BG AG AB =- ,AB a = ,∴2233BG b a a b =-=-+ ;故答案为23a b -+ .考点:1.平面向量;2.三角形的重心.11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是.【答案】13【详解】解:列树状图得共有12种情况,两张图案一样的有4种情况,所以概率是13.12.在方程224404x x x x +-+=中,如果设y=x 2﹣4x ,那么原方程可化为关于y 的整式方程是.【答案】2430y y ++=【分析】先把方程整理出含有x 2-4x 的形式,然后换成y 再去分母即可得解.【详解】方程2234404x x x x +-+=-可变形为x 2-4x+214x x -+4=0,因为24y x x =-,所以340y y++=,整理得,2430y y ++=13.如果⊙O 1与⊙O 2内含,O 1O 2=4,⊙O 1的半径是3,那么⊙O 2的半径r 的取值范围是.【答案】7r >/7r<【分析】由题意,⊙O 1与⊙O 2内含,则可知两圆圆心距d r r <-小大,据此代入数值求解即可.【详解】解:根据题意,两圆内含,故34r ->,解得7r >.故答案为:7r >.【点睛】本题主要考查了两圆位置关系的知识,熟练掌握由数量关系判断两圆位置关系是解题关键.14.某单位10月份的营业额为100万元,12月份的营业额为200万元,假设该公司11、12两个月的增长率都为x ,那么可列方程是.【答案】100(1+x )2=200【分析】根据题意,设平均每月的增长率为x ,依据10月份的营业额为100万元,12月份的营业额为200万元,即可列出关于x 的一元二次方程.故答案为:100(1+x )2=200【详解】设平均每月的增长率为x ,根据题意可得:100(1+x )2=200.故答案为:100(1+x )2=200.【点睛】此题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出方程是解题关键.15.菱形ABCD 中,已知AB =4,∠B :∠C =1:2,那么BD 的长是.【答案】43【分析】根据题意画出示意图(见详解),由菱形的性质可得BO =12BD ,BD ⊥AC ,在Rt △ABO 中,由cos ∠ABO 即可求得BO ,继而得到BD 的长.【详解】解:如图,∵四边形ABCD 为菱形,∴AB CD ∥,∴∠ABC +∠BCD =180°,∵∠ABC :∠BCD =1:2,∴∠ABC =60°,∴∠ABD =12∠ABC =30°,BO =12BD ,BD ⊥AC .在Rt △ABO 中,cos ∠ABO =BO AB =32,∴BO=AB⋅cos∠ABO=4×32=23.∴BD=2BO=43.故答案为:43.【点睛】本题考查菱形的性质,熟知菱形的对角线互相垂直,利用垂直构造直角三角形,再利用三角函数求解线段长度是解题的关键.16.如图,已知在⊙O中,半径OC垂直于弦AB,垂足为点D.如果CD=4,AB=16,那么OC=.【答案】10【分析】根据垂径定理求出AD的长,设半径OC=OA=r,则OD=r-4,再根据勾股定理列出关于r的方程,解出即可得出OC的长.【详解】设半径OC=OA=r,则OD=OC-CD=r-4半径OC垂直于弦AB,垂足为点D,AB=16∴AD=12AB=8,在Rt△AOD中,OD2+AD2=OA)即(r-4)2+82=r2解得:r=10故答案为10.【点睛】本题考查了垂径定理,勾股定理,熟练掌握定理是解题的关键.17.新定义:有一组对角互余的凸四边形称为对余四边形.如图,已知在对余四边形ABCD中,10AB=,12BC=,5CD=,3tan4B=,那么边AD的长为.【答案】9【分析】连接AC,作AE BC⊥交BC于E点,由3tan4B=,10AB=,可得AE=6,BE=8,并求出AC的长,作CF AD ⊥交AD 于F 点,可证B DCF ∠=∠,最后求得AF 和DF 的长,可解出最终结果.【详解】解:如图,连接AC ,作AE BC ⊥交BC 于E 点,3tan 4B =,10AB =,∴3tan 4AE B BE ==,设AE=3x ,BE=4x ,∴222AE BE AB +=,则()()2223425100x x x +==,解得x=2,则AE=6,BE=8,又 12BC =,∴CE=BC-BE=4,∴22213AC AE CE =+=,作CF AD ⊥交AD 于F 点,+=90B D ∠∠︒,90D DCF ∠+∠=︒,∴B DCF ∠=∠,3tan 4B ==tan DCF ∠=DF CF ,又 5CD =,∴同理可得DF=3,CF=4,∴226AF AC CF =-=,∴AD=AF+DF=9.故答案为:9.【点睛】本题考查四边形综合问题,涉及解直角三角形,勾股定理,有一定难度,熟练掌握直角三角形和勾股定理知识点,根据题意做出正确的辅助线是解决本题的关键.18.如图,在Rt ∆ABC 中,∠ACB =90°,BC =4,AC =3,⊙O 是以BC 为直径的圆,如果⊙O 与⊙A 相切,那么⊙A 的半径长为.【答案】132±【分析】分两种情况:①如图,A 与O 内切,连接AO 并延长交A 于E ,根据AE AO OE =+可得结论;②如图,A 与O 外切时,连接AO 交A 于E ,同理根据AE OA OE =-可得结论.【详解】解:有两种情况,分类讨论如下:①如图1,A 与O 内切时,连接AO 并延长交O 于E ,O 与A 相内切,E ∴为切点,122OE BC ∴==,90ACB ∠=︒ ,根据勾股定理得:22222313OA OC AC =+=+=,132AE OA OE ∴=+=+;即A 的半径为132+;②如图2,A 与O 外切时,连接AO 交O 于E ,同理得132AE AO OE =-=-,即A 的半径为132-,综上,A 的半径为132+或132-.故答案为:132±.【点睛】本题考查了相切两圆的性质、勾股定理,解题的关键是通过作辅助线得出AE 是A 的半径.第Ⅱ卷三、解答题(本大题共7个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(10()()()20220118cot 45233sin 30π--︒+-+--︒.【答案】223+【分析】先化简各式,然后再进行计算即可解答.【详解】解:20220118(cot 45)|23|(3)(sin 30)π-+-︒+-+--︒20221132(1)321()2-=+-+-+-3213212=++-+-223=+.【点睛】本题考查了实数的运算,零指数幂,负整数指数幂、绝对值,特殊角的三角函数值,解题的关键是准确熟练地化简各式.20.(10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =3,AD ∶DB =1∶2.(1)求△ABC 的面积;(2)求CE ∶DE .【答案】解:(1)85;(2)31.【详解】试题分析:(1)根据题意和锐角三角函数可以求得BH 和AH 的长,从而可以求得△ABC 的面积;(2)根据三角形的相似和题意可以求得CE :DE 的值.试题解析:解:(1)∵AB =AC =6,cos B =23,AH 是△ABC 的高,∴BH =4,∴BC =2BH =8,AH =226425-=,∴△ABC 的面积是;2BC AH ⋅=8252⨯=85;(2)作DF ⊥BC 于点F .∵DF ⊥BH ,AH ⊥BH ,∴DF ∥AH ,∴AD HF CE CH AB HB DE HF ==,.∵AD :DB =1:2,BH =CH ,∴AD :AB =1:3,∴13HF HB =,∴31CE CH BH DE HF HF ===,即CE :DE =3:1.点睛:本题考查了解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(10分)如图,在平面直角坐标系xOy 中,点A 是反比例函数y =x的图象与正比例函数y =kx 的图象在第一象限内的交点,已知点A 的纵坐标为2.经过点A 且与正比例函数y =kx 的图象垂直的直线交反比例函数y =k x的图象于点B (点B 与点A 不是同一点).(1)求k的值;(2)求点B的坐标.【答案】(1)2 (2)(4,12)【分析】(1)根据题意得到22kk=,解方程求得k=2;(2)先求得A的坐标,根据正比例函数的解析式设直线AB的解析式为y12=-x+b,把A的坐标代入解得b52=,再与反比例函数的解析式联立成方程组,解方程组即可求得点B的坐标.【详解】(1)解:∵点A是反比例函数ykx=的图象与正比例函数y=kx的图象在第一象限内的交点,点A的纵坐标为2,∴22k k=,∴2k=4,解得k=±2,∵k>0,∴k=2;(2)∵k=2,∴反比例函数为y2x=,正比例函数为y=2x,把y=2代入y=2x得,x=1,∴A(1,2),∵AB⊥OA,∴设直线AB的解析式为y12=-x+b,把A 的坐标代入得2112=-⨯+b ,解得b 52=,解21522y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩得12x y =⎧⎨=⎩或412x y =⎧⎪⎨=⎪⎩,∴点B 的坐标为(4,12).【点睛】本题是反比例函数与一次函数的交点问题,考查了一次函数、反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式,解题的关键是求出直线AB 的解析式,本题属于中等题型.22.(10分)图1是某区规划建设的过街天桥的侧面示意图,等腰梯形ABCD 的上底BC 表示主跨桥,两腰AB ,CD 表示桥两侧的斜梯,A ,D 两点在地面上,已知AD =40m ,设计桥高为4m ,设计斜梯的坡度为1:2.4.点A 左侧25m 点P 处有一棵古树,有关部门划定了以P 为圆心,半径为3m 的圆形保护区.(1)求主跨桥与桥两侧斜梯的长度之和;(2)为了保证桥下大货车的安全通行,桥高要增加到5m ,同时为了方便自行车及电动车上桥,新斜梯的坡度要减小到1:4,新方案主跨桥的水平位置和长度保持不变.另外,新方案要修建一个缓坡MN 作为轮椅坡道,坡道终点N 在左侧的新斜梯上,并在点N 处安装无障碍电梯,坡道起点M 在AP 上,且不能影响到古树的圆形保护区.已知点N 距离地面的高度为0.9m ,请利用表中的数据,通过计算判断轮椅坡道的设计是否可行.表:轮椅坡道的最大高度和水平长度坡度1:201:161:121:101:8最大高度(m )1.200.900.750.600.30水平长度(m )24.0014.409.00 6.002.40【答案】(1)主跨桥与桥两侧斜梯的长度之和为26.6m(2)轮椅坡道的设计不可行,理由见解析【分析】(1)根据斜坡AB的坡度以及天桥的高度可求出AE,由勾股定理求出AB,进而求出EF=BC的长,再计算主跨桥与桥两侧斜梯的长度之和;(2)根据坡度的定义求出新方案斜坡A B''的水平距离A E'进而求出点M到点G的最大距离,再由表格中轮椅坡道的最大高度和水平长度的对应值进行判断即可.【详解】(1)解:如图,作直线AD,则AD过点A'和点D',过点B、C分别作BE⊥AD,CF⊥AD,垂足为E、F,延长EB,延长FC,则射线EB过点B',射线FC过点C',由题意得,BE=CF=4m,AP=25m,B'E=5m,∵斜坡AB的坡度为1:2.4,即BEAE=1:2.4,∴AE=4×2.4=9.6(m),又∵四边形ABCD是等腰梯形,∴AE=DF=9.6m,∴BC=AD﹣AE﹣DF=5.8(m),AB=22AE BE+=229.64+=10.4(m)=CD,∴主跨桥与桥两侧斜梯的长度之和为AB+BC+CD=10.4+5.8+10.4=26.6(m),答:主跨桥与桥两侧斜梯的长度之和为26.6m.(2)解:∵斜坡A B''的坡度为1:4,即B EA E''=1:4,∴A'E=5×4=20(m),∴A A'=20﹣9.6=11.4(m),A'G=4NG=4×0.9=3.6(m),∴AG=11.4﹣3.6=7.8(m),点M到点G的最多距离MG=25﹣7.8﹣3=14.2(m),∵14.2<14.4,∴轮椅坡道的设计不可行.【点睛】本题主要考查了解直角三角形的应用,根据坡度和坡角构造直角三角形,然后分别用解直角三角形的知识坡道的水平距离是解答本题的关键.23.(12分)已知:如图,在梯形ABCD 中,//AD BC ,90B Ð=°,E 是AC 的中点,DE 的延长线交边BC 于点F.(1)求证:四边形AFCD 是平行四边形;(2)如果22AE AD BC =⋅,求证四边形AFCD 是菱形.【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质可知DAE FCE =∠∠,ADE CFE ∠=∠.再由E 是AC 中点,即AE =CE .即可以利用“AAS ”证明AED CEF ≌,得出AD CF =,即证明四边形AFCD 是平行四边形.(2)由22AE AD BC =⋅和E 是AC 中点,即可推出AE AD CB AC=.又因为DAE FCE =∠∠,即证明ADE CAB ∽△△,即可推出DF AC ⊥.即四边形AFCD 是菱形.【详解】(1)∵//AD BC ,∴DAE FCE =∠∠,ADE CFE ∠=∠.又∵E 是AC 中点,∴AE =CE ,∴在AED △和CEF △中ADE CFE DAE FCE AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AED CEF AAS ≌,∴AD CF =,∴四边形AFCD 是平行四边形.(2)∵//AD BC ,∴DAE FCE =∠∠.∵22AE AD BC =⋅,∴AE AC AD BC ⋅=⋅,∴AE AD CB AC=,∴ADE CAB ∽△△,∴90AED ABC ∠=∠=︒,即DF AC ⊥.∴四边形AFCD 是菱形.【点睛】本题考查梯形的性质,平行四边形的判定,菱形的判定,全等三角形的判定和性质以及相似三角形的判定和性质.掌握特殊四边形的判定方法是解答本题的关键.24.(12分)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点(0,3)A ,与x 轴的正半轴交于点(5,0)B ,点D 在线段OB 上,且1OD =,联结AD ,将线段AD 绕着点D 顺时针旋转90︒,得到线段DE ,过点E 作直线l x ⊥轴,垂足为H ,交抛物线于点F .(1)求抛物线的表达式;(2)联结DF ,求cot ∠EDF 的值;(3)点P 在直线l 上,且∠EDP =45°,求点P 的坐标.【答案】(1)2312355y x x =-++;(2)cot 2EDF ∠=;(3)(4,6)或3(4,)2-.【分析】(1)利用待定系数法即可解决问题;(2)证明()OAD HDE AAS ∆∆≌,再根据全等三角形的性质得1EH OD ==,3DH OA ==,可得(4,1)E ,(4,3)F ,求出3FH DH ==,则45DFH ∠=︒,32DF =,过点E 作EK DF ⊥于K ,根据等腰直角三角形的性质可得2KF KE ==,则22DK DF KF =-=,在Rt DKE ∆中,根据余切的定义即可求解;(3)分两种情形①点P 在点E 的上方时;②点P 在点E 的下方时,根据相似三角形的判定和性质即可解决问题.【详解】(1)解:把点(0,3)A ,点(5,0)B 代入235y x bx c =-++,得:15503b c c -++=⎧⎨=⎩,解得:1253b c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为2312355y x x =-++;(2)解:如图:90AOD ADE DHE ∠=∠=∠=︒ ,90ADO OAD ∴∠+∠=︒,90ADO EDH ∠+∠=︒,OAD EDH ∴∠=∠,AD DE = ,()OAD HDE AAS ∴∆∆≌,1EH OD ∴==,3DH OA ==,(4,1)E ∴,过点E 作直线l x ⊥轴,垂足为H ,交抛物线2312355y x x =-++于点F .(4,3)F ∴,3FH ∴=,3FH DH ∴==,90DHE ∠=︒ ,45DFH ∴∠=︒,32DF =,过点E 作EK DF ⊥于K ,312EF =-= ,2KF KE ∴==,22DK DF KF ∴=-=,在Rt DKE ∆中,22cot 22DK EDF KE ∠===;(3)解:①当点P 在点E 的上方时,45EDP DFH ∠=∠=︒ ,DEP ∠是公共角,EDF EPD ∴∆∆∽,∴EF ED ED EP=,2ED EF EP ∴=⋅,设(4,)P y ,则1EP y =-,又2EF = ,223110ED =+=,102(1)y ∴=-,解得6y =,∴点P 的坐标为(4,6);②当点P 在点E 的下方时,45EDP DFP ∠=∠=︒ ,DPF ∠是公共角,PED PDF ∴∆∆∽,∴PE DP PD FP=,2DP PE PF ∴=⋅,设(4,)P y ,则1EP y =-,3FP y =-,223DP y =+,29(1)(3)y y y ∴+=--,解得32y =-,∴点P 的坐标为3(4,)2-;综上所述,当45EDP ∠=︒时,点P 的坐标为(4,6)或3(4,)2-.【点睛】本题是二次函数综合题,考查二次函数的应用、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是熟练掌握二次函数的图象及性质,三角形相似的判定及性质.25.(14分)如图,半径为1的⊙O 与过点O 的⊙P 相交,点A 是⊙O 与⊙P 的一个公共点,点B 是直线AP 与⊙O 的不同于点A 的另一交点,联结OA ,OB ,OP .(1)当点B 在线段AP 上时,①求证:∠AOB =∠APO ;②如果点B 是线段AP 的中点,求△AOP 的面积;(2)设点C 是⊙P 与⊙O 的不同于点A 的另一公共点,联结PC ,BC .如果∠PCB =α,∠APO =β,请用含α的代数式表示β.【答案】(1)①见解析;②74(2)β=60°﹣23β【分析】(1)①利用圆的半径相等可得∠OAB =∠OBA =∠AOP ,则∠AOB =∠APO ;②首先利用△AOB ∽△APO ,得OA AB AP OA=,可得AP 的长,作AH ⊥PO 于点H ,设OH =x ,则PH =2﹣x ,利用勾股定理列方程求出OH的长,从而得出AH,即可求得面积;(2)联结OC,AC,利用圆心角与圆周角的关系得∠ACB=12∠AOB=12β,∠ACO=12∠APO=12β,再利用SSS说明△OAP≌△OCP,得∠OAP=∠OCP,从而解决问题.【详解】(1)①证明:∵OA=OB,∴∠OAB=∠OBA,∵PA=PO,∴∠BAO=∠POA,∴∠OAB=∠OBA=∠AOP,∴∠AOB=∠APO;②解:∵∠AOB=∠APO,∠OAB=∠PAO,∴△AOB∽△APO,∴OA AB AP OA=,∴OA2=AB•AP=1,∵点B是线段AP的中点,∴AP=2,作AH⊥PO于点H,设OH=x,则PH=2﹣x,由勾股定理得,12﹣x2=(2)2﹣(2x-)2,解得x=2 4,∴OH=2 4,21由勾股定理得,AH =2221()4-=144,∴△AOP 的面积为11142224OP AH ⨯⨯=⨯⨯=74;(2)解:如图,联结OC ,AC ,∵∠AOB =∠APO ,∴∠AOB =β,∴∠ACB =12∠AOB =12β,∠ACO =12∠APO =12β,∴∠OCP =β+α,∵OA =OC ,AP =PC ,OP =OP ,∴△OAP ≌△OCP (SSS ),∴∠OAP =∠OCP =β+α,在△OAP 中,2(α+β)+β=180°,∴β=60°﹣23β.【点睛】本题是圆的综合题,主要考查了圆的性质,圆心角与圆周角的关系,相似三角形的判定与性质,全等三角形的判定与性质等知识,求出大圆半径是解题的关键.。

2023年中考数学第二次模拟考试卷及解析(宁波卷)

2023年中考数学第二次模拟考试卷及解析(宁波卷)

2023年中考数学第二次模拟考试卷及解析(宁波卷)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列各数中,最小的一个数是()A.﹣3B.﹣1C.0D.2【答案】A【分析】根据有理数大小比较法则判断即可.【解答】解:因为|﹣3|=3,|﹣1|=1,而3>1,所以﹣3<﹣1<0<2,所以其中最小的一个数是﹣3.故选:A.【点睛】本题考查了有理数大小比较,有理数大小比较法则:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.2.下列运算中,正确的是()A.a2•a3=a6B.a2+a3=a5C.(a2)3=a5D.a5÷a3=a2【答案】D【分析】分别根据同底数幂的乘法法则,合并同类项法则,幂的乘方运算法则以及同底数幂的除法法则逐一判断即可.【解答】解:A、a2•a3=a5,故本选项不合题意;B、a2与a3不是同类项,所以不能合并,故本选项不合题意;C、(a2)3=a6,故本选项不合题意;D、a5÷a3=a2,故本选项符合题意;故选:D.【点睛】本题考查了合并同类项,同底数幂的乘除法以及幂的乘方,熟记相关运算法则是解答本题的关键.3.2021年是中国共产党建党百年,走过百年光辉历程的中国共产党,成为拥有9100多万名党员的世界最大的马克思主义执政党.将“9100万”用科学记数法表示应为()A.9.1×103B.0.91×104C.9.1×107D.91×106【答案】C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:9100万=91000000=9.1×107.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.4.如图是某工厂要设计生产一类由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.【答案】A【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面一层有3个正方形,下面中间有一个正方形.故选:A.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.甲、乙、丙、丁四位选手各进行了10次射击,射击成绩的平均数和方差如表:A.甲B.乙C.丙D.丁【答案】A【分析】根据方差的意义比较出甲、乙、丙、丁的大小,即可得出答案.【解答】解:∵甲的方差最小,∴成绩发挥最稳定的是甲,故选:A.【点睛】此题考查方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.如图所示,小红要制作一个母线长为8cm,底面圆周长是12πcm的圆锥形小漏斗,若不计损耗,则她所需纸板的面积是()A.60πcm2B.96πcm2C.120πcm2D.48πcm2【答案】D【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:圆锥形小漏斗的侧面积=×12π×8=48πcm2.故选:D.【点睛】本题考查了圆锥的计算,圆锥的侧面积=×底面周长×母线长.7.在等腰直角三角形ABC中,=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°【答案】A【分析】根据等腰直角三角形,的性质得BC=AB=4,∠B=45°,则OB=2,再根据切线的性质得∠ODB=90°,则可判定△ODB为等腰直角三角形,所以OD=OB=2,∠BOD=45°,然后根据圆周角定理得到∠MND 的度数.【解答】解:∵△ABC为等腰直角三角形,∴BC=AB=4,∠B=45°,∵点O为BC的中点,∴OB=2,∵AB为切线,∴OD⊥AB,∴∠ODB=90°,∴△ODB为等腰直角三角形,∴OD=OB=×2=2,∠BOD=45°,∴∠MND=BOD=22.5°.故选:A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了等腰直角三角形的性质.8.小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路,她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟,设小颖上坡用了x分钟,下坡用了y分钟,根据题意列方程组()A.B.C.D.【答案】D【分析】根据小颖跑步去学校所用时间及小颖家到学校的路程,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:∵小颖跑步去学校共用了16分钟,∴x+y=16;∵小颖家离学校1880米,小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟,∴80x+200y=1880.∴根据题意可列方程组.故选:D.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.已知二次函数y=ax2﹣4ax+5(其中x是自变量),当x⩽﹣2时.y随x的增大而增大,且﹣6⩽x⩽5时,y的最小值为﹣7,则a的值为()A.3B.C.D.﹣1【答案】B【分析】由x⩽﹣2时.y随x的增大而增大可判断抛物线开口方向,由抛物线解析式可得抛物线对称轴,进而求解.【解答】解:∵x⩽﹣2时.y随x的增大而增大,∴抛物线开口向下,即a<0,∵y=ax2﹣4ax+5,∴抛物线对称轴为直线x=﹣=2.∵2﹣(﹣6)>5﹣2,∴x=﹣6时,y=36a+24a+5=﹣7为最小值,解得a=﹣,故选:B.【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.10.如图,等边△ABC和等边△DEF的边长相等,点A、D分别在边EF,BC 上,AB与DF交于G,AC与DE交于H.要求出△ABC的面积,只需已知()A.△BDG与△CDH的面积之和B.△BDG与△AGF的面积之和C.△BDG与△CDH的周长之和D.△BDG与△AGF的周长之和【答案】C【分析】先判断出∠BAD=∠FDA,进而判断出△ABD≌△DFA(ASA),得出S△ABD=S△DF A,进而得出S△BDG=S△F AG,同理:△ACD≌△DEA(SAS),得出S△ACD=S△DEA,进而得出S△CDH=S△EAG,即可选项A,B不符合题意,由△ABD≌△DFA,得出BD=AF,∠BAD=∠FDA,BG=AG,BG=FG,同理:CD=AE,DH=AH,CH=EH,进而得出BD+BG+DG+CD+DH+CH=3BC,即可判断出选项C,D.【解答】解:如图,连接AD,过点A作AM⊥BC于M,过点D作DN⊥EF 于N,则∠BAM=∠FDN=30°,∵等边△ABC和等边△DEF的边长相等,∴AM=DN,∵AD=AD,∴Rt△ADM≌Rt△DNA(HL),∴∠DAM=∠NDA,∴∠BAD=∠FDA,∵等边△ABC和等边△DEF的边长相等,∴BC=AC=AB=DF,∠B=∠F=60°,∵AD=AD,∴△ABD≌△DFA(ASA),=S△DF A,∴S△ABD=S△F AG,∴S△BDG同理:△ACD≌△DEA(SAS),=S△DEA,∴S△ACD=S△EAG,∴S△CDH选项A:当△BDG与△CDH的面积之和已知时,S△BDG+S△CDH可求出,而四边形AGDH的面积没办法求出,即△ABC的面积没办法求出,故选项A不符合题意;可以求出,选项B:当△BDG与△AGF的面积之和已知时,S△BDG而四边形AGDC的面积没办法求出,即△ABC的面积没办法求出,故选项B不符合题意;选项C:当△BDG与△CDH的周长之和时,BD+BG+DG+CD+DH+CH可以求出,∵△ABD≌△DFA,∴BD=AF,∠BAD=∠FDA,∴BG=AG,∵AB=DF,∴BG=FG,同理:CD=AE,DH=AH,CH=EH,∴BD+BG+DG+CD+DH+CH=BD+BG+AG+CD+AH+CH=(BD+CD)+(BG+AG)+(AH+CH)=BC+AB+AC=3BC,即BC可以求出,过点A作AM⊥BC于M,∵△ABC是等边三角形,∴BM=BC,根据勾股定理得,AM=BC,=BC•AM=BC2,即可求出△ABC的面积;∴S△ABC选项D:当△BDG与△AGF的周长之和已知时,可以求出BD+BG+DG,但求不出△ABC的边长,即△ABC的面积没办法求出,故选项D不符合题意;故选:C.【点睛】此题主要考查了全等三角形的判定和性质,等边三角形的性质,三角形的周长和面积,作出辅助线构造出全等三角形是解本题的关键.第Ⅱ卷二、填空题(每小题5分,共30分)11.若第三象限内的点P(x,y)满足x=﹣,y=,则点P的坐标是(﹣2,﹣4).【答案】(﹣2,﹣4).【分析】根据第三象限内点的横坐标为负数,纵坐标是负数判断出x、y的正负情况,然后根据算术平方根与立方根的定义求出x、y,即可得解.【解答】解:∵P(x,y)为第三象限内的点,∴x<0,y<0,∵x=﹣,y=,∴x=﹣2,y=﹣4,∴点P的坐标为(﹣2,﹣4).故答案为:(﹣2,﹣4).【点睛】本题考查了点的坐标,立方根,算术平方根的定义,熟记四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)是解题的关键.12.分解因式:a2b﹣2ab+b=b(a﹣1)2.【答案】见试题解答内容【分析】先提取公因式b,然后利用完全平方公式进行因式分解.【解答】解:原式=b(a2﹣2a+1)=b(a﹣1)2.故答案是:b(a﹣1)2.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.不透明的袋子中有8个球,其中3个红球,2个黄球,3个绿球,除颜色外无差别,从袋子中随机取出1个,则它是黄球的概率是.【答案】.【分析】用黄球的个数除以总球的个数即可得出黄球的概率.【解答】解:∵不透明的口袋中有8个小球,其中有2个黄球,3个红球和3个绿球,∴从袋子中随机取出1个球,则它是黄球的概率是=;故答案为:.【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.定义新运算:a*b=,则方程1*(2x+1)=1*(x﹣2)的解为x=﹣3.【答案】见试题解答内容【分析】由定义可得=,再解分式方程即可.【解答】解:∵1*(2x+1)=1*(x﹣2),∴=,∴x﹣2=2x+1,解得x=﹣3,经检验,x=﹣3是方程的解,∴方程的解为x=﹣3,故答案为:x=﹣3.【点睛】本题考查新定义,分式方程的解,理解定义的内容,根据定义列出分式方程,并能准确求解分式方程是解题的关键.15.如图,在正六边形ABCDEF内取一点O,作⊙O与边DE,EF相切,并经过点B,已知⊙O的半径为,则正六边形的边长为2+.【答案】2+.【分析】根据对称性可得点O以及正六边形ABCDEF的外接圆的圆心O′均在线段BE上,由切线的性质和锐角三角函数可求出OE,进而求出正六边形ABCDEF的外接圆半径,再根据正六边形的性质可求出答案.【解答】解:如图,连接BE,由对称性可知,点O以及正六边形ABCDEF 的外接圆的圆心O′均在线段BE上,设⊙O与EF、DE相切于点M、N,连接OM、ON、O′D,则OM=ON=OB =2,∵六边形ABCDEF是正六边形,∴∠DEF=120°,由对称性可得,∠OEF=∠OED=∠DEF=60°,在Rt△OEM中,OM=2,∠OEM=60°,∴OE==4,∴BE=OE+OB=4+2,∴正六边形ABCDEF的外接圆半径O′E==2+,∵六边形ABCDEF是正六边形,∴△DO′E是正三角形,∴EF=O′E=2+,即正六边形ABCDEF的边长为2+,故答案为:2+.【点睛】本题考查切线的性质,正多边形与圆,掌握正六边形的对称性以及正六边形与圆的性质是正确解答的前提.16.如图,矩形OABC的顶点A、C分别在x轴、y轴上,B(﹣2,1),将矩形OABC绕点O顺时针旋转,点B落在y轴上的点D处,若反比例函数(x <0)的图象经过点E,则k的值为﹣.【答案】﹣.【分析】先根据旋转的性质得到DE=AB=1,OE=OA=2,再证明△OEF∽△ODE,利用相似比计算出EF=,OF=,则E(﹣,),然后把E点坐标代入(x<0)中求出k的值.【解答】解:作EF⊥y轴于F,∵B(﹣2,1),∴AB=1,OA=2,∵△OAB绕点O顺时针旋转,点B落在y轴上的点D处,得到△OED,∴DE=AB=1,OE=OA=2,∴OD==,∵∠EOF=∠EOD,∠EFO=∠OED=90°,∴△OEF∽△ODE,∴==,即==,解得EF=,OF=∴E(﹣,),∵反比例函数(x<0)的图象经过点E,∴k=﹣×=﹣.故答案为:﹣.【点睛】本题考查反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.也考查了旋转的性质、矩形的性质和相似三角形的判定与性质.三、解答题(本大题共8小题,共80分.解答时应写出文字说明、证明过程或演算步骤)17.(1)计算:(x+y)2+y(3x﹣y).(2)解不等式组:.【答案】(1)x2+5xy;(2)﹣1≤x<5.【分析】(1)先根据完全平方公式和单项式乘多项式进行计算,再合并同类项即可;(2)先求出两个不等式的解集,再根据求不等式组解集的规律求出不等式组的解集即可.【解答】解:(1)原式=x2+2xy+y2+3xy﹣y2=x2+5xy;(2),解不等式①,得x<5,解不等式②,得x≥﹣1,所以不等式组的解集是﹣1≤x<5.【点睛】本题考查了解一元一次不等式组和整式的混合运算,能正确根据整式的运算法则进行化简是解(1)的关键,能根据求不等式组解集的规律求出不等式组的解集是解(2)的关键.18.如图,在6×5的方格纸中,线段AB的端点在格点上.(1)在图1中,画一个以AB为边,面积为6的格点平行四边形ABCD(点C,D在点上);(2)在图2中,画一个以AB为直角边,斜边为整数的格点直角△ABC(点C 在格点上).【答案】(1)(2)作图见解析部分.【分析】(1)画一个底为3,高为2的平行四边形即可;(2)画一个斜边为5的直角三角形即可.【解答】解:(1)如图1中,四边形ABCD即为所求;(2)如图2中,△ABC即为所求.【点睛】本题考查作图﹣应用与设计作图,解题的关键是理解题意,学会利用数形结合的思想解决问题.19.某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的圆心角度数是144°;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B 口味的牛奶共约多少盒?【答案】见试题解答内容【分析】(1)利用A类别人数及其百分比可得总人数;(2)总人数减去A、B、D类别人数,求得C的人数即可补全图形;(3)360°×C类别人数所占比例可得;(4)总人数乘以样本中A、B人数占总人数的比例即可.【解答】解:(1)30÷20%=150(人),答:本次调查的学生有150人;(2)C类别人数为150﹣(30+45+15)=60(人),补全条形图如下:(3)扇形统计图中C对应的圆心角度数是360°×=144°,故答案为:144°;(4)600×=300(盒),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【点睛】本题考查条形统计图、扇形统计图等知识.结合生活实际,绘制条形统计图,扇形统计图或从统计图中获取有用的信息,是近年中考的热点.只20.在平面直角坐标系xOy中,直线y=2x+b经过点A(1,m),B(﹣2,﹣3).(1)求b和m的值;(2)将点B向右平移到y轴上,得到点C,设点B关于原点的对称点为D,记线段BC与线段AD为图形G.若双曲线与图形G恰有一个公共点,直接写出k的取值范围.【答案】(1)b=1,m=1;(2)0<k<3.【分析】(1)把B的坐标代入即可求得b,然后代入A(1,m),即可求得m,得出A(1,3);(2)根据平移的性质、轴对称以及中心对称的性质即可求得C、D的坐标,函数y=的图象经过点A,k=3,函数y=的图象经过点D,k=1,此时双曲线也经过点B,根据图象即可求得k的取值范围.【解答】解:(1)∵直线y=2x+b经过点B(﹣1,﹣1),∴b=1,∴直线y=2x+1,又∵直线y=2x+,1经过点A(1,m),∴m=3,∴A(1,3);(2)∵B(﹣2,﹣3),将点B向右平移到y轴上,得到点C(0,﹣3),∴点B关于原点的对称点为D(2,3),函数y=的图象经过点A,k=1×3=3,函数y=的图象经过点D,k=3×2=6,此时双曲线也不经过点B,∴k的取值范围是0<k<3.【点睛】本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数、反比例函数解析式.数形结合结合思想的运用是解题的关键.21.图1是某种手机支架在水平桌面上放置的实物图,图2是其侧面的示意图,其中支杆AB=BC=20cm,可绕支点C,B调节角度,DE为手机的支撑面,DE=18cm,支点A为DE的中点,且DE⊥AB.(1)若支杆BC与桌面的夹角∠BCM=70°,求支点B到桌面的距离;(2)在(1)的条件下,若支杆BC与AB的夹角∠ABC=110°,求支撑面下端E到桌面的距离.(结果精确到1cm,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.78,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【答案】(1)B到桌面距离为19cm;(2)E到桌面距离大约为25cm.【分析】(1)过B作BF⊥CM于F,则,代入数值即可求解;(2)过A作AG⊥CM于G,过B作BH⊥AG于H,过E作EK⊥AG于K,由,,求得AH,AK根据E到桌面的距离AH﹣AK+HG 即可求解.【解答】解:(1)过点B作BF⊥CM于F,∵∠BCM=70°,∴,∴BF=20×0.94=18.8≈19cm∴B到桌面距离为19cm;(2)过点A作AG⊥CM于G,过点B作BH⊥AG于H,过点E作EK⊥AG 于K,∴BH∥FG,∴∠HBC=∠BCM=70°,∵∠ABC=110°,∴∠ABH=40°,∵∠EAB=90°,∠EAK=40°,∴,,∴AH=20×0.64=12.8cm,AK=9×0.77=6.93cm,∴支撑面下端E到桌面的距离为:AH﹣AK+HG=12.8﹣6.93+19≈25cm.答:E到桌面距离大约为25cm.【点睛】本题考查解直角三角形的应用,添加辅助线构造直角三角形是解题的关键.22.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y2(km),慢车离乙地的距离为y1(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1,y2与x的函数关系图象如图1所示,S与x的函数关系图象如图2所示.请根据条件解答以下问题:(1)图中的a=3,C点坐标为(3,180);(2)当x何值时两车相遇?(3)当x何值时两车相距200千米?【答案】(1)3,(3,180);(2)当x为时两车相遇;(3)x为或时,两车相距200km.(1)由S与x之间的函数的图象可知a=3,即得快车的速度为100km/h,【分析】由慢车5h行驶300km,知慢车的速度为60km/h,即可得快车到达乙地时,慢车行驶了180km,故C(3,180);(2)由300÷(100+60)=(h),可得当x为时两车相遇;(3)分两种情况:①当两车行驶的路程之和为100km时,x=100÷(100+60)=;②当两车行驶的路程和为500km时,快车到达乙地,即快车行驶了300km,x=200÷60=.【解答】解:(1)由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=3,∴快车的速度为300÷3=100(km/h),由图可得,慢车5h行驶300km,∴慢车的速度为300÷5=60(km/h),∵3×60=180(km),∴快车到达乙地时,慢车行驶了180km,即两车相距180km,∴C(3,180),故答案为:3,(3,180);(2)由(1)可知,快车的速度为100km/h,慢车的速度为60km/h,∴两车相遇所需时间为300÷(100+60)=(h),∴当x为时两车相遇;(3)①当两车行驶的路程之和为300﹣200=100(km)时,两车相距200km,此时x=100÷(100+60)=;②当两车行驶的路程和为300+200=500(km)时,两车相距200km,∵x=3时,快车到达乙地,即快车行驶了300km,∴当慢车行驶200km时,两车相距200km,此时x=200÷60=,综上所述,x为或时,两车相距200km.【点睛】本题考查了一次函数的应用,根据图象准确获取信息是解题的关键,要注意要分情况讨论.23.【证明体验】(1)如图1,△ABC中,D为BC边上任意一点,作DE⊥AC 于E,若∠CDE=∠A,求证:△ABC为等腰三角形;【尝试应用】(2)如图2,四边形ABCD中,∠D=90°,AD=CD,AE平分∠BAD,∠BCD+∠EAD=180°,若DE=2,AB=6,求AE的长;【拓展延伸】(3)如图3,△ABC中,点D在AB边上满足CD=BD,∠ACB=90°+∠B,若AC=10,BC=20,求AD的长.【答案】(1)证明见解答过程;(2)2;(3)18.【分析】(1)根据直角三角形的性质得到∠C=90°﹣∠CDE,根据三角形内角和定理得到∠B=90°﹣∠CDE,得到∠B=∠C,根据等腰三角形的判定定理证明结论;(2)延长AD,BC交于点F,证明△ADE≌△CDF,得到DF=DE=2,进而求出AD,根据勾股定理计算即可;(3)过点A作AE⊥BC于E,并把△ACE沿着AE折叠得△AFE,作DG⊥BC 于G,根据△FAC∽△FBA求出CF,再根据平行线分线段成比例定理列出比例式求出AD.【解答】(1)证明:∵DE⊥AC,∴∠C=90°﹣∠CDE,∵∠CDE=∠A,∴∠A=2∠CDE,∵∠A+∠B+∠C=180°,∴2∠CDE+∠B+90°﹣∠CDE=180°,∴∠B=90°﹣∠CDE,∴∠B=∠C,∴△ABC为等腰三角形;(2)解:如图2,延长AD,BC交于点F,∵AE平分∠BAD,∴∠EAD=∠BAD,∵∠BCD+∠EAD=180°,∠BCD+∠DCF=180°,∴∠DCF=∠EAD=∠BAD,在△ABF中,∠ADC=∠CDF=90°,由(1)得:AF=AB=6,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴DF=DE=2,∴AD=4,∴AE===2;(3)解:如图3,过点A作AE⊥BC于E,并把△ACE沿着AE折叠得△AFE,作DG⊥BC于G,∵DC=DB,DG⊥BC,∴CG=GB=BC=10,∵∠ACB=90°+∠B,∠ACB=∠AEC+∠EAC,∴∠F AE=∠EAC=∠B,由(1)可得:AB=BF,∴∠AFB=∠F AB=∠ACF,∴△F AC∽△FBA,∴=,即=,解得:CF=10(负值舍去),∴AB=FB=30,DG∥AE,∴=,即=,解得:AD=18.【点睛】本题考查的是相似三角形的判定和性质、全等三角形的判定和性质、等腰三角形的性质,掌握相似三角形的判定定理是解题的关键.24.【证明体验】(1)如图1,⊙O是等腰△ABC的外接圆,AB=AC,在上取一点P,连结AP,BP,CP.求证:∠APB=∠P AC+∠PCA;【思考探究】(2)如图2,在(1)条件下,若点P为的中点,AB=6,PB=5,求P A 的值;【拓展延伸】(3)如图3,⊙O的半径为5,弦BC=6,弦CP=5,延长AP交BC的延长线于点E,且∠ABP=∠E,求AP•PE的值.【答案】(1)证明见解析;(2)4;(3)20+15.【分析】(1)利用等弦对等弧和同弧所对的圆周角相等的性质解答即可;(2)延长BP至点D,使PD=PC,连接AD,设PA=x,则PD=x,BD=5+x,利用相似三角形的判定与性质解答即可;(3)连接OP,OC,过点C作CH⊥BP于点H,利用等边三角形的判定与性质和解直角三角形的知识求得BP,再利用相似三角形的判定与性质,通过证明△EPC∽△BPA即可得出结论.【解答】(1)证明:∵AB=AC,∴.∴∠APB=∠ABC.∵∠ABC=∠ABP+∠CBP,∠ABP=∠ACP,∠CBP=∠PAC,∴∠ABC=∠PAC+∠PCA.∴∠APB=∠P AC+∠PCA.(2)解:延长BP至点D,使PD=PC,连接AD,如图,∵点P为的中点,∴.∴P A=PC,∠ABP=∠CBP.∴P A=PD.∴∠D=∠PAD.∴∠APB=∠P AD+∠D=2∠PAD.∵AB=AC,∴.∴∠APB=∠ABC.∵∠ABC=∠ABP+∠CBP=2∠ABP,∴∠P AD=∠ABP.∵∠D=∠D,∴△DAP∽△DBA,∴.∵∠D=∠PAD,∠PAD=∠ABP,∴∠D=∠ABP.∴AD=AB=6.设P A=x,则PD=x,BD=5+x,∴.∴x2+5x﹣36=0.解得:x=4或﹣9(负数不合题意,舍去).∴P A=4;(3)连接OP,OC,过点C作CH⊥BP于点H,如图,∵⊙O的半径为5,CP=5,∴OP=OC=PC=5,∴△OPC为等边三角形.∴∠POC=60°.∴∠PBC=∠POC=30°.在Rt△BCH中,BH=BC•cos30°=6×=3,CH=BC=3.在Rt△PCH中,PH==4.∴PB=PH+BH=4+3.∵四边形ABCP是圆的内接四边形,∴∠PCE=∠BAP.∵∠E=∠ABP,∴△EPC∽△BPA.∴.∴AP•PE=PC•BP=5(4+3)=20+15.【点睛】本题主要考查了圆的有关性质,圆周角定理,等腰三角形的性质,圆的内接四边形的性质,勾股定理,解直角三角形,特殊角的三角函数值,等边三角形的判定与性质,相似三角形的判定与性质,依据题意构造恰当的辅助线是解题的关键.。

九年级二模数学试题及答案

九年级二模数学试题及答案

九年级二模数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax + bx + cC. y = ax^2 + bxD. y = ax + b答案:A2. 已知圆的半径为5,圆心在原点,那么该圆的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B3. 如果一个角的正弦值是0.5,那么这个角可能是多少度?A. 30°B. 45°C. 60°D. 90°答案:A4. 以下哪个选项是不等式2x - 3 > 5的解?A. x > 4B. x < 4C. x > 2D. x < 2答案:A5. 计算下列哪个表达式的值等于0?A. (x - 2)(x + 2)B. (x + 2)(x - 2)C. x^2 - 4D. x^2 + 4答案:C6. 一个等腰三角形的两边长分别为5和8,那么第三边的长度是多少?A. 3B. 5C. 8D. 无法确定答案:C7. 计算下列哪个表达式的值等于1?A. (2/3)^2B. (3/2)^2C. √(2/3)D. √(3/2)答案:A8. 以下哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2 或 x = 3B. x = 1 或 x = 6C. x = 2 或 x = -3D. x = -2 或 x = -3答案:A9. 一个长方体的长、宽、高分别为3、4、5,那么它的体积是多少?A. 60B. 48C. 36D. 24答案:A10. 计算下列哪个表达式的值等于-1?A. (-1)^3B. (-1)^2C. (-1)^1D. (-1)^0答案:A二、填空题(每题2分,共20分)11. 一个数的立方根是2,那么这个数是______。

答案:812. 一个等差数列的首项是3,公差是2,那么第5项是______。

2022年人教版中考第二次模拟考试《数学试题》含答案解析

2022年人教版中考第二次模拟考试《数学试题》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一、选择题1.13-的绝对值是()A. 3B. 3-C. 13D.13-2. 如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有( )A. 4个B. 3个C. 2个D. 1个3. 下列计算正确的是()A. b3•b3=2b3B. (a+2)(a﹣2)=a2﹣4C (ab2)3=ab6 D. (8a﹣7b)﹣(4a﹣5b)=4a﹣12b4. 一个几何体的三视图如图所示,则这个几何体是( )A. B. C. D.5. 不等式组30240xx-≥⎧⎨+>⎩的解集在数轴上表示正确的是( )A. B.C. D.6. 下列说法正确的是( )A. 调查孝感区居民对创建”全国卫生城市”的知晓度,宜采用抽样调查B. 一组数据85,95,90,95,95,90,90,80,95,90的众数为95C. “打开电视,正在播放乒乓球比赛”是必然事件D. 同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为1 27. 如图,在平面直角坐标系中,点A的坐标为(﹣1,3),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为( )A. (0,﹣2)B. (1,﹣3)C. (2,0)D. (3,﹣1)8. 如图,在△ABC中,点O是∠ABC和∠ACB两个内角平分线交点,过点O作EF∥BC分别交AB,AC 于点E,F,已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是( )A. B.C. D.9. 如图,六边形ABCDEF的内角都相等,60DAB AB DE,∠==,则下列结论成立的个数是() //AB DE①;////EF AD BC②;AF CD=③;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A. 2B. 3C. 4D. 510. 若关于x 的一元二次方程kx 2﹣4x +2=0有两个不相等的实数根,则k 的取值范围是( )A. k <2B. k ≠0C. k <2且k ≠0D. k >211. 如图所示,E ,F ,G ,H 分别是OA ,OB ,OC ,OD 的中点,已知四边形EFGH 的面积是3,则四边形ABCD 的面积是( )A 6 B. 9 C. 12 D. 1812. 如图将ABC 绕点按顺时针方向旋转某个角度得到ADE ,使得//AD BC ,CB 与AE 的延长线相交于点,如果40F ∠=︒,则BAC ∠的度数为( )A. 60︒B. 50︒C. 40︒D. 3013. 如图,菱形ABCD 的边AB=20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO=10,则⊙O 的半径长等于( )A. 5B. 6C. 2D. 314. 如图,在△ABC 中,∠C =90°,∠B =32°,以A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有().A. 1个B. 2个C. 3个D. 4个15. 如图,Rt△OAB的直角边OB在x轴上,反比例函数y=4x在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=kx在第一象限的图象经过点D,则k的值为()A. 1B. 2C. 12D. 无法确定二、填空题16. 我国是世界上人均拥有淡水资源较少的国家,全国淡水资源的总量约为亿,应节约用水,数用科学记数法表示为.17. 如图所示,图1是一个边长为的正方形剪去一个边长为的小正方形,图2,是一个边长为的正方形,记图1,图2中阴影部分的面积分别为,则可化简为.18. 如图,将直线y x =-沿轴向下平移后的直线恰好经过点(2,4)A -,且与轴交于点,在x 轴上存在一点P 使得PA PB +的值最小,则点P 的坐标为 .三、解答题19. 计算:﹣22+38-+2•cos45°.20. 中国是世界上13个贫水国家之一.某校有800名在校学生,学校为鼓励学生节约用水,展开”珍惜水资源,节约每一滴水”系列教育活动.为响应学校号召,数学小组做了如下调查:小亮为了解一个拧不紧的水龙头的滴水情况,记录了滴水时间和烧杯中的水面高度,如图1.小明设计了调查问卷,在学校随机抽取一部分学生进行了问卷调查,并制作出统计图.如图2和图3.经结合图2和图3回答下列问题:(1)参加问卷调查的学生人数为 人,其中选C 的人数占调查人数的百分比为 .(2)在这所学校中选”比较注意,偶尔水龙头滴水”的大概有人.若在该校随机抽取一名学生,这名学生选B的概率为.请结合图1解答下列问题:(3)在”水龙头滴水情况”图中,水龙头滴水量(毫升)与时间(分)可以用我们学过的哪种函数表示?请求出函数关系式.(4)为了维持生命,每人每天需要约2400毫升水,该校选C的学生因没有拧紧水龙头,2小时浪费的水可维持多少人一天的生命需要?21. 如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3.(1)求证:AB平分∠OAD;(2)若点E是优弧AEB上一点,且∠AEB=60°,求扇形OAB的面积.(计算结果保留π)22. 为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?23. 如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB,BD,AD围成的曲边三角形的面积是;(2)求证:D E是⊙O的切线;(3)求线段DE长.24. 如图,已知抛物线y=ax2+85x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣12x﹣4与x轴交于点D,点P是抛物线y=ax2+85x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.(1)试求该抛物线表达式;(2)如图(1),若点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),过点P作PH⊥y轴,垂足为H,连接AC.①求证:△ACD是直角三角形;②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ACD相似?答案与解析一、选择题1.13-的绝对值是()A. 3B. 3-C. 13D.13-【答案】C【解析】【分析】根据数轴上某个数与原点距离叫做这个数的绝对值的定义即可解决.【详解】在数轴上,点13-到原点的距离是13,所以,13-的绝对值是13,故选C.【点睛】错因分析容易题,失分原因:未掌握绝对值的概念.2. 如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有( )A. 4个B. 3个C. 2个D. 1个【答案】A【解析】【详解】∵射线DF⊥直线c,∴∠1+∠2=90°,∠1+∠3=90°,即与∠1互余的角有∠2,∠3,又∵a∥b,∴∠3=∠5,∠2=∠4,∴与∠1互余的角有∠4,∠5,∴与∠1互余的角有4个,故选A.3. 下列计算正确的是()A. b3•b3=2b3B. (a+2)(a﹣2)=a2﹣4C. (ab2)3=ab6D. (8a﹣7b)﹣(4a﹣5b)=4a﹣12b【答案】B【解析】分析】各项计算得到结果,即可作出判断.【详解】A、原式=b6,不符合题意;B、原式=a2﹣4,符合题意;C、原式=a3b6,不符合题意;D、原式=8a﹣7b﹣4a+5b=4a﹣2b,不符合题意,故选B【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4. 一个几何体的三视图如图所示,则这个几何体是( )A. B. C. D.【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选C.【点睛】此题主要考查了由三视图判断几何体.主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为几边形就是几棱柱.5. 不等式组30240xx-≥⎧⎨+>⎩的解集在数轴上表示正确的是( )A. B.C. D. 【答案】D【解析】【详解】解:30240xx-≥⎧⎨+>⎩①②,解不等式①得,x≤3解不等式②得,x>﹣2在数轴上表示为:.故选D.【点睛】本题考查在数轴上表示不等式组的解集.6. 下列说法正确的是( )A. 调查孝感区居民对创建”全国卫生城市”的知晓度,宜采用抽样调查B. 一组数据85,95,90,95,95,90,90,80,95,90的众数为95C. “打开电视,正在播放乒乓球比赛”是必然事件D. 同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为1 2【答案】A【解析】解:A.调查孝感区居民对创建”全国卫生城市”的知晓度,宜采用抽样调查,正确; B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误; C.”打开电视,正在播放乒乓球比赛”是随机事件,故错误;D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为14,故错误.故选A.7. 如图,在平面直角坐标系中,点A的坐标为(﹣1,3),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为( )A. (0,﹣2)B. (13C. (2,0) 31)【答案】D【解析】【分析】作AB⊥y轴于点B,A′C⊥x轴于C,可得AB=1、OB3,根据正切的定义可得∠AOB=30°,由将点A顺时针旋转150°得到点A′可得∠AOA′=150°,OA′=OA=2,可求出∠A′OC=30°,根据∠A′OC的正弦值和余弦值即可求出A′C和OC的长,即可得答案.【详解】作AB⊥y轴于点B,A′C⊥x轴于C,∵A(-13∴AB=1、OB3∴tan∠AOB=ABOB3∴∠AOB=30°∵将点A顺时针旋转150°得到点A′,∴∠AOA′=150°,∴∠A′OC=∠AOA′-∠BOC-∠AOB=30°,OA′=OA22(3)12,∴A′C=OA′×sin30°=1,OC=3∴31),故选D.【点睛】本题考查旋转的性质及特殊角的三角函数值,熟记各三角函数的定义及特殊角的三角函数值是解题关键.8. 如图,在△ABC中,点O是∠ABC和∠ACB两个内角平分线的交点,过点O作EF∥BC分别交AB,AC 于点E,F,已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是( )A. B.C. D.【答案】A【解析】【分析】根据角平分线和平行证明△EBO和△OFC是等腰三角形,再由周长关系得y=8-x,即可解题.【详解】解:∵点O是∠ABC和∠ACB两个内角平分线的交点, EF∥BC,∴∠OBC=∠EOB, ∠OBC=∠EBO,∴△EBO是等腰三角形,同理,△OFC是等腰三角形,即BE=EO,CF=OF,∴△AEF的周长y=AE+EF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴y=8-x,即x是关于y的一次函数,图像是递减的直线,故选A【点睛】本题考查了一次函数的实际应用,中等难度,证明等腰三角形,找到函数关系是解题关键.9. 如图,六边形ABCDEF 的内角都相等,60DAB AB DE ,∠==,则下列结论成立的个数是( ) //AB DE ①;////EF AD BC ②;AF CD =③;④四边形ACDF 是平行四边形;⑤六边形ABCDEF 既是中心对称图形,又是轴对称图形.A. 2B. 3C. 4D. 5 【答案】D【解析】试题解析:∵六边形ABCDEF 的内角都相等,120EFA FED FAB ABC ∴∠=∠=∠=∠=, 60DAB ∠=,60DAF ,∴∠= 180,180EFA DAF DAB ABC ∴∠+∠=∠+∠=,∴ADEFCB ,故②正确,180FED EDA ,∴∠+∠= 60,EDA ADC ∴∠=∠=∴∠EDA =∠DAB ,∴ABDE ,故①正确,∵∠F AD =∠EDA ,∠CDA =∠BAD ,EF ADBC ,∴四边形EF AD ,四边形BCDA 是等腰梯形,∴AF =DE ,AB =CD ,∵AB =DE ,∴AF =CD ,故③正确,连接CF 与AD 交于点O ,连接DF 、AC 、AE 、DB 、BE .∵∠CDA =∠DAF ,∴AFCD ,AF =CD ,∴四边形AFDC 是平行四边形,故④正确,同法可证四边形AEDB是平行四边形,∴AD与CF,AD与BE互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF既是中心对称图形,故⑤正确,故选D.10. 若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A. k<2B. k≠0C. k<2且k≠0D. k>2【答案】C【解析】【分析】根据一元二次方程根的判别式即可求解.【详解】∵关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,∴k≠0且△>0,即(﹣4)2﹣4×k×2>0,解得k<2且k≠0.∴k的取值范围为k<2且k≠0.故选C.【点睛】此题主要考查一元二次方程的根的情况,解题的关键是熟知两个不相等的实数根对应的△>0. 11. 如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A. 6B. 9C. 12D. 18【答案】C【解析】【分析】利用位似图形的定义得出四边形EFGH 与四边形ABCD 是位似图形,再利用位似图形的性质得出答案.【详解】解:∵E ,F ,G ,H 分别是OA ,OB ,OC ,OD 的中点,∴四边形EFGH 与四边形ABCD 是位似图形,且位似比为:1:2,∴四边形EFGH 与四边形ABCD 的面积比为:1:4,∵四边形EFGH 的面积是3,∴四边形ABCD 的面积是12.故选:C .【点睛】此题主要考查了位似变换,根据题意得出位似比是解题关键.12. 如图将ABC 绕点按顺时针方向旋转某个角度得到ADE ,使得//AD BC ,CB 与AE 的延长线相交于点,如果40F ∠=︒,则BAC ∠的度数为( )A. 60︒B. 50︒C. 40︒D. 30【答案】C【解析】【分析】 如图,首先由旋转变换的性质得到∠DAE=∠BAC ;由平行线的性质得到∠DAE=∠F=40°,即可解决问题.【详解】如图,由旋转变换的性质得:∠DAE=∠BAC ;∵AD ∥FC ,∴∠DAE=∠F=40°,∴∠BAC=40°. 故选C.【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出∠DAE=∠BAC.13.如图,菱形ABCD 的边AB=20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO=10,则⊙O 的半径长等于( )A. 5B. 6C. 2D. 3【答案】C【解析】 【详解】试题解析:如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=20,面积为320,∴AB•DH=32O ,∴DH=16,在Rt △ADH 中,22AD DH -, ∴HB=AB ﹣AH=8,在Rt △BDH 中,2285+=DH BH设⊙O 与AB 相切于F ,连接AF .∵AD=AB ,OA 平分∠DAB ,∴AE ⊥BD ,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°,∴△AOF ∽△DBH , ∴=OA OF BD BH, 0885=F , ∴5故选C .考点:1.切线的性质;2.菱形的性质.14. 如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有().A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据角平分线的做法可得①正确,再根据直角三角形的高的定义可得②正确,然后计算出∠CAD=∠DAB=29°,可得AD≠BD,根据到线段两端点距离相等的点在线段的垂直平分线上,因此③错误,根据三角形内角和可得④正确.【详解】解:根据作法可得AD是∠BAC平分线,故①正确;∵∠C=90°,∴CD是△ADC的高,故②正确;∵∠C=90°,∠B=32°,∴∠CAB=58°,∵AD是∠BAC的平分线,∴∠CAD=∠DAB=29°,∴AD≠BD,∴点D不在AB的垂直平分线上,故③错误;∵∠CAD=29°,∠C=90°,∴∠CDA=61°,故④正确;共有3个正确,故选C.【点睛】此题主要考查了基本作图,关键是掌握角平分线的做法和线段垂直平分线的判定定理.15. 如图,Rt△OAB的直角边OB在x轴上,反比例函数y=4x在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=kx在第一象限的图象经过点D,则k的值为()A. 1B. 2C. 12D. 无法确定【答案】A 【解析】【分析】如图:过点D作DE⊥x轴于点E,由点D为斜边OA的中点可知DE是△ AOB的中位线,设A(x,4x),则D(4,22xx),然后代入y1=kx即可求解.【详解】解:过点D作DE⊥x轴于点 E.∵点D为斜边OA的中点,点A在反比例函数y=4x上∴DE是△AOB的中位线设A(x ,4x),则D (4,22xx)则:422kxx,解得k=1.故选:A.【点睛】本题考查的是反比例函数图像上点的坐标特点,掌握反比例函数图像上各点的坐标一定满足该函数的解析式是解答本题的关键.二、填空题16. 我国是世界上人均拥有淡水资源较少的国家,全国淡水资源的总量约为亿,应节约用水,数用科学记数法表示为.【答案】2.75×104.【解析】试题分析:27500=2.75×104.考点:科学记数法——表示较大的数.17. 如图所示,图1是一个边长为的正方形剪去一个边长为的小正方形,图2,是一个边长为的正方形,记图1,图2中阴影部分的面积分别为,则可化简为.【答案】11a a +- 【解析】 【详解】试题分析:212211(1)1S a a S a a -+==-- 考点:1.平方公式的几何背景;2.分式的化简.18. 如图,将直线y x =-沿轴向下平移后的直线恰好经过点(2,4)A -,且与轴交于点,在x 轴上存在一点P 使得PA PB +的值最小,则点P 的坐标为 .【答案】(23,0) 【解析】【分析】 如图所示,作点B 关于x 轴对称的点B',连接AB',交x 轴于P ,则点P 即为所求,【详解】解:设直线y=﹣x 沿y 轴向下平移后的直线解析式为y=﹣x+a ,把A (2,﹣4)代入可得,a=﹣2,∴平移后的直线为y=﹣x ﹣2,令x=0,则y=﹣2,即B (0,﹣2)∴B'(0,2),设直线AB'的解析式为y=kx+b ,把A(2,﹣4),B'(0,2)代入可得,422k b b -=+⎧⎨=⎩,解得32k b =-⎧⎨=⎩, ∴直线AB'的解析式为y=﹣3x+2,令y=0,则x=23,∴P(23,0)三、解答题19. 计算:﹣22+38-+2•cos45°.【答案】﹣5【解析】【分析】按照实数的运算顺序进行运算即可.【详解】原式()2422,2=-+-+⨯ 421,=--+5.=-20. 中国是世界上13个贫水国家之一.某校有800名在校学生,学校为鼓励学生节约用水,展开”珍惜水资源,节约每一滴水”系列教育活动.为响应学校号召,数学小组做了如下调查:小亮为了解一个拧不紧的水龙头的滴水情况,记录了滴水时间和烧杯中的水面高度,如图1.小明设计了调查问卷,在学校随机抽取一部分学生进行了问卷调查,并制作出统计图.如图2和图3.经结合图2和图3回答下列问题:(1)参加问卷调查的学生人数为 人,其中选C 的人数占调查人数的百分比为 .(2)在这所学校中选”比较注意,偶尔水龙头滴水”的大概有 人.若在该校随机抽取一名学生,这名学生选B 的概率为 .请结合图1解答下列问题:(3)在”水龙头滴水情况”图中,水龙头滴水量(毫升)与时间(分)可以用我们学过的哪种函数表示?请求出函数关系式.(4)为了维持生命,每人每天需要约2400毫升水,该校选C 的学生因没有拧紧水龙头,2小时浪费的水可维持多少人一天的生命需要?【答案】(1)60;10%;(2)440;1120;(3)一次函数,y=6t;(4)24. 【解析】【分析】(1)根据A 的人数除以占的百分比求出调查总人数;求出C 占的百分比即可;(2)求出B 占的百分比,乘以800得到结果;找出总人数中B 的人数,即可求出所求概率;(3)水龙头滴水量(毫升)与时间(分)可以近似看做一次函数,设为y =kx +b ,把两点坐标代入求出k 与b 的值,即可确定出函数解析式;(4)设可维持x 人一天的生命需要,根据题意列出方程,求出方程的解即可得到结果.【详解】(1)根据题意得:21÷35%=60(人),选C 的人数占调查人数的百分比为660×100%=10%; (2)根据题意得:选”比较注意,偶尔水龙头滴水”的大概有800×(1﹣35%﹣10%)=440(人);若在该校随机抽取一名学生,这名学生选B 的概率为6021660--=1120; (3)水龙头滴水量(毫升)与时间(分)可以近似地用一次函数表示,设水龙头滴水量y (毫升)与时间t (分)满足关系式y =kt +b ,依题意得:530636k b k b +=⎧⎨+=⎩解得:60k b =⎧⎨=⎩,∴y =6t ,经检验其余各点也在函数图象上,∴水龙头滴水量y (毫升)与时间t (分)满足关系式为y =6t ;(4)设可维持x 人一天的生命需要,依题意得:800×10%×2×60×6=2400x解得:x =24,则可维持24人一天的生命需要.故答案为(1)60;10%;(2)440;11 20.【点睛】本题考查了一次函数的应用,扇形统计图,条形统计图,以及用样本估计总体,熟练掌握运算法则是解答本题的关键.21. 如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3.(1)求证:AB平分∠OAD;(2)若点E是优弧AEB上一点,且∠AEB=60°,求扇形OAB的面积.(计算结果保留π)【答案】(1)证明见解析;(2)3π.【解析】【分析】(1)连接OB,由切线的性质得出OB⊥BC,证出AD∥OB,由平行线的性质和等腰三角形的性质证出∠DAB=∠OAB,即可得出结论;(2)由圆周角定理得出∠AOB=120°,由扇形面积公式即可得出答案.【详解】(1)证明:连接OB,如图所示:∵BC切⊙O于点B,∴OB⊥BC,∵AD⊥BC,∴AD∥OB,∴∠DAB=∠OBA,∵OA=OB,∴∠OAB=∠OBA,∴∠DAB=∠OAB,∴AB平分∠OAD;(2)解:∵点E是优弧AEB上一点,且∠AEB=60°,∴∠AOB=2∠AEB=120°,∴扇形OAB的面积=2120π33π.360⨯=【点睛】考查切线的性质,扇形面积的计算,熟练掌握切线的性质是解题的关键.22. 为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?【答案】(1)20%;(2)①40;②不能.【解析】试题分析:(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+14.4.结合函数图象的性质进行解答即可.试题解析:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤1.2,解得m≤40,即A型健身器材最多可购买40套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+14.4.∵﹣0.1<0,∴y随m的增大而减小,∴m=40时,y最小.∵m=40时,y最小值=﹣01×40+14.4=10.4(万元).又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.考点:1.一次函数的应用;2.一元一次不等式的应用;3.一元二次方程的应用.23. 如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB,BD,AD围成的曲边三角形的面积是;(2)求证:D E是⊙O的切线;(3)求线段DE的长.【答案】(1)252524π+;(2)证明见解析;(3)354.【解析】【分析】(1)连接OD,由AB是直径知∠ACB=90°,结合CD平分∠ACB知∠ABD=∠ACD=45°,从而知∠AOD=90°,根据曲边三角形的面积=S扇形AOD+S△BOD可得答案;(2)由∠AOD=90°,即OD⊥AB,根据DE∥AB可得OD⊥DE,即可得证;(3)勾股定理求得BC=8,作AF⊥DE知四边形AODF是正方形,即可得DF=5,由∠EAF=90°﹣∠CAB=∠ABC知tan∠EAF=tan∠CBA,即EF ACAF BC=,求得EF的长即可得.【详解】解:(1)如图,连接OD.∵AB是直径,且AB=10,∴∠ACB=90°,AO=BO=DO=5.∵CD平分∠ACB,∴∠ABD=∠ACD=12∠ACB=45°,∴∠AOD=90°,则曲边三角形的面积是S扇形AOD+S△BOD=2905360π⨯+12×5×5=252524π+.故答案为2525 24π+;(2)由(1)知∠AOD=90°,即OD⊥AB.∵DE∥AB,∴OD⊥DE,∴DE是⊙O切线;(3)∵AB=10、AC=6,∴BC=22AB AC-=8.过点A作AF⊥DE于点F,则四边形AODF是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC,∴tan∠EAF=tan∠CBA,∴EF ACAF BC=,即658EF=,∴EF=154,∴DE=DF+EF=154+5=354.24. 如图,已知抛物线y=ax2+85x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣12x﹣4与x轴交于点D,点P是抛物线y=ax2+85x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.(1)试求该抛物线表达式;(2)如图(1),若点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),过点P作PH⊥y轴,垂足为H,连接AC.①求证:△ACD是直角三角形;②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ACD相似?【答案】(1)y=15x2+85x﹣4;(2)点P的坐标为(﹣52,﹣274)或(﹣8,﹣4);(3)点P的横坐标为﹣5.5或﹣10.5或2或﹣18时,使得以点P、C、H为顶点的三角形与△ACD相似.【解析】试题分析:(1)利用待定系数法列方程求解析式.(2)把P,F点坐标用m表示写出来,利用四边形PCOF是平行四边形得到m值,求得P点坐标.(3)①由两点间的距离公式可知分别计算AC,CD,AD勾股定理逆定理知三角形是直角三角形;②分类讨论,△ACD∽△CHP,△ACD∽△PHC分别计算P点坐标.试题解析:解:(1)由题意得:842054a cc⎧+⨯+=⎪⎨⎪=-⎩,解得:154ac⎧=⎪⎨⎪=-⎩,∴抛物线的表达式为y=15x2+85x﹣4.(2)设P(m,15m2+85m﹣4),则F(m,﹣12m﹣4).∴PF=(﹣12m﹣4)﹣(15m2+85m﹣4)=﹣15m2﹣2110m.∵PE⊥x轴,∴PF∥OC.∴PF=OC时,四边形PCOF是平行四边形.∴﹣15m2﹣2110m=4,解得:m=﹣52或m=﹣8.当m=﹣52时,15m2+85m﹣4=﹣274,当m=﹣8时,15m2+85m﹣4=﹣4.∴点P的坐标为(﹣52,﹣274)或(﹣8,﹣4).(3)①证明:把y=0代入y=﹣12x﹣4得:﹣12x﹣4=0,解得:x=﹣8.∴D(﹣8,0).∴OD=8.∵A(2,0),C(0,﹣4),∴AD=2﹣(﹣8)=10.由两点间的距离公式可知:AC2=22+42=20,DC2=82+42=80,AD2=100,∴AC2+CD2=AD2.∴△ACD是直角三角形,且∠ACD=90°.②由①得∠ACD=90°.当△ACD∽△CHP时,AC CHCD HP=21855n nn--=-,解得:n=0(舍去)或n=﹣5.5或n=﹣10.5.当△ACD∽△PHC时,AC PHCD CH=21855nn n=--,解得:n=0(舍去)或n=2或n=﹣18.综上所述,点P的横坐标为﹣5.5或﹣10.5或2或﹣18时,使得以点P、C、H为顶点的三角形与△ACD相似.点睛:1.求二次函数的解析式(1)已知二次函数过三个点,利用一般式,y=ax2+bx+c(0a≠).列方程组求二次函数解析式.(2)已知二次函数与x 轴的两个交点1,0x ()(2,0)x ,利用双根式,y =()()12a x x x x --(0a ≠)求二次函数解析式,而且此时对称轴方程过交点的中点,122x x x +=. (3)已知二次函数的顶点坐标,利用顶点式()2y a x h k =-+,(0a ≠)求二次函数解析式.(4)已知条件中a ,b ,c ,给定了一个值,则需要列两个方程求解.(5)已知条件有对称轴,对称轴也可以作为一个方程;如果给定的两个点纵坐标相同1,y x ()(2,)x y ,则可以得到对称轴方程122x x x +=. 2.处理直角坐标系下,二次函数与一次函数图象问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,找出不同点间的关系.如果需要得到一次函数的解析式,依然利用待定系数法求解析式.。

中考数学第二次模拟考试题(附带答案)

中考数学第二次模拟考试题(附带答案)

xx 年中考第二次模拟考试题数学科参考答案一、选择题(本题共10小题,每小题3分,共30分)二、填空题(本题共5小题,每小题3分,共15分)三、解答下列各题(本题共4小题,每小题6分,共24分,写出解题过程。

)16、解:原式=4-8×0.125+1+1=517、解:①+②得 8x=8→ x=1把x=1代入①得 y=23∴原方程组的解是123x y =⎧⎪⎨=⎪⎩18、解:原式=2(1)(1)66(1)(1)1x x x x x x x -+-=-+--g 当x=xx 时,原式=xx -6=xx四、解答题(本题共2小题,每小题7分,共14分)20、⑴80,80,两班都一样。

⑵70,90,二(2)班较优。

⑶二(1)班成绩波动较大,二(2)班成绩比较稳定。

21、解:过点B 作BG ⊥AE ,垂足为G ,点G 即为所求的点.DABCEF (图3)G理由是:∵DF ⊥AE BG ⊥AE∴∠DFA =∠AGB =90°∵ABCD 是正方形∴∠ADF+∠DAF =90°,∠DAF+∠BAG =90° ∴∠ADF =∠BAG 又DA =AB∴△ABG ≌△DAF (AAS )五、解答题(本题共2小题,每小题8分,共16分)22、解:① (8060)20.58000198000y x x x =--⨯-=-② 由①得 198000y x =-当y=106000时,有 106000=19x -8000 解这个方程得 x=600023、解:如图,过点A 作AE ⊥CD 于E ,则有四边形ABDE 是矩形, 设CE=x m ,则CD=(x+20) m ∵∠CAE=45°=∠ACE ∴AE=CE=BD=x 在Rt △BCD 中,tan 60CDBD=o 即x+20x= 3 解这个方程得x=10( 3 +1) m 答:塔高CD 为10( 3 +1) m六、(本题满分10分)24、解:延长PO 交⊙O 于E ,连结AC. ⑴∵PA 切⊙O 于A ∴PA 2=PC ·PE即42=PC(PC+6)解之得PC=2(只取正值) ⑵∵△PAO ∽△BAD∴∠APO =∠ABD ∵OB =OC∴∠ABD =∠OCB∴∠AOP =∠ABD+∠OCB =2∠ABD =2∠APO ∵PA 切⊙O 于A∴∠PAO =90° ∴∠AOP+∠APO =90° 即 3∠APO =90°→∠APO =30°OAC ACD OADC 119333153S S S 33sim6033tan 30==22424+⨯⨯+⨯⨯+o o △△四边形==七、(本题满分11分)25、解:⑴设点A (x ,y )BDA (图4)45°60°CEE∵S △AOB =4→ 12 xy=4 → y= 8x⑵把A (x ,4)代入y= 8x 得x= 2,∴A (2,4)∵△APB ∽△AOB① 点P 在x 轴的正半轴时,且当∠OAB =∠PAB ,则PB OB =ABAB=1 ∴PB =2,∴P (4,0)又当∠OAB =∠APB 时,则AB BP =OB AB =24 =12,∴BP =8,∴P (10,0)②当点P 在x 轴的负半轴时,且当∠OAB=∠APB ,则AB BP =OB AB =24 =12, ∴BP=8,∴P (-6,0)⑶、①当点P 在x 轴的负半轴时,即过P 、O 、A 三点坐标分别为P (-6,0),O (0,0),A (2,4)设抛物线为y=ax 2+bx+c ,把以上三点分别代入得036a-6b+c0=c 4=4a+2b+c ⎧⎪⎨⎪⎩=解这个方程组得1a=43b=2c=0⎧⎪⎪⎪⎨⎪⎪⎪⎩,所以抛物线为 y=14 x 2+32 x=14 (x+3)2-94该抛物线是由抛物线y=14 x 2先向左平移3个单位,然后再向下平移94 个单位而得到。

2022年中考第二次模拟检测《数学试卷》含答案解析

2022年中考第二次模拟检测《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共12小题)1.计算6÷(﹣3)的结果是( )A. ﹣12B. ﹣2C. ﹣3D. ﹣182.计算230cos ︒的结果等于( ) A. 12 B. 22 C. 32 D. 33.我国自行设计、制造第一颗人造卫星”东方红一号”的运行轨迹距地球最近点439000m ,将439000用科学记数法表示应为( ) A. 54.3910⨯ B. 64.3910⨯ C. 60.43910⨯ D. 343910⨯ 4.下列图案中,是中心对称图形的是( )A. B. C. D.5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A. B. C. D. 6.27值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间7.化简2x x x 11x+--的结果是 A. +1 B. x 1- C. x - D.8.如图,在菱形ABCD 中,点在轴上,点的坐标轴为()4,1, 点的坐标为()0,1, 则菱形ABCD 的周长等于( )A. 5B. 43C. 45D. 209.方程组632x y x y +=⎧⎨-=-⎩的解是( ). A. 51x y =⎧⎨=⎩ B. 42x y =-⎧⎨=-⎩ C. 51x y =-⎧⎨=-⎩ D. 42x y =⎧⎨=⎩10.若点(x 1,﹣1),(x 2,1),(x 3,2)在反比例函数y =﹣1x 的图象上,则下列各式中正确的是( ) A. x 1<x 2<x 3 B. x 2<x 3<x 1 C. x 2<x 1<x 3D. x 1<x 3<x 2 11.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=3,DC=1,点P 是AB 上的动点,则PC+PD 的最小值为( )A. 4B. 5C. 6D. 712.将二次函数y =x 2﹣4x +a 的图象向左平移1个单位,再向上平移1个单位.若得到的函数图象与直线y =2有两个交点,则a 的取值范围是( )A. a >3B. a <3C. a >5D. a <5二.填空题(共6小题)13.计算263x xy 的结果等于__________.14.计算2(252)的结果等于__________.15.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球概率是 .16.将一次函数3y x =的图象向上平移个单位的长度,平移后的直线与轴的交点坐标为_________.17.如图,在△ABC中,AB=AC=5,BC=45,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积最大值为______.18.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(1)边AC的长等于_____.(2)以点C为旋转中心,把△ABC顺时针旋转,得到△A'B'C',使点B的对应点B'恰好落在边AC上,请在如图所示的网格中,用无刻度的直尺,作出旋转后的图形,并简要说明作图的方法(不要求证明).三.解答题(共7小题)19.解不等式21457xx x-≤-⎧⎨+≥-⎩①②.请结合题意填空,完成本题的解答(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为.20.某校为了解九年级学生每周平均课外阅读时间(单位:),随机抽查了该学校九年级部分同学,对其每周平均课外阅读时间进行统计,绘制了如下的统计图①和②,请根据相关信息,解答下列问题;()1该校抽查九年级学生的人数为_______,图①中的a值为______;()2求统计的这组每周平均课外阅读时间的样本数据的平均数、众数和中位数;()3若该校九年级共有400名学生,根据统计的这组每周平均课外阅读时间的样本数据,估计该校九年级每周平均课外阅读时间为的学生人数.21.已知AB是⊙O的直径,DA为⊙O的切线,切点为A,过⊙O上的点C作CD∥AB交AD于点D,连接BC、AC.(1)如图①,若DC为⊙O的切线,切点为C,求∠ACD和∠DAC的大小.(2)如图②,当CD为⊙O的割线且与⊙O交于点E时,连接AE,若∠EAD=30°,求∠ACD和∠DAC的大小.22.如图,在一场马拉松比赛中,某人在大楼处,测得起点拱门CD顶部的俯角为35︒,底部的俯角为45︒,AB=米,求起点拱门CD的高度,(结果精确到;,参考数据:如果处离地面的高度20,,)︒≈︒≈︒≈sin cos tan350.57350.82350.7023.甲、已两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品x>).按折出售,乙商场对一次购物中超过200元后的价格部分打折.设原价购物金额累计为元(0()1根据题意,填写下表:(单位:元)原价购物金额累计/元.130 300 700 ···甲商场实际购物金额/元104 560 ···乙商场实际购物金额/元130 270 ···()2设在甲商场实际购物金额为y甲元,在乙商场实际购物金额为y乙元,分别写出y甲,y乙关于的函数解析式;()3根据题意填空:①若在同甲商场和在乙商场实际购物花费金额一样多,则在同一商场所购商品原价金额累计为______元;②若在同一商场购物,商品原价购物金额累计为800元,则在甲、乙.两家商场中的商场实际购物花费金少.③若在同一商场实际购物金额为400元,则在甲、乙两家商场中的_____商场商品原价购物累计金额多.24.将矩形纸片OABC放在平面直角坐标系中,O为坐标原点,点A在y轴上,点C在x轴上,点B的坐标是(8,6),点P是边AB上的一个动点,将△OAP沿OP折叠,使点A落在点Q处.(1)如图①,当点Q恰好落在OB上时.求点p的坐标;(2)如图②,当点P是AB中点时,直线OQ交BC于M点.①求证:MB=MQ;②求点Q的坐标.25.如图,抛物线y=ax2+bx+4(a≠0)与x轴交于A(﹣3,0),C(4,0)两点,与y轴交于点B.(1)求这条抛物线的顶点坐标;(2)已知AD=AB(点D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个点Q以某一速度从点B沿线段BC移动,经过t(s)的移动,线段PQ被BD垂直平分,求t的值; (3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由.答案与解析一.选择题(共12小题)1.计算6÷(﹣3)的结果是( )A. ﹣12B. ﹣2C. ﹣3D. ﹣18【答案】B【解析】【分析】根据有理数的除法运算法则计算即可得解.【详解】6÷(-3), =-(6÷3),=-2.故选B .【点睛】本题考查了有理数的除法,是基础题,熟练掌握运算法则是解题的关键.2.计算230cos ︒的结果等于( )A. 12 【答案】D【解析】【分析】先算出cos30°的值,再乘2即可【详解】2302cos ︒==故选:D【点睛】本题考查求特殊角度的三角函数,注意题干中还要乘2,勿遗漏.3.我国自行设计、制造第一颗人造卫星”东方红一号”的运行轨迹距地球最近点439000m ,将439000用科学记数法表示应为( )A. 54.3910⨯B. 64.3910⨯C. 60.43910⨯D. 343910⨯ 【答案】A【解析】【分析】较大的数可以用科学记数法表示为:10n a ⨯的形式,其中1≤<10.【详解】数字439000用科学记数法表示,其中 4.39a =439000变为4.39,小数点需要向左移动5位,故n=5故答案为:A【点睛】本题考查科学记数法,注意,科学记数法还可以表示较小的数,形式为:10n a -⨯.4.下列图案中,是中心对称图形的是( ) A. B. C. D.【答案】D【解析】分析】根据中心对称图形的定义逐一进行分析判断即可.【详解】A 、不是中心对称图形,故不符合题意;B 、不是中心对称图形,故不符合题意;C 、不是中心对称图形,故不符合题意;D 、是中心对称图形,故符合题意,故选D.【点睛】本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A. B. C. D.【答案】A【解析】【分析】根据主视图就是从正面看到的图形即可解答.【详解】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,第三层右边一个小正方形, 故答案为A .【点睛】本题考查了简单组合体的三视图,掌握主视图、俯视图、左视图的概念是解答本题的关键. 6.估计27的值在( ) A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】D【解析】【分析】用平方法进行比较,看27在哪两个整数平方之间即可.【详解】∵252527=<,263627=>∴5<27<6故选:D【点睛】本题考查比较二次根式的大小,常见方法有2种:(1)将数字平方,转化为不含二次根号的数字比较;(2)将数字都转化到二次根式中,然后进行比较. 7.化简2x x x 11x+--的结果是 A. +1B. x 1-C. x -D.【答案】D【解析】 试题分析:()22x x 1x x x x x x 11x x 1x 1--+===----.故选D . 8.如图,在菱形ABCD 中,点在轴上,点的坐标轴为()4,1, 点的坐标为()0,1, 则菱形ABCD 的周长等于( )A. 5B. 3C. 5D. 20【答案】C【解析】【分析】如下图,先求得点A 的坐标,然后根据点A 、D 的坐标刻碟AD 的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC 、BD ,交于点 E∵四边形ABCD 是菱形,∴DB ⊥AC,且DE=EB又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴()()2220015-+-=∴菱形ABCD 的周长为:5故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.9.方程组632x y x y +=⎧⎨-=-⎩的解是( ). A. 51x y =⎧⎨=⎩B. 42x y =-⎧⎨=-⎩C. 51x y =-⎧⎨=-⎩D. 42x y =⎧⎨=⎩【答案】D【解析】【分析】 采用加减消元法解方程组即可.【详解】632x y x y +=⎧⎨-=-⎩①②①-②得:48y =∴2y =将2y =代入①得:26x +=∴4x =∴方程组的解为42x y =⎧⎨=⎩故选D .【点睛】本题考查解二元一次方程组,熟练掌握消元法是解题的关键.10.若点(x 1,﹣1),(x 2,1),(x 3,2)在反比例函数y =﹣1x 的图象上,则下列各式中正确的是( ) A x 1<x 2<x 3B. x 2<x 3<x 1C. x 2<x 1<x 3D. x 1<x 3<x 2 【答案】B【解析】【分析】根据反比例函数的解析式确定x 1、x 2、x 3的值并比较即可.【详解】解:∵点(x 1,﹣1),(x 2,1),(x 3,2)在反比例函数y =﹣1x的图象上, ∴﹣1=﹣11x ,1=﹣21x ,2=﹣31x , ∴x 1=1,x 2=﹣1,x 3=﹣12, ∴x 2<x 3<x 1.故答案为B .【点睛】本题考查了反比例函数图像上点的特点,掌握在反比例函数图像上的点满足函数解析式是解答本题的关键.11.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=3,DC=1,点P 是AB 上的动点,则PC+PD 的最小值为( )A. 4B. 5C. 6D. 7【答案】B【解析】 试题解析:过点C 作CO ⊥AB 于O ,延长CO 到C ′,使OC ′=OC ,连接DC ′,交AB 于P ,连接CP .此时DP +CP =DP +PC ′=DC ′的值最小.∵DC =1,BC =4,∴BD =3,连接BC ′,由对称性可知∠C ′BE =∠CBE =45°,∴∠CBC ′=90°,∴BC ′⊥BC ,∠BCC ′=∠BC ′C =45°,∴BC =BC ′=4,根据勾股定理可得DC 22'BC BD +2234+.故选B .12.将二次函数y =x 2﹣4x +a 的图象向左平移1个单位,再向上平移1个单位.若得到的函数图象与直线y =2有两个交点,则a 的取值范围是( )A. a >3B. a <3C. a >5D. a <5【答案】D【解析】【分析】先利用配方法将原解析式化为顶点式,再根据平移规律得出平移后的解析式,再将y=2代入得到一元二次方程,最后根据判别式△>0列出不等式并求解即可.【详解】解:∵y =x 2﹣4x +a =(x ﹣2)2﹣4+a ,∴将二次函数y =x 2﹣4x +a 的图象向左平移1个单位,再向上平移1个单位,得到的函数解析式为y =(x ﹣2+1)2﹣4+a +1,即y =x 2﹣2x +a ﹣2,将y =2代入,得2=x 2﹣2x +a ﹣2,即x 2﹣2x +a ﹣4=0,由题意,得△=4﹣4(a ﹣4)>0,解得a <5.故答案为D .【点睛】本题考查了二次函数图像的平移、二次函数与一元二次方程的关系、一元一次不等式的解法等知识点,确定平移后的函数解析式是解答本题的关键. 二.填空题(共6小题)13.计算263x xy 的结果等于__________.【答案】318x y【解析】【分析】单项式的乘法,数字与数字相乘,字母与字母相乘得到.【详解】原式=23(63)()18x x y x y =故答案为:318x y【点睛】本题考查单项式的乘法,计算题主要是需要小心仔细,不要出现无谓错误.14.计算2的结果等于__________.【答案】22-【解析】【分析】根据完全平方公式进行展开,然后再进行同类项合并即可.【详解】解:2故填22-【点睛】主要考查的是完全平方公式及二次根式的混合运算,注意最终结果要化成最简二次根式的形式. 15.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 . 【答案】29. 【解析】试题分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.∵共4+3+2=9个球,有2个红球,∴从袋子中随机摸出一个球,它是红球的概率为29. 故答案为29. 考点:概率公式.16.将一次函数3y x =的图象向上平移个单位的长度,平移后的直线与轴的交点坐标为_________.【答案】2,03⎛⎫- ⎪⎝⎭【解析】【分析】先根据平移特点求出新函数解析式,然后再求解新函数与x 轴的交点坐标.【详解】函数3y x =向上平移2个单位得新函数:32y x =+与x 轴的交点,即纵坐标为0,代入解析式得:032x =+解得:x=23- 故坐标为:2,03⎛⎫- ⎪⎝⎭【点睛】本题考查函数的平移,口诀为:”上加下减,左加右减”.17.如图,在△ABC 中,AB=AC=5,BC=45,D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为______.【答案】8【解析】【分析】如图,过点A 作AH ⊥BC 于H ,过点E 作EM ⊥AB 于M ,过点C 作CN ⊥AB 于N ,根据等腰三角形的性质以及三角形的面积可求出CN=4,继而根据勾股定理求出AN=3,从而求得BN 的长,然后证明△EDM ≌△DCN ,根据全等三角形的性质可得EM=DN ,设BD=x ,则DN=8-x ,继而根据三角形的面积公式可得S △BDE =()()2148052x x --+<≤,根据二次函数的性质即可求得答案. 【详解】如图,过点A 作AH ⊥BC 于H ,过点E 作EM ⊥AB 于M ,过点C 作CN ⊥AB 于N ,∵AB=AC=5,5AH ⊥BC ,∴BH=125∴AH=22AB BH-=5,∵S△ABC=1122BC AH AB CN=,即11455522CN ⨯⨯=⨯⨯,∴CN=4,在Rt△CAN中,∠ANC=90°,∴AN=22AC CN-=3,∴BN=BA+AN=8,∵四边形CDEF是正方形,∴∠EDM+∠CDN=∠EDC=90°,ED=CD,∵∠CDN+∠NCD=90°,∴∠EDM=∠DCN,又∵∠EMD=∠DNC=90°,∴△EDM≌△DCN,∴EM=DN,设BD=x,则DN=8-x,∴S△BDE=12BD EM=()182x x-=()()2148052x x--+<≤,∵10 2-<,∴S△BDE的最大值为8,故答案为8.【点睛】本题考查了等腰三角形的性质,正方形的性质,全等三角形的判定与性质,二次函数的应用等,综合性质较强,有一定的难度,正确添加辅助线,熟练运用相关知识是解题的关键.18.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(1)边AC的长等于_____.(2)以点C为旋转中心,把△ABC顺时针旋转,得到△A'B'C',使点B的对应点B'恰好落在边AC上,请在如图所示的网格中,用无刻度的直尺,作出旋转后的图形,并简要说明作图的方法(不要求证明).【答案】(1)5;(2)取格点E,F,M,N,作直线EF,直线MN,MN与EF交于点A′,EF与AC交于点B′,连接CA′.△A'B'C即为所求.作图见解析.【解析】【分析】(1)先根据网格确定AB、BC的长,然后根据勾股定理即可解答;(2)利用格点构造全等三角形C B'=FH=3,EF⊥AC, A'B'=4,从而点E、F、M、N,作直线EF,直线MN,MN 与EF交于点A',EF与AC交于点B',连接CA'即可.【详解】解:(1)根据网格可知:AB=4,BC=3,∴AC22=5,AB BC故答案为:5;(2)取格点E,F,M,N,作直线EF,直线MN,MN与EF交于点A′,EF与AC交于点B′,连接CA′.△A'B'C即为所求.【点睛】本题考查了作图——旋转变换,掌握旋转的性质和全等三角形的判定与性质是解答本题的关键.三.解答题(共7小题)19.解不等式21457xx x-≤-⎧⎨+≥-⎩①②.请结合题意填空,完成本题的解答(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为.【答案】(1)x≤1;(2)x≥﹣4;(3)把不等式①和②的解集在数轴上表示见解析;(4)﹣4≤x≤1.【解析】【分析】(1)(2)根据一元一次不等式的解法求解即可;(3)将(1)(2)求得的不等式在数轴上表示即可;(4)根据(3)数轴,确定不等式组的解集.【详解】解:(1)解不等式①,得x≤1;(2)解不等式②,得x≥﹣4;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为﹣4≤x≤1.【点睛】本题考查了一元一次不等式组的解法,掌握不等式的解法和利用数轴确定不等式组的解集是解答本题的关键.20.某校为了解九年级学生每周平均课外阅读时间(单位:),随机抽查了该学校九年级部分同学,对其每周平均课外阅读时间进行统计,绘制了如下的统计图①和②,请根据相关信息,解答下列问题;()1该校抽查九年级学生的人数为_______,图①中的a值为______;()2求统计的这组每周平均课外阅读时间的样本数据的平均数、众数和中位数;()3若该校九年级共有400名学生,根据统计的这组每周平均课外阅读时间的样本数据,估计该校九年级每周平均课外阅读时间为的学生人数.【答案】(1)50,16;(2)平均数:2.92,众数:3,中位数:3;(3) 估计该校九年级每周平均课外阅读时间为小时的学生有160名【解析】【分析】(1)根据条形统计图可得抽查人数,用4小时的8人除抽查人数可得a;(2)所有人的总时间除人数得平均数;众数即为人数最多对应的时间;中位数为排序后最中间两个数的平均数;(3)先得出3h人数的比例,然后乘全校总人数得.【详解】(1)根据条形统计图,总人数为:5+12+20+8+5=50则8 %50 a=解得:=16(2)1521232048552.9250x⨯+⨯+⨯+⨯+⨯==统计的这组数据的平均数是2.92.观察条形统计图,在这组样本数据中,出现了20次,出现的次数最多.这组样本数据的众数是将这组样本数据按照由小到大的顺序排列,其中处于中间位置的两个数都是,有333 2+=这组样本数据的中位数是(3)在名学生中,每周平均课外阅读时间为小时的学生人数比例40%由样本数据,估计该校九年级400名学生中,每周平均课外阅读时间为小时的人数比例约为40%,有40040% 160⨯=.根据样本数据,估计该校九年级每周平均课外阅读时间为小时的学生有160名【点睛】本题考查抽样调查与统计,在求解中位数时需要注意,若样本数量为偶数个,则中位数为最中间2个数的平均数.21.已知AB是⊙O的直径,DA为⊙O的切线,切点为A,过⊙O上的点C作CD∥AB交AD于点D,连接BC、AC.(1)如图①,若DC为⊙O的切线,切点为C,求∠ACD和∠DAC的大小.(2)如图②,当CD为⊙O的割线且与⊙O交于点E时,连接AE,若∠EAD=30°,求∠ACD和∠DAC的大小.【答案】(1)∠ACD=∠DAC=45°;(2)∠ACD=30°,∠DAC=60°.【解析】【分析】(1)先根据题意确定三角形ADC是等腰直角三角形,进而求出∠ACD和∠DAC的大小;(2)根据AB是圆O的直径,DA为圆O的切线,切点为A,可得DA⊥AB,根据∠EAD=30°,可得∠BAE=60°,根据圆内接四边形对角互补可得∠BCE=120°,根据AB是圆O的直径,可得∠BCA=90°,进而求得∠ACD和∠DAC的大小.【详解】(1)∵AB是⊙O的直径,DA为⊙O的切线,切点为A,∴DA⊥AB,∴∠DAB=90°,∵DC为⊙O的切线,切点为C,∴DC=DA,∵CD∥AB,∴∠D+∠DAB=180°,∴∠D=90°,∴∠ACD=∠DAC=45°;(2)∵AB是⊙O的直径,DA为⊙O的切线,切点为A,∴DA⊥AB,∴∠DAB=90°,∠DEA=∠EAB,∴∠ADC=90°,∵∠EAD=30°,∴∠DEA=60°,∴∠EAB=60°,∴∠BCE=120°,∵AB是⊙O的直径,∴∠BCA=90°,∴∠ACD=30°,∴∠DAC=60°.【点睛】本题考查了切线的性质、圆周角定理,掌握并灵活运用切线的判定与性质是解答本题的关键.22.如图,在一场马拉松比赛中,某人在大楼处,测得起点拱门CD的顶部的俯角为35︒,底部的俯角为45︒,AB=米,求起点拱门CD的高度,(结果精确到;,参考数据:如果处离地面的高度20,,)︒≈︒≈︒≈sin cos tan350.57350.82350.70【答案】起点拱门CD 的高度约为6 m【解析】【分析】如下图,先在Rt △AED 中,利用tan ∠EAD 得出AE 的长,再在Rt ACE ∆中,根据tan ∠EAC 可求得CE 的长,进而得出AE 的长.【详解】过点作,AE DC ⊥交DC 的延长线于点根据题意,可知20, 45,35DE AB m EAD EAC ︒︒==∠=∠=在Rt △AED 中,tan ∠EAD=201ED AE AE == ∴AE=20m在Rt △ACE 中,tan ∠EAC=0.720EC EC AE == ∴EC=14m∴CD=6m答:起点拱门CD 的高度约为6m .【点睛】本题考查锐角三角函数在实际中的应用,解题关键是构建直角三角形,然后在直角三角形中利用三角函数进行边关系的推导求解.23.甲、已两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按折出售,乙商场对一次购物中超过200元后的价格部分打折. 设原价购物金额累计为元(0x >). ()1根据题意,填写下表: (单位:元)()2设在甲商场实际购物金额为y 甲元,在乙商场实际购物金额为y 乙元,分别写出y 甲,y 乙关于的函数解析式;()3根据题意填空:①若在同甲商场和在乙商场实际购物花费金额一样多,则在同一商场所购商品原价金额累计为______元 ; ②若在同一商场购物,商品原价购物金额累计为800 元,则在甲、乙.两家商场中的 商场实际购物花费金少.③若在同一商场实际购物金额为400元,则在甲、乙两家商场中的_____商场商品原价购物累计金额多.【答案】(1)240,550;(2) ()0.80y x x =>甲,()0200y x x <≤=乙,0.760(200)y x x =+>乙; (3) ①600,②乙;③甲【解析】【分析】(1)根据甲、乙商场的折扣规则分别求甲、乙的费用;(2)甲商场8折优惠,直接写关系式;乙分2段进行,一段是200内,另一段是超过200后的;(3)①消费金额一定超过200元,联立()0.80y x x =>甲和0.760(200)y x x =+>乙解得;②分别求出甲、乙的费用,比较得出费用较少的;③分别求出甲、乙原价,比较即可.【详解】(1)根据题意,甲的费用为:300×0.8=240 乙的费用为:200+500×0.7=550(2)()0.80y x x =>甲当0200x <≤时,y x =乙当200x >时,()2000.7200y x =+-乙即0.760y x =+乙(3)①∵甲、乙实际费用一样∴根据题意,原价格一定超过200元所以联立()0.80y x x =>甲和0.760(200)y x x =+>乙得;0.8=0.7+60x x ,解得:x=600②甲的费用为:800×0.8=680元乙的费用为:800×0.7+60=620元 ∴乙费用低③0.8400y x ==甲,则x=500元0.760400y x =+=乙,则x=34007元 ∴甲原价高. 【点睛】本题考查一次函数的应用,解题关键在于乙的费用关系式一个分段函数,在求解过程中不要遗漏第一段.24.将矩形纸片OABC 放在平面直角坐标系中,O 为坐标原点,点A 在y 轴上,点C 在x 轴上,点B 的坐标是(8,6),点P 是边AB 上的一个动点,将△OAP 沿OP 折叠,使点A 落在点Q 处.(1)如图①,当点Q 恰好落在OB 上时.求点p 的坐标;(2)如图②,当点P 是AB 中点时,直线OQ 交BC 于M 点.①求证:MB=MQ ;②求点Q 的坐标.【答案】(1)P (3,6);(2)①证明见解析;②Q (7213,3013) 【解析】【详解】(1)∵四边形AOBC为矩形,点B坐标是(8,6),∴AO=BC=6,OC=AB=8,Rt△OCB中,OB=10,∵△OAP沿OP折叠,使点A落在点Q处,∴OQ=OA=6,PQ=AP,∴BQ=OB−OQ=4,设AP=x,则PQ=x,BP=8−x,在Rt△PQB中,∵PQ2+QB2=PB2,∴x2+42=(8−x)2,解得x=3,∴点P的坐标为(3,6);(2)①证明:连结PM,如图,∵△OAP沿OP折叠,使点A落在点Q处∴PQ=PA,∠PQM=90°∵点P是AB中点∴PA=PB,∴PB=PQ在Rt△PQM和Rt△PBM中,PB=PQ,PM=PM∴Rt△PQM≌Rt△PBM∴BM=MQ;②过Q作QN⊥OC,垂足为N,如图,设BM=MQ=m,则OM=OQ+QM=6+m,CM=B C−BM=6−m,在Rt△OMC中,∵OC2+CM2=OM2,∴82+(6−m)2=(6+m)2,解得m=83,∴MC=6−83=103,OM=6+83=263,∵∠QON=∠MOC,∴Rt△OQN∽Rt△OMC,∴QN ON OQMC OC OM,即61026833QN ON,解得QN=3013,ON=7213,∴点Q的坐标是(7213,3013).25.如图,抛物线y=ax2+bx+4(a≠0)与x轴交于A(﹣3,0),C(4,0)两点,与y轴交于点B.(1)求这条抛物线的顶点坐标;(2)已知AD=AB(点D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个点Q以某一速度从点B沿线段BC移动,经过t(s)的移动,线段PQ被BD垂直平分,求t的值; (3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由.【答案】(1)这条抛物线的顶点坐标是(12,4912);(2)t=257;(3)存在,M(12,2841).【解析】【分析】(1)根据抛物线图像上的三点坐标,利用待定系数法即可解答;(2)根据A、B的坐标,易求得AD=AB=5,则CD=AC-AD=2,连接DQ,由于BD垂直平分PQ,那么DP=DQ,根据等腰三角形三线合一的性质知:∠PDB=∠QDB=∠ABD,即AB//DQ,此时△CDQ∽△CAB,利用相似三角形得到的比例线段即可求得D Q、PD的长,从而求得AP的值,即可求得t的值;(3)如图2,先作C关于对称轴的对称点,即点A;连接AQ与对称轴的交点就是所求的M,先求2的坐标,求直线42的解析式,因为对称轴是:x=12,即M的横坐标就是12,代入AQ的解析式求出y的值.【详解】解:(1)∵抛物线y =ax 2+bx +4(a ≠0)与x 轴交于A (﹣3,0),C (4,0)两点,∴164409340a b a b ++=⎧⎨-+=⎩. 解这个方程,得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩∴该抛物线解析式是y =﹣13x 2+13x +4. ∵y =﹣13x 2+13x +4=y =﹣13(x ﹣12)2+4912. ∴这条抛物线的顶点坐标是(12,4912); (2)∵A (﹣3,0),C (4,0),∴OA =3,OB =OC =4,则AB =5,AC =7,CD =2;如图1,连接DQ ,由于BD 垂直平分PQ ,则DP =DQ ,得:∠PDB =∠QDB ,而AD =AB ,得:∠ABD =∠ADB ,故∠QDB =∠ABD ,得QD ∥AB ;∴△CDQ ∽△CAB ,则有:CD AC =DQ AB =72, ∴5DQ =27. ∴PD =DQ =107,AP =AD ﹣PD =5﹣107=257, 故t =257; (3)存在,如图2,连接AQ 交对称轴于M ,此时MQ +MC 为最小,过Q 作QN ⊥x 轴于N ,∵DQ ∥AB ,∴∠QDN=∠BAC,sin∠QDN=sin∠BAC=OBAB=QNDQ,∴45=107QN,∴QN=87,设直线BC的解析式为:y=kx+b,把B(0,4)和C(4,0)代入得:404k bb+=⎧⎨=⎩,解得14kb=-⎧⎨=⎩,∴直线BC的解析式为:y=﹣x+4,当y=87时,87=﹣x+4,x=207,∴Q(207,87),同理可得:AQ的解析式为:y=841x+2441,当x=12时,y=841×124241+=2841,∴M(12,2841).【点睛】本题属于二次函数综合题型,主要考查了二次函数和一次函数解析式的确定、轴对称的最短路径问题、线段垂直平分线的性质、相似三角形的判定和性质、三角函数等重要知识,灵活应用相关知识是解答本题的关键.。

2022年中考第二次模拟考试《数学卷》含答案解析

2022年中考第二次模拟考试《数学卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(本题共10个小题,每题3分,满分30分)1.12-的相反数是( )A. B. 2 C.12- D. 122. 下列所给图形是中心对称图形但不是轴对称图形的是( )A. B. C. D.3. 四个选项中四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体其中有三个几何体的某一种视图都是同一种几何图形,则另外一个几何体是( )A. B. C. D.4. 下列计算正确的是()A. 2a2+4a2=6a4B. (a+1)2=a2+1C. (a2)3=a5D. x7÷x5=x25. 一元二次方程x2+2x+2=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6. 一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球.则下列事件是必然事件的是( )A. 摸出的4个球中至少有一个球是白球B. 摸出的4个球中至少有一个球是黑球C. 摸出的4个球中至少有两个球是黑球D. 摸出的4个球中至少有两个球7. 有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A. 4个B. 3个C. 2个D. 1个8. 在”大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A. 众数是90B. 中位数是90C. 平均数是90D. 极差是159. 若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是 ( )A. 菱形B. 对角线互相垂直的四边形C. 矩形D. 对角线相等的四边形10. 如图,矩形ABCD 中,AB=3,BC=5,点P 是BC 边上的一个动点(点P 与点B ,C 都不重合),现将△PCD 沿直线PD 折叠,使点C 落到点F 处;过点P 作∠BPF 的角平分线交AB 于点E ,设BP=x ,BE=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A. B. C.D.二.填空题(本题共8个小题,每题3分,满分24分)11. 某小区改进了用水设施,在5年内小区的居民累计节水39400吨,将39400用科学计数法表示应为________.12. 一个盒子里有完全相同的三个小球,球上分别标有数字,,,随机摸出一个小球(不放回),其数字为,再随机摸出另一个小球其数字记为,则满足关于的方程20x px q ++=有实数根的概率是___________. 13. 已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .14. 如图,△ABC 内接于圆,点D 是AC 上一点,将∠A 沿BD 翻折,点A 正好落在圆上点E 处.若∠C=50°,则∠ABE 的度数为_______.15. 关于x 的方程22x m x +-=1的解是正数,则m 的取值范围是________ . 16. 如图,在▱ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是 ▲ (结果保留π).17. 如图,将一张边长为6cm 的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱的侧面积为______________cm 2.18. 如图在坐标系中放置一菱形OABC ,已知∠ABC=60°,OA=1.先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2016次,点B 的落点依次为B 1,B 2,B 3,…,则B 2016的坐标为_________.三.解答题(本题共2个小题,第19题10分,第20题12分,满分22分)19. 先化简,再求值:21(1)11x x x ÷+--,其中21x =. 20. 在某飞机场东西方向的地面 l 上有一长为 1km 的飞机跑道 MN (如图),在跑道 MN 的正西端 14.5 千米处有一观察站 A .某时刻测得一架匀速直线降落的飞机位于点 A 的北偏西30°,且与点 A 相距 15 千米的 B 处;经过 1 分钟,又测得该飞机位于点 A 的北偏东 60°,且与点 A 相距 3千米的 C 处.(1)该飞机航行速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道 MN 之间?请说明理由.四.(本题共2个小题,每题12分,满分24分)21. 九年七班组织学生参加汉字听写比赛,比赛分为甲乙丙三组进行,下面两幅统计图反映了学生参加比赛报名情况,请你根据图中信息回答下列问题:(1)该班报名参加本次活动的总人数为人.(2)该班报名参加丙组的人数为人,并补全频数分布直方图;(3)比赛后选取男女各2名同学进行培训,若从中选2名参加校赛,试用列表或画树状图的方法,求恰好选中一男一女的概率.22. 如图,△ABC是直角三角形,∠ACB=90°(1)利用尺规作∠ABC 的平分线,交AC 于点O,再以O 为圆心,OC 的长为半径作⊙O(保留作图痕迹,不写作法);(2)在你所作的图中,①判断AB 与⊙O 的位置关系,并证明你的结论;②若AC=12,tan∠OBC=23,求⊙O 的半径.五.(满分12分)23. 如图,△ABC中,BC=AC,∠ACB=90°,将△ABC绕着点C顺时针旋转α(0≤α≤90°),得到△EFC,EF 与AB、AC相交于点D、H,FC与AB相交于点G、AC相交于点D、H,FC与AB相较于点G.(1)求证:△GBC≌△HEC;(2)在旋转过程中,当α是多少度时四边形BCED可以是某种特殊的平行四边形?并说明理由.六.(满分12分)24. 某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y(元/件)与销售数量x(件)(x是正整数)之间的关系如下表:x(件)… 5 10 15 20 …y(元/件)…75 70 65 60 …(1)由题意知商品的最低销售单价是元,当销售单价不低于最低销售单价时,y是x的一次函数.求出y 与x的函数关系式及x的取值范围;(2)在(1)的条件下,当销售单价为多少元时,所获销售利润最大,最大利润是多少元?七.解答题(满分12分)25. 如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD 的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.八.解答题(满分14分)26. 如图,二次函数2(0)y ax bx c a =++≠图象与x 轴交于A (3,0),B (﹣1,0)两点,与y 轴相交于点C (0,﹣4).(1)求该二次函数的解析;(2)若点P 、Q 同时从A 点出发,以每秒1个单位长度速度分别沿AB 、AC 边运动,其中一点到达端点时,另一点也随之停止运动.①当点P 运动到B 点时,在x 轴上是否存在点E ,使得以A 、E 、Q 为顶点三角形为等腰三角形?若存在,请求出E 点的坐标;若不存在,请说明理由.②当P 、Q 运动到t 秒时,△APQ 沿PQ 翻折,点A 恰好落在抛物线上D 点处,请直接写出t 的值及D 点的坐标.答案与解析一.选择题(本题共10个小题,每题3分,满分30分)1.12-的相反数是( )A. B. 2 C.12- D. 12【答案】D 【解析】【详解】因为-12+12=0,所以-12的相反数是12.故选D.2. 下列所给图形是中心对称图形但不是轴对称图形的是( )A. B. C. D.【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C选项正确;故选D.3. 四个选项中四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体其中有三个几何体的某一种视图都是同一种几何图形,则另外一个几何体是( )A. B. C. D.【答案】C【解析】【分析】根据三视图的基本知识,分析各个几何体的三视图然后可解答.长方体、圆柱体和三棱柱的主视图都是矩形,而球的视图都是圆形.【详解】长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;而球的三种视图都是圆形.故选C.【点睛】本题考查简单几何体的三视图.4. 下列计算正确的是()A. 2a2+4a2=6a4B. (a+1)2=a2+1C. (a2)3=a5D. x7÷x5=x2【答案】D【解析】【分析】根据合并同类项的法则、完全平方差公式、同底数幂的乘除法则,分别计算四个选项进行判断即可得到答案.【详解】A. 2a2+4a2=6a2,故A错误;B. (a+1)2=a2+2a+1,故B错误;C. (a2)3=a2×3= a6,故C错误;D. x7÷x5=x2,故D正确;故选D.【点睛】本题考查了合并同类项的法则、完全平方差公式、同底数幂的乘除法则,掌握各部分的运算法则、灵活运用所学知识是解题的关键关键.5. 一元二次方程x2+2x+2=0根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】D【解析】【分析】求出b2-4ac的值,根据b2-4ac的正负即可得出答案.【详解】x2+2x+2=0,这里a=1,b=2,c=2,∵b2−4ac=22−4×1×2=−4<0,∴方程无实数根,故选D.【点睛】此题考查根的判别式,掌握运算法则是解题关键6. 一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球.则下列事件是必然事件的是( )A. 摸出的4个球中至少有一个球是白球B. 摸出的4个球中至少有一个球是黑球C. 摸出的4个球中至少有两个球是黑球D. 摸出的4个球中至少有两个球【答案】B【解析】试题分析:必然事件就是一定发生的事件,因此,A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选B.考点:必然事件.7. 有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A. 4个B. 3个C. 2个D. 1个【答案】B【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确;②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B.8. 在”大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A. 众数是90B. 中位数是90C. 平均数是90D. 极差是15 【答案】C【解析】【分析】由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;极差是:95﹣80=15.∴错误的是C.故选C.9. 若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是( )A. 菱形B. 对角线互相垂直的四边形C. 矩形D. 对角线相等的四边形【答案】D【解析】【分析】根据三角形的中位线定理得到EH∥FG,EF=FG,EF=12BD,要是四边形为菱形,得出EF=EH,即可得到答案.【详解】解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=12AC,EH∥AC,FG=12AC,FG∥AC,EF=12BD,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=12AC,EF=12BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.10. 如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将△PCD 沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E,设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )A. B. C.D.【答案】C【解析】分析】先证明△BPE∽△CDP,再根据相似三角形对应边成比例列出式子变形可得.【详解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE ∽△CDP ,∴BP :CD =BE :CP ,即x:3=y:(5-x), ∴y=253x x -+(0<x<5); 故选C .考点:1.折叠问题;2.相似三角形的判定和性质;3.二次函数的图象.二.填空题(本题共8个小题,每题3分,满分24分)11. 某小区改进了用水设施,在5年内小区的居民累计节水39400吨,将39400用科学计数法表示应为________.【答案】3.94×104 【解析】【详解】解:39400=3.94×104 故答案为:3.94×104 12. 一个盒子里有完全相同的三个小球,球上分别标有数字,,,随机摸出一个小球(不放回),其数字为,再随机摸出另一个小球其数字记为,则满足关于的方程20x px q ++=有实数根的概率是___________.【答案】23. 【解析】解:画树状图得:∵共有6种等可能的结果,满足关于x 的方程x 2+px +q =0有实数根的有4种情况,∴满足关于x 的方程x 2+px +q =0有实数根的概率是:4263=.故答案为23. 13. 已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .【答案】12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.14. 如图,△ABC 内接于圆,点D 是AC 上一点,将∠A 沿BD 翻折,点A 正好落在圆上点E 处.若∠C=50°,则∠ABE 的度数为_______.【答案】80°【解析】【分析】首先连接BE ,根据折叠的性质可得:AB=BE ,即可得AB BE =,根据圆周角定理,得到∠BAE 和∠BE A 的度数,继而求得∠ABE 的度数.【详解】解:如图,连接AE ,根据折叠的性质可得:AB=BE ,∴AB BE =∴50BAE BEA C ∠=∠=∠=︒(同弧所对的圆周角相等),∴180505080ABE ∠=︒-︒-︒=︒,故答案为:80°.【点睛】本题主要考查了圆周角定理、折叠的性质以及三角形内角和定理.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用,灵活运用所学知识是解题的关键.15. 关于x 的方程22x m x +-=1的解是正数,则m 的取值范围是________ . 【答案】m <﹣2且m≠﹣4【解析】分析】首先根据2x mx2+-=1,可得x=-m-2;然后根据关于x的方程2x mx2+-=1的解是正数,求出m的取值范围即可.【详解】∵2x mx2+-=1,∴x=-m-2,∵关于x的方程2x mx2+-=1的解是正数,∴-m-2>0,解得m<-2,又∵x=-m-2≠2,∴m≠-4,∴m的取值范围是:m<-2且m≠-4.故答案为m<-2且m≠-4.【点睛】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.16. 如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是▲ (结果保留π).【答案】1 33π-【解析】【详解】过D点作DF⊥AB于点F.∵AD=2,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=2.∴阴影部分的面积=平行四边形ABCD的面积-扇形ADE面积-三角形CBE的面积=230211 4121336023ππ⨯⨯⨯--⨯⨯=-.故答案为:133π-. 17. 如图,将一张边长为6cm 的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱的侧面积为______________cm 2.【答案】36123-.【解析】【详解】解:∵将一张边长为6的正方形纸片按虚线裁剪后,恰好围成一个底面是正六边形的棱柱, ∴这个正六边形的底面边长为1,高为3,∴侧面积为长为6,宽为623-的长方形,∴面积为:6(623)⨯-=36123-.故答案为:36123-.【点睛】本题考查展开图折叠成几何体.18. 如图在坐标系中放置一菱形OABC ,已知∠ABC=60°,OA=1.先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2016次,点B 的落点依次为B 1,B 2,B 3,…,则B 2016的坐标为_________.【答案】(13443【解析】【分析】连接AC ,根据已知条件可以求出AC ,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2016=336×6,因此点B 4向右平移1344(即336×4)即可到达点B 2016,根据点B 6的坐标就可求出点B 2016的坐标.【详解】解:解:连接AC ,画出第5次、第6次、第7次翻转后的图形,如下图所示,∵四边形OABC 是菱形,∴OA=AB=BC=OC (菱形四边相等),∵∠ABC=60°,∴△ABC 是等边三角形(有一个角是60°的等腰三角形是等边三角形),∴AC=AB ,∴AC=OA ,∵OA=1,∴AC=1,根据画出第5次、第6次、第7次翻转后的图形分析,根据图可知:每翻转6次,图形向右平移4,∵2016=336×6,∴点B 向右平移了1344(即336×4)到点B 2016,∵B 6的坐标为(3,∴B 2016的坐标为(13443;【点睛】本题主要考查了菱形的性质(菱形四边相等)、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力,发现”每翻转6次,图形向右平移4”是解决本题的关键. 三.解答题(本题共2个小题,第19题10分,第20题12分,满分22分)19. 先化简,再求值:21(1)11x x x ÷+--,其中21x =. 【答案】11x +,22【解析】【分析】 先将括号里面的通分后,将除法转换成乘法,约分化简.然后代x 的值,进行二次根式化简.【详解】解:原式=1111()(1)(1)11(1)(1)1(1)(1)1x x x x x x x x x x x x x x x x x --÷+=÷=⋅=-+---+--++.当21x =-时,原式=11222112===-+. 考点:1.分式的化简求值;2.二次根式化简.20. 在某飞机场东西方向的地面 l 上有一长为 1km 的飞机跑道 MN (如图),在跑道 MN 的正西端 14.5 千米处有一观察站 A .某时刻测得一架匀速直线降落的飞机位于点 A 的北偏西30°,且与点 A 相距 15 千米的 B 处;经过 1 分钟,又测得该飞机位于点 A 的北偏东 60°,且与点 A 相距 53千米的 C 处.(1)该飞机航行的速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道 MN 之间?请说明理由.【答案】(1)6003km/h ;(2)能,见解析【解析】【分析】(1)先求出90BAC ∠︒=,然后利用勾股定理列式求解即可得到BC ,再求解即可;(2)作CE l ⊥ 于点,设直线 BC 交于点,然后证明AE EF =,利用三角函数求出AE 即可得解;【详解】解:(1)由题意,得90BAC ∠︒=,15,53AB AC ==22103BC AB AC ∴=+=飞机航行的速度为:1103600360÷=(km/h )(2)能;作CE l ⊥ 于点,设直线 BC 交于点.在Rt ABC 中,103,53BC AC ==,∴30ABC ∠︒=,即60BCA ∠︒=,又∵30CAE ∠︒=,60ACE ∠︒= ,18060FCE ACB ACE ∠=∠-∠=︒∴-,即ACE FCE ∠=∠ACE FCE ∴≅AE EF ∴=又152AE AC cos CAE =⋅∠= 152AE EF ∴==15AF ∴= 14.5,15.5AM AN ==AM AF AN <<∴飞机不改变航向继续航行,可以落在跑道 M N 之间.【点睛】本题主要考查解直角三角形实际应用,准确理解题意,并且画出辅助线是求解本题的关键.四.(本题共2个小题,每题12分,满分24分)21. 九年七班组织学生参加汉字听写比赛,比赛分为甲乙丙三组进行,下面两幅统计图反映了学生参加比赛的报名情况,请你根据图中信息回答下列问题:(1)该班报名参加本次活动的总人数为 人.(2)该班报名参加丙组的人数为 人,并补全频数分布直方图;(3)比赛后选取男女各2名同学进行培训,若从中选2名参加校赛,试用列表或画树状图的方法,求恰好选中一男一女的概率.【答案】(1)50;(2)25,图详见解析;(3)2 3【解析】【分析】(1)根据图表信息,由甲的人数和所占百分率进行解答即可得到答案;(2)用总人数乘以丙所占百分率即可得到答案;(3)根据题意列出树状图即可得到答案.【详解】解:(1)根据图表信息可得:15÷30%=50人;(2)用参加报名的总人数乘以所占百分比得到:50×50%=25人;则乙的人数:50-25-15=10(人),频数分布直方图如下图;(3)设男生为A,B;女生为a,b,则列树状图为:根据树状图得到:P(男女)=812=23,【点睛】本题考查了列表法与树状图,要将两图结合起来,找到所需的量进行解答,掌握扇形图和条形图的相关知识是解题的关键.22. 如图,△ABC是直角三角形,∠ACB=90°(1)利用尺规作∠ABC 的平分线,交AC 于点O,再以O 为圆心,OC 的长为半径作⊙O(保留作图痕迹,不写作法);(2)在你所作的图中,①判断AB 与⊙O 的位置关系,并证明你的结论;②若AC=12,tan∠OBC=23,求⊙O 的半径.【答案】(1)作图见解析;(2)①AB与⊙O相切,理由见解析;②103.【解析】【分析】(1)只需按照题目的要求画图即可;(2)①过点O作OD⊥AB,垂足为D,如图所示,只需证明OD=OC即可;②在Rt△OBC中,运用三角函数可求出23OCBC=,从而得到23OD OCBC BC==,易证Rt△ADO∽Rt△ACB,运用相似三角形的性质可求得AD=8,然后在Rt△ADO中运用勾股定理即可解决问题.【详解】解:(1)如图,⊙O即为所求作;(2)AB与⊙O相切,理由如下:过点O作OD⊥AB,垂足为D,如图所示.∵∠ACB=90°,∴OC⊥BC.∵BO是∠ABC的平分线,OD⊥AB,OC⊥BC,∴OC=OD.∴AB与⊙O相切;(3)在Rt△OBC中,tan∠OBC=23 OCBC=,∴23 OD OCBC BC==.又∵∠ADO=∠ACB=90°,∠A=∠A,∴Rt△ADO∽Rt△ACB,∴23 AD ODAC BC==,∴AD=23AC=23×12=8.设⊙O的半径为r,则OD=OC=r,AO=12-r.在Rt△ADO中,根据勾股定理可得r2+82=(12-r)2,解得r=103,∴⊙O的半径是103.【点睛】本题考查作图—复杂作图;切线的判定;相似三角形的判定与性质.五.(满分12分)23. 如图,△ABC中,BC=AC,∠ACB=90°,将△ABC绕着点C顺时针旋转α(0≤α≤90°),得到△EFC,EF 与AB、AC相交于点D、H,FC与AB相交于点G、AC相交于点D、H,FC与AB相较于点G.(1)求证:△GBC≌△HEC;(2)在旋转过程中,当α是多少度时四边形BCED可以是某种特殊的平行四边形?并说明理由.【答案】(1)详见解析;(2)当α=45°时,四边形BCED为菱形,理由详见解析.【解析】【分析】(1)先判断△ABC为等腰直角三角形得到∠A=∠B=45°,再由旋转的性质得到∠BCF=∠ACE=α,∠E=∠A=45°,CA=CE=CB,最后可根据”ASA”可判断△GBC≌△HEC;(2)当α=45°时,根据旋转的性质得∠BCF=∠ACE=45°,则可计算出∠BCE=∠BCA+∠ACE=135°,再证BD∥CE,BC∥DE,于是可判断四边形BCED为平行四边形,结合CB=CE,则可判断四边形BCED为菱形.【详解】解:(1)证明:∵BC=AC,∠ACB=90°,∴△ABC为等腰直角三角形,∴∠A=∠B=45°,∵△ABC绕着点C顺时针旋转α°(0≤α≤90°),得到△EFC,∴∠BCF=∠ACE=α,∠E=∠A=45°,CA=CE=CB ,在△GBC 和△HEC 中B E CB CEBCG ECH ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△GBC ≌△HEC (ASA );(2)解:当α=45°时,四边形BCED 为菱形.理由如下:如图,∵∠BCF=∠ACE=45°,∴∠BCE=∠BCA+∠ACE=90°+45°=135°,而∠E=∠B=45°,∴∠B+∠BCE=180°,∠E+∠BCE=180°,∴BD ∥CE ,BC ∥DE (同旁内角互补,两直线平行),∴四边形BCED 为平行四边形,∵CB=CE ,∴四边形BCED 为菱形.【点睛】本题考查了菱形的判定、旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键是掌握菱形的判定方法.六.(满分12分)24. 某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y (元/件)与销售数量x (件)(x 是正整数)之间的关系如下表: x (件) (5)10 15 20 … y (元/件) (75)70 65 60 …(1)由题意知商品的最低销售单价是元,当销售单价不低于最低销售单价时,y是x的一次函数.求出y 与x的函数关系式及x的取值范围;(2)在(1)的条件下,当销售单价为多少元时,所获销售利润最大,最大利润是多少元?【答案】(1)50,y=﹣x+80(0≤x≤30,且x为正整数);(2)当销售单价为60元时,所获利润最大,最大利润为400元.【解析】【分析】(1)由40(1+25%)即可得出最低销售单价;设y=kx+b,由待定系数法求出y与x的函数关系式,根据x>0,y≥50即可确定x的取值范围;(2)设所获利润为P元,根据”总利润=单件的利润×销售数量”得出P是x的二次函数,再由二次函数的性质即可得结果.【详解】解:(1)40(1+25%)=50(元),设y=kx+b,根据题意得:7557010k bk b=+⎧⎨=+⎩,解得:k=﹣1,b=80,∴y=﹣x+80,根据题意得:8050xx>⎧⎨-+≥⎩,且x为正整数,∴0<x≤30,x为正整数,∴y=﹣x+80(0≤x≤30,且x为正整数)故答案为:50;(2)设所获利润为P元,根据题意得:P=(y﹣40)•x=(﹣x+80﹣40)x=﹣(x﹣20)2+400,即P是x的二次函数,∵a=﹣1<0,∴P有最大值,∴当x=20时,P最大值=400,此时y=60,∴当销售单价为60元时,所获利润最大,最大利润为400元.【点睛】本题考查二次函数的应用.七.解答题(满分12分)25. 如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【答案】(1)见解析;(2)①30°或150°,②AF'的长最大值为222+,此时0315α=.【解析】【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=22+2,此时α=315°.【详解】(1)如图1,延长ED交AG于点H, ∵点O是正方形ABCD两对角线的交点,∴OA=OD ,OA ⊥OD ,∵OG=OE ,在△AOG 和△DOE 中,90OA OD AOG DOE OG OE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOG ≌△DOE ,∴∠AGO=∠DEO ,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE ⊥AG ;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=12OG=12OG′, ∴在Rt △OAG′中,sin ∠AG′O=OA OG '=12, ∴∠AG′O=30°,∵OA ⊥OD,OA ⊥AG′,∴OD ∥AG′,∴∠DOG′=∠AG′O=30°∘,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°−30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°. ②如图3,当旋转到A. O 、F′在一条直线上时,AF′的长最大,∵正方形ABCD 的边长为1,∴OA=OD=OC=OB=22, ∵OG=2OD ,∴OG′=OG=2,∴OF′=2,∴AF′=AO+OF′=22+2, ∵∠COE′=45°,∴此时α=315°. 【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用. 八.解答题(满分14分)26. 如图,二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A (3,0),B (﹣1,0)两点,与y 轴相交于点C (0,﹣4).(1)求该二次函数的解析;(2)若点P 、Q 同时从A 点出发,以每秒1个单位长度的速度分别沿AB 、AC 边运动,其中一点到达端点时,另一点也随之停止运动.①当点P 运动到B 点时,在x 轴上是否存在点E ,使得以A 、E 、Q 为顶点的三角形为等腰三角形?若存在,请求出E 点的坐标;若不存在,请说明理由.②当P 、Q 运动到t 秒时,△APQ 沿PQ 翻折,点A 恰好落在抛物线上D 点处,请直接写出t 的值及D 点的坐标.【答案】(1)248433y x x -=-;(2)①存在满足条件的点E ,点E 的坐标为1(0)3-,或9(0)5-,或(﹣1,0)或(7,0);②14564t =,529()816D --, 【解析】分析】(1)将A ,B ,C 点坐标代入函数2y ax bx c =++中,求得b 、c ,进而可求解析式; (2)等腰三角形有三种情况,AE=EQ ,AQ=EQ ,AE=AQ .借助垂直平分线,画圆易得E 大致位置,设边长为x ,表示其他边后利用勾股定理易得E 坐标;(3)注意到P ,Q 运动速度相同,则△APQ 运动时都为等腰三角形,又由A 、D 对称,则AP=DP ,AQ=DQ ,易得四边形四边都相等,即菱形.利用菱形对边平行且相等等性质可用t 表示D 点坐标,又D 在E 函数上,所以代入即可求t ,进而D 可表示.【详解】解:(1)∵二次函数2y ax bx c =++的图象与x 轴交于A (3,0),B (﹣1,0),C (0,﹣4). ∴930{04a b c a b c c ++=-+==-,解得438{34a b c ==-=-, 248433y x x ∴=--; ①存在.如图1,过点Q 作QD OA ⊥于D ,此时//QD OC ,∵A (3,0),B (﹣1,0),C (0,﹣4),O (0,0),4,3,4,AB OA OC ∴===5,AC ∴=∵当点P 运动到B 点时,点Q 停止运动,4,AB =4,AQ ∴=//,QD OC ,QD AD AQ OC OA AC ∴==4,435QD AD ∴==1612,.55QD AD ∴==Ⅰ、作AQ 的垂直平分线,交AO 于E ,此时AE=EQ ,即△AEQ 为等腰三角形,设,AE x =则,EQ x =12,5DE AD AE x =-=-在Rt EDQ 中,2221216()()55x x -+= 解得103x = 1013,33OA AE -=-=-1(,0),3E ∴-说明点E 在轴的负半轴上; Ⅱ、以Q 为圆心,AQ 长半径画圆,交轴于E ,此时4,QE QA ==12,5ED AD ==245AE ∴=2493,55OA AE ∴-=-=-9(,0)5E ∴- Ⅲ、当4AE QA ==时,2.当E 在A 点左边时,341,OA AE -=-=-(1,0),E ∴-2.当E 在A 点右边时,347,OA AE +=+=(7,0),E ∴综上所述,存在满足条件的点E ,点E 的坐标为1(,0)3-或9(,0)5-或(﹣1,0)或(7,0).②如图2,D 点关于PQ 与A 点对称,过点Q 作,FQ AP ⊥于F ,,AP AQ t ==,,AP DP AQ DQ == ,AP AQ DQ DP ∴===∴四边形AQDP 为菱形,//,FQ OC ,AF FQ AQ AO OC AC ∴==,345AF FQ t ∴== 34,,55AF FQ ∴==34(3,),55Q t ∴-,DQ AP t ==34(3,),55D t t t ∴--- ∵D 在二次函数 248433y x x -=-上,244888(3)(3)4,53535t t t -=---- 14564t ∴=或0t =(与A 重合,舍去), 529(,).816D ∴--。

初三数学二模试题及答案

初三数学二模试题及答案

初三数学二模试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(3循环)B. 根号2C. 22/7D. 3.1416答案:B2. 一个二次函数的图像开口向上,且经过点(1,0),则下列哪个选项是正确的?A. 函数的顶点在x轴上方B. 函数的顶点在x轴下方C. 函数的顶点在x轴上D. 无法确定答案:A3. 如果一个等腰三角形的底边长为6,腰长为5,那么它的高是多少?A. 4B. 3C. 2根号7D. 根号7答案:C4. 下列哪个选项是不等式2x-3>5的解集?A. x>4B. x<4C. x>1D. x<1答案:A5. 一个圆的半径为3,那么它的面积是多少?A. 9πB. 18πC. 27πD. 36π答案:C6. 一个数列的前三项为2,4,8,那么它的第四项是多少?A. 16B. 32C. 64D. 128答案:B7. 一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是多少?A. 5B. 7C. 根号7D. 根号13答案:A8. 下列哪个选项是方程x^2-5x+6=0的解?A. 2和3B. 1和6C. 2和-3D. -2和-3答案:A9. 一个正方体的体积为27立方厘米,那么它的棱长是多少?A. 3厘米B. 6厘米C. 9厘米D. 27厘米答案:A10. 下列哪个选项是函数y=x^2-4x+4的最小值?A. 0B. 4C. -4D. 无法确定答案:A二、填空题(每题3分,共15分)11. 一个数的相反数是-5,那么这个数是______。

答案:512. 一个数的绝对值是8,那么这个数可以是______或______。

答案:8或-813. 一个二次函数的图像与x轴交于两点,这两点的横坐标之和为-3,那么这个二次函数的对称轴是______。

答案:x=-3/214. 一个等差数列的前三项为3,7,11,那么它的第五项是______。

初中毕业学业考试第二次模拟考试试卷数学及答案

初中毕业学业考试第二次模拟考试试卷数学及答案

A .B .C .D .图1九年级学业考试第二次模拟考试试卷数 学亲爱的同学:1.祝贺你完成了初中阶段的学习,现在是展示你的学习成果之时,你可以尽情 地发挥,仔细、仔细、再仔细!祝你成功! 2.本试卷共六道大题, 满分120分,考试时量120分钟; 3.考试中允许使用计算器. 一、选择题(本大题共10个小题, 每小题3分,满分30分. 每小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填在下表中相应的题号下)1. 在2-、0、1、3这四个数中,比0小的数是 A.2- B.0C.1D .32. 人的大脑每天能记录大约8600万条信息,数据8600万用科学计数法表示为 A .81086.0⨯ B .7106.8⨯ C .61086⨯ D .6106.8⨯ 3. 不等式组221x x -⎧⎨-<⎩≤的解集在数轴上表示正确的是4. 函数11y x =+中自变量x 的取值范围是 A. x ≥-1 B. x ≤-1图3C. x =-1D. 、N 分别在a 、b 上,为两平行线间一点,那么∠1+∠2+∠3等于A .B .C .D .6. 已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中,能作为第三边的是A .13cmB .6cmC .5cmD .4cmA .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形8. 如图3,甲顺着大半圆从A 地到B 地,乙顺着两个小半圆从A 地到B 地,设甲、乙走过的路程分别为a 、b ,则 A .a =bB .a <bC .a >bD .不能确定9. 如图4是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“静”相对的面上的汉字是 A .沉B .着C .应D .考10. 某地统计部门公布最近5年国民消费指数增长率分别为8.5%、9.2%、9.9%、10.2%、9.8%,业内人士评论说:“这五年消费指数增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”说明这组数据中比较小的是A .方差B .平均数C .众数D .中位数 二.填空题(本大题共6个小题, 每小题3分, 满分18分) 11.3 的相反数是__________.12. 如图5,直线AB 、CD 相交于点O .OE 平分∠AOD,若∠BOD=100°,则∠AOE= .P 180270360540沉 着冷静 应考图4abM P N123 图2图5 图613. 如图6,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,PA =8,OA =6,则tan ∠APO= .14.梯形的高为4cm ,中位线长为5cm ,则梯形的面积为 c m 2.15.如果21x x 、是方程0122=--x x 的两个根,那么=⋅++2121x x x x . 16.有一种叫“二十四”点的游戏,其游戏规则是这样的:任取4个1至13的自然数,将这四个数(每一个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如:用1、2、3、4进行“二十四点”游戏,其运算方法有:(1+2+3)×4=24,1×2×3×4=24,(1+3) ×(2+4)=24等等.现有四个自然数3、4、6、10,运用上述“二十四点”游戏规则,写出一种运算,使其结果等于24.(写出一种运算方法即可)_________________________________ . 三、运算题(本大题共3个小题,第17小题6分,第18、19小题各8分,满分22分)17. 先化简,再求值:11a b a b ⎛⎫- ⎪-+⎝⎭÷222b a ab b -+,其中21+=a ,21-=b .18. “五一”期间,冷水江市先后有两批游客分别乘中巴车和出租车沿相同路线从冷水江市赶往长沙市旅游,如图7表示其行驶过程中路程随时间的变化图象.(1)根据图象,请分别写出中巴车和出租车行驶过程中路程与时间之间的函数关系式(不要求写出自变量的取值范得 分 评卷人200 150 100 50y(千米)出租车中巴车围);(2)写出中巴车和出租车行驶的速度分别是多少?(3)试求出出租车出发后多长时间赶上中巴车?19.如图8,在一个坡角为15°的斜坡上有一棵树,高为AB,•当太阳光与水平线成50°角时,测得该树在斜坡上的树影BC的长为8m,求树高.(精确到0.1m)(参考数据:sin15°≈0.259,cos15°≈0.966,tan15°≈0.268, sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)图8四、操作与应用(本大题共4个小题,第20小题6分,第21、22、23小题各8分,满分30分)20.如图9,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1 ;(2)画出将△ABC 绕原点O 按逆时针方向旋转90°所得的△A 2B 2C 2 ;(3)△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴.21.如图10,梯形ABCD 中,AD ∥BC ,AB=DC ,P 为梯形ABCD 外一点,PA 、PD 分别交线段BC 于点E 、F ,且PA=PD .(1)写出图中三对你认为全等的三角形(不再添加辅助线); (2)选择你在(1)中写出的全等三角形中的任意一对进行证明.图1022. 水果种植大户小方,为了吸引更多的顾客,组织了观光采摘游活动.每一位来采摘水果的顾客都有一次抽_ y_ x_C_B_A_ F_ E_ P_ D_ C_ B_ A奖机会:在一只不透明的盒子里放有如图11所示的A 、B 、C 、D 四张外形完全相同的卡片,抽奖时先随机抽出一张卡片,再从盒子中剩下的3张中抽取第二张.(1)请你利用树状图(或列表)的方法,表示前后两次抽得的卡片所有可能的情况; (2)如果抽得的两张卡片是同一种水果图片就可获得奖励,那么顾客得到奖励的概率是多少? 图1123.如图12.一块矩形耕地长162m ,宽64m ,要在这块土地上沿东西和南北方向分别挖2条和4条水渠,如果水渠的宽相等,而且要保证余下的可耕地面积为9600m 2,那么水渠应挖多宽?.图12五、综合与探究(本大题共2个小题,第24小题8分,第25小题12分,满分20分)24.先观察下列等式,然后用你发现的规律解答下列问题.111122=-⨯ 1112323=-⨯ 1113434=-⨯ …… (1) 计算111111223344556++++=⨯⨯⨯⨯⨯ . (2)探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示) (3)若 1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值.25.如图13,已知二次函数c bx x y ++=2)0(≠c 的图象经过点),2(m A -)0(<m ,与y 轴交于点B ,AB ∥x 轴,且OB AB 23=.(1)求m 的值;(2)求二次函数的解析式;(3)如果二次函数的图象与x轴交于C、D两点(点C在左侧).问线段BC上是否存在点P,使△POC为等腰三角形;如果存在,求出点P图13初中毕业学业考试第二次模拟考试数学参考答案一、答 案 A B C D C B C A B A二、11、3 12、40° 13、0.75 或4314、20 15、1 16、3×(4-6+10)=24 或3×6-4+10=24 或6÷3×10+4=24 三、(6分+8分×2=22分) 17、化简得,原式=ba b a +-)(2.(4分) 当21+=a ,21-=b 时,原式=222222=⨯.(2分)18、(1)中巴车:y=40x , 出租车:y=100(x-2) (4分)(2)中巴车:40千米/时, 出租车:100千米/时 (2分)(3)由题意得:40x=100(x-2) 解得x=331, ∴ x-2=131答:略 (2分)19、如右图,过点C 作水平线与AB 的延长线交于点D ,则AD ⊥CD ,∴∠BCD=15°,∠ACD=50°,在Rt △CDB 中,CD=8×cos15°,BD=8×sin15°. (3分) 在Rt △CDA 中,AD=CD ×tan50°=8×cos15°×tan50°, ∴AB=AD-•BD=•8×cos15°×tan50°-8×sin15°) =8×(cos15°×tan50°-sin15°)≈7.1(m ).答:树高约为7.1m . (5分) 四、(6分+8分×3=30分)20、如右图( (1)、(2)、(3)各2分)21、(1)△ABE ≌△DCF , △ABP ≌△DCP , △PBE ≌△PCF , △PBF ≌△PCE (3分)(2)证明过程 略 (5分)22、(1)方法一:列表法 (5分)方法二:画树状图(2)获奖励的概率:41123P == (3分) 23、解:设水渠应挖xm 宽,根据题意得 (64-4x)(162-2x)=9600. (3分)即x 2-97x+96=0. 解得 x 1=1,宽. (5分) 五、(8分+12分=20分)A B C DA (A ,B ) (A ,C ) (A ,D )B (B ,A ) (B ,C ) (B ,D )C (C ,A ) (C ,B ) (C ,D )D (D ,A ) (D ,B ) (D ,C )C2B 2A2C 1B 1A 1y xCB A开始A B C D (A ,B ) (A ,C ) (A ,D )B ACD (B ,A ) (B ,C ) (B ,D ) C A B D (C ,A ) (C ,B ) (C ,D ) DA B C (D ,A ) (D ,B ) (D ,C )24、(1)56 (2分) (2)1+n n(2分) (3)1111......133557(21)(21)n n ++++⨯⨯⨯-+ =)7151(21)5131(21)311(21-+-+-+ ┄ +)121121(21+--n n =)1211(21+-n =12+n n由12+n n =3517解得17=n 经检验17=n 是方程的根,∴17=n (4分) 25、(1)由AB ∥x 轴,A (-2,m )得AB =2 .由OB AB 23=得OB =3,∴ B (0,-3),m = -3. (3分)(2)由B (0,-3)得c = -3 . 由A (-2,-3)得,∴3243--=-b ,2=b .∴二次函数解析式为322-+=x x y . (3分) (3)当0=y 时,有 0322=-+x x ,解得1,321=-=x x . 由题意得 )0,3(-C .(2分)若△POC 为等腰三角形,则有 ①当PO PC =时,点)23,23(--P ; (1分) ②当CO PO =时,点)3,0(-P ; (1分) ③当CO PC =时,设直线BC 的函数解析式为n kx y += ,则有⎩⎨⎧+=-+-=.03,30n n k ∴直线BC 的函数解析式为3--=x y .设点)3,(--x x P , 由CO PC =,得2223)3()3(=--++x x .解得2233,223321--=+-=x x (不合题意,舍去) ∴)223,2233(-+-P . ∴存在点)23,23(--P 或)3,0(-P 或)223,2233(-+-P ,使△POC 为等腰三角形.(2分)。

模拟测评最新中考数学第二次模拟试题(含答案详解)

模拟测评最新中考数学第二次模拟试题(含答案详解)

最新中考数学第二次模拟试题 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、方程2216124x x x ++=---的解为( ) A .2x = B .2x =- C .3x = D .无解2、若分式2x 9x -的值为0,则x 的值是( ) A .3或﹣3 B .﹣3 C .0 D .33、直线PQ 上两点的坐标分别是()20,5P -,()10,20Q ,则这条直线所对应的一次函数的解析式为( ) A .1152y x =+ B .2y x = C .1152y x =- D .310y x =-4、如图,在数轴上有三个点A 、B 、C ,分别表示数5-, 3.5-,5,现在点C 不动,点A 以每秒2个单位长度向点C 运动,同时点B 以每秒1.5个单位长度向点C 运动,则先到达点C 的点为( )·线○封○密○外A .点AB .点BC .同时到达D .无法确定5、如图是三阶幻方的一部分,其每行、每列、每条对角线上三个数字之和都相等,则对于这个幻方,下列说法错误的是( )A .每条对角线上三个数字之和等于3aB .三个空白方格中的数字之和等于3aC .b 是这九个数字中最大的数D .这九个数字之和等于9a6、如图,在⊙O 中,直径CD⊥弦AB ,则下列结论中正确的是( )A .AC=AB B .∠C=12∠BODC .∠C=∠BD .∠A=∠B0D7、如图,已知12,AB AB BC =⊥于点B ,AB AD ⊥于点A ,5,10AD BC ==.点E 是CD 的中点,则AE 的长为( )A .6B .132C .5 D8、如图,AOB ADC △≌△,点B 和点C 是对应顶点,90O D ∠=∠=︒,记,,OAD ABO ABC ACB αβ∠=∠=∠=∠,当//BC OA 时,α与β之间的数量关系为( )A .αβ=B .2αβ=C .90αβ+=︒D .2180αβ+=︒ 9、在3|5|--,3(5)--,3(5)-,35-中,最大的是( ) A .3|5|-- B .3(5)-- C .3(5)- D .35- 10、观察下列算式,用你所发现的规律得出20192的个位数字是( ) 122=,224=,328=,4216=,5232=,6264=,72128=,82256=……A .2B .4C .6D .8 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分)1、已知 234x y z ==,则232x y z x y z +--+= .2、关于x 的一元二次方程(m ﹣5)x 2+2x+2=0有实根,则m 的最大整数解是__.3、如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若10cm AB =,4cm BC =,则AD 的长为______.4、如图,在ABC 中,2,,AB AC B C BD CE ∠∠====,F 是AC 边上的中点,则AD EF -________1.(填“>”“=”或“<”)·线○封○密○外5、己知,0为锐角ABC 的外心,BOC 80∠=,那么BAC ∠=________.三、解答题(5小题,每小题10分,共计50分)1、如图是一座抛物线形的拱桥,拱桥在竖直平面内,与水平桥相交于A ,B 两点,拱桥最高点C 到AB 的距离为9m ,AB =36m ,D ,E 为拱桥底部的两点,DE ∥AB .(1)以C 为原点,以抛物线的对称轴为y 轴建立直角坐标系,求出此时抛物线的解析式.(忽略自变量取值范围)(2)若DE =48m ,求E 点到直线AB 的距离.2、小丽从家到学校有公路和小路两种路径,已知公路比小路远320米.早上小丽以61米/分钟的速度从公路去上学,10分钟后,爸爸发现她的作业忘带了,就以90米/分钟的速度沿小路去追赶,结果恰好在学校门口追上小丽.问小丽从家到学校的公路有多少米?3、计算(1)()()1762320-+-+--;(2)()2212822-⨯+÷-; (3)123183424⎛⎫⎛⎫+-÷- ⎪ ⎪⎝⎭⎝⎭; (4)解方程:2953x x -=+.(5)先化简,再求值:已知()()222242x x y x y --+-,其中1x =-,12y =.4、为预防新冠病毒,口罩成了生活必需品,某药店销售一种口罩,每包进价为6元,日均销售量y (包)与每包售价x (元)满足y =﹣5x +80,且10≤x ≤16. (1)每包售价定为多少元时,药店的日均利润最大?最大为多少元? (2)当进价提高了a 元,且每包售价为13元时,日均利润达到最大,求a 的值.5、已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长2AB =(单位长度),慢车长4CD =(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车头A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是b .若快车AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以2个单位长度/秒的速度向左匀速继续行驶,且8a +与()216b -互为相反数. (1)求此时刻快车头A 与慢车头C 之间相距多少单位长度? (2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头A 和C 相距8个单位长度.(3)此时在快车AB 上有一位爱动脑筋的六年级学生乘客P ,他发现行驶中有一段时间t 秒钟,他的位置P 到两列火车头A ,C 的距离和加上到两列火车尾B ,D 的距离和是一个不变的值(即PA PC PB PD +++为定值).你认为学生P 发现的这一结论是否正确?若正确,求出这个时间及定值:若不正确,请说明理由. -参考答案- 一、单选题1、D【分析】 先去分母,把分式方程转化为整式方程,然后求解即可. 【详解】 ·线○封○密·○外解:2216124x x x ++=--- 去分母得22(2)164x x -++=-,解得2x =,经检验,2x =是原分式方程的增根,所以原分式方程无解.故选D .【点睛】本题主要考查分式方程的求解,熟练掌握分式方程的求解是解题的关键.2、A【分析】根据分式的值为零的条件可以求出x 的值.【详解】依题意得:x 2﹣9=0且x≠0,解得x =±3.故选A .【点睛】本题考查了分式的值等于0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3、A【分析】利用待定系数法求函数解析式.【详解】解:∵直线y=kx+b 经过点P (-20,5),Q (10,20),∴2051020k b k b -+=⎧⎨+=⎩ , 解得1215k b ⎧=⎪⎨⎪=⎩, 所以,直线解析式为1152y x =+. 故选A . 【点睛】 本题主要考查待定系数法求函数解析式,是中考的热点之一,需要熟练掌握.解题的关键是掌握待定系数法. 4、A 【分析】 先分别计算出点A 与点C 之间的距离为10,点B 与点C 之间的距离为8.5,再分别计算出所用的时间. 【详解】 解:点A 与点C 之间的距离为:5(5)5510--=+=, 点B 与点C 之间的距离为:5( 3.5)5 3.58.5--=+=, 点A 以每秒2个单位长度向点C 运动,所用时间为5210=÷(秒); 同时点B 以每秒1.5个单位长度向点C 运动,所用时间为1728.5 1.5533÷==(秒); 故先到达点C 的点为点A , 故选:A . 【点睛】 本题考查了数轴,解决本题的关键是计算出点A 与点C ,点B 与点C 之间的距离. ·线○封○密·○外5、B【分析】根据每行、每列、每条对角线上三个数字之和都相等,则由第1列三个已知数5+4+9=18可知每行、每列、每条对角线上三个数字之和为18,于是可分别求出未知的各数,从而对四个选项进行判断.【详解】∵每行、每列、每条对角线上三个数字之和都相等,而第1列:5+4+9=18,于是有5+b+3=18,9+a+3=18,得出a=6,b=10,从而可求出三个空格处的数为2、7、8,所以答案A、C、D正确,而2+7+8=17≠18,∴答案B错误,故选B.【点睛】本题考查的是数字推理问题,抓住条件利用一元一次方程进行逐一求解是本题的突破口.6、B【分析】∠BOD,从而可对各选项进行判先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=12断.【详解】解:∵直径CD⊥弦AB,∴弧AD =弧BD,∴∠C =12∠BOD . 故选B . 【点睛】 本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 7、B 【分析】 延长AE 交BC 于点F ,根据已知条件证明()ASA ADE FCE ≌,得出,5AE FE AD CF ===,根据勾股定理求出AF 的长度,可得结果. 【详解】 如图,延长AE 交BC 于点F , ∵,AB BC AB AD ⊥⊥,∴//AD BC ,∴D C ∠=∠,∵点E 是CD 的中点, ∴DE CE =, 在ADE 和FCE △中, ·线○封○密·○外,,,D C DE CE AED FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ADE FCE ≌,∴,5AE FE AD CF ===,∴1055BF BC CF =-=-=,在Rt ABF中,13AF ===,∵点E 是AF 的中点, ∴11322AE AF ==, 故选:B .【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识点,熟练运用全等三角形的判定定理以及性质是解本题的关键.8、B【分析】根据全等三角形对应边相等可得AB =AC ,全等三角形对应角相等可得∠BAO =∠CAD ,然后求出∠BAC =α,再根据等腰三角形两底角相等求出∠ABC ,然后根据两直线平行,同旁内角互补表示出∠OBC ,整理即可.【详解】∵AOB ADC △≌△,∴BAO CAD ∠=∠,∴OAD OAB BAD CAD BAD BAC α∠=∠+∠=∠+∠=∠=,在ABC 中,∵A ABC CB =∠∠, ∴1(180)2ABC α∠=︒-, ∵//BC OA , ∴1801809090OBC O ∠=︒-∠=︒-︒=︒, ∴1180()902βα+︒-=︒,整理得2αβ=, 故选:B . 【点睛】 本题考查了全等三角形的性质,等腰三角形两底角相等的性质,平行线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键. 9、B 【分析】 根据绝对值及乘方进行计算比较即可. 【详解】 3|5|125--=-,3(5)125--=,3(5)125-=-,35125-=-, 3|5|--,3(5)--,3(5)-,35-中,最大的是3(5)--. 故选:B . 【点睛】 本题考查了有理数的乘方和绝对值,熟练掌握运算法则是解题的关键. 10、D 【分析】 通过观察算式可以发现规律:左边是指数从1开始以2为底数的乘方,右边是个位数字,以2,4,·线○封○密○外8,6交替出现,也就是4个数为一个周期.20194504÷=……3,所以20192的个位数字应该与32的个位数字相同,所以20192的个位数字是8.【详解】解:通过观察算式可以发现规律:左边是指数从1开始以2为底数的乘方,右边是个位数字,以2,4,8,6交替出现,也就是4个数为一个周期.20194504÷=……3,所以20192的个位数字应该与32的个位数字相同,所以20192的个位数字是8.故选D .【点睛】本题主要考查了数字类的规律问题,解题的关键在于能够准确找到相关规律.二、填空题1、3 4. 【解析】试题解析:设,则x=2k ,y=3k ,z=4k ,则232x y z x y z +--+=43433 66444k k k k k k k k +-==-+. 考点:分式的基本性质.2、m=4.【详解】分析:若一元二次方程有实根,则根的判别式△=b 2﹣4ac≥0,建立关于m 的不等式,求出m 的取值范围.还要注意二次项系数不为0.详解:∵关于x 的一元二次方程(m ﹣5)x 2+2x+2=0有实根,∴△=4﹣8(m ﹣5)≥0,且m ﹣5≠0,解得m≤5.5,且m≠5,则m 的最大整数解是m=4.故答案为m=4.点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根. 3、3cm . 【分析】 利用已知得出AC 的长,再利用中点的性质得出AD 的长. 【详解】 解:∵AB=10cm,BC=4cm , ∴AC=6cm, ∵D 是线段AC 的中点, ∴AD=3cm. 故答案为:3cm . 【点睛】 此题主要考查了线段长度的计算问题与线段中点的概念,得出AC 的长是解题关键. 4、< 【分析】 连接AE ,先证明△≌△ADB AEC 得出AD AE ,根据三角形三边关系可得结果. 【详解】 如图,连接AE , ·线○封○密○外在ADB △和AEC 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴()SAS ADB AEC ≌,∴AD AE =,在AEF 中,AE EF AF -<,∴AD EF AF -<,∵F 是AC 边上的中点, ∴112AF AC ==, ∴1AD EF -<,故答案为:<.【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,熟知全等三角形的判定定理与性质是解题的关键.5、40【解析】【分析】根据外心的概念及圆周角定理即可求出答案.【详解】∵O 是△ABC 的外心,∴O 为△ABC 的外接圆圆心,∵∠BOC 是弧BC 所对圆心角,∠BAC 是弧BC 所对圆周角, ∴∠BAC=12∠BOC=40°, 故答案为:40° 【点睛】 本题考查外心的概念及圆周角定理,外心是三角形外接圆的圆心,同弧所对的圆周角等于圆心角的一半,熟练掌握外心的概念及圆周角定理是解题关键·. 三、解答题 1、 (1)21936y x =-+ (2)7 【分析】 (1)以AB 中点为原点,建立平面直角坐标系,设29y ax =+,将点(18,0)B 代入,待定系数法求解析式即可; (2)令24x =,代入求得y ,即可求得E 点到直线AB 的距离. (1) 解:如图, ·线○封○密·○外C 到AB 的距离为9m ,AB =36m ,()0,9C ∴(18,0)B ∴设抛物线解析式为29y ax =+将点(18,0)B 代入得20189a =+ 解得136a =- 21936y x ∴=-+ (2)DE =48m ,则24E x = 则21936y x =-+21249169736=-⨯+=-+=- ∴求E 点到直线AB 的距离为7【点睛】本题考查了二次函数的应用,掌握二次函数的性质是解题的关键.2、1220米【分析】设小丽从家到学校的时间为x 分钟,根据小丽所走路程比爸爸所走路程多320米列方程即可.【详解】解:设小丽从家到学校的时间为x 分钟根据题意,得:61x -90(x -10)=320解这个方程得:x =2020×61=1220(米) 答:小丽从家到学校的公路有1220米 【点睛】 本题考查一元一次方程的应用,找到等量关系列出方程是解题关键. 3、 (1)20 (2)0 (3)1- (4)4x =- (5)22x y +;2 【分析】 (1)(2)(3)根据有理数的混合运算进求解即可; (4)根据移项合并同类项解一元一次方程即可; (4)先去括号再合并同类项,再将,x y 的值代入求解即可. (1) ()()1762320-+-+-- ·线○封○密○外232320=-++20=(2)()2212822-⨯+÷- 114824=-⨯+⨯ 22=-+0=(3)123183424⎛⎫⎛⎫+-÷- ⎪ ⎪⎝⎭⎝⎭ ()12324834⎛⎫=+-⨯- ⎪⎝⎭ 123242424834=-⨯-⨯+⨯ 31618=--+1=-(4)2953x x -=+2539-=+x x312-=x解得4x =-(5)()()222242x x y x y --+-2222422x x y x y =-++-22x y =+ 当1x =-,12y =时,原式()21121122=-+⨯=+= 【点睛】 本题考查了有理数的混合运算,解一元一次方程,整式加减的化简求值,正确的计算是解题的关键. 4、 (1)每包售价定为11元时,日均利润最大为125元; (2) 4.a = 【分析】 (1)根据公式“总利润=单个利润×数量”列出利润的表达式,然后再根据二次函数的性质求出最大值即可. (2)同(1)中思路,列出日均利润的表达式,然后再由日均利润最大时,每包售价为13元即可求解. (1) 解:设日均利润为w ,由题意可知:w =(x -6)(-5x +80), 整理得到:w =-5x 2+110x -480=-5(x -11)2+125, 当x =11时,w 有最大值为125, 故:每包售价为11元时,药店的日均利润最大为125元. (2) 解:设日均利润为w 元,由题意可知:w =(x -a -6)(-5x +80), 整理得到:w =-5x 2+(110+5a )x -80a -480, ∴w 是关于x 的二次函数, ·线○封○密○外其对称轴为x=b11051112102aa a+-=-=+-,∵每包售价为13元时,日均利润达到最大,∴1112a+=13,解得:a=4.【点睛】本题主要考查二次函数的应用,解题的关键是理解题意,从中找到题目蕴含的相等关系,并熟练掌握二次函数的性质.5、(1)14单位长度;(2)0.75秒或2.75秒;(3)正确,这个时间是0.5秒,定值是6单位长度.【分析】(1)根据非负数的性质求出a=﹣6,b=8,求差即可求解;(2)根据时间=路程和÷速度和,设行驶t秒钟两列火车行驶到车头A和C相距8个单位长度,列方程即可求解;(3)由于PA+PB=AB=2,只需要PC+PD是定值,从快车AB上乘客P与慢车CD相遇到完全离开之间都满足PC+PD是定值,依此分析即可求解.(1)解:(1)∵|a+6|与(b﹣8)2互为相反数,∴|a+6|+(b﹣8)2=0,∴a+6=0,b﹣8=0,解得a=﹣6,b=8.∴此时刻快车头A与慢车头C之间相距8﹣(﹣6)=14(单位长度);答:此时快车头A 与慢车头C 之间相距14单位长度;(2)解:设行驶t 秒钟两列火车行驶到车头A 和C 相距8个单位长度,两车相遇前可列方程为 62148t t +=-, 解得,0.75t =. 两车相遇后可列方程为 62148t t +=+, 解得, 2.75t =. 答:再行驶0.75秒或2.75秒两列火车行驶到车头AC 相距8个单位长度; (3) 正确, ∵PA +PB =AB =2, 当P 在CD 之间时,PC +PD 是定值4,即路程为4,所以,行驶时间t =4÷(6+2) =4÷8 =0.5(秒), 此时PA +PC +PB +PD =(PA +PB )+(PC +PD )=2+4=6(单位长度). 故这个时间是0.5秒,定值是6单位长度. 【点睛】 本题考查了一元一次方程的应用,数轴、绝对值和偶次方的非负性,熟练掌握行程问题的等量关系:时间=路程÷速度,根据数形结合的思想理解和解决问题. ·线○封○密○外。

初三数学二模试卷(含详细答案)

初三数学二模试卷(含详细答案)

初三二模数学试卷一.选择题(本大题共6题,每题4分,共24分)1.下列实数中,是无理数的是()A. 3.14B. 1C.、3D. , 92.下列二次根式中,与ja是同类二次根式的是()A. 3aB. \ 2a2C. a3D. . a43.函数y kx 1 (常数k 0)的图像不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.某幢楼10户家庭某月的用电量如下表所示:用电量(度)140 160 180 200户数 1 3 4 2那么这10户家庭该月用电量的众数和中位数分别是()A. 180、180B.180、160C.160、180D.160、1605.已知两圆的半径分别为1和5,圆心距为4,那么两圆的位置关系是()A.外离B.外切C.相交D.内切6.如图,已知^ ABC和^ DEF,点E在BC边上,点A在DE边上,边EF和边AC交于点G ,如果AE EC , AEG B.那么添加下列一个条件后,仍无法判定△ DEF与^ ABC一定相似的是( )AB DE_ AD G.BC EF . AE GAG EG ED E.AC EF . EF [二.填空题一,, 27.计算:a a ____________2 _8.因式分解:x 2x ___________9.方程比2x x的根是 ______________3x ...... . 10.函数f(x) 的7E 乂域是—x 211.如果关于x的方程x22x m r 1 rr12.计算:2a 3(a b) ___________E0有两个实数根,那么m的取值范围是___________ 4个单位后,所得新抛物线的顶点坐标是___________(1)这个反比例函数的解析式; (2)四边形OABC 的面积.14 . 一个不透明的袋子里装有 3个白球、1个红球,这些球除颜色外无其他的差异,从袋子中随机摸出1个球,恰好是白球的概率是15 .正五边形的中心角是16 .如图,圆弧形桥拱的跨度 AB 16米,拱高CD17 .如果一个三角形一边上的中线的长与另两边中点的连线段的长相等,我们称这个三角形为“等线三角形",这条边称为“等线边”.解答题2 — 形OABC 是平行四边形, OC 2J5, sin AOC -V 5 5 C 以及边AB 的中点D.求:19. 计算:|2 ,一 2|8320. 解不等式组: 3(2x 3x 121) 4x 5 CL21. 如图,在平面直角坐标系xOy 中,点A 在x 轴正半轴上,点 B 、C 在第一象限,且四边4米,那么圆弧形桥拱所在圆的半径在等线三角形ABC 中,AB 为等线边,且AB 3,AC 2 ,那么 BC18.如图,矩形ABCD 中,ABE 、F 分别在边 AD 、BC 上,且点B 、F关于过点E 的直线对称,如果以CD 为直径的圆与EF 相切,那么 AE.... k .............,反比例函数y -的图像经过点x22.某文具店有一种练习簿出售,每本的成本价为 2元,在销售的过程中价格有调整,按原价格每本 8.25元,卖出36本,后经两次涨价,按第二次涨价后的价格卖出了25本.发现按原价格和第二次涨价后的价格销售,分别获得的销售利润恰好相等.(1)求第二次涨价后每本练习簿的价格;(2)在两次涨价过程中,假设每本练习簿平均获得利润的增长率完全相同,求这个增长率 ^23 .如图,在直角梯形 ABCD 中,AD//BC, C 90 , BC CD ,点E 、F 分别在边BC 、CD 上, 且BE DF AD ,联结DE ,联结AF 、BF 分别与DE 交于点G 、P.(1)求证:AB BF ;(2)如果 BE 2EC,求证:DG GE .24 .已知抛物线y ax 2bx 3经过点A(7, 3),与x 轴正半轴交于 B(m,0)、C(6m,0)两点,与y 轴交于点D.(1)求m 的值;,川(2)求这条抛物线的表达式;(注: 利润增长率=(后一次的利润-前一次的利润)一 前一次的利润100% )(3)点P在抛物线上,点Q在x轴上,当PQD 90 且PQ 2DQ,求P、Q 坐标.25.如图所示,MON 45 ,点P是MON内一点,过点P作PA OM于点A、PB ON于点B,且PB 2& ,取OP的中点C,联结AC并延长,交OB于点D.(1)求证:ADB OPB;(2)设PA x , OD y ,求y关于x的函数解析式;(3)分别联结AB、BC,当4ABD与4CPB相似时,求PA的长.2019年第二学期初三教学质量检测数学参考答案及评分说明一、选择题:(本大题共6题,每题4分,,茜分24分)1. C; 2, C; 3. B; 4, A; 5. D; 6. C.二、填空题:(本大题共12题,每题4分,满分48分)3 7 1 7. a;8.xx2;9. x 4; 10. x 2; 11. m 1 ; 12.—a—b;3 3313. 1,2 ;14. —;15. 72 ;16. 10; 17,中'5 ;18. 3.4三、解答题:(本大题共7题,,茜分78分)19.(本题满分10分) 1 . .解:原式=2 J2 2 1<2 1 (2)4=3 . ................................................................. 2 分420.(本题满分10分)解:由①得:6x 3 4x 5 . ............................................. 2分2x 2. ............................................. 2 分x 1 . ............................................. 1 分由②得:3x 2 x . ............................................... 2分2x 2. ............................................... 1 分x 1 . .............................................. 1 分・•・原不等式组的解集是1 x 1 . ................................... 2分21.(本题满分10分,每小题各5分)解:(1)过点C作CH,OA于点H. .......................................... 1分在ACOH 中,/ CHO= 90° , /.sinZ AOC= CH 275 • ........................ 1 分OC 5••• OC 2而,CH= 4. ................................................ 1 分在ACOH 中,/ CHO= 90° , •. OH vOC 2CH 2 2 .•・•点C在第一象限,,点C的坐标是(2, 4). ........................... 1分k (8)••.反比例函数y —的图像过点C (2, 4) ,k = 8.即y - . .................. 1分x x(2)过点D作DG ±OA于点G. ............................................. 1分••・四边形ABCD是平行四边形,,AB=OC=2J5. ............................... 1分••,点D是边AB的中点,,AD=<5. ....................................... 1分在4DAG 中,Z DGA= 90 ° , ,sin/DAG =sin / AOC= _DG_ 2Jg.DA 5••.DG=2, AG=1 . .•・设点D 的坐标为(a, 2).••.反比例函数y '的图像过点D (a, 2), a = 4.即OG=4 . ............ 1分x••.OA=OG —AG=3.,四边形OABC的面积为12. .............................. 1分22.(本题满分10分,其中第(1)小题4分,第(2)小题6分)解:(1)设第二次涨价后每本练习簿的价格为x 元. ............................. 1分由题意得:8.25 2 36 x 2 25. ................................... 2分解得:x 11 .答:第二次涨价后每本练习簿的价格为11元. .......................... 1分(2)设每本练习簿平均获得利润的增长率为 y. ............................ 1分2 由题意得:8.25 2 1 y 11 2. .......... 2分解得:y 0.2或y 2.2 (不合题意,舍去). ............................ 2分 答:每本练习簿平均获彳#利润的增长率为20%. ......................... 1分23.(本题满分12分,每小题各6分)证明:(1) ,「AD//BC, AD=BE,,四边形 ABED 是平行四边形. ..................... 1分• . AB=DE . ........................................................... 1 分 ••• BE=DF , BC=CD,CE=CF. .............................................. 1 分又・. / BCF= / DCE= 90o, BC=CD. /.A BCF^A DCE . .......................... 2 分DE=BF. ............................................................. 1 分 AB=BF.(2)延长AF 与BC 延长线交于点 H. .......................................... 1分••• BE=2CE, BE=DF=AD , CE=CF,DF =2CF , AD= 2CE. .................................................. 1 分AD= 2CE=2CH .又「 EH=CE+CH. AD=EH . .................................................. 1 分DG=GE .24.(本题满分12分,其中第(1)小题3分,第(2)小题4分,第(3)小题5分)解:(1)抛物线y ax 2bx 3与y 轴的交点D (0,3).••• AD //BC,AD DF CH CF••• AD // BC,DG AD GE EH•••抛物线经过点 A (7,3), •♦・抛物线的对称轴为直线 x - . ............... 1分2m 6m工.解得m 1. ..................................................... 1分2 2(2)由 m 1得 B (1, 0).将A (7,3)、B (1, 0)代入抛物线解析式得:49a 7b 33,........ 2分a b 3 0.1a5, 解得: 2 ......................................... b 7.2.......... 1 c 7这条抛物线的表达式为: y -x 27x 3. ................................2 2(3)①当点Q 在原点时,抛物线与 x 轴的交点(6,0)即为点P,••• P (6,0) , Q (0,0) . ...................................... 1 分②当点Q 不在原点时,过点 P 作PH x 轴于点H . • : DOQ QHP 90 , DQO QPH ,• .△ DOQ st QHP . ................................................ 1 分QH 2OD 6, PH 2OQ .由题意,设Q (k,0),那么P(6 k, 2k).1 2 7 c• .•点P(6 k, 2k)在抛物线y -x -x 3上,2 21 /2 7- 6 k)2(6 k) 3 2k 2 2解得k 0 , k 21 . ........................................ 1分当k 0时,点Q 与点O 重合,舍去.••• P (5,2) , Q ( 1,0) . .......................................... 1 分 ••• P (6,0), Q (0,0)或 P (5,2) , Q ( 1,0).25.(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4分)(1)证明:记 COA• •• PA OM , C 是 OP 的中点,,AC OC PC . ......................... 1 分PQD 90 且 PQ=2DQ.PQ=2DQ,ODQH OQ DQ PHQP• •• COA CAO . .................................................... 1 分 又.• MON 45 ,ADB AOD CAO 45o. .................................................................................. 1 分POB MON COA 45o . .................................................................................. 1 分又• PB ON ,• ♦・在△ POB 中,/ PBO=90° , OPB 90oPOB 450. ..................1 分ADB OPB .(2)解:延长 AP,交ON 于点E,过点A 作AF ON 于点F. ......................... 1分••• PA OM , / MON= 45° , PB ON , ・ ./ AEO= 45即^ AOE 、△ PBE 均为等腰直角三角形.(3) ••• PB ON , C 是 OP 的中点,・•. CB CP .CPB CBP ,即^ CBP 为等腰三角形.又ABD 与^ CBP 相似,且 ADB CPB .••• ABD ADB 或 DAB ADB.即 AB AD 或 AB BD . ......................................... 1 分CA CO CP CB , ACP 2 COA , BCP 2 BOC . ••• ACB 2 AOB 90 .又.. CA CB, •. DAB 45 . ....................................... 1 分, e力1800 450c①如果 AB AD ,那么 ADB ABD ------------------- 67.5°.2OPB 67.5o . AOP BOP 22.5o.又「 PA OM 于点A 、PB ON 于点B, PA PB 2<2 . .................... 1分 ② 如果BA BD ,那么 ABD 90o.PBD 90,,点A 在直线PB 上.又 PA=x, PB=2>/2 ,PE=4, AO=AE= x 4 . ...........................•.OE=^/2x 4在.2 2 • .OF=EF=AF =—x 2短,OB= 72x 2J2, DF=——x 2<22 2ADB OPB , cot ADB cot OPB .DF PBAF OB二x 2 2 y22x 2 5 22 2 2x 2 2.2x 2 4.2x y --2x 41分1分1分1分11 / 又「 PA OM 于点A, ••・点P 与点A 重合.而点P 是 MON 内一点,,点P 与点A 不重合.此情况不成立. .............. 1分综上所述,当^ ABD 与△ CBP 相似时,PA 2/2 . 参考答案.填空题三.简答题3 . .19. ―; 20. 1 x 1 ;423.略;1 2 7… , 一 -x 2 -x 3; (3) P(6,0)、Q(0,0)或 P(5,2)、Q( 1,0); 2 237. a 8. x(x 2) ” . 仆 7rir 11. m 1 12. a b3 3 9. x10. x 13.(1,2) 14. 15. 72 16. 10 17. 518. 3 25. (1) 略; (2) 2x 2 4.2x2x 4 ⑶4.一.选择题1. C2. C3. B4. A5. D6. C 8 21. (1) y - ; (2) 12; 22. (1) 11; (2) 20%; 24. (1) m 1 ; (2) y。

2024年安徽省亳州市谯城区中考二模数学试题(含答案)

2024年安徽省亳州市谯城区中考二模数学试题(含答案)

亳州市2024年4月份九年级模拟考试数学(试题卷)注意事项:1.本试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分,每小题都给出A ,B 、C ,D 四个选项,其中只有一个是正确的)1.12024-的相反数是( )A .-2024B .2024C .12024D .12024-2.2024年2月5日,据中安在线报道,2023年,安徽省全省生产总值47050.6亿元,按不变价格计算,比上年增长5.8%.将数据47050.6亿用科学记数法表示为( )A .130.47050610⨯B .124.7050610⨯C .1147.050610⨯D .134.7050610⨯3.如图所示的几何体的俯视图是()A .B .C .D .4.下列运算正确的是( )A .235a b ab +=B .2322332a b a b a b -=C .()325a a =D .84422a a a ÷=5.不等式1152x x +>-的解集在数轴上表示正确的是()A .B .C .D .6.中国结寓意团圆、美满,以独特的东方神韵体现中国人民的智慧和深厚的文化底蕴.如图,晓进家有一个菱形中国结装饰,对角线AC ,BD 相交于点O ,测得10cm AB =,16cm BD =,过点A 作AH BC ⊥于点H ,连接OH ,则OH 的长为()第6题图A .6cmB .8cmC .10cmD .12cm7.如图,EF ,CD 是⊙O 的两条直径,点A 是劣弧 DF 的中点.若32COF ∠=︒,则ADC ∠的度数是()第7题图A .47°B .74°C .53°D .63°8.黄山是我国四大名山之一.在学习了“概率初步”这章后,同桌的小明和小波两同学做了一个游戏:小明将分别标有“美”、“丽”、“黄”、“山”四个汉字的小球(除汉字外其余完全相同)装在一个不透明的口袋中搅拌均匀,然后小波同学从口袋中随机摸出一球,不放回.小明再搅拌均匀后,小波又随机摸出一球,两次摸出的球上的汉字组成“黄山”的概率是( )A .14B .16C .18D .5169.一次函数()0y bx a c =-≠和二次函数()20y ax x b a =++≠在同一平面直角坐标系中的图象可能是()A .B .C .D .10.如图,在矩形ABCD 中,AD =,BAD ∠的平分线交BC 于点E ,DH AE ⊥于点H ,连接BH并延长交CD 于点F ,连接DE 交BF 于点O ,则下列结论中错误的是( )A .ED 平分AEC∠B .12OE DE=C .HE DF =D .BC CF -=二、填空题(本大题共4小题,每小题5分,满分20分)11=______.12.若关于x 的一元二次方程()21210k x x +-+=有两个实数根,则实数k 的取值范围是______.13.如图,一次函数123y x =-的图象分别交x 轴、y 轴于点A ,B ,P 为AB 上一点且PC 为AOB △的中位线,PC 的延长线交反比例函数()0k y k x =>的图象于点Q ,52OQC S =△,则PQ 的长是______.第13题图14.如图,在ABC △中,30A ∠=︒,90ACB ∠=︒,4BC =.请解决下列问题:(1)AC 的长是______;(2)若点D 是AC 边上的动点,连接DB ,以DB 为边在DB 的左下方作等边DBE △,连接CE ,则点D 在运动过程中,线段CE 的长的最小值是______.第14题图三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:()23223x x x x --⋅--,其中3x =.16.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有共买物,人出八,盈三;人出七,不足四.意思是:现有几个人共买一件物品,每人出8文钱多出3文钱;每人出7文钱,还差4文钱.求该物品的价格是多少文钱.四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系xOy 中.(1)画出ABC △关于x 轴对称的111A B C △;(2)在y 轴上画出一点D ,使得BD DA +的值最小.(保留作图痕迹,不写作法)18.合肥骆岗中央公园中的一条小路使用六边形、正方形、三角形三种地砖按照如图方式铺设.已知图1中有1块六边形地砖,6块正方形地砖,6块三角形地砖;图2中有2块六边形地砖,11块正方形地砖,10块三角形地砖;….(1)按照以上规律可知,图4中有______块正方形地砖;(2)若铺设这条小路共用去n 块六边形地砖,分别用含n 的代数式表示用去的正方形地砖、三角形地砖的数量;(3)若50n =,求此时三角形地砖的数量.五、(本大题共2小题,每小题10分,满分20分)19.如图,小明同学为了测量塔DE 的高度,他在与山脚B 处同一水平面的A 处测得塔尖点D 的仰角为37°,再沿AC 方向前进30米到达山脚B 处﹐测得塔尖点D 的仰角为63.4°,塔底点E 的仰角为30°,求塔DE 的高度.(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈,sin 63.40.89cm ︒≈,cos 63.40.45︒≈,tan 63.4 2.00︒≈ 1.73≈,结果精确到0.1米)20.如图,在ABC △中;90ACB ∠=︒,以BC 为直径的⊙O 交AB 于点D ,连接CD ,⊙O 的切线DE 交AC 于点E .(1)求证:AE =CE ;(2)若10AB =,6BC =,连接OE ,与CD 交于点F ,求OF 的长.六、(本题满分12分)21.安全意识,警钟长鸣,某中学为提高学生的安全防范意识,组织七、八年级学生开展了一次安全知识竞赛.成绩分别为A ,B ,C ,D 四个等级,其中相应等级的得分依次记为10分、9分、8分、7分.学校分别从七、八年级各抽取25名学生的竞赛成绩整理并绘制成如下统计图、表,请根据提供的信息解答下列问题:年级平均分中位数众数方差七年级8.76a 9 1.06八年级8.768b1.38(1)根据以上信息可知:a =______,b =______,并把七年级竞赛成绩,条形统计图补充完整;(2)根据数据分析表,你认为七年级和八年,级哪个年级的竞赛成绩更好,并说明理由;(3)若该校七、八年级共有1200人参加本次知识竞赛,且规定9分及以上的成绩为优秀,请估计该中学七、八年级参加本次知识竞赛的学生中成绩为优秀的共有多少人?七、(本题满分12分)22.已知点C 为ABC △和CDE △的公共顶点,将CDE △绕点C 顺时针旋转()0360αα︒<<︒,连接BD ,AE .(1)问题发现:如图1,若ABC △和CDE △均为等边三角形,则线段BD 与线段AE 的数量关系是______;(2)类比探究:如图2,若90ABC EDC ∠=∠=︒,60ACB ECD ∠=∠=︒,其他条件不变,请写出线段BD 与线段AE 的数量关系,并说明理由;(3)拓展应用:如图3,若90BAC DEC ∠=∠=︒,AB AC =,CE DE =,2BC CD ==B ,D ,E 三点共线时,求BD 的长.八、(本题满分14分)23.在平面直角坐标系中,抛物线223y x x =--交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴于点C .(1)求点A ,B 的坐标;(2)如图1,若在x 轴上方的抛物线上存在一点D ,使得45ACD ∠=︒,求点D 的坐标;(3)如图2,平面上一点()3,2E ,过点E 作任意一条直线交抛物线于P ,Q 两点,连接AP ,AQ ,分别交y 轴于M ,N 两点,则OM 与ON 的积是否为定值?若是,求出此定值;若不是,请说明理由.亳州市2024年4月份九年级模拟考试·数学(参考答案)一、选择题(本大题共10小题,每小题4分,满分40分)1.C 2.B 3.B 4.D 5.B 6.A 7.C 8.B 9.A10.D 【解析】在矩形ABCD 中,∵AE 平分BAD ∠,∴45BAE DAE ∠=∠=︒,∴ABE △是等腰直角三角形,∴AE =.∵AD =,∴AE AD =,∴()11802ADE AED DAE ∠=∠=︒-∠()11804567.52=︒-︒=︒,∴18067.5CED AEB AED ∠=︒-∠-∠=︒,∴AED CED ∠=∠,即ED 平分AEC ∠,故选项A 正确,不符合题意;在ABE △和AHD △中,,90,,BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AAS ABE AHD ≌△△,∴BE DH =,∴AB BE AH HD ===,∴()()111801804522AHB ABH BAE ∠=∠=︒-∠=︒-︒67.5=︒.∵OHE AHB ∠=∠,∴OHE AED ∠=∠,∴OE OH =.∵DH AE ⊥,∴90DHE ∠=︒,∴9067.522.5OHD DHE OHE ∠=∠-∠=︒-︒=︒.∵67.54522.5ODH ADE ADH ∠=∠-∠=︒-︒=︒,∴OHD ODH ∠=∠,∴OH OD =,∴OE OD OH ==,∴12OE DE =,故选项B 正确;不符合题意;∵9067.522.5EBH ABE ABH ∠=∠-∠=︒-︒=︒,∴EBH OHD ∠=∠.在BEH △和HDF △中,,,45,EBH OHD BE DH AEB HDF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴()ASA BEH HDF ≌△△,∴BH HF =,EH DF =,故选C 正确,不符合题意;综上所述,可得CD BE =,DF EH CE ==,CF CD DF =-,∴()()2BC CF CD EH CD EH EH -=+--=,故选项D 错误,符合题意.二、填空题(本大题共4小题,每小题5分,满分20分)11.-1 12.0k ≤且1k ≠- 13.8314.(1)2)2【解析】(1)∵30A ∠=︒,90ACB ∠=︒,4BC =,∴8AB =.在Rt ABC △中,由勾股定理得AC ===(2)如图,取AB 的中点Q ,连接CQ ,DQ ,则4BQ AQ ==.∵90ACB ∠=︒,30A ∠=︒,∴60CBQ ∠=︒.∵4BQ AQ ==,∴4CQ BQ AQ ===,∴BCQ △是等边三角形∴BC BQ =.∵60DBE CBQ ∠=∠=︒,∴EBC DBQ ∠=∠.在EBC △和DBQ △中,,,,EB DB EBC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴()SAS EBC DBQ ≌△△,∴EC DQ =,∴当QD AC ⊥时,线段QD 最短,即线段EC 的值最小,在Rt AQD △中,4AQ =,30A ∠=︒,∴122DQ AQ ==,∴线段CE 的长的最小值为2.三、(本大题共2小题,每小题8分,满分16分)15.解:原式()2321333x x x x x --=⋅=---.当3x =时,原式===16.解:设该物品的价格为x 文钱,根据题意,得3487x x +-=,解得53x =.答:该物品的价格是53文钱.四、(本大题共2小题,每小题8分,满分16分)17.解:(1)如图,111A B C △即为所求.如图,点D 即为所求.18.解:(1)21【解析】由图形可知,图1中六边形地砖块数为1,正方形地砖块数为6151=⨯+,三角形地砖块数为6142=⨯+;图2中六边形地砖块数为2,正方形地砖块数为11251=⨯+,三角形地砖块数为10242=⨯+;图3中六边形地砖块数为3,正方形地砖块数为16351=⨯+,三角形地砖块数为14342=⨯+;…,由此可见,每增加1块六边形地砖,正方形地砖会增加5块,三角形地砖会增加4块,所以图4中正方形地砖块数为21块.(2)由(1)发现的规律可知,当铺设这条小路共用去n 块六边形地砖时,用去的正方形地砖的块数为()51n +块,三角形地砖的块数为()42n +块.(3)当50n =时,三角形地砖的块数为424502202n +=⨯+=(块).答:此时三角形地砖的数量为202块.五、(本大题共2小题,每小题10分,满分20分)19.解:设BC x =米.在Rt BDC △中,∵63.4DBC ∠=︒,∴tan 63.42DC BC x =⋅︒≈(米).∵30AB =米,∴()30AC AB BC x =+=+米.在Rt ADC △中,∵37A ∠=︒,∴2tan 370.7530DC xAC x ︒==≈+,解得18x =,∴18BC =米,236DC x ==米.在Rt EBC △中,30EBC ∠=︒,∴tan 3018EC BC =⋅︒==(米),∴3625.6225.6DE DC CE =-=-≈≈(米).答:塔DE 的高度约为25.6米.20.(1)证明:∵90ACB ∠=︒,BC 为⊙O 的直径,∴EC 为⊙O 的切线,90BDC ADC ∠=∠=︒.∵DE 为⊙O 的切线,∴CE DE =,∴ECD EDC ∠=∠.∵90A ECD ADE EDC ∠+∠=∠+∠=︒,∴A ADE ∠=∠,∴AE DE ∠=,∴AE CE =.(2)解:如图,连接OD .∵90ACB ∠=︒,BC 为⊙O 的直径,∴AC 为⊙O 的切线.∵DE 是⊙O 的切线,∴EO 平分CED ∠,∴OE CD ⊥,F 为CD 的中.∵AE CE =,BO CO =,∴OE 是ABC △的中位线,∴1110522OE AB ==⨯=,在Rt ACB △中,90ACB ∠=︒,10AB =,6BC =,在勾股定理得8AC ===.在Rt ADC △中,∵AE CE =,∴118422DE AC ==⨯=.在Rt EDO △中,116322DO BC ==⨯=,4DE =,由勾股定理得5OE ===.由三角形的面积公式,得1122EDO S DE DO OE DF =⋅=⋅△,即435DF ⨯=,解得 2.4DF =.在Rt DFO △中,由勾股定理得 1.8OF ===.21.解:(1)9 10七年级竞赛成绩条形统计图补充完整如下.七年级竞赛成绩条形统计图【解析】∵七年级竞赛成绩由高到低排在第13位的是B 等级9分,∴9a =;∵八年级A 等级人数最多,∴10b =;七年级竞赛成绩C 等级人数为2561252---=(人).(2)七年级的竞赛成绩更好.理由:七、八年级的竞赛成绩的平均分相同,七年级竞赛成绩的中位数大于八年级,七年级竞赛成绩的方差小于八年级竞赛成绩的方差,所以七年级的竞赛成绩更好.(3)()61244%4%2512007202525+++⨯⨯=+(人).答:估计该中学七、八年级参加本次知识竞赛的学生中成绩为优秀的共有720人.七、(本题满分12分)22.解:(1)BD AE=【解析】∵ABC △和CDE △都是等边三角形,∴AC BC =,DC EC =,60ACB ECD ∠=∠=︒,∴BCD ACE ∠=∠,∴()SAS BCD ACE ≌△△,∴BD AE =.(2)12BD AE =.理由:∵90ABC EDC ∠=∠=︒,60ACB ECD ∠=∠=︒,∴30BAC DEC ∠=∠=︒,∴12BC CD AC CE ==,BCD ACE ∠=∠.∴BCD ACE ∽△△,∴12BD AE =,∴12BD AE =.(3)当B ,D ,E 三点共线时,有以下两种情况:①如图1,当点D 在线段BE 上的时.∵90BAC DEC ∠=∠=︒,AB AC =,CE DE =,2BC CD ==,∴BC ==,CD ==∴2AC =,1CE DE ==.∵90E ∠=︒,∴BE ==,∴1BD BE DE =-=-;②如图2,当点E 在线段BD 上时,同理得1BD BE DE =+=+.综上所述,BD 1-1.八、(本题满分14分)23.解:(1)令0y =,则2230x x --=,解得11x =-,23x =.∵点A 在点B 的左侧,∴()1,0A -,()3,0B ,即点A 的坐标为()1,0-,点B 的坐标为()3,0.(2)由抛物线223y x x =--,得点()0,3C -.如图1,过点A 作AK AC ⊥交CD 于点K ,过点K 作KH x ⊥轴于点H .∵45ACD ∠=︒,∴CAK △是等腰直角三角形,∴AC AK =.又∵90AOC KHA ∠=∠=︒,90ACO OAC KAH ∠=︒-∠=∠,∴()AAS OAC HKA ≌△△,∴3AH CO ==,1KH OA ==,∴2OH =,∴()2,1K .设直线CD 的解析式为3y kx =-,则231k -=,解得2k =,∴直线CD 的解析式为23y x =-.联立,得223,23,y x x y x ⎧=--⎨=-⎩解得4x =或0x =(舍去),∴点D 的坐标为()4,5.(3)OM 与ON 的积是定值.设直线PQ 的解析式为y ax b =+,()11,P x y ,()22,Q x y .∵直线PQ 过点()3,2E 交抛物线于P ,Q 两点,∴23a b =+,即23b a =-,∴直线PQ 的解析式为23y ax a =+-,联立,得223,23,y x x y ax a ⎧=--⎨=+-⎩整理,得()22350x a x a -++-=,∴122x x a +=+,1235x x a ⋅=-.如图2,过点P 作PS x ⊥轴于点S ,过点Q 作QT x ⊥轴于点T ,则AMO APS ∽△△,∴MO PS AO AS=,即()()2111111132311x x x x MO AO x x +---==++.∵1AO =,∴13OM x =-.同理得()23ON x =--,∴()()1233OM ON x x ⋅=---⎡⎤⎣⎦()()121239353292x x x x a a =-⋅-++=---++=⎡⎤⎡⎤⎣⎦⎣⎦,即OM 与ON 的积为定值,此定值为2.。

2022年中考第二次模拟考试《数学试题》含答案解析

2022年中考第二次模拟考试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 16的算术平方根是()A. 2B. 4C. 2±D. 4±2. 下列运算正确的是( )A. (ab)2=ab2B. a2·a3= a6C (-2)2=4 D. m5÷m3=m23. 下列图形既是轴对称图形又是中心对称图形是( )A. B. C. D.4. 如图所示的几何体的俯视图是()A. B. C. D.5. 在学校开展的”争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:那么这五位同学演讲成绩的众数与中位数依次是()参赛者编号 1 2 3 4 5成绩/分96 88 86 93 86A. 96,88,B. 86,88,C. 88,86,D. 86,866. 下列调查中,最合适采用抽样调查的是( )A. 乘坐高铁对旅客的行李的检查B. 了解抚顺市民对春节晚会节目的满意程度C. 调查九年一班全体同学的身高情况D. 对新研发的新型战斗机的零部件进行检查7. 不等式组312840xx->⎧⎨-≤⎩的解集在数轴上表示为( )A. B.C. D.8. 小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A. 25321.6x x-=15 B.3225151.6x x-=C.322511.64x x-= D.253211.64x x-=9. 如图,在△ABC中,∠ACB=90°,过B,C两点⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O 于点F.连接BF,CF.若∠EDC=135°,CF=22,则AE2+BE2的值为( )A. 8B. 12C. 16D. 2010. 如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=23cm, EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是( )A. B. C. D.二、填空题11. 截止北京时间7月5日19时,新冠肺炎累计确诊病例超过11320000例,用科学记数法表示为_____.12. 分解因式:xy2﹣2x2y+x3=_____.13. 底面半径为4,高为3的圆锥的侧面积是____________.14. 已知关于x的一元二次方程kx2﹣23x+1=0有两个不相等的实数根,则k的取值范围是__.15. 如图,已知点A是双曲线y=﹣2x在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第一象限内,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx(k>0)上运动,则k的值是______.16. 如图,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC边上的一个动点,连接AD,过点C作C E⊥A D于E,连接B E,在点D变化的过程中,线段B E的最小值是_____c m.17. 如图,直线1:12l y x=-+与坐标轴交于AB两点,点(),0M m是轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线相切时,的值为__________________.18. 如图,已知在Rt△ABC中,AB=AC=32△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为_____.三.解答题19. 先化简,再求值:(1﹣x+31x+)÷2441x xx+++,其中x=tan45°+(12)﹣1.20. “食品安全”受到全社会的广泛关注,育才中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________人,扇形统计图中”基本了解”部分所对应扇形的圆心角为_________;(2)请补全条形统计图;(3)若对食品安全知识达到”了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取人参加食品安全知识竞赛,则恰好抽到个男生和个女生的概率________.21. 某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?22. 如图,某数学活动小组要测量楼AB的高度,楼AB在太阳光的照射下在水平面的影长BC为6米,在斜坡CE的影长CD为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡CE的坡度为1:2.4,求楼AB的高度.(坡度为铅直高度与水平宽度的比)23. 如图,在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,O是AB上一点,经过A,E两点⊙O交AB 于点D,连接DE,作∠DEA的平分线EF交⊙O于点F,连接AF.(1)求证:BC是⊙O的切线;(2)若sin∠EFA=45,AF=52,求线段AC的长.24. 某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?25. (1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①ACBD的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M .请判断ACBD的值及∠AMB 的度数,并说明理由; (3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD=1,OB=7,请直接写出当点C 与点M 重合时AC 的长.26. 如图,抛物线2y a 3x bx =++与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C ,点D 和点C 关于抛物线对称轴对称,直线AD 与y 轴交于点E . (1)求抛物线的解析式;(2)如图1,直线AD 上方的抛物线上有一点F ,过点F 作FG 垂直AD 于点G ,作FH 平行于x 轴的直线AD 与点H ,求△FGH 周长的最大值;(3)点M 是抛物线顶点,点P 是y 轴上一点,点Q 是坐标平面内一点,以A ,M ,P ,Q 为顶点的四边形是矩形,请直接写出P 点坐标.答案与解析一、选择题1. ( )A. 2B. 4C. 2±D. 4±【答案】A 【解析】 【分析】4,=2. 故选A .. 2. 下列运算正确的是( ) A (ab )2=ab 2 B. a 2·a 3= a 6C. ()2=4D. m 5÷m 3=m 2 【答案】D 【解析】 【分析】根据同底数幂的乘除、幂的乘方、积的乘方、二次根式的运算法则进行计算解答.【详解】解:A ,222()ab a b =,故本选项错误;B ,235a a a ⋅=,故本选项错误;C ,2(2=,故本选项错误;D ,532m m m ÷=,故本选项正确; 故选:D .【点睛】本题主要考查了同底数幂的乘除法,幂的乘方、积的乘方、二次根式的运算;熟练掌握其运算法则是解题的关键.3. 下列图形既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A选项:是中心对称图形,但不是轴对称图形,不符合题意;B选项:既是轴对称图形,又是中心对称图形,符合题意;C选项:是轴对称图形,但不是中心对称图形,不符合题意;D选项:是轴对称图形,但不是中心对称图形,不符合题意,故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图形重合.4. 如图所示的几何体的俯视图是()A. B. C. D.【答案】D【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】此几何体的俯视图是一个正方形,右下角是个矩形,如图:故选:D.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5. 在学校开展的”争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:那么这五位同学演讲成绩的众数与中位数依次是()A. 96,88,B. 86,88,C. 88,86,D. 86,86【答案】B【解析】【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数据,据此判断即可.【详解】解:∵这组数据中86出现的次数最多,是2次,∴这五位同学演讲成绩的众数是86;这五位同学演讲成绩排序得:86,86,88,93,96,∴这五位同学演讲成绩的中位数是88,∴这五位同学演讲成绩的众数与中位数依次是86,88.故选:B.【点睛】此题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.6. 下列调查中,最合适采用抽样调查的是( )A. 乘坐高铁对旅客的行李的检查B. 了解抚顺市民对春节晚会节目的满意程度C. 调查九年一班全体同学的身高情况D. 对新研发的新型战斗机的零部件进行检查【答案】B【解析】试题解析:A、乘坐高铁对旅客的行李的检查,是事关重大的调查,适合普查,故A错误;B、了解抚顺市民对春节晚会节目的满意程度,调查范围广,适合抽样调查,故B正确;C、调查九年一班全体同学的身高情况,调查范围小,适合普查,故C错误;D、对新研发的新型战斗机的零部件进行检查,是事关重大的调查,适合普查,故D错误;故选B.考点:全面调查与抽样调查.7. 不等式组312840xx->⎧⎨-≤⎩的解集在数轴上表示为( )A. B.C. D.【答案】A【解析】【分析】分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.【详解】解:不等式组为:3x1284x0->⎧⎨-≤⎩①②,解不等式①,解得:x>1,解不等式②,解得:x≥2,在数轴上表示为:故选:A.【点睛】本题考查了一元一次不等式组的解法并在数轴上画图表示,正确求得不等式组中每个不等式的解集是解决问题的关键,在坐标上画图时要注意:能取到该点的值的时候,要画实心点,不取到该点值的时候,画空心点.8. 小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A. 25321.6x x-=15 B.3225151.6x x-=C.322511.64x x-= D.253211.64x x-=【答案】D 【解析】解:设走路线A时的平均速度为x千米/小时,根据题意得:25x﹣321.6x=14.故选D.9. 如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F.连接BF,CF.若∠EDC=135°,CF=22,则AE 2+BE 2的值为 ( )A. 8B. 12C. 16D. 20【答案】C【解析】【分析】 根据圆内接四边形的性质及邻补角的定义可得∠ADE=∠ABC=45°,再证得∠ADE=∠A=45°即可得AE=AD ;根据直径所对的圆周角是直角可得∠FCE=90°,在Rt △EFC 中求得EF=4;连接BD ,可证得BD 为为⊙O 的直径,在Rt △BDE 中根据勾股定理可得2222416BE DE BD +===,由此即可得结论.【详解】∵∠EDC=135°, ∴∠ADE=45°,∠ABC=180°-∠EDC =180°-135°=45°;∵∠ACB=90°,∴∠A=45°,∴∠ADE=∠A=45°,∴AE=AD ,∠AED=90°;∵EF 为⊙O 的直径,∴∠FCE=90°,∵∠ABC=∠EFC=45°,CF=22,∴EF=4;连接BD ,∵∠AED=90°,∴∠BED=90°,∴BD 为⊙O 的直径,∴BD=4;在Rt △BDE 中,2222416BE DE BD +===,∴AE 2+BE 2=16.故选C.【点睛】本题考查了圆周角定理及其推论、圆内接四边形的性质及勾股定理等知识点,会综合运用所学的知识点解决问题是解题的关键.10. 如图,△ABC 为直角三角形,∠C=90°,BC=2cm ,∠A=30°,四边形DEFG 为矩形,DE=23cm , EF=6cm ,且点C 、B 、E 、F 在同一条直线上,点B 与点E 重合.Rt△ABC 以每秒1cm 的速度沿矩形DEFG 的边EF 向右平移,当点C 与点F 重合时停止.设Rt△ABC 与矩形DEFG 的重叠部分的面积为ycm 2,运动时间xs .能反映ycm 2与xs 之间函数关系的大致图象是( )A. B. C. D. 【答案】A【解析】∵∠C =90°,BC =2cm ,∠A =30°, ∴AB =4,由勾股定理得:AC 3,∵四边形DEFG 为矩形,∠C =90,∴DE =GF 3∠C =∠DEF =90°, ∴AC ∥DE ,此题有三种情况:(1)当0<x <2时,AB 交DE 于H ,如图∵DE ∥AC , ∴EH BE AC BC =, 即223EH x =, 解得:EH =3x ,所以y =12•3x •x =32x 2, ∵x 、y 之间是二次函数,所以所选答案C 错误,答案D 错误,∵a =32>0,开口向上; (2)当2≤x ≤6时,如图,此时y =12×2×23=23, (3)当6<x ≤8时,如图,设△ABC 的面积是s 1,△FNB 的面积是s 2,BF =x ﹣6,与(1)类同,同法可求FN 3﹣3∴y =s 1﹣s 2,=12×2×312×(x ﹣6)×3X ﹣3, =﹣32x 23﹣3∵﹣2<0, ∴开口向下,所以答案A 正确,答案B 错误,故选A .点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.二、填空题11. 截止北京时间7月5日19时,新冠肺炎累计确诊病例超过11320000例,用科学记数法表示为_____.【答案】1.132710⨯【解析】【分析】科学计数法指的是将一个数表示成a 与10的n 次幂相乘的形式(1a 10≤<,a 不为分数形式,n 为整数),即可求出答案.【详解】解:题中:711320000=1.13210⨯,题中a=1.132,n=7,满足科学计数法要求,故答案为:71.13210⨯.【点睛】本题主要考察了科学计数法的表示方法,要清楚地知道科学计数法是将一个数表示成a 与10的n 次幂相乘的形式(1a 10≤<,a 不为分数形式,n 为整数),其中a 、n 必须要满足上述条件.12. 分解因式:xy 2﹣2x 2y +x 3=_____.【答案】x(y ﹣x)2【解析】分析:首先提取公因式x ,然后利用完全平方公式进行因式分解.详解:原式=()()222x 2xy x y x y x -+=-. 点睛:本题主要考查是因式分解的方法,属于基础题型.因式分解的方法有:提取公因式、公式法和十字相乘法.13. 底面半径为4,高为3的圆锥的侧面积是 ____________.【答案】20【解析】【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥侧面积公式代入求出即可.【详解】解:∵圆锥的底面半径为4,高为3,∴母线长为5,∴圆锥的侧面积为:πrl=π×4×5=20π,故答案为:20π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.14. 已知关于x的一元二次方程kx2﹣23x+1=0有两个不相等的实数根,则k的取值范围是__.【答案】k<3且k0【解析】【分析】根据关于x的一元二次方程kx2−23x+1=0有两个不相等的实数根,可得出判别式大于0,再求得k的取值范围,需注意:二次项系数不等于零.【详解】解:∵关于x的一元二次方程kx2−23x+1=0有两个不相等的实数根,∴△=(−23)2-4×1×k>0,解得k<3,∵k≠0,∴k的取值范围k<3且k≠0,故答案是:k<3且k≠0.【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15. 如图,已知点A是双曲线y=﹣2x在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第一象限内,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx(k>0)上运动,则k的值是______.【答案】6【解析】【分析】 设点2()A a a,,连接OC ,则AB OC ⊥,表示出OC ,过点C 作CD x ⊥轴于点D ,设出点C 坐标,在Rt △COD 中,利用勾股定理可得出2212x a =,继而求出y 与x 的函数关系. 【详解】解:设2()A a a ,,∵点A 与B 关于原点对称,∴OA =AB∵△ABC 为等边三角形,∴AB OC ⊥,OC =∵OA =∴OC ===过点C 作CD x ⊥轴于点D ,则可得BOD OCD ∠=∠(都是COD ∠的余角), 设点C 的坐标为(x ,y ),则tan tan BOD OCD ∠=∠,即2x a a y=, 解得:22a y x =, 在Rt △COD 中,222CD OD OC +=,即2222123x y a a +=+,将22a y x =代入,可得:2212x a =,故x a=y =, 则6k xy ==,故答案为:6.【点睛】本题考查了反比例函数的综合题,涉及解直角三角形、等边三角形的性质及勾股定理的知识,解答本题的关键是将所学知识融会贯通,注意培养自己解答综合题的能力.16. 如图,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC边上的一个动点,连接AD,过点C作C E⊥A D于E,连接B E,在点D变化的过程中,线段B E的最小值是_____c m.-【答案】616【解析】【分析】如图,连接B、BC. 在点D移动的过程中,点E在AC为直径的圆上运动,当、E、B共线时,BE的值最小,最小值为B-E,利用勾股定理求出B即可解决问题.【详解】解:如图,以AC直径作圆,连接B、E.∵CE⊥AD,∴∠AEC=90°,在△ABC中,AB=13cm,AC=12cm,BC=5cm,AB2=AC2+BC2,∴△ABC为Rt△,在Rt△BC中,2222'+5661BC CO+=∵、E、B、共线时,BE的值最小,最小值为B–E=61–6,故答案为61–6.【点睛】本题考查圆综合题、勾股定理,点与圆的位置关系等知识,解题的关键是确定点E的运动轨迹,是以AC 为直径的圆上运动,属于中考填空中压轴题.17. 如图,直线1:12l y x=-+与坐标轴交于AB两点,点(),0M m是轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线相切时,的值为__________________.【答案】2-25或25+2【解析】试题分析:直线112y x=-+与y轴、x轴的交点坐标为A(0,1),B(2,0),由勾股定理可得AB=5.如图(1)当圆M与直线AB相切于点C时,△AOB∽△MCB,OA ABMC BM=,即152BM=,解得BM=25.所以BM-OB=25-2,即m=2-25.如图(2)△AOB∽△MDB,OA ABMD BM=,即152BM=,解得BM=25.m= BM+OB=25+2.图(1) 图(2)考点:一次函数与圆,三角形相似18. 如图,已知在Rt △ABC 中,AB =AC =32,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为_____.【答案】201212【解析】 【分析】 首先根据勾股定理得出BC 的长,进而利用等腰直角三角形的性质得出DE 的长,再利用锐角三角函数的关系得出12EI PF KI EF ==,即可得出正方形边长之间的变化规律,得出答案即可. 【详解】∵在Rt △ABC 中,AB=AC=32, ∴∠B=∠C=45°,BC=22AB AC =6,∵在△ABC 内作第一个内接正方形DEFG; ∴EF=EC=DG=BD ,∴DE=13BC ∴DE=2,∵取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形…依次进行下去,∴12EI PF KI EF ==, ∴EI=12KI=12HI , ∵DH=EI , ∴HI=12DE=(12)2−1×2, 则第n 个内接正方形的边长为:2×(12)n−1,∴则第2014个内接正方形的边长为2×(12)2014−1=2×201312=201212. 故答案201212.【点睛】此题主要考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.三.解答题19. 先化简,再求值:(1﹣x+31x +)÷2441x x x +++,其中x=tan45°+(12)﹣1. 【答案】-15【解析】【分析】先根据分式混合运算顺序和运算法则化简原式,再根据三角函数值、负整数指数幂得出x 的值,最后代入计算可得. 【详解】原式=(21311x x x -+++)÷()221x x ++ =()()()2221·12x x x x x +-+++ =22x x-+, 当x=tan45°+(12)﹣1=1+2=3时,原式=231235-=-+. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序、特殊角的三角函数值、负指数幂的运算是解题的关键.20. “食品安全”受到全社会的广泛关注,育才中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________人,扇形统计图中”基本了解”部分所对应扇形的圆心角为_________;(2)请补全条形统计图;(3)若对食品安全知识达到”了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取人参加食品安全知识竞赛,则恰好抽到个男生和个女生的概率________.【答案】(1)60,90;(2)图见详解;(3)35 【解析】【分析】(1)根据了解很少的人数和所占的百分比求出抽查的总人数,再用”基本了解”所占的百分比乘以360°,即可求出”基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去”基本了解”“了解很少”和”不了解”的人数,求出了解的人数,从而补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案.【详解】解:(1)接受问卷调查的学生共有30÷50%=60(人), 扇形统计图中”基本了解”部分所对应扇形的圆心角为360°×1560=90°, 故答案为:60,90.(2)了解的人数有:60−15−30−10=5(60−15−30−10=5(人)),补图如下:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为1220=35. 【点睛】此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率==所求情况数与总情况数之比.21. 某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【答案】(1)乙图书每本价格为20元,则甲图书每本价格是50元;(2)该图书馆最多可以购买28本乙图书.【解析】【分析】根据两种图书的倍数关系,设乙图书每本的价格为x 元,则甲图书每本的价格为2.5x 元,再根据同样多的钱购买图书数量相差24本,列方程,求出方程的解即可,分式方程一定要验根.设购买甲图书m 本,则购买乙图书(2m +8)本,再根据总经费不超过1060元,列不等式,求出不等式的解集,进而求得最多可买乙图书的本数.【详解】解:(1)设乙图书每本价格为元,则甲图书每本价格是2.5x 元, 根据题意可得:800800242.5x x-=, 解得:20x =,经检验得:20x =是原方程的根,则2.550x =,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为,则购买乙图书的本数为:28x +,故()5020281060x x ++,解得:10x ,故2828x +,答:该图书馆最多可以购买28本乙图书.【点睛】本题考查分式方程的运用,一元一次不等式组的运用,理解题意,抓住题目蕴含的数量关系解决问题.22.如图,某数学活动小组要测量楼AB 的高度,楼AB 在太阳光的照射下在水平面的影长BC 为6米,在斜坡CE的影长CD为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡CE的坡度为1:2.4,求楼AB的高度.(坡度为铅直高度与水平宽度的比)【答案】楼AB的高度为15米.【解析】试题分析:作DN⊥AB,垂足为N,作CM⊥DN,垂呯为M,设CM=5x,根据坡度的概念求出CM、DM,根据平行线的性质列出比例式,计算即可.试题解析:作DN⊥AB,垂足为N,作CM⊥DN,垂足为M,则CM:MD=1:2.4=5:12,设CM=5x,则MD=12x,由勾股定理得22CM DM∴x=1∴CM=5,MD=12,四边形BCMN为矩形,MN=BC=6,BN=CM=5,太阳光线为平行光线,光线与水平面所成的角度相同,角度的正切值相同,∴AN:DN=1.5:1.35=10:9,∴9AN=10DN=10×(6+12)=180,AN=20,AB=20-5=15,答:楼AB的高度为15米.考点:解直角三角形的应用---坡度坡角问题.23. 如图,在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,O是AB上一点,经过A,E两点的⊙O交AB 于点D,连接DE,作∠DEA的平分线EF交⊙O于点F,连接AF.(1)求证:BC 是⊙O 的切线;(2)若sin ∠EFA=45,AF=52,求线段AC 的长.【答案】(1)证明见解析;(2)6.4.【解析】【分析】(1)连接OE ,根据等腰三角形的性质和角平分线定义可得OEA CAE ∠=∠,根据平行线的判定可得OE ∥AC ,再由平行线的性质可得∠BEO=∠C=90°,即可证得结论;(2)连接DF ,根据已知条件易证52DF AF ==.在Rt ADF ∆中,根据勾股定理求得10AD =.根据同弧所对的圆周角相等及已知条件可得4sin sin 5EDA EFA ∠=∠=.在Rt ADE ∆中求得AE 的长,再证明ΔACE ∽ΔAED ,根据相似三角形的性质即可求得线段AC 的长.【详解】证明:(1)如图1,连接OE ,∵OA OE =,∴OEA OAE ∠=∠.∵AE 平分BAC ∠,∴OAE CAE ∠=∠.∴OE ∥AC ,∴90BEO C ∠=∠=︒.∴OE BC ⊥∵OE 为O 的半径, ∴BC 是O 的切线.(2)如图2,连接DF .由题可知AD 为O 的直径,∴F 90DEA A D ∠=∠=︒.∵EF 平分DEA ∠,∴45DEF AEF ∠=∠=︒.∴45DAF DEF ∠=∠=︒.∴△AFD 为等腰直角三角形, ∴52DF AF ==在Rt ADF ∆中,222AF DF AD +=, ∴((2225252100AD =+=. ∴10AD =.∵EFA EDA ∠=∠,4sin 5EFA ∠=, ∴4sin sin 5EDA EFA ∠=∠=. 在Rt ADE ∆中,sin AE EDA AD∠=. ∴4sin 1085AE AD EDA =⋅∠=⨯= . ∵CAE EAD ∠=∠,90C AED ∠=∠=︒,∴AC AE AE AD=.∴22832105AEACAD===(或6.4)【点睛】本题属于圆的综合题,运用的知识点有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.24. 某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?【答案】(1)260(5080)4203(80140)y x xy x x-≤≤⎧⎨-⎩==<<;(2)w=-x2+300x-10400(50≤x≤80);w=-3x2+540x-16800(80<x<140);(3)售价定为90元.利润最大为7500元.【解析】【分析】(1)当售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,y=260-x,50≤x≤80,当如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,y=420-3x,80<x<140,(2)由利润=(售价-成本)×销售量列出函数关系式,(3)分别求出两个定义域内函数的最大值,然后作比较.【详解】(1)当50≤x≤80时,y=210-(x-50),即y=260-x,当80<x<140时,y=210-(80-50)-3(x-80),即y=420-3x.则260(5080)4203(80140)y x xy x x-≤≤⎧⎨-⎩==<<,(2)由利润=(售价-成本)×销售量可以列出函数关系式w=-x2+300x-10400(50≤x≤80)w=-3x2+540x-16800(80<x<140),(3)当50≤x≤80时,w=-x2+300x-10400,当x=80有最大值,最大值为7200,当80<x <140时,w=-3x 2+540x-16800,当x=90时,有最大值,最大值为7500,故售价定为90元.利润最大为7500元.【点睛】此题考查二次函数的应用,解题关键在于应用二次函数解决实际问题比较简单.25. (1)问题发现如图1,在△OAB 和△OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M .填空: ①AC BD 的值为 ; ②∠AMB 的度数为 .(2)类比探究如图2,在△OAB 和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M .请判断AC BD的值及∠AMB 的度数,并说明理由; (3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD=1,OB=7,请直接写出当点C 与点M 重合时AC 的长.【答案】(1)①1;②40°;(2390°;(3)AC 的长为3或3【解析】【分析】(1)①证明△COA ≌△DOB (SAS ),得AC=BD ,比值为1;②由△COA ≌△DOB ,得∠CAO=∠DBO ,根据三角形的内角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD )=180°-140°=40°;(2)根据两边的比相等且夹角相等可得△AOC ∽△BOD ,则3AC OC BD OD=,由全等三角形的性质得∠AMB 的度数;。

人教版中考第二次模拟测试《数学试题》含答案解析

人教版中考第二次模拟测试《数学试题》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、填空题(每小题3分,共24分)1.如果|a |+a =0,则22(1)a a -+=______.2.已知x 2-x -1=0,则代数式-x 3+2x 2+2002的值为______.3.若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________.4.升国旗时,某同学站在离旗杆底部18米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为45°,若该同学双眼离地面1.6米,则旗杆高度为_______米.5.如图,某涵洞截面是抛物线型,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离CO =2.4m ,在图中直角坐标系内涵洞截面所在抛物线的表达式是______________.6.已知一个圆的弦切角等于40°,那么这个弦切角所夹的弧所对的圆心角的度数是______.7.如图,在Rt △ABC 中,腰AC =BC =1,按下列方法折叠Rt △ABC ,点B 不动,使BC 落在AB 上,点A 不动,使AB 落在AC 的延长线上;点C 不动,使CA 落在CB 上,设点A 、B 、C 对应的落点分别为A ′、B ′、C ′,则△A ′B ′C ′的面积是______.8.如图,⊙O 1的半径是⊙O 2的直径,⊙O 1的半径O 1C 交⊙O 2于B ,若AB 的度数是48°,那么AC 的度数是______.二、选择题(每小题3分,共18分)9.已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是( )A. 3B. 4C. 5D. 610.在一次汽车性能测试中,型号不同甲、乙两辆汽车同时从A 地出发,匀速向距离560千米的B 地行驶,结果甲车7小时到达,乙车8小时到达,则两车行驶时离A 地的距离s (千米)与行驶时间t (小时)的函数关系对应的图象大致是( )A B.C. D.11.两圆的圆心坐标分别为(3,0)、(0,4),直径分别为4和6,则这两圆的位置关系是( )A. 外离B. 相交C. 外切D. 内切12.在Rt ABC 中,C Rt ∠=∠,若30A ∠=,则cos sin A B +等于( ) A. 312 B. 1 3 D. 21213.在直角坐标系中,O 为坐标原点,A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 的个数共有( )A. 4个B. 3个C. 2个D. 1个14.当今材料科学已发展到纳米时代,1纳米等于1米的十亿分之一,我国科学家已研制成功直径为0.4纳米的碳米管,如果用科学记数法表示这种碳米管的直径,应为()A. 4×10-9米B. 0.4×10-8米C. 4×10-10米D. 0.4×10-9米三、解答题(15~19每小题8分,共40分)15.解方程21023x xx x-+=-.16.某校初二年级四个班的同学外出植树一天,已知每小时5个女生种3棵树,3个男生种5棵树,各班人数如图所示,则植树最多的是初二几班.17.声音在空气中传播的速度y(米/秒)是气温x (摄氏度)的一次函数,下表列出了一组不同气温时的音速.气温x/摄氏度0 5 10 15 20音速y/(米/秒) 331 334 337 340 343(1)求y 与x之间的函数关系式(2)气温x=22(摄氏度)时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地相距多远?18.某广场有一块长50米、宽30米的空地,现要将它改造为花园,请你设计一个修建方案,使满足下列条件:(1)正中间留出一条宽2米的道路(如图);(2)道路两旁修建花坛,且花坛总面积占整个面积(不包括道路)的一半;(3)设计好的整个图形既是轴对称图形,又是中心对称图形.(计算结果精确到0.1米).19.已知:△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)如图 (1)所示,当P 在线段AB 上时,求证:P A ·PB =PE ·PF ;(2)如图 (2)所示,当P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.四、解答题(每题9分,共18分)20.先仔细阅读下列材料,然后回答问题:如果a >0,b >0,那么(a -b )2≥0,即a +b -2ab ≥0 得2a b +≥ab ,其中,当a =b 时取等号,我们把2a b +称为a 、b 算术平均数, ab 称为a 、b 的几何平均数. 如果a >0,b >0,c >0,同样可以得到3a b c ++≥3abc ,其中,当a =b =c 时取等号于是就有定理:几个正数的算术平均数不小于它们的几何平均数.请用上述定理解答问题:把边长为30 cm 的正方形纸片的4角各剪去一个小正方形,折成无盖纸盒(如图)(1)设剪去的小正方形边长为x cm ,无盖纸盒的容积为V ,求V 与x 的函数关系式及x 的取值范围.(2)当x 为何值时,容积V 有最大值,最大值是多少?21.以△ABC 的边AC 为直径的半圆交AB 边于D 点,∠A 、∠B 、∠C 所对边长为a 、b 、c ,且二次函数y =12(a +c )x 2-bx +12(c -a )顶点在x 轴上,a 是方程z 2+z -20=0的根. (1)证明:∠ACB =90°;(2)若设b =2x ,弓形面积S 弓形AED =S 1,阴影面积为S 2,求(S 2-S 1)与x 的函数关系式;(3)在(2)条件下,当BD为何值时,(S2-S1)最大?答案与解析一、填空题(每小题3分,共24分)1.如果|a |+a =0______.【答案】-2a +1【解析】【分析】由0a a +=得到0,a ≤ 根据0a ≤ 【详解】解:0,a a +=,a a ∴=-0,a ∴≤10,a ∴-<1112.a a a a a =-+=--=-故答案为:12.a -a =是解题的关键.2.已知x 2-x -1=0,则代数式-x 3+2x 2+2002值为______.【答案】2003【解析】【分析】由210x x --=得到221,1,x x x x -==+把原多项式降次处理,进而可得答案.【详解】解:210,x x --=221,1,x x x x ∴-==+32222002(1)22002x x x x x ∴-++=-+++22002120022003.x x =-+=+=故答案为:2003.【点睛】本题考查的是代数式的值,把待求值的代数式进行降次处理是解题的关键.3.若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________.【答案】1 (答案不唯一,满足02m <<均可)【解析】【分析】一次函数()2y m x m =-+的图象经过第一、二、四象限,列出不等式组200,m m -<⎧⎨>⎩求解即可. 【详解】解:一次函数()2y m x m =-+的图象经过第一、二、四象限,200m m -<⎧⎨>⎩解得:02m <<m 值可以是1.故答案为:1(答案不唯一,满足02m <<均可).【点睛】此题主要考查了一次函数图象,一次函数y kx b =+的图象有四种情况:①当0,0k b >>时,函数y kx b =+的图象经过第一、二、三象限;②当0,0k b ><时,函数y kx b =+的图象经过第一、三、四象限;③当0,0k b <>时,函数y kx b =+的图象经过第一、二、四象限;④当0,0k b <<时,函数y kx b =+的图象经过第二、三、四象限.4.升国旗时,某同学站在离旗杆底部18米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为45°,若该同学双眼离地面1.6米,则旗杆高度为_______米.【答案】19.6【解析】【分析】由题意可知,在直角三角形中,已知角和邻边,要求出对边,直接用正切即可解答.【详解】解:根据题意可得:旗杆高度为1.6+18×tan45°=1.6+18=19.6(m ).故答案为:19.6.【点睛】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.5.如图,某涵洞的截面是抛物线型,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离CO =2.4m ,在图中直角坐标系内涵洞截面所在抛物线的表达式是______________.【答案】y =-154x 2 【解析】 【详解】解:设涵洞所在抛物线的解析式为y=ax 2,由题意可知点B 坐标为(0.8,-2.4),代入得-2.4=a×0.82 解得a=-154, 所以y=-154x 2 故答案为:y =-154x 2 【点睛】本题考查二次函数的应用.6.已知一个圆的弦切角等于40°,那么这个弦切角所夹的弧所对的圆心角的度数是______.【答案】80°【解析】【分析】根据题意画出图形,利用切线的性质与等腰三角形的性质可得答案.【详解】解:如图,AB 为O 的切线,切点为,40,DAB ∠=︒,OA AB ∴⊥90,OAB ∴∠=︒50,OAD ∴∠=︒,OA OD =50,OAD ODA ∴∠=∠=︒80.AOD ∴∠=︒故答案为:80°.【点睛】本题考查了切线的性质定理,等腰三角形的性质,掌握以上知识点是解题的关键.7.如图,在Rt △ABC 中,腰AC =BC =1,按下列方法折叠Rt △ABC ,点B 不动,使BC 落在AB 上,点A 不动,使AB 落在AC 的延长线上;点C 不动,使CA 落在CB 上,设点A 、B 、C 对应的落点分别为A ′、B ′、C ′,则△A ′B ′C ′的面积是______.【答案】12【解析】分析】 过'C 作''C H AB ⊥,利用轴对称的性质求解''',,,BC AB AC 利用勾股定理求解',C H 由''''''A B C ABB AB C S S S ∆∆∆=-可得答案.【详解】解:如图:过'C 作''C H AB ⊥,结合题意知:'AC H ∆是等腰直角三角形,由对折知:'1,BC BC ==Rt△ABC 中,腰AC =BC =1, 2,AB ∴='21,AC ∴=-'22(21)1,22C H ∴=-=- ''12212(1),2222AC B S ∆∴=⨯-=- 由对折知:'2,AB AB =='1221,22ABB S ∆∴=⨯⨯= ''''''2211(),2222A B C ABB AB C S S S ∆∆∆∴=-=--= 故答案为:12.【点睛】本题考查的是轴对称的性质,勾股定理,图形面积的计算,掌握轴对称的性质是解题的关键. 8.如图,⊙O 1的半径是⊙O 2的直径,⊙O 1的半径O 1C 交⊙O 2于B ,若AB 的度数是48°,那么AC 的度数是______.【答案】24°【解析】【分析】连接2BO ,得到等腰21O O B ∆,结合已知条件求解21O O B ∠,从而可得答案.【详解】解:如图,连接2,BOAB 的度数是48°, 248,AO B ∴∠=︒212,O O O B =212124,O O B O BO ∴∠=∠=︒AC ∴的度数是24︒,故答案是:24.︒【点睛】本题考查的是等腰三角形的性质,弧的度数等于它所对的圆心角的度数,掌握以上知识点是解题的关键.二、选择题(每小题3分,共18分)9.已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是( )A. 3B. 4C. 5D. 6【答案】D【解析】【分析】本题主要考查了多边形内角与外角.n 边形的内角和可以表示成(n-2)•180°,外角和为360°,根据题意列方程求解.【详解】解:设多边形的边数为n ,依题意,得(n-2)•180°=2×360°,解得n=6,故选D【点睛】错因分析较易题.失分原因:没有掌握多边形的内角和与外角和公式.逆袭突破多边形的性质,详见逆袭必备P24必备23.10.在一次汽车性能测试中,型号不同的甲、乙两辆汽车同时从A地出发,匀速向距离560千米的B地行驶,结果甲车7小时到达,乙车8小时到达,则两车行驶时离A地的距离s(千米)与行驶时间t(小时)的函数关系对应的图象大致是()A. B.C. D.【答案】C【解析】【分析】由甲乙列车同时出发,符合条件的有,C D,又因为甲车7小时到达,乙车8小时到达,所以甲车所花的时间少于乙车所花的时间,从而可得答案.【详解】解:因为甲乙列车同时出发,所以两个图像都经过原点,符合条件的有,C D,又因为甲车7小时到达,乙车8小时到达,所以甲车所花的时间少于乙车所花的时间,而图表示乙车还没有到达地,不符合题意,所以正确答案为C.故选C.【点睛】本题考查的是实际问题中的一次函数图像问题,掌握自变量的范围对函数图像的影响,以及路程与时间图像中,速度的大小对图像的影响,掌握以上知识是解题的关键.11.两圆的圆心坐标分别为(3,0)、(0,4),直径分别为4和6,则这两圆的位置关系是()A. 外离B. 相交C. 外切D. 内切【答案】C【解析】【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),外离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差).【详解】解:∵两圆直径分别为4和6,∴两圆的半径分别为2和3.∵两圆的圆心坐标分别为(3,0)、(0,4),∴根据勾股定理,得两圆的圆心距离为5.∵2+3=5,即两圆圆心距离等于两圆半径之和, ∴这两圆的位置关系是是外切.故选C .【点睛】本题考查勾股定理,两圆的位置关系.12.在Rt ABC 中,C Rt ∠=∠,若30A ∠=,则cos sin A B +等于( )B. 1 【答案】C【解析】解:∠B =90°﹣∠A =90°﹣30°=60°,则cos A +sin B =22+.故选C . 13.在直角坐标系中,O 为坐标原点,A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 的个数共有( )A. 4个B. 3个C. 2个D. 1个【答案】A【解析】【分析】有三种情况:当OA=OP 时,以O 为圆心,以OA 为半径画弧交x 轴于两点;当OA=AP 时,以A 为圆心,以OA 为半径画弧交x 轴于一点;当OP=AP 时,根据线段垂直平分线的性质作OA 的垂直平分线,交x 轴于点P ,综上即可得答案.【详解】如图,当OA=OP 时,以O 为圆心,以OA 为半径画弧交x 轴于两点(P 2、P 3),当OA=AP 时,以A 为圆心,以OA 为半径画弧交x 轴于一点(P 1),当OP=AP 时,作OA 的垂直平分线,交x 轴于一点(P 4).∴符合使△AOP 为等腰三角形的点P 有4个,故选A.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.14.当今材料科学已发展到纳米时代,1纳米等于1米的十亿分之一,我国科学家已研制成功直径为0.4纳米的碳米管,如果用科学记数法表示这种碳米管的直径,应为( )A. 4×10-9米B. 0.4×10-8米C. 4×10-10米D. 0.4×10-9米【答案】C【解析】【分析】 科学记数法的形式是:10n a ⨯ ,其中110,a ≤<为整数,所以4,a =,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数,本题小数点往右移动到4的后面,所以10.n =-【详解】解:0.4纳米910810.40.4104101010--=⨯=⨯=⨯⨯ 米. 故选C .【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响. 三、解答题(15~19每小题8分,共40分)15.解方程21023x x x x -+=-. 【答案】x 1=-1,x 2=3.【解析】【分析】去分母把方程化为整式方程,得到整式方程的解,检验可得答案.【详解】解:21023x x x x -+=- 223(2)310(2),x x x x ∴-+=-2230,x x ∴--=(3)(1)0,x x ∴-+=121, 3.x x ∴=-=经检验:121,3x x =-=都是原方程的根,所以原方程的根是121,3x x =-=.【点睛】本题考查的是分式方程的解法,掌握把分式方程化为整式方程再求解,并检验是解题关键. 16.某校初二年级四个班的同学外出植树一天,已知每小时5个女生种3棵树,3个男生种5棵树,各班人数如图所示,则植树最多的是初二几班.【答案】三班.【解析】【分析】由条形统计图得到各班的男女学生人数,由每班男、女生种树的速度相同,所以每班人数减去相同的女生数和男生数,计算剩下的男生与女生种的数的数量即可得到答案.【详解】解:由图可知一班 二班 三班 四班 女生数(人)22 18 13 15 男生数(人)18 20 22 21因为每班男、女生种树的速度相同,所以每班人数减去相同的女生数和男生数,比较结果不变,每个班减去13个女生和18个男生,一班余下女生9人,可植树35×9=525(棵).二班余下女生5人和男生2人,可植树35×5+53×2=613(棵).三班余下男生4人,可植树53×4=623(棵).四班余下女生2人和男生3人,可植树35×2+53×3=615(棵).所以种树最多的班级是三班. 【点睛】本题考查的是条形统计图的应用,掌握条形统计图的特点是解题的关键.17.声音在空气中传播的速度y (米/秒)是气温x (摄氏度)的一次函数,下表列出了一组不同气温时的音速.(1)求y 与 x 之间的函数关系式(2)气温x=22(摄氏度)时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地相距多远?【答案】(1)33315y x =+(2)1721 【解析】【分析】(1)由表中的数据可知,温度每升高5℃,声速就提高3米/秒,所以y 是x 的一次函数,利用待定系数法即可求出该函数解析式;(2)令x=22,求出此时的声速y ,然后利用路程=速度×时间即可求出该距离.【详解】(1)根据表中数据可知y 与x 成一次函数关系,故设y=kx+b ,取两点(0,331),(5,334)代入关系式得 3313345b k b =⎧⎨=+⎩,解得35331k b ⎧=⎪⎨⎪=⎩, ∴函数关系式为y=35x+331; (2)把x=22代入y=35x+331, 得y=35×22+331=344.2, 334.2×5=1721m ,∵光速非常快,传播时间可以忽略,故此人与燃放烟花的所在地相距约1721m .【点睛】本题考查了一次函数的应用,解题的关键是仔细分析表中的数据,利用待定系数法求出函数解析式.18.某广场有一块长50米、宽30米的空地,现要将它改造为花园,请你设计一个修建方案,使满足下列条件:(1)正中间留出一条宽2米的道路(如图);(2)道路两旁修建花坛,且花坛总面积占整个面积(不包括道路)的一半;(3)设计好的整个图形既是轴对称图形,又是中心对称图形.(计算结果精确到0.1米).【答案】x 的值约取3.9米.【解析】【分析】如图,设计成下图所示,设设花坛的边与空地之间的距离为米,由题意列出方程求解即可.【详解】解:设计成如下图方案.设花坛的边与空地之间的距离为米,由题意可列方程: (502)30(5024)(302),2x x -⨯---=227900,x x ∴-+= 解得: 123.93,2.1x x ≈≈(舍去),x 的值约取3.9米.花坛四周与空地的距离,中间与道路的距离都约为3.9米.【点睛】本题考查轴对称图形与中心对称图形,考查了一元二次方程的解法,掌握以上知识是解题的关键. 19.已知:△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)如图 (1)所示,当P 在线段AB 上时,求证:P A ·PB =PE ·PF ;(2)如图 (2)所示,当P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.【答案】(1)证明见解析;(2)对谁成立,证明见解析【解析】【分析】(1)利用圆周角、弦切角间的关系证明△APF ∽△BPE ,根据相似三角形的性质证明 PA •PB=PE •PF 成立.(2)当点P 在线段BA 的延长线上时,(1)的结论仍成立.先证明∠AFP=∠PBE ,再由∠BPE=∠FPA ,可得△PAF ∽△PEB ,根据成比例线段证明 PA •PB=PE •PF 成立.【详解】证明:(1) 如图1,连接,BO 延长BO 与圆交于,H∵EB 为⊙O 的切线,90,ABE HBA ∴∠+∠=︒ BH 为⊙O 的直径,90,BAH ∴∠=︒90,AHB ABH ∴∠+∠=︒,AHB ACB ∠=∠90,ACB ABH ∴∠+∠=︒∴∠ACB=∠ABE ,∵EF ∥BC ,∴∠AFP=∠ACB ,故∠AFP=∠ABE .∠APF=∠EPB ,∴△APF ∽△BPE , ,PA PF PE PB∴= ∴PA•PB=PE•PF .(2)结论成立,理由如下:∵EB 为⊙O 的切线,结合(1)问:∴∠ACB=∠ABT ,∵EF ∥BC ,∴∠ACB =∠AFP ,,ACB ABT AFP ∴∠=∠=∠∴∠AFP=∠PBE .∠BPE=∠FPA ,△PAF ∽△PEB ,,PA PF PE PB ∴= ∴PA•PB=PE•PF .当点P 在线段BA 的延长线上时,(1)的结论仍成立.【点睛】本题主要考查圆的相交弦及切线的性质,用三角形全等证明线段间的关系,体现了数形结合的数学思想,属于中档题.四、解答题(每题9分,共18分)20.先仔细阅读下列材料,然后回答问题:如果a >0,b >0,那么(a -b )2≥0,即a +b -2ab ≥0 得2a b +≥ab ,其中,当a =b 时取等号,我们把2a b +称为a 、b 的算术平均数, ab 称为a 、b 的几何平均数. 如果a >0,b >0,c >0,同样可以得到3a b c ++≥3abc ,其中,当a =b =c 时取等号于是就有定理:几个正数的算术平均数不小于它们的几何平均数.请用上述定理解答问题:把边长为30 cm 的正方形纸片的4角各剪去一个小正方形,折成无盖纸盒(如图)(1)设剪去的小正方形边长为x cm ,无盖纸盒的容积为V ,求V 与x 的函数关系式及x 的取值范围.(2)当x 为何值时,容积V 有最大值,最大值多少?【答案】(1)V =4x (15-x )2(0<x <15);(2)当剪去的小正方形边长为5 cm 时,无盖空盒的容积最大为2×103 cm 3 【解析】【分析】(1)由剪去的小正方形边长为x cm ,表示纸盒的底边与高,利用容积公式得到答案,(2)利用3a b c ++3abc 【详解】解:(1) 设剪去的小正方形边长为x cm ,纸盒底边为(302),x cm -纸盒的高是,xcmV =x (30-2x )(30-2x )=4x (15-x )2(0<x <15),(2) V =332(15)(15)22(15)(15)2210,3x x x x x x +-+-⎡⎤••--≤=⨯⎢⎥⎣⎦这时,当2x =15-x ,即x =5时取等号.∴ 当剪去的小正方形边长为5 cm 时,无盖空盒的容积最大为2×103 cm 3 【点睛】本题考查的是阅读题型,掌握题干给的信息解决实际问题,同时考查了列函数关系式,求函数的最大值等问题,知识迁移能力是解题关键.21.以△ABC 的边AC 为直径的半圆交AB 边于D 点,∠A 、∠B 、∠C 所对边长为a 、b 、c ,且二次函数y =12(a +c )x 2-bx +12(c -a )顶点在x 轴上,a 是方程z 2+z -20=0的根. (1)证明:∠ACB =90°;(2)若设b =2x ,弓形面积S 弓形AED =S 1,阴影面积为S 2,求(S 2-S 1)与x 的函数关系式;(3)在(2)的条件下,当BD 为何值时,(S 2-S 1)最大?【答案】(1)证明见解析;(2)S 2-S 1=-2πx 2+4x ;(3)BD 244ππ+. 【解析】【分析】(1)由抛物线的顶点在轴上,得到0,∆= 从而可得结论.(2)利用a 是z 2+z -20=0的根,求解的值,再利用S 2-S 1=S △ABC -(S 半圆-S 1)-S 1=S △ABC -S 半圆,从而可得答案,(3)由(2)的函数关系式求解(21S S -)最大时,,a b c ,利用直径所对的圆周角是直角,得到,BCD BAC ∆∆利用相似三角形的性质可得答案. 【详解】(1)因为二次函数y =12(a +c )x 2-bx +12(c -a )的顶点在x 轴上, ∴ Δ=0,即:b 2-4×12(a +c )×12(c -a )=0, ∴ c 2=a 2+b 2,得∠ACB =90°.(2)∵ z 2+z -20=0.∴ z 1=-5,z 2=4,∵ a >0,得a =4.设b =AC =2x ,有S △ABC =12AC ·BC =4x ,S 半圆=12π x 2∴ S 2-S 1=S △ABC -(S 半圆-S 1)-S 1=S △ABC -S 半圆=-2πx 2+4x (3) S 2-S 1=-2π(x -4π)2+8π, ∴ 当x =4π时,(S 2-S 1)有最大值8π. 这时,b =8π,a =4,c =244ππ+, 如图,连接,CDAC 为圆的直径,90,90,ADC CDB ∴∠=︒∠=︒90,ACB ∠=︒,BCD BAC ∴∆∆,BC BD BA BC∴= BD =22244BC a BA c ππ+==. 当BD 为22444ππ++时,(S 2-S 1)最大. 【点睛】本题考查二次函数与轴只有一个交点的性质,考查一元二次方程的解法,二次函数的最值,三角形相似的判定与性质,直径所对的圆周角是直角等知识点,掌握相关的知识点是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学二模试卷一.选择题(共12小题)1.2020的相反数是()A.2020B.﹣2020C.D.2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10113.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.4.下列运算正确的是()A.a5+a5=a10B.﹣3(a﹣b)=﹣3a﹣3bC.(mn)﹣3=mn﹣3D.a6÷a2=a45.若点A(m﹣4,1﹣2m)在第三象限,那么m的值满足()A.<m<4B.m>C.m<4D.m>46.下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D.掷一枚骰子,点数为3的面朝上是确定事件7.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°8.如图,从圆O外一点P引圆O的两条切线P A,PB,切点分别为A,B.如果∠APB=60°,P A=8,那么弦AB的长是()A.4B.8C.D.9.如图,某风景区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得C处的俯角为30°,两山峰的底部BD相距900米,则缆车线路AC的长为()A.B.C.D.1800米10.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6B.8C.14D.1611.已知M,N两点关于y轴对称,且点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,设点M的坐标为(a,b),则二次函数y=abx2+(a+b)x()A.有最小值,且最小值是B.有最大值,且最大值是﹣C.有最大值,且最大值是D.有最小值,且最小值是﹣12.如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.二.填空题(共6小题)13.使分式有意义的x的取值范围.14.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为.15.若△ABC∽△DEF,且相似比为3:1,△ABC的面积为54,则△DEF的面积为.16.如图,AB为圆O的直径,弦CD⊥AB,垂足为E,若∠BCD=22.5°,AB=2cm,则圆O的半径为.17.如图,直线y=kx与双曲线y=交于A、B两点,BC⊥y轴于点C,则△ABC的面积为.18.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△A1B1C1,当C,B1,C1三点共线时,旋转角为α,连接BB1,交于AC于点D,下面结论:①△AC1C为等腰三角形;②CA=CB1;③α=135°;④△AB1D∽△ACB1;⑤=中,正确的结论的序号为.三.解答题(共8小题)19.计算:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°20.先化简再求值:(3x+2y)(3x﹣2y)﹣5x(x﹣y)﹣(2x﹣y)2,其中x=﹣,y=﹣1.21.为响应“书香学校,书香班级”的建设号召,平顶山市某中学积极行动,学校图书角的新书、好书不断增加.下面是随机抽查该校若干名同学捐书情况统计图:请根据下列统计图中的信息,解答下列问题(1)此次随机调查同学所捐图书数的中位数是,众数是;(2)在扇形统计图中,捐2本书的人数所占的扇形圆心角是多少度?(3)若该校有在校生1600名学生,估计该校捐4本书的学生约有多少名?22.如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.(1)求证:BF=BC;(2)若AB=4cm,AD=3cm,求CF的长.23.湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?24.如图,AB为⊙O的直径,AC切⊙O于点A,连结BC交O于点D,E是⊙O上一点,且与点D在AB异侧,连结DE(1)求证:∠C=∠BED;(2)若∠C=50°,AB=2,则的长为(结果保留π)25.对某一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k(b﹣a),则称此函数为“k型闭函数”.例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3型闭函数”.(1)①已知一次函数y=2x﹣1(1≤x≤5)为“k型闭函数”,则k的值为;②若一次函数y=ax﹣1(1≤x≤5)为“1型闭函数”,则a的值为;(2)反比例函数y=(k>0,.a≤x≤b且0<a<b)是“k型闭函数”,且a+b=,请求a2+b2的值;(3)已知二次函数y=﹣3x2+6ax+a2+2a,当﹣1≤x≤1时,y是“k型闭函数”,求k的取值范围.26.如图,抛物线y=ax2+bx+c(a<0,a、b、c为常数)与x轴交于A、C两点,与y轴交于B点,A(﹣6,0),C(1,0),B(0,).(1)求该抛物线的函数关系式与直线AB的函数关系式;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l,分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰妤是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标:若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.参考答案与试题解析一.选择题(共12小题)1.2020的相反数是()A.2020B.﹣2020C.D.【分析】直接利用相反数的定义得出答案.【解答】解:2020的相反数是:﹣2020.故选:B.2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×1011【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm=100×10﹣9m=1×10﹣7m.故选:C.3.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层是两个小正方形,第二层是三个小正方形,故选:D.4.下列运算正确的是()A.a5+a5=a10B.﹣3(a﹣b)=﹣3a﹣3bC.(mn)﹣3=mn﹣3D.a6÷a2=a4【分析】根据合并同类项的法则,积的乘方,同底数幂的除法即可作出判断.【解答】解:A、a5+a5=2a5,故选项错误;B、﹣3(a﹣b)=﹣3a+3b,故选项错误;C、(mn)﹣3=m﹣3n﹣3,则选项错误;D、正确.故选:D.5.若点A(m﹣4,1﹣2m)在第三象限,那么m的值满足()A.<m<4B.m>C.m<4D.m>4【分析】根据第三象限内点的横坐标与纵坐标都是负数列出不等式组,然后求解即可.【解答】解:∵点A(m﹣4,l﹣2m)在第三象限,∴,解不等式①得,m<4,解不等式②得,m>,所以,m的取值范围是<m<4.故选:A.6.下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D.掷一枚骰子,点数为3的面朝上是确定事件【分析】根据普查和抽样调查的意义可判断出A的正误;根据概率的意义可判断出B、C、的正误;根据必然事件、不可能事件、随机事件的概念可区别各类事件,从而判定D的正误.【解答】解:A、对载人航天器零部件的检查,应采用全面调查的方式,故错误;B、某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的可能降水,故错误;C、抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的.故正确;D、掷一枚骰子,点数3朝上是随机事件,故错误;故选:C.7.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°【分析】根据平行线的性质对各选项分析判断利用排除法求解.【解答】解:A、∵OC与OD不平行,∴∠1=∠3不成立,故本选项错误;B、∵OC与OD不平行,∴∠2+∠3=180°不成立,故本选项错误;C、∵AB∥CD,∴∠2+∠4=180°,故本选项错误;D、∵AB∥CD,∴∠3+∠5=180°,故本选项正确.故选:D.8.如图,从圆O外一点P引圆O的两条切线P A,PB,切点分别为A,B.如果∠APB=60°,P A=8,那么弦AB的长是()A.4B.8C.D.【分析】根据切线长定理知P A=PB,而∠P=60°,所以△P AB是等边三角形,由此求得弦AB的长.【解答】解:∵P A、PB都是⊙O的切线,∴P A=PB,又∵∠P=60°,∴△P AB是等边三角形,即AB=P A=8,故选:B.9.如图,某风景区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得C处的俯角为30°,两山峰的底部BD相距900米,则缆车线路AC的长为()A.B.C.D.1800米【分析】此题可利用俯角的余弦函数求得缆车线路AC的长,AC=.【解答】解:由于A处测得C处的俯角为30°,两山峰的底部BD相距900米,则AC==600(米).故选:B.10.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6B.8C.14D.16【分析】由根与系数的关系即可求出答案.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣5=0的两根,∴x1+x2=2,x1x2=﹣5∴原式=(x1+x2)2﹣2x1x2=4+10=14故选:C.11.已知M,N两点关于y轴对称,且点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,设点M的坐标为(a,b),则二次函数y=abx2+(a+b)x()A.有最小值,且最小值是B.有最大值,且最大值是﹣C.有最大值,且最大值是D.有最小值,且最小值是﹣【分析】先用待定系数法求出二次函数的解析式,再根据二次函数图象上点的坐标特点求出其最值即可.【解答】解:因为M,N两点关于y轴对称,所以设点M的坐标为(a,b),则N点的坐标为(﹣a,b),又因为点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,所以,整理得,故二次函数y=abx2+(a+b)x为y=x2+3x,所以二次项系数为>0,故函数有最小值,最小值为y==﹣.故选:D.12.如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.【分析】找到函数图象与x轴、y轴的交点,得出k=8,即可得出答案.【解答】解:抛物线y=﹣x2+3,当y=0时,x=±;当x=0时,y=3,则抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)为(﹣2,1),(﹣1,1),(﹣1,2),(0,1),(0,2),(1,1),(1,2),(2,1);共有8个,∴k=8;故选:C.二.填空题(共6小题)13.使分式有意义的x的取值范围x≠3.【分析】根据分母不为零分式有意义,可得答案.【解答】解:根据题意,得x﹣3≠0,解得x≠3,故答案为:x≠3.14.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:由于共有8个球,其中蓝球有5个,则从袋子中随机摸出一个球,摸出蓝球的概率是,故答案为:.15.若△ABC∽△DEF,且相似比为3:1,△ABC的面积为54,则△DEF的面积为6.【分析】根据相似三角形的面积比等于相似比的平方计算,得到答案.【解答】解:∵△ABC∽△DEF,相似比为3:1,∴=32,即=9,解得,△DEF的面积=6,故答案为:6.16.如图,AB为圆O的直径,弦CD⊥AB,垂足为E,若∠BCD=22.5°,AB=2cm,则圆O的半径为.【分析】连接OB,根据垂径定理以及勾股定理即可求出OB的长度.【解答】解:连接OB,∵OC=OB,∠BCD=22.5°,∴∠EOB=45°,∵CD⊥AB,CD是直径,∴由垂径定理可知:EB=AB=1,∴OE=EB=1,∴由勾股定理可知:OB=,故答案为:17.如图,直线y=kx与双曲线y=交于A、B两点,BC⊥y轴于点C,则△ABC的面积为3.【分析】根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△BOC=1.5,则易得S△ABC=3.【解答】解:∵直线y=kx与双曲线y=交于A,B两点,∴点A与点B关于原点对称,∴S△BOC=S△AOC,而S△BOC=×3=1.5,∴S△ABC=2S△BOC=3.故答案为:3.18.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△A1B1C1,当C,B1,C1三点共线时,旋转角为α,连接BB1,交于AC于点D,下面结论:①△AC1C为等腰三角形;②CA=CB1;③α=135°;④△AB1D∽△ACB1;⑤=中,正确的结论的序号为①②④⑤.【分析】首先根据旋转的性质得出AC1=AC,从而结论①可判断;再通过三角形内部角度及旋转角的计算对②③作出判断;通过∠ABD=∠ACB1,∠AB1D=∠BCD=30°,判定△AB1D∽△ACB1;通过证明△ABD∽△B1CD,利用相似三角形的性质列式计算对⑤作出判断.【解答】解:由旋转的性质可知AC1=AC,∴△AC1C为等腰三角形,即①正确;∵∠ACB=30°,∴∠C1=∠ACB1=30°,又∵B1AC1=∠BAC=45°,∴∠AB1C=75°,∴∠CAB1=180°﹣75°﹣30°=75°,∴CA=CB1;∴②正确;∵∠CAC1=∠CAB1+∠B1AC1=120°,∴旋转角α=120°,故③错误;∵∠BAC=45°,∴∠BAB1=45°+75°=120°,∵AB=AB1,∴∠AB1B=∠ABD=30°,在△AB1D与△BCD中,∵∠ABD=∠ACB1,∠AB1D=∠BCD=30°,∴△AB1D∽△ACB1,即④正确;在△ABD与△B1CD中,∵∠ABD=∠ACB1,∠ADB=∠CDB1,∴△ABD∽△B1CD,∴=,如图,过点D作DM⊥B1C,设DM=x,则B1M=x,B1D=x,DC=2x,DC=2x,CM=x,∴AC=B1C=(+1)x,∴AD=AC﹣CD=(﹣1)x,∴===,即⑤正确.故答案为:①②④⑤.三.解答题(共8小题)19.计算:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°【分析】第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项去绝对值,最后一项利用特殊角的三角函数值计算,最后合并即可得出结论.【解答】解:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°=4+1+﹣1+1=+5.20.先化简再求值:(3x+2y)(3x﹣2y)﹣5x(x﹣y)﹣(2x﹣y)2,其中x=﹣,y=﹣1.【分析】原式利用平方差公式,单项式乘多项式法则,以及完全平方公式计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=9x2﹣4y2﹣5x2+5xy﹣4x2+4xy﹣y2=9xy﹣5y2,当x=﹣,y=﹣1时,原式=3﹣5=﹣2.21.为响应“书香学校,书香班级”的建设号召,平顶山市某中学积极行动,学校图书角的新书、好书不断增加.下面是随机抽查该校若干名同学捐书情况统计图:请根据下列统计图中的信息,解答下列问题(1)此次随机调查同学所捐图书数的中位数是4本,众数是2本;(2)在扇形统计图中,捐2本书的人数所占的扇形圆心角是多少度?(3)若该校有在校生1600名学生,估计该校捐4本书的学生约有多少名?【分析】(1)根据捐2本的学生所占的百分比和人数可以求得本次调查的学生数,从而可以得到中位数和众数;(2)根据统计图中的数据,可以计算出在扇形统计图中,捐2本书的人数所占的扇形圆心角是多少度;(3)根据统计图中的数据可以计算出该校捐4本书的学生约有多少名.【解答】解:(1)本次调查的人数为:15÷30%=50(人),捐书四本的学生有50﹣9﹣15﹣6﹣7=13(人),则此次随机调查同学所捐图书数的中位数是4本,众数是2本,故答案为:4本,2本;(2)在扇形统计图中,捐2本书的人数所占的扇形圆心角是:360°×=108°;答:捐2本书的人数所占的扇形圆心角是108度.(3)1600×=416(名),答:该校捐4本书的学生约有416名.22.如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.(1)求证:BF=BC;(2)若AB=4cm,AD=3cm,求CF的长.【分析】(1)要求证:BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE =∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于BD•CE=BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF﹣BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.【解答】证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD==5.又∵BD•CE=BC•DC,∴CE=.∴BE=.∴EF=BF﹣BE=3﹣.∴CF=cm.23.湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?【分析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【解答】解:(1)设温馨提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+3×3x=550,∴x=50,经检验,符合题意,∴3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温馨提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,根据题意得,,∴50≤y≤52,∵y为正整数,∴y为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,根据题意,费用为50y+150(100﹣y)=﹣100y+15000,当y=52时,所需资金最少,最少是9800元.24.如图,AB为⊙O的直径,AC切⊙O于点A,连结BC交O于点D,E是⊙O上一点,且与点D在AB异侧,连结DE(1)求证:∠C=∠BED;(2)若∠C=50°,AB=2,则的长为(结果保留π)【分析】(1)连接AD,如图,根据圆周角定理得到∠ADB=90°,根据切线的性质得到∠BAC=90°,则利用等角的余角相等得到∠DAB=∠C,然后根据圆周角定理和等量代换得到结论;(2)连接OD,如图,利用(1)中结论得到∠BED=∠C=50°,再利用圆周角定理得到∠BOD的度数,然后根据弧长公式计算的长度.【解答】(1)证明:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵AC切⊙O于点A∴CA⊥AB,∴∠BAC=90°,∴∠C+∠ABD=90°,而∠DAB+∠ABD=90°,∴∠DAB=∠C,∵∠DAB=∠BED,∴∠C=∠BED;(2)解:连接OD,如图,∵∠BED=∠C=50°,∴∠BOD=2∠BED=100°,∴的长度==π.25.对某一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k(b﹣a),则称此函数为“k型闭函数”.例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3型闭函数”.(1)①已知一次函数y=2x﹣1(1≤x≤5)为“k型闭函数”,则k的值为2;②若一次函数y=ax﹣1(1≤x≤5)为“1型闭函数”,则a的值为﹣1;(2)反比例函数y=(k>0,.a≤x≤b且0<a<b)是“k型闭函数”,且a+b=,请求a2+b2的值;(3)已知二次函数y=﹣3x2+6ax+a2+2a,当﹣1≤x≤1时,y是“k型闭函数”,求k的取值范围.【分析】(1)①直接利用“k型闭函数”的定义即可得出结论;②分两种情况:利用“k型闭函数”的定义即可得出结论;(2)先判断出函数的增减性,利用“k型闭函数”的定义得出ab=1,即可得出结论;(3)分四种情况,各自确定出最大值和最小值,最后利用“k型闭函数”的定义即可得出结论;【解答】解:(1)①一次函数y=2x﹣1,当1≤x≤5时,1≤y≤9,∴9﹣1=k(5﹣1),∴k=2,故答案为:2;②当α>0时,∵1≤x≤5,∴a﹣1≤y≤5a﹣1,∵函数y=ax﹣1(1≤x≤5)为“1型闭函数”,∴(5a﹣1)﹣(a﹣1)=5﹣1,∴a=1;当a<0时,(a﹣1)﹣(5a﹣1)=5﹣1,∴a=﹣1;故答案为:﹣1;(2)∵反比例函数y=,∵k>0,∴y随x的增大而减小,当a≤x≤b且1<a<b是“1型闭函数”,∴=k(b﹣a),∴ab=1,∵a+b=,∴a2+b2=(a+b)2﹣2ab=2020﹣2×1=2018;(3)∵二次函数y=﹣3x2+6ax+a2+2a的对称轴为直线x=a,∵当﹣1≤x≤1时,y是“k型闭函数”,∴当x=﹣1时,y=a2﹣4a﹣3,当x=1时,y=a2+8a﹣3,当x=a时,y=4a2+2a,①如图1,当a≤﹣1时,当x=﹣1时,有y max=a2﹣4a﹣3,当x=1时,有y min=a2+8a﹣3∴(a2﹣4a﹣3)﹣(a2+8a﹣3)=2k,∴k=﹣6a,∴k≥6,②如图2,当﹣1<a≤0时,当x=a时,有y max=4a2+2a,当x=1时,有y min=a2+8a﹣3∴(4a2+2a)﹣(a2+8a﹣3)=2k,∴k=(a﹣1)2,∴≤k<6;③如图3,当0<a≤1时,当x=a时,有y max=4a2+2a,当x=﹣1时,有y min=a2﹣4a﹣3∴(4a2+2a)﹣(a2﹣4a﹣3)=2k,∴k=(a+1)2,∴<k≤6,④如图4,当a>1时,当x=1时,有y max=a2+8a﹣3,当x=﹣1时,有y min=a2﹣4a﹣3∴(a2+8a﹣3)﹣(a2﹣4a﹣3)=2k,∴k=﹣6a,∴k>6,即:k的取值范围为k≥.26.如图,抛物线y=ax2+bx+c(a<0,a、b、c为常数)与x轴交于A、C两点,与y轴交于B点,A(﹣6,0),C(1,0),B(0,).(1)求该抛物线的函数关系式与直线AB的函数关系式;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l,分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰妤是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标:若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.【分析】(1)根据已知条件可以设抛物线解析式为y=a(x+6)(x﹣1),然后把点B的坐标代入函数解析式求得系数a的值即可;利用待定系数法求得直线AB的解析式;(2)由点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,得到D(m,m+),当DE为底时,作BG⊥DE于G,根据等腰三角形的性质得到EG=GD=ED,GM=OB=,列方程即可得到结论;(3)i:根据已知条件得到ON=OM′=4,OB=,由∠NOP=∠BON,特殊的当△NOP∽△BON时,根据相似三角形的性质得到===,于是得到结论;ii:根据题意得到N在以O为圆心,4为半径的半圆上,由①知,==,得到NP=NB,于是得到(NA+NB)的最小值=NA+NP,此时N,A,P三点共线,根据勾股定理得到结论.【解答】解:设抛物线解析式为y=a(x+6)(x﹣1),(a≠0).将B(0,)代入,得=a(x+6)(x﹣1),解得a=﹣,∴该抛物线解析式为y=﹣(x+6)(x﹣1)或y=﹣x2﹣x+.设直线AB的解析式为y=kx+n(k≠0).将点A(﹣6,0),B(0,)代入,得,解得,则直线AB的解析式为:y=x+;(2)∵点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,∴D(m,m+),当DE为底时,如图1,作BG⊥DE于G,则EG=GD=ED,GM=OB=,∵DM+DG=GM=OB,∴m++(﹣m2﹣m+﹣m﹣)=,解得:m1=﹣4,m2=0(不合题意,舍去),∴当m=﹣4时,△BDE恰好是以DE为底边的等腰三角形;(3)i:存在,如图2.∵ON=OM′=4,OB=,∵∠NOP=∠BON,∴当△NOP∽△BON时,===,∴不变,即OP=ON=×4=3,∴P(0,3);ii:∵N在以O为圆心,4为半径的半圆上,由i知,==,∴NP=NB,∴(NA+NB)的最小值=NA+NP,∴此时N,A,P三点共线,∴(NA+NB)的最小值==3.。

相关文档
最新文档