静电场计算题

合集下载

静电场习题集

静电场习题集

第八章 静电场 习题集一.选择题1. 在坐标原点放一正电荷Q ,它在P 点(x =+1,y =0)产生的电场强度为E.现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零?(A ) x 轴上x >1. (B ) x 轴上0<x <1. (C ) x 轴上x <0. (D ) y 轴上y >0.(E ) y 轴上y <0. [ ] 2.一均匀带电球面,电荷面密度为 ,球面内电场强度处处为零,球面上面元d S 带有 d S 的电荷,该电荷在球面内各点产生的电场强度(A ) 处处为零. (B ) 不一定都为零.(C ) 处处不为零. (D ) 无法判定 . [ ] 3. 在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为: (A ) 2012a Q . (B ) 206a Q. (C )203a Q . (D )20aQ. [ ] 4.电荷面密度分别为+ 和- 的两块“无限大”均匀带电的平行平板,如图放置,则其周围空间各点电场强度随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]5.设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ]O -a +a 0/x(A)EOE-a +a 02/ x(B)Ox-a a y+-OE -a +a 02/ x(C)-02/OE -a +a2/ x(D)0/2/x6.一电场强度为E的均匀电场,E的方向与沿x轴正向,如图所示.则通过图中一半径为R的半球面的电场强度通量为(A) R2E.(B) R2E / 2;(C)2 R2E.(D)0.[]7.有两个电荷都是+q的点电荷,相距为2a.今以左边的点电荷所在处为球心,以a为半径作一球形高斯面.在球面上取两块相等的小面积S1和S2,其位置如图所示.设通过S1和S2的电场强度通量分别为 1和 2,通过整个球面的电场强度通量为 S,则(A) 1> 2, S=q / 0.(B) 1< 2, S=2q / 0.(C) 1= 2, S=q / 0.(D) 1< 2, S=q / 0.[]8.已知一高斯面所包围的体积内电荷代数和∑q=0,则可肯定:(A)高斯面上各点场强均为零;(B)穿过高斯面上每一面元的电场强度通量均为零;(C)穿过整个高斯面的电场强度通量为零;(D)以上说法都不对.[]9.一点电荷,放在球形高斯面的中心处.下列哪一种情况,通过高斯面的电场强度通量发生变化:(A)将另一点电荷放在高斯面外;(B)将另一点电荷放进高斯面内;(C ) 将球心处的点电荷移开,但仍在高斯面内;(D ) 将高斯面半径缩小. [ ] 10.点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q至曲面外一点,如图所示,则引入前后:(A ) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B ) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C ) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D ) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]11.半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:[ ]12.图示为一具有球对称性分布的静电场的E ~r 关系曲线.请指出该静电场是由下列哪种带电体产生的.(A ) 半径为R 的均匀带电球面; (B ) 半径为R 的均匀带电球体;(C ) 半径为R 的、电荷体密度为 =A r (A 为常数)的非均匀带电球体;(D ) 半径为R 的、电荷体密度为 =A/r (A 为常数)的非均匀带电球体. [ ]E13. 静电场中某点电势的数值等于(A )试验电荷q 0置于该点时具有的电势能; (B )单位试验电荷置于该点时具有的电势能;q(C)单位正电荷置于该点时具有的电势能;(D)把单位正电荷从该点移到电势零点外力所作的功.[]14.如图所示,边长为l的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O处的场强值和电势值都等于零,则:(A)顶点a、b、c、d处都是正电荷;(B)顶点a、b处是正电荷,c、d处是负电荷;(C)顶点a、c处是正电荷,b、d处是负电荷;(D)顶点a、b、c、d处都是负电荷.[]ba15.如图所示,边长为0.3 m的正三角形abc,在顶点a处有一电荷为10-8 C的正点电荷,顶点b处有一电荷为-10-8C的负点电荷,则顶点c处的电场强度的大小E和电势U为:(41=9×10-9 N m /C2)(A)E=0,U=0;(B)E=1000 V/m,U=0;(C)E=1000 V/m,U=600 V;(D)E=2000 V/m,U=600 V.[]16.如图所示,半径为R的均匀带电球面,总电荷为Q,设无穷远处的电势为零,则球内距离球心为r的P点处的电场强度的大小和电势为:(A)E=0,rQU4.(B)E=0,RQU4.(C)24rQE,rQU4.(D ) 204r Q E,RQU 04 . [ ]17. 关于静电场中某点电势值的正负,下列说法中正确的是: (A ) 电势值的正负取决于置于该点的试验电荷的正负. (B ) 电势值的正负取决于电场力对试验电荷作功的正负. (C ) 电势值的正负取决于电势零点的选取.(D ) 电势值的正负取决于产生电场的电荷的正负. [ ] 18.如图,在点电荷q 的电场中,选取以q 为中心、R 为半径的球面上一点P 处作电势零点,则与点电荷q 距离为r 的P'点的电势为 (A )rq04 (B )R r q 1140 (C )R r q04 (D )r R q 1140 [ ]19.真空中有一点电荷Q ,在与它相距为r 的a 点处有一试验电荷q .现使试验电荷q 从a 点沿半圆弧轨道运动到b 点,如图所示.则电场力对q 作功为(A )24220r r Qq . (B ) r r Qq 2420 . (C )r rQq204 . (D ) 0. [ ]20.点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 (A ) 从A 到B ,电场力作功最大; (B ) 从A 到C ,电场力作功最大;(C ) 从A 到D ,电场力作功最大;(D ) 从A 到各点,电场力作功相 等. [ ]A21. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB两板间的电势差U AB 为(A ) d S q q 0212 . (B ) d Sq q 0214 . (C )d S q q 0212 . (D ) d Sq q 0214 . [ ] 22. 如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q 从无穷远处移到三角形的中心O 处,外力所作的功为: (A )a qQ023 . (B ) aqQ 03 .(C )a qQ 0233 . (D ) aqQ032 . [ ]23.在已知静电场分布的条件下,任意两点P 1和P 2之间的电势差决定于 (A ) P 1和P 2两点的位置;(B ) P 1和P 2两点处的电场强度的大小和方向; (C ) 试验电荷所带电荷的正负;(D ) 试验电荷的电荷大小. [ ]24.图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出: (A ) E A >E B >E C ,U A >U B >U C ; (B ) E A <E B <E C ,U A <U B <U C ; (C ) E A >E B >E C ,U A <U B <U C ;(D ) E A <E B <E C ,U A >U B >U C ; [ ] 25.面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为AS q 1q 2q2(A )S q 02; (B ) S q 022 ; (C ) 2022S q ;(D ) 202Sq . [ ] 26.电子的质量为m e ,电荷为-e ,绕静止的氢原子核(即质子)作半径为r 的匀速率圆周运动,则电子的速率为 (A ) k r m ee ; (B ) r m k e e ; (C ) r m k e e 2; (D ) rm ke e 2. (式中k =1 / (4 0) ) [ ] 27. 质量均为m ,相距为r 1的两个电子,由静止开始在电力作用下(忽略重力作用)运动至相距为r 2,此时每一个电子的速率为 (A )21112r r m ke ; (B )21112r r m ke ; (C ) 21112r r m k e; (D )2111r r m k e (式中k =1 / (4 0) ) [ ] 28. 相距为r 1的两个电子,在重力可忽略的情况下由静止开始运动到相距为r 2,从相距r 1到相距r 2期间,两电子系统的下列哪一个量是不变的? (A ) 动能总和; (B ) 电势能总和;(C ) 动量总和;(D ) 电相互作用力. [ ]29. 一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F 和合力矩M为:(A ) F =0,M = 0. (B ) F = 0,M0.(C ) F 0,M =0. (D ) F 0,M0. [ ]30.真空中有两个点电荷M 、N ,相互间作用力为F,当另一点电荷Q 移近这两个点电荷时,M 、N 两点电荷之间的作用力(A ) 大小不变,方向改变. (B ) 大小改变,方向不变.(C ) 大小和方向都不变. (D ) 大小和方向都改. [ ]二.填空题1.静电场中某点的电场强度,其大小和方向与_________________________________相同. 2.电荷为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N 的向下的力,则该点的电场强度大小为_____________________,方向____________.3.由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为 ,则在正方形中心处的电场强度的大小E =_____________.4.两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为 1和 2如图所示,则场强等于零的点与直线1的距离a 为_____________ . 5.静电场场强的叠加原理的内容是:_____________________________________ _____.6.半径为R 的半球面置于场强为E 的均匀电场中,其对称轴与场强方向一致,如图所示.则通过该半球面的电场强度通量为__________________.RE7.一均匀带正电的导线,电荷线密度为 ,其单位长度上总共发出的电场线条数(即电场强度通量)是__________________.8.在静电场中,任意作一闭合曲面,通过该闭合曲面的电场强度通量 •S Ed 的值仅取决于 ,而与 无关.9.如图,点电荷q 和-q 被包围在高斯面S 内,则通过该高斯面的电场强度通量 SSEd =_____________,式中E为_________________处的场强.S+q-q10.点电荷q 1、q 2、q 3和q 4在真空中的分布如图所示.图 中S 为闭合曲面,则通过该闭合曲面的电场强度通量 SS E d =____________,式中的E是点电荷________在闭合曲面上任一点产生的场强的矢量和.Sq 1q 2q 4q 311. 一半径为R 的均匀带电球面,其电荷面密度为 .该球面内、外的场强分布为(r表示从球心引出的矢径):r E=______________________(r <R ),r E=______________________(r >R ).12.一半径为R 的“无限长”均匀带电圆柱面,其电荷面密度为 .该圆柱面内、外场强分布为(r表示在垂直于圆柱面的平面上,从轴线处引出的矢径):r E=______________________(r <R ), r E=______________________(r >R ).13.有一个球形的橡皮膜气球,电荷q 均匀地分布在表面上,在此气球被吹大的过程中,被气球表面掠过的点(该点与球中心距离为r ),其电场强度的大小将由___________________变为_________________.14.静电场中某点的电势,其数值等于______________________________ 或 _______________________________________.15.有一电荷面密度为 的“无限大”均匀带电平面.若以该平面处为电势零点,则带电平面周围空间的电势分布为 。

静电场习题(有答案)

静电场习题(有答案)

经典的静电场习题1、如图所示,中央有正对小孔的水平放置的平行板电容器与电源连接,电源电压为U 。

将一带电小球从两小孔的正上方P 点处由静止释放,小球恰好能够达到B 板的小孔b 点处,然后又按原路返回。

那么,为了使小球能从B 板的小孔b 处出射,下列可行的办法是( ) A.将A 板上移一段距离 B.将A 板下移一段距离 C.将B 板上移一段距离 D.将B 板下移一段距离2、如图所示,A 、B 、C 、D 、E 、F 为匀强电场中一个正六边形的六个顶点,已知A 、B 、C 三点的电势分别为1V 、6V 和9V 。

则D 、E 、F 三点的电势分别为( )A 、+7V 、+2V 和+1VB 、+7V 、+2V 和1VC 、-7V 、-2V 和+1VD 、+7V 、-2V 和1V3、质量为m 、带电量为-q 的粒子(不计重力),在匀强电场中的A 点以初速度υ0沿垂直与场强E 的方向射入到电场中,已知粒子到达B 点时的速度大小为2υ0,A 、B 间距为d ,如图所示。

则(1)A 、B 两点间的电势差为( ) A 、q m U AB232υ-= B 、q m U AB232υ= C 、q m U AB22υ-= D 、qm U AB22υ= (2)匀强电场的场强大小和方向( ) A 、qdm E 221υ=方向水平向左 B 、qdm E 221υ=方向水平向右 C 、qdm E 2212υ= 方向水平向左D 、qdm E 2212υ=方向水平向右4、一个点电荷从静电场中的A 点移到电场中的B 点,其电势能变化为零,则( ) A 、A 、B 两点处的场强一定相等 B 、该电荷一定能够沿着某一等势面移动 C 、A 、B 两点的电势一定相等 D 、作用于该电荷上的电场力始终与其运动方向垂直 A B a bP· m 、q。

U+ -A B C DEF E· Aυ0 B·5、在静电场中( )A.电场强度处处为零的区域内,电势也一定处处为零B.电场强度处处相等的区域内,电势也一定处处相等C.电场强度的方向总是跟等势面垂直D.沿着电场线的方向电势是不断降低的6、一个初动能为E K 的带电粒子,沿着与电场线垂直的方向射入两平行金属板间的匀强电场中,飞出时该粒子的动能为2E K ,如果粒子射入时的初速度变为原来的2倍,那么当它飞出电场时动能为( ) A 、4E K B 、4.25E K C 、5E K D 、8E K7、如图所示,实线为一簇电场线,虚线是间距相等的等势面,一带电粒子沿着电场线方向运动,当它位于等势面φ1上时,其动能为20eV ,当它运动到等势面φ3上时,动能恰好等于零,设φ2=0,则,当粒子的动能为8eV 时,其电势能为( ) A 、12eV B 、2eV C 、10eV D 、08、如图10—7所示,在两电荷+Q 1和-Q 2连线的延长线上有a 、b 、c 三点,测得b 点的场强为零。

静电场练习题及答案解析

静电场练习题及答案解析

静电场练习题及答案解析练习1一、选择题1. 一带电体可作为点电荷处理的条件是( )A. 电荷必须呈球形分布;B. 带电体的线度与其它有关长度相比可忽略不计;C. 电量很小;D. 带电体的线度很小。

2. 试验点和q0在电场中受力为F⃗,其电场强度的大小为F,以下说法正确的( )q0A. 电场强度的大小E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定;B. 电场强度的大小E正比于F且反比与q0;C. 电场强度的大小E反比与q0;D. 电场强度的大小E正比于F。

3. 如果通过闭合面S的电通量Φe为零,则可以肯定( )A. 面S内没有电荷;B. 面S内没有净电荷;C. 面S上每一点的场强都等于零;D. 面S上每一点的场强都不等于零。

4. 如图所示为一具有球对称性分布的静电场的E~r关系曲线,产生该静电场的带电体是( ) A 半径为R的均匀带电球面;B半径为R的均匀带电球体;C半径为R的、电荷体密度为ρ=Ar(A为常数)的非均匀带电球体;D半径为R的、电荷体密度为ρ=A r⁄(A为常数)的非均匀带电球体。

5. 在匀强电场中,将一负电荷从A移动B,如图所示,则( )A. 电场力做负功,负电荷的电荷能增加;B. 电场力做负功,负电荷的电势能减少;C. 电场力做正功,负电荷的电势能增加;D. 电场力做正功,负电荷的电势能减少。

二、填空题1. 点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量∮E⃗⃗∙dS⃗=,式中E⃗⃗是点电荷在闭合曲面上任一点产生的场强的矢量和。

2. 真空环境中正电荷q均匀地分布在半径为R的细圆环上.在环环心O处电场强度为,环心的电势为。

=0,这表3. 在静电场中,场强沿任意闭合路径的线积分等于零,即∮E⃗⃗∙dl⃗L明静电场中的电场线。

4. 一半径为R的均匀带电球面,其电荷面密度为σ,该球面内、外的场强分布为(r⃗表示从球心引出的矢径):E⃗⃗r=(r<R);E⃗⃗r=(r>R)。

高中物理静电场及其应用计算专题练习

高中物理静电场及其应用计算专题练习
7.如图所示,带电荷量为Q的正点电荷固定在倾角为30°的光滑绝缘斜面底部的C点,斜面上有A、B两点,且A、B和C在同一直线上,A和C相距为L,B为AC中点.现将一带电小球从A点由静止释放,当带电小球运动到B点时速度正好又为零,已知带电小球在A点处的加速度大小 ,静电力常量为k,求:
(1)小球运动到B点时的加速度大小;
(1)小球A受到的静电力大小;
(2)小球B的电荷量。
2.如图,真空中xOy平面直角坐标系上的ABC三点构成等边三角形,边长L=2.0m。若将电荷量均为q=+2.0×10-6C的两点电荷分别固定在A、B点,已知静电力常量k=9.0×109N·m2/C2。求:
(1)两点电荷间的库仑力大小;
(2)C点的电场强度的大小和方向。
代入数据得
F=9.0×10-3N
(2)A、B两点电荷在C点产生的场强大小相等,均为
A、B两点电荷形成的电场在C点的合场强大小为
代入数据得
方向沿y轴正方向。
3.(1)2×103N/C;(2)8×10-4N,方向水平向左
【解析】
【分析】
【详解】
(1)该匀强电场的电场强度大小
(2)把另一个电荷量q=4×10-7C的负点电荷,放在电场中的B点,则它受到电场力的大小
(1)小球受到水平向右的电场力作用,处于静止状态,匀强电场的场强水平向右,则小球带正电。
(2)小球受到重力、电场力和绳子拉力,处于静止状态,所以有
qE=mgtan37°
小球所带电荷量为
(3)剪断细线后,小球只受到重力和电场力的作用,合力为
小球的加速度为
10.上夸克间静电力F=46 N,为斥力;上、下夸克间静电力为23 N,为吸力
3.某匀强电场的电场线如图所示,A、B是电场中的两点,电荷量q=2×10-7C的正点电荷,放在A点时受到的电场力大小,F=4×10-4N。问:

高压电工计算试题及答案

高压电工计算试题及答案

高压电工计算试题及答案一、电场及电势能计算1. 一个静电场中,电势差为5千伏,两个电荷之间的距离为10公分。

求两个电荷之间的电场强度。

解答:首先,根据公式,电场强度E等于电势差V除以距离d。

所以,E = V/d代入具体数值,可以得到E = 5千伏/10公分 = 500伏/公分 = 500N/C答案:电场强度为500N/C。

2. 在一个电势为100伏的电场中,有一个电子,电子受到的电场力为1.6 x 10^-19牛。

求电子所在位置的电势能。

解答:电子受到的电场力F与电子所在位置的电势能E之间的关系是 F = qE,其中q为电子的电荷量。

所以,E = F/q代入具体数值,可以得到E = (1.6 x 10^-19牛)/(1.6 x 10^-19库仑) = 100伏答案:电子所在位置的电势能为100伏。

二、电场强度计算3. 一个无限长直导线,载流量为10安,求该导线周围距离为3米处的磁场强度。

解答:根据安培定理,无限长直导线产生的磁场强度B与载流量I和距离r之间的关系是B = (μ0 I)/(2πr),其中μ0为真空中的磁导率,值为4π x 10^-7特斯拉·米/安。

代入具体数值,可以得到B = (4π x 10^-7特斯拉·米/安 x 10安)/(2π x 3米) = 6.67 x 10^-7特斯拉答案:该导线周围距离为3米处的磁场强度为6.67 x 10^-7特斯拉。

4. 两根平行且相距10公分的无限长直导线,各自的载流量分别为5安和10安。

求它们之间的磁场强度。

解答:根据安培定理,两根平行且相距d的无限长直导线所产生的磁场强度B与各自的载流量I1、I2和距离d之间的关系是 B =(μ0(I1+I2))/(2πd)。

代入具体数值,可以得到B = (4π x 10^-7特斯拉·米/安 x (5安+10安))/(2π x 10公分) = 3 x 10^-7特斯拉答案:两根无限长直导线之间的磁场强度为3 x 10^-7特斯拉。

静电场练习试题及答案解析

静电场练习试题及答案解析

静电场练习题一、电荷守恒定律、库仑定律练习题4.把两个完全相同的金属球A和B接触一下,再分开一段距离,发现两球之间相互排斥,则A、B两球原来的带电情况可能是 [ ]A.带有等量异种电荷 B.带有等量同种电荷C.带有不等量异种电荷 D.一个带电,另一个不带电8.真空中有两个固定的带正电的点电荷,其电量Q1>Q2,点电荷q置于Q1、Q2连线上某点时,正好处于平衡,则 [ ]A.q一定是正电荷 B.q一定是负电荷C.q离Q2比离Q1远D.q离Q2比离Q1近14.如图3所示,把质量为0.2克的带电小球A用丝线吊起,若将带电量为4×10-8库的小球B靠近它,当两小球在同一高度相距3cm时,丝线与竖直夹角为45°,此时小球B受到的库仑力F=______,小球A带的电量q A=______.二、电场电场强度电场线练习题6.关于电场线的说法,正确的是 [ ]A.电场线的方向,就是电荷受力的方向B.正电荷只在电场力作用下一定沿电场线运动C.电场线越密的地方,同一电荷所受电场力越大D.静电场的电场线不可能是闭合的7.如图1所示,带箭头的直线是某一电场中的一条电场线,在这条线上有A、B两点,用E A、E B表示A、B两处的场强,则 [ ]A.A、B两处的场强方向相同B.因为A、B在一条电场上,且电场线是直线,所以E A=E BC.电场线从A指向B,所以E A>E BD.不知A、B附近电场线的分布情况,E A、E B的大小不能确定8.真空中两个等量异种点电荷电量的值均为q,相距r,两点电荷连线中点处的场强为 [ ]A.0 B.2kq/r2 C.4kq/r2 D.8kq/r29.四种电场的电场线如图2所示.一正电荷q仅在电场力作用下由M点向N点作加速运动,且加速度越来越大.则该电荷所在的电场是图中的 [ ]11.如图4,真空中三个点电荷A、B、C,可以自由移动,依次排列在同一直线上,都处于平衡状态,若三个电荷的带电量、电性及相互距离都未知,但AB>BC,则根据平衡条件可断定 [ ]A.A、B、C分别带什么性质的电B.A、B、C中哪几个带同种电荷,哪几个带异种电荷C.A、B、C中哪个电量最大D.A、B、C中哪个电量最小二、填空题12.图5所示为某区域的电场线,把一个带负电的点电荷q放在点A或B时,在________点受的电场力大,方向为______.16.在x轴上有两个点电荷,一个带正电荷Q1,另一个带负电荷Q2,且Q1=2Q2,用E1、E2表示这两个点电荷所产生的场强的大小,则在x轴上,E1=E2的点共有____处,其中_______处的合场强为零,______处的合场强为2E2。

静电场典型计算题

静电场典型计算题

静电场典型计算题1.将带电荷量为1×10-8C 的电荷,从无限远处移到电场中的A 点,要克服静电力做功1×10-6J ,问:(1)电荷的电势能是增加还是减少?电荷在A 点具有多少电势能?(2)A 点的电势是多少?(3)若静电力可以把带电荷量为2×10-8C 的电荷从无限远处移到电场中的A 点,说明电荷带正电还是带负电?静电力做了多少功?(取无限远处为电势零点)答案:(1)增加 1×10-6J (2)100V (3)带负电 2×10-6J解析:(1)静电力做负功,电荷的电势能增加,因无限远处电势能为零,电荷在A 点具有的电势能为1×10-6J. (2)A点的电势为: φA =E pA q =1×10-61×10-8V =100V.(3)因静电力做正功,说明电荷受力方向与运动方向相同,说明电荷带负电,静电力做功为:W 2=2W 1=2×10-6J. 2.一长为L 的细线,上端固定,下端拴一质量为m 、带电荷量为q 的小球,处于如图所示的水平向右的匀强电场中,开始时,将线与小球拉成水平,然后释放小球由静止开始向下摆动,当细线转过60°角时,小球到达B 点速度恰好为零.试求:(1)AB 两点的电势差U AB ;(2)匀强电场的场强大小;【解析】试题分析:(1)小球由A →B 过程中,由动能定理:mgLsin60°+qU AB =0所以U AB =−√3mgL2q.(2)根据公式E =Ud可得E =|U AB |L−Lcos60°=√3mgq. 3.如右图所示,板长L =4 cm 的平行板电容器,板间距离d =3 cm ,板与水平线夹角α=37°,两板所加电压为U =100 V 。

有一带负电液滴,带电荷量为q =3×10-10 C ,以v 0=1 m/s 的水平速度自A 板边缘水平进入电场,在电场中仍沿水平方向并恰好从B 板边缘水平飞出(取g =10 m/s 2=sin α=0.6=cos α=0.8)。

高中物理选修3-1静电场专项练习(含答案)

高中物理选修3-1静电场专项练习(含答案)

静电场练习题一、选择题1.(3分)如图,在E=2.0×103N/C的匀强电场中有A、M和B三点,其中BM与电场线垂直,AM与电场线成30°角,AM=4cm,BM=2cm,把一电量q=2×10﹣9C的正电荷从A移动到M点,再从M移动到B点,整个过程中电场力做功为()A.8×10﹣8J B.8×10﹣8J C.1.6×10﹣7 J D.2.4×10﹣7 J 2.(3分)如图所示,正电荷在电场中沿某一条电场线从A点运动到B点,下面说法正确的是()A.电场力大小不断变化B.电场力大小保持不变C.电荷克服电场力做功D.电荷的电势能不断减小3.(3分)下列说法中正确的是()A.将电荷从电场中一点移到另一点,电势能的改变量与零电势点的选择无关B.在电场中,电场强度为零的地方电势也一定为零C.电荷在电场中电势较高的地方,具有的电势能较大D.沿着负点电荷的电场线方向,电势升高4.(3分)关于等势面下列说法正确的是()A.电荷在等势面上移动时不受电场力作用,所以不做功B.等势面上各点的场强相等C.等差等势面越密的地方,场强越大D.在负的点电荷形成的电场中,电场线由低等势面指向高等势面5.(3分)如图所示,粗糙且绝缘的斜面体ABC在水平地面上始终静止。

在斜面体AB边上靠近B点固定一点电荷,从A点无初速度释放带负电且电荷量保持不变的小物块(视为质点),运动到P点时速度恰为零。

则小物块从A到P运动的过程()A.水平地面对斜面体没有静摩擦作用B.小物块的电势能先减小后增大C.小物块所受到的合外力减小后增大D.小物块损失的机械能等于增加的电势能6.(3分)如图所示,某一带正电粒子(不计重力)在一平行板间的运动轨迹如图中曲线,P、Q两点为轨迹上两点,则()A.A板带负电,B板带正电B.粒子在P点电势能大于在Q点电势能C.粒子在P点动能大于在Q点动能D.粒子在P点受力大于在Q点受力7.(3分)如图所示,a、b、c、d、e五点在一条直线上,b、c两点间的距离等于d、e两点间的距离。

静电场计算题

静电场计算题

静电场计算题1.如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε 2分总场强为 ⎰+π=Lx d L x L q E 020)(d 4-ε()d L d q+π=04ε3分 方向沿x 轴,即杆的延长线方向.2.一个细玻璃棒被弯成半径为R 的半圆形,匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π它在O 处产生场强 θεεd 24d d 20220R QR q E π=π= 2分按θ角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202RQ E E x π== θθεθd cos 2cos d d 202RQE E y π-=-= 3分对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =0 2分 2022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 2分 所以j RQ j E i E E y x202επ-=+= 1分LPd E O3.如图所示,一电荷面密度为σ的“无限大”平面,在距离平面a 处的一点的场强大小的一半是由平面上的一个半径为R 的圆面积范围内的电荷所产生的.试求该圆半径的大小.解:电荷面密度为σ的无限大均匀带电平面在任意点的场强大小为E =σ / (2ε0) 2分以图中O 点为圆心,取半径为r →r +d r 的环形面积,其电量为d q = σ2πr d r 2分它在距离平面为a 的一点处产生的场强()2/32202d ra a r d rE +=εσ 2分则半径为R 的圆面积内的电荷在该点的场强为()⎰+=R ra r r a E 02/3220d 2εσ⎪⎪⎭⎫⎝⎛+-=22012R a a εσ 2分 由题意,令E =σ / (4ε0),得到R =a 32分4.电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.解:以O 点作坐标原点,建立坐标如图所示.半无限长直线A ∞在O 点产生的场强1E , ()j i R E --π=014ελ 2分 半无限长直线B ∞在O 点产生的场强2E , ()j i RE +-π=024ελ2分 半圆弧线段在O 点产生的场强3E,i RE032ελπ= 2分由场强叠加原理,O 点合场强为0321=++=E E E E2分5. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.∞∞OBA∞∞解:在O 点建立坐标系如图所示. 半无限长直线A ∞在O 点产生的场强:()j i R E -π=014ελ 2分 半无限长直线B ∞在O 点产生的场强:()j i RE +-π=024ελ 2分 四分之一圆弧段在O 点产生的场强: ()j i RE+π=034ελ 4分由场强叠加原理,O 点合场强为: ()j i RE E E E+π=++=03214ελ2分6.图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0. 高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12C 2·N -1·m -2 )解:设闭合面内包含净电荷为Q .因场强只有x 分量不为零,故只是二个垂直于x 轴的平面上电场强度通量不为零.由高斯定理得:-E 1S 1+ E 2S 2=Q / ε0 ( S 1 = S 2 =S ) 3分则 Q = ε0S (E 2- E 1) = ε0Sb (x 2- x 1)= ε0ba 2(2a -a ) =ε0ba 3 = 8.85×10-12 C 2分7.真空中一立方体形的高斯面,边长a =0.1 m 置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.解: 通过x =a 处平面1的电场强度通量 Φ1 = -E 1 S 1= -b a 3 1分 通过x = 2a 处平面2的电场强度通量Φ2 = E 2 S 2 = 2b a 3 1分其它平面的电场强度通量都为零.因而通过该高斯面的总电场强度通量为Φ = Φ1+ Φ2 = 2b a 3-b a 3 = b a 3 =1 N ·m 2/C 3分B A ∞x8. 图示一厚度为d 的“无限大”均匀带电平板,电荷体密度为ρ.试求板内外的场强分布,并画出场强随坐标x 变化的图线,即E —x 图线(设原点在带电平板的中央平面上,Ox 轴垂直于平板). 解:由电荷分布的对称性可知在中心平面两侧离中心平面相同距离处场强均沿x 轴,大小相等而方向相反.在板内作底面为S 的高斯柱面S 1(右图中厚度放大了), 两底面距离中心平面均为⎢x ⎜, 由高斯定理得01/22ερS x S E ⋅=⋅则得 01/ερx E =即 01/ερx E = ⎪⎭⎫ ⎝⎛≤≤-d x d 21214分在板外作底面为S 的高斯柱面S 2两底面距中心平面均为x ,由高斯定理得 02/2ερSd S E ⋅=⋅则得 ()022/ερd E ⋅= ⎪⎭⎫ ⎝⎛>d x 21即 ()022/ερd E ⋅= ⎪⎭⎫ ⎝⎛>d x 21,()022/ερd E ⋅-= ⎪⎭⎫⎝⎛-<d x 21 4分E ~ x 图线如图所示. 2分9.一半径为R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体内外的场强分布.解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r Ar V q d 4d d 2π⋅==ρ在半径为r 的球面内包含的总电荷为403d 4Ar r Ar dV q rVπ=π==⎰⎰ρ (r ≤R)以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π⋅ 得到()0214/εAr E =, (r ≤R )方向沿径向,A >0时向外, A <0时向里. 3分在球体外作一半径为r 的同心高斯球面,按高斯定理有 0422/4εAR r E π=π⋅ 得到 ()20424/r AR E ε=, (r >R )方向沿径向,A >0时向外,A <0时向里. 2分2E 210.电荷面密度分别为+σ和-σ的两块“无限大”均匀带电平行平面,分别与x 轴垂直相交于x 1=a ,x 2=-a 两点.设坐标原点O 处电势为零,试求空间的电势分布表示式并画出其曲线.解:由高斯定理可得场强分布为:E =-σ / ε0 (-a <x <a )1分E = 0 (-∞<x <-a ,a <x <+∞= 1分由此可求电势分布:在-∞<x ≤-a 区间⎰⎰⎰---+==00/d d 0d aa xxx x x E U εσ0/εσa -= 2分在-a ≤x ≤a 区间000d d εσεσxx x E U xx=-==⎰⎰2分 在a ≤x <∞区间000d d 0d εσεσax x x E U aaxx=-+==⎰⎰⎰2分 图2分11.如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?解:设点电荷q 所在处为坐标原点O ,x 轴沿两点电荷的连线.(1) 设0=E的点的坐标为x ',则()04342020=-'π-'π=i d x q i x q E εε 3分 可得 02222=-'+'d x d x解出 ()d x 3121+-=' 2分另有一解()d x 13212-=''不符合题意,舍去. (2) 设坐标x 处U =0,则 ()x d qx q U -π-π=00434εε ()0440=⎥⎦⎤⎢⎣⎡--π=x d x x d q ε 3分 得 d - 4x = 0, x = d /4 2分12.图中所示为一沿x 轴放置的长度为l 的不均匀带电细棒,其电荷线密度为λ=λ0 (x -a ),λ0为一常量.取无穷远处为电势零点,求坐标原点O 处的电势.x-a +aO xU+Ox解:在任意位置x 处取长度元d x ,其上带有电荷d q =λ0 (x -a )d x 1分它在O 点产生的电势 ()xxa x U 004d d ελπ-=2分O 点总电势⎥⎦⎤⎢⎣⎡-π==⎰⎰⎰++l a a la a x x a x dU U d d 400ελ⎥⎦⎤⎢⎣⎡+-π=a l a a l ln 400ελ 2分13. 图示一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R 1,外表面半径为R 2.设无穷远处为电势零点,求球层中半径为r 处的电势.解:r 处的电势等于以r 为半径的球面以内的电荷在该处产生的电势U 1和球面以外的电荷产生的电势U 2之和,即 U = U 1 + U 2 ,其中U 1=q i/ (4πε0r )()()rR r 031343/4ερπ-π=⎪⎪⎭⎫ ⎝⎛-=r R r 31203ερ 4分为计算以r 为半径的球面外电荷产生的电势.在球面外取r '─→r '+d r '的薄层.其电荷为 d q =ρ·4πr '2d r ' 它对该薄层内任一点产生的电势为()002/d 4/d d ερεr r r q U ''='π=则 ⎰⎰''==2d d 022R r r r U U ερ()2222r R -=ερ 4分 于是全部电荷在半径为r 处产生的电势为()222031202123r R r R r U U U -+⎪⎪⎭⎫ ⎝⎛-=+=ερερ ⎪⎪⎭⎫ ⎝⎛--=r R r R 312220236ερ 2分 若根据电势定义直接计算同样给分.14.电荷以相同的面密度σ 分布在半径为r 1=10 cm 和r 2=20 cm 的两个同心球面上.设无限远处电势为零,球心处的电势为U 0=300 V . (1) 求电荷面密度σ.(2) 若要使球心处的电势也为零,外球面上应放掉多少电荷?[ε0=8.85×10-12 C 2 /(N ·m 2)]解:(1) 球心处的电势为两个同心带电球面各自在球心处产生的电势的叠加,即⎪⎪⎭⎫ ⎝⎛+π=22110041r q r q U ε⎪⎪⎭⎫ ⎝⎛π-ππ=22212104441r r r r σσε()210r r +=εσ3分 2100r r U +=εσ=8.85×10-9 C / m 2 2分 (2) 设外球面上放电后电荷面密度为σ',则应有O()2101r r U σσε'+='= 0即σσ21r r -=' 2分 外球面上应变成带负电,共应放掉电荷()⎪⎪⎭⎫⎝⎛+π='-π='212222144r r r r q σσσ ()20021244r U r r r εσπ=+π==6.67×10-9 C 3分15.在强度的大小为E ,方向竖直向上的匀强电场中,有一半径为R 的半球形光滑绝缘槽放在光滑水平面上(如图所示).槽的质量为M ,一质量为m 带有电荷+q 的小球从槽的顶点A 处由静止释放.如果忽略空气阻力且质点受到的重力大于其所受电场力,求: (1) 小球由顶点A 滑至半球最低点B时相对地面的速度; (2) 小球通过B 点时,槽相对地面的速度;(3) 小球通过B 点后,能不能再上升到右端最高点C ?解:设小球滑到B 点时相对地的速度为v ,槽相对地的速度为V .小球从A →B 过程中球、槽组成的系统水平方向动量守恒,m v +MV =0 ① 2分对该系统,由动能定理 mgR -EqR =21m v 2+21MV 2 ②3分 ①、②两式联立解出 ()()m M m qE mg MR +-=2v 2分 方向水平向右.()()m M M qE mg mR M m V +--=-=2v 1分 方向水平向左. 1分小球通过B 点后,可以到达C 点. 1分16.两个带等量异号电荷的均匀带电同心球面,半径分别为R 1=0.03 m 和R 2=0.10 m .已知两者的电势差为450 V ,求内球面上所带的电荷.解:设内球上所带电荷为Q ,则两球间的电场强度的大小为204rQE επ=(R 1<r <R 2) 1分 两球的电势差⎰⎰π==212120124d R R R R r drQ r E U ε⎪⎪⎭⎫ ⎝⎛-π=210114R R Q ε 2分 ∴ 12122104R R U R R Q -π=ε=2.14×10-9 C 2分17.一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q= 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.d(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).解:(1) 090cos d o1===⎰⋅ab qE S F A ba2分(2) o2180cos d ac qE S F A c a==⎰⋅ =-1×10-3 J 3分(3) o345sin d ad qE S F A d a==⎰⋅ =2.3×10-3 J 3分18.一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大? 解:(1) 设外力作功为A F 电场力作功为A e , 由动能定理:A F + A F = ∆ E K则 A e =∆ E K -A F =-1.5×10-5 J 2分(2) qES S F S F A e e e -=-=⋅=()=-=qS A E e /105 N/C 3分19. 如图所示,一半径为R 的均匀带正电圆环,其电荷线密度为λ.在其轴线上有A 、B 两点,它们与环心的距离分别为R OA 3=,R OB 8= . 一质量为m 、电荷为q 的粒子从A 点运动到B 点.求在此过程中电场力所作的功.解:设无穷远处为电势零点,则A 、B 两点电势分别为220432ελελ=+=R R RU A 2分 0220682ελελ=+=R R R U B 1分 q 由A 点运动到B 点电场力作功()0001264ελελελq q U U q A B A =⎪⎪⎭⎫⎝⎛-=-= 2分 注:也可以先求轴线上一点场强,用场强线积分计算.20.图示两个半径均为R 的非导体球壳,表面上均匀带电,电荷分别为+Q 和-Q ,两球心相距为d (d>>2R ).求两球心间的电势差.解:均匀带电球面内的电势等于球面上的电势.球面外的电势相当于电荷集中在球心上的点电荷的电势.由此,按电势叠加原理球心O 1处的电势为: d QR Q U 00144εεπ-π= 2分 球心O 2处的电势为: RQd Q U 00244εεπ-π= 2分 Eq则O 1、O 2间的电势差为: ()RdR d Q d R Q U 00122112εεπ-=⎪⎭⎫ ⎝⎛-π=1分21.一电子射入强度的大小为5000 N ·C -1的均匀电场中,电场的方向竖直向上.电子初速度为v 0=107 m ·s -1,与水平方向成θ=30°角,如图所示.求电子从射入位置上升的最大高度.(电子的质量m =9.1×10-31 kg ,电子电荷绝对值e =1.6×10 -19 C) 解:电子在电场中作斜抛运动,忽略重力,在竖直方向上有:a y =-eE / m 1分v y =v 0sin θ-eEt / m 1分2021sin eEt t y -=θv 1分 电子上升至最高点的条件是v y =0,于是有: v 0sin θ-eEt 1 / m =0t 1 = m v 0sin θ / (eE ) 1分∴ ()22201042.12/sin -⨯==eE m y θv m 1分22.在真空中一长为l =10 cm 的细杆上均匀分布着电荷,其电荷线密度λ= 1.0×10-5C/m .在杆的延长线上,距杆的一端距离d =10 cm 的一点上,有一点电荷q 0= 2.0×10-5 C ,如图所示.试求该点电荷所受的电场力.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )解:选杆的左端为坐标原点,x 轴沿杆的方向 .在x 处取一电荷元λd x ,它在点电荷所在处产生场强为:()204d d x d xE +π=ελ 3分整个杆上电荷在该点的场强为:()()l d d lx d x E l+π=+π=⎰00204d 4ελελ 2分点电荷q 0所受的电场力为:()l d d lq F +π=004ελ=0.90 N 沿x 轴负向 3分23.如图所示,有一高为h 的直角形光滑斜面, 斜面倾角为α.在直角顶点A 处有一电荷为-q 的点电荷.另有一质量为m 、电荷+q 的小球在斜面的顶点B 由静止下滑.设小球可看作质点,试求小球到达斜面底部C 点时的速率. 解:因重力和电场力都是保守力,小球从顶点B 到达底部C 点过程中能量守恒.αεεctg 421402202h q m mgh h q π-=+π-v 3分 ∴ ()2/10221tg 2⎥⎦⎤⎢⎣⎡+-π=gh m h q αεv 2分O yθE 0vq24.一半径为R 的均匀带电细圆环,其电荷线密度为λ,水平放置.今有一质量为m 、电荷为q 的粒子沿圆环轴线自上而下向圆环的中心运动(如图).已知该粒子在通过距环心高为h 的一点时的速率为v 1,试求该粒子到达环心时的速率.解:带电粒子处在h 高度时的静电势能为()2/122012R h qRW +=ελ 2分到达环心时的静电势能为 ()022/ελq W = 2分 据能量守恒定律1212222121W mgh m W m ++=+v v 2分 以上三式联立求解得到2/1220212112⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+--+=R h R m qR gh ελv v 2分25.如图所示,两个电荷分别为q 1=20×10-9 C 和q 2=-12×10-9 C 的点电荷,相距5 m .在它们的连线上距q 2为1 m 处的A 点从静止释放一电子,则该电子沿连线运动到距q 1为1 m处的B 点时,其速度多大?(电子质量m e =9.11×10-31 kg ,基本电荷e =1.6×10-19 C ,41επ=9×109 N ·m 2/C 2 ) 解:设无限远处为电势零点,则A 、B 两点的电势为: ⎪⎪⎭⎫ ⎝⎛+π=π+π=221102021014144r q r q r q r q U A εεε代入r 1=4 m ,r 2=1 m 得 U A =-63 V 2分⎪⎪⎭⎫ ⎝⎛'+'π='π+'π=221102021014144r q r q r q r q U B εεε代入1r '=1 m ,2r '=4 m 得 U B =153 V 2分电子在运动过程中,电势能减少,动能增加()B A e U U e m --=221v 2分 ()eB A m U U e --=2v =8.71×106 m/s 2分26.两个同心的导体球壳,半径分别为R 1=0.145 m 和R 2=0.207 m ,内球壳上带有负电荷q=-6.0×10-8 C .一电子以初速度为零自内球壳逸出.设两球壳之间的区域是真空,试计算电子撞到外球壳上时的速率.(电子电荷e=-1.6×10-19 C ,电子质量m e =9.1×10-31 kg ,ε0=8.85×10-12 C 2 / N ·m 2)解:由高斯定理求得两球壳间的场强为()2120R4R r r q E <<π=ε 2分 方向沿半径指向内球壳.电子在电场中受电场力的大小为q 2420r eqeE F επ== 2分方向沿半径指向外球壳.电子自内球壳到外球壳电场力作功为⎰⎰π==212120d 4d R R R R r r eqr F A ε()21012214114R R R R eq R R eqεεπ-=⎪⎪⎭⎫ ⎝⎛-π= 2分由动能定理()210122421R R R R eq m e επ-=v 2分得到 ()em R R R R eq 210122επ-=v =1.98×107 m/s 2分27. 电荷Q (Q >0)均匀分布在长为L 的细棒上,在细棒的延长线上距细棒中心O 距离为a 的P 点处放一电荷为q (q >0 )的点电荷,求带电细棒对该点电荷的静电力. 解:沿棒方向取坐标Ox ,原点O 在棒中心处.求P 点场强:()()20204d 4d d x a xx a q E -π=-π=ελε 2分 ()⎰--π=2/2/204d L L x a xE ελ()2202/2/0414L a Qx a L L -π=-⋅π=-εελ 3分 方向沿x 轴正向. 点电荷受力:==qE F ()2204πL a qQ-ε 方向沿x 轴正方向. 3分。

大学静电场试题及答案

大学静电场试题及答案

大学静电场试题及答案一、选择题1. 静电场中的电场线是从正电荷出发,终止于负电荷。

A. 正确B. 错误答案:A2. 电场强度的方向是正电荷所受电场力的方向。

A. 正确B. 错误答案:A3. 电场中某点的电势与该点的电场强度大小无关。

A. 正确B. 错误答案:A4. 电容器的电容与两极板间的距离成反比。

A. 正确B. 错误答案:B5. 电场中某点的电势与该点的电场强度方向无关。

A. 正确B. 错误答案:A二、填空题1. 电场强度的定义式为_______,其中E表示电场强度,F表示电场力,q表示试探电荷。

答案:E = F/q2. 电势差的定义式为_______,其中U表示电势差,W表示电场力做的功,q表示试探电荷。

答案:U = W/q3. 电容器的电容公式为_______,其中C表示电容,Q表示电荷量,V表示电势差。

答案:C = Q/V4. 电场力做功的公式为_______,其中W表示功,q表示电荷量,U表示电势差。

答案:W = qU5. 电场中某点的电势与该点的电场强度大小_______关系。

答案:无关三、简答题1. 简述电场强度和电势的概念及其物理意义。

答案:电场强度是描述电场强弱和方向的物理量,其大小等于单位正电荷在该点所受的电场力,方向与正电荷所受电场力的方向相同。

电势是描述电场能的性质的物理量,它表示单位正电荷在电场中从某点移到参考点(通常取无穷远处)所做的功。

2. 电容器的电容与哪些因素有关?请简述其关系。

答案:电容器的电容与电容器的几何尺寸、两极板间的距离以及介质的介电常数有关。

电容与两极板的面积成正比,与两极板间的距离成反比,与介质的介电常数成正比。

四、计算题1. 一个平行板电容器,其极板面积为0.05平方米,两极板间的距离为0.01米,介质为空气(介电常数ε₀=8.85×10^-12 F/m)。

求该电容器的电容。

答案:C = ε₀ * A / d = 8.85×10^-12 * 0.05 / 0.01 =4.425×10^-11 F2. 已知电场中某点的电势为100V,试探电荷为-2C,求该点的电场强度。

静电场计算题

静电场计算题

静电场计算题1、如图所示,在E=103 V/m的竖直匀强电场中,有一光滑半圆形绝缘轨道QPN与一水平绝缘轨道MN在N点平滑相接,半圆形轨道平面与电场线平行,其半径R=40 cm,N为半圆形轨道最低点,P为QN圆弧的中点,一带负电q=10-4 C的小滑块质量m=10 g,与水平轨道间的动摩擦因数μ=0.15,位于N点右侧1.5 m的M处,取g=10 m/s2,求:(1)要使④小滑块恰能运动到圆轨道的最高点Q,则小滑块应以多大的初速度v0向左运动?(2)这样运动的⑤小滑块通过P点时对轨道的压力是多大?2、一根长为l的丝线吊着一质量为m、带电荷量为q的小球静止在水平向右的匀强电场中,如图所示,丝线与竖直方向成37°角,现突然将该电场方向变为竖直向下且大小不变,不考虑因电场的改变而带来的其他影响(重力加速度为g,sin37°=0.6),求:(1)匀强电场的电场强度的大小;(2)小球经过最低点时受到的拉力大小。

3、在一个水平面上建立x轴,在过原点O垂直于x轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C,方向与x轴正方向相同。

在O处放一个电荷量q=-5.0×10-8 C、质量m=1.0×10-2 kg的绝缘物块,物块与水平面间的动摩擦因数μ=0.20,沿x轴正方向给物块一个初速度v0=2.0 m/s,如图所示。

求物块最终停止时的位置。

(g取10 m/s2)4、实验表明,炽热的金属丝可以发射电子。

在右图中,从炽热金属丝射出的电子流,经电场加速后进入偏转电场。

已知加速电极间的电压U1=2500 V,偏转电极间的电压U2=2.0 V,偏转电极极板长l=6.0 cm,板间距d=0.2 cm。

电子的质量是m=0.91×10-30 kg,带电量大小为e =1.6×10-19 C,电子重力不计,未打到极板上。

求:(1)电子离开加速电场时的速度v的大小;(2)电子离开偏转电场时的竖直方向速度v⊥的大小;(3)电子离开偏转电场时竖直方向移动的距离y。

静电场练习测试题及参考答案

静电场练习测试题及参考答案

静电场练习题一、电荷守恒定律、库仑定律练习题4.把两个完全相同的金属球A和B接触一下,再分开一段距离,发现两球之间相互排斥,则A、B两球原来的带电情况可能是 [ ]A.带有等量异种电荷 B.带有等量同种电荷C.带有不等量异种电荷 D.一个带电,另一个不带电8.真空中有两个固定的带正电的点电荷,其电量Q1>Q2,点电荷q置于Q1、Q2连线上某点时,正好处于平衡,则 [ ]A.q一定是正电荷 B.q一定是负电荷C.q离Q2比离Q1远D.q离Q2比离Q1近14.如图3所示,把质量为0.2克的带电小球A用丝线吊起,若将带电量为4×10-8库的小球B靠近它,当两小球在同一高度相距3cm时,丝线与竖直夹角为45°,此时小球B受到的库仑力F=______,小球A带的电量q A=______.二、电场电场强度电场线练习题6.关于电场线的说法,正确的是 [ ]A.电场线的方向,就是电荷受力的方向B.正电荷只在电场力作用下一定沿电场线运动C.电场线越密的地方,同一电荷所受电场力越大D.静电场的电场线不可能是闭合的7.如图1所示,带箭头的直线是某一电场中的一条电场线,在这条线上有A、B两点,用E A、E B表示A、B两处的场强,则 [ ]A.A、B两处的场强方向相同B.因为A、B在一条电场上,且电场线是直线,所以E A=E BC.电场线从A指向B,所以E A>E BD.不知A、B附近电场线的分布情况,E A、E B的大小不能确定8.真空中两个等量异种点电荷电量的值均为q,相距r,两点电荷连线中点处的场强为 [ ]A.0 B.2kq/r2 C.4kq/r2 D.8kq/r29.四种电场的电场线如图2所示.一正电荷q仅在电场力作用下由M点向N点作加速运动,且加速度越来越大.则该电荷所在的电场是图中的 [ ] 11.如图4,真空中三个点电荷A、B、C,可以自由移动,依次排列在同一直线上,都处于平衡状态,若三个电荷的带电量、电性及相互距离都未知,但AB>BC,则根据平衡条件可断定 [ ]A.A、B、C分别带什么性质的电B.A、B、C中哪几个带同种电荷,哪几个带异种电荷C.A、B、C中哪个电量最大D.A、B、C中哪个电量最小二、填空题12.图5所示为某区域的电场线,把一个带负电的点电荷q放在点A或B时,在________点受的电场力大,方向为______.16.在x轴上有两个点电荷,一个带正电荷Q1,另一个带负电荷Q2,且Q1=2Q2,用E1、E2表示这两个点电荷所产生的场强的大小,则在x轴上,E1=E2的点共有____处,其中_______处的合场强为零,______处的合场强为2E2。

静电场练习题

静电场练习题

说明:字母为黑体者表示矢量第7章 静电场 练习一一、选择题1.一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 的一个电量为σd S 的电荷元在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零. (C) 处处不为零. (D) 无法判定.E =F /q 0,下列说法中哪个是正确的? (A) 场强E 的大小与试探电荷q 0的大小成反比;(B) 对场中某点,试探电荷受力F 与q 0的比值不因q 0而变; (C) 试探电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试探电荷q 0,则F = 0,从而E = 0.1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为:(A )i a 02πελ. (B) 0. (C)i a 04πελ. (D) )(40j +i aπελ.(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B) 在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.(C) 场强方向可由E = F /q 定出,其中q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力.(D) 以上说法都不正确.5.如图1.2所示,在坐标(a , 0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q ,P 点是x 轴上的一点,坐标为(x , 0).当x >>a 时,该点场强的大小为:(A)x q04πε. (B)204x qπε.(C) 302xqa πε (D) 30x qaπε.二、填空题1.如图1.3所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2,则场强等于零的点与直线1的距离a=.图1.2d 图1.3图1.4+λ-λ• (0, a ) xy O图1.11.4所示,带电量均为+q 的两个点电荷,分别位于x 轴上的+a 和-a 位置.则y 轴上各点场强表达式为E = ,场强最大值的位置在y =.一电偶极子放在场强为E 的匀强电场中,电矩的方向与电场强度方向成角θ.已知作用在电偶极子上的力矩大小为M ,则此电偶极子的电矩大小为 .三、计算题1.一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ.求球心处的电场强度.,半径为R ,其上均匀地带有正点荷Q , 试求圆心O处的电场强度.第7章 静电场 练习二以下说法错误的是(A) 电荷电量大,受的电场力可能小; (B)电荷电量小,受的电场力可能大;(C) 电场为零的点,任何点电荷在此受的电场力为零; (D) 电荷在某点受的电场力与该点电场方向一致.边长为a 的正方形的四个顶点上放置如图2.1所示的点电荷,则中心O 处场强(A) 大小为零.(B) 大小为q/(2πε0a 2), 方向沿x 轴正向.(C) 大小为()2022a q πε, 方向沿y 轴正向. (D) 大小为()2022a q πε, 方向沿y 轴负向.试验电荷q 0在电场中受力为f ,得电场强度的大小为E=f/q 0,则以下说法正确的是(A) E 正比于f ; (B) E 反比于q 0;(C) E 正比于f 反比于 q 0;(D) 电场强度E 是由产生电场的电荷所决定,与试验电荷q 0的大小及其受力f 无关.4. 在电场强度为E 的匀强电场中,有一如图2.2所示的三棱柱,取表面的法线向外,设过面AA 'CO ,面B 'BOC ,面ABB 'A '的电通量为Φ1,Φ2,Φ3,则 (A) Φ1=0, Φ2=Ebc , Φ3=-Ebc .(B) Φ1=-Eac , Φ2=0, Φ3=Eac . (C) Φ1=-Eac , Φ2=-Ec 22b a +, Φ3=-Ebc . (D) Φ1=Eac, Φ2=Ec 22b a +, Φ3=Ebc .图2.1图2.25. 两个带电体Q 1,Q 2,其几何中心相距R , Q 1受Q 2的电场力F 应如下计算(A) 把Q 1分成无数个微小电荷元d q ,先用积分法得出Q 2在d q 处产生的电场强度E 的表达式,求出d q 受的电场力d F =E d q ,再把这无数个d q 受的电场力d F 进行矢量叠加从而得出Q 1受Q 2的电场力F =⎰1d Q q E(B) F =Q 1Q 2R /(4πε0R 3).(C) 先采用积分法算出Q 2在Q 1的几何中心处产生的电场强度E 0,则F =Q 1E 0.(D) 把Q 1分成无数微小电荷元d q ,电荷元d q 对Q 2几何中心引的矢径为r , 则Q 1受Q 2的电场力为F =()[]⎰13024d Q r q Q πεr二、填空题电矩为P e 的电偶极子沿x 轴放置, 中心为坐标原点,如图 2.3.则点A (x ,0), 点B (0,y )电场强度的矢量表达式为: E A = ,E B =.如图2.4所示真空中有两根无限长带电直线, 每根无限长带电直线左半线密度为λ,右半线密度为-λ,λ为常数.在正负电荷交界处距两直线均为a 的O 点.的电场强度为E x = ;E y = .3. 设想将1克单原子氢中的所有电子放在地球的南极,所有质子放在地球的北极,则它们之间的库仑吸引力为 N .宽为a 的无限长带电薄平板,电荷线密度为λ,取中心线为z 轴, x 轴与带电薄平板在同一平面内, y 轴垂直带电薄平板. 如图2.5. 求y轴上距带电薄平板为b 的一点P 的电场强度的大小和方向. 2. 一无限长带电直线,电荷线密度为λ,傍边有长为a , 宽为b 的一矩形平面, 矩形平面中心线与带电直线组成的平面垂直于矩形平面,带电直线与矩形平面的距离为c ,如图2.6. 求通过矩形平面电通量的大小.第7章 静电场 练习三一、选择题如图3.1所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E . (B)πR 2E /2 . (C) 2πR 2E . (D) 0 .图2.3图2.4λ图2.6图2.5 图3.1关于高斯定理,以下说法正确的是:(A) 高斯定理是普遍适用的,但用它计算电场强度时要求电荷分布具有某种对称性; (B) 高斯定理对非对称性的电场是不正确的;(C) 高斯定理一定可以用于计算电荷分布具有对称性的电场的电场强度; (D) 高斯定理一定不可以用于计算非对称性电荷分布的电场的电场强度.3.有两个点电荷电量都是+q ,相距为2a ,今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面. 在球面上取两块相等的小面积S 1和S 2,其位置如图3.2所示. 设通过S 1和S 2的电场强度通量分别为Φ1和Φ2,通过整个球面的电场强度通量为Φ,则(A) Φ1 >Φ2 , Φ = q /ε0 . (B) Φ1 <Φ2 , Φ = 2q /ε0 . (C) Φ1 = Φ2 , Φ = q /ε0 . (D) Φ1 <Φ2 , Φ = q /ε0 .4.图3.3所示为一球对称性静电场的E ~ r 关系曲线,请指出该电场是由哪种带电体产生的(E 表示电场强度的大小,r 表示离对称中心的距离) .(A) 点电荷.(B) 半径为R 的均匀带电球体.(C) 半径为R 的均匀带电球面. (D) 内外半径分别为r 和R 的同心均匀带球壳.如图3.4所示,一个带电量为q 的点电荷位于一边长为l 的正方形abcdq 距正方形l/2,则通过该正方形的电场强度通量大小等于:(A) 02εq . (B) 06εq . (C)012εq . (D) 024εq .二、填空题3.5, 两块“无限大”的带电平行平板,其电荷面密度分别为-σ (σ > 0 )及2σ.试写出各区域的电场强度.Ⅰ区E 的大小 ,方向 . Ⅱ区E 的大小 ,方向 . Ⅲ区E 的大小 ,方向 . 2.如图3.6所示, 真空中有两个点电荷, 带电量分别为Q 和-Q , 相距2R ..若以负电荷所在处O 点为中心, 以R 为半径作高斯球面S , 则通过该球面的电场强度通量Φ = ;若以r 0表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为 .ⅠⅡⅢ-σ 2σ 图3.5图3.3 图 3.2图3.4l电荷q 1、q 2、q 3和q 4在真空中的分布如图3.7所示, 其中q 2 是半径为R 的均匀带电球体, S 为闭合曲面,则通过闭合曲面S 的电通量⎰⋅SS E d = ,式中电场强度E 是电荷 产生的.是它们产生电场强度的矢量和还是标量和?答:是 .三、计算题1.真空中有一厚为2a 的无限大带电平板,取垂直平板为x 轴,x 轴与中心平面的交点为坐标原点,带电平板的体电荷分布为ρ=ρ0cos[πx /(2a )],求带电平板内外电场强度的大小和方向.R 的无限长圆柱体内有一个半径为a(a<R)的球形空腔,球心到圆柱轴的距离为d (d >a ),该球形空腔无限长圆柱体内均匀分布着电荷体密度为ρ的正电荷,如图3.8所示. 求:(1) 在球形空腔内,球心O 处的电场强度E O .(2) 在柱体内与O 点对称的P 点处的电场强度E P .第8章 电势一、选择题如图4.1所示,半径为R 的均匀带电球面,总电量为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E = 0 , U = Q /4πε0R . (B) E = 0 , U = Q /4πε0r .(C) E = Q /4πε0r 2 , U = Q /4πε0r . (D) E = Q /4πε0r 2 , U = Q /4πε0R .如图4.2所示,两个同心的均匀带电球面,内球面半径为R 1,带电量Q 1,外球面半径为R 2,带电量为Q 2.设无穷远处为电势零点,则在两个球面之间,距中心为r 处的P 点的电势为:(A)r Q Q 0214πε+.(B) 20210144R Q R Q πεπε+.(C) 2020144R Q r Q πεπε+.(D) rQ R Q 0210144πεπε+.3. 如图4.3所示,在点电荷+q 的电场中,若取图中M 点为电势零点,则P 点的电势为(A) q / 4πε0a . (B) q / 8πε0a .• q 1• q 3• q 4S图3.7q2图3.8图4.1图4.2M +q图4.9(C) -q / 4πε0a . (D) -q /8πε0a .一电量为q 的点电荷位于圆心O 处 ,A 是圆内一点,B 、C 、D 为同一圆周上的三点,如图4.4所示. 现将一试验电荷从A 点分别移动到B 、C 、D 各点,则(A) 从A 到B ,电场力作功最大. (B) 从A 到C ,电场力作功最大. (C) 从A 到D ,电场力作功最大. (D) 从A 到各点,电场力作功相等.5. 如图4.5所示,CDEF 为一矩形,边长分别为l 和2l ,在DC 延长线上CA =l 处的A 点有点电荷+q ,在CF 的中点B 点有点电荷-q ,若使单位正电荷从C 点沿CDEF 路径运动到F 点,则电场力所作的功等于:(A) 515420-⋅l q πε. (B) 55140-⋅l q πε. (C) 31340-⋅l q πε. (D) 51540-⋅l q πε.二、填空题q 1, q 2, q 3的三个点电荷位于一圆的直径上, 两个在圆周上,一个在圆心.如图4.6所示. 设无穷远处为电势零点,圆半径为R ,则b 点处的电势U = .2.如图4.7所示,在场强为E 的均匀电场中,A 、B 两点间距离为d ,AB 连线方向与E 的夹角为α. 从A 点经任意路径 到B 点的场强线积分l E d ⎰⋅AB=.4.8所示, BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电量为-q 的点电荷,O 点有一电量为+q 的点 电荷. 线段BA = R .现将一单位正电荷从B 点沿半圆弧轨道 BCD 移到D 点,则电场力所作的功为.三、计算题如图4.9所示,一个均匀带电的球层,其电量为Q ,球层内表面半径为R 1,外表面半径为R 2.设无穷远处为电势零点,求空腔内任一点(r <R 1)的电势.2.已知电荷线密度为λ的无限长均匀带电直线附近的电场强度为E=λ/(2πε0r ).• •• q 1 q 2q 3ROb-q ll l l +q A BC DE F • • 图4.5B 图4.4R -q +q AB CDO• • 图4.8B图4.7pB(A)(B)(C)(D)图5.3(1)求在r 1、r 2两点间的电势差21r r U U -;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电直线附近的电势能否这样取?试说明之.第9章 静电场中的导体一、选择题(1)电场强度;(2)电势;(3)电势梯度.相等的物理量是?(A) (1) (3); (B) (1) (2); (C) (2) (3); (D) (1) (2) (3).一“无限大”带负电荷的平面,若设平面所在处为电势零点, 取x 轴垂直带电平面,原点在带电平面处,则其周围空间各点电势U 随坐标x 的关系曲线为5.2所示的圆周上,有N 个电量均为q 的点电荷,以两种方式分布,一种是无规则地分布,另一种是均匀分布,比较这两种情况下过圆心O 并垂直于圆平面的z 轴上一点的场强与电势,则有:(A) 场强相等,电势相等; (B) 场强不等,电势不等; (C) 场强分量E z 相等,电势相等; (D) 场强分量E z 相等,电势不等.4.一个带正电荷的质点,在电场力作用下从A 点出发,经C 点运动到B 点,其运动轨迹如图5.3所示,已知质点运动的速率是递减的,下面关于C 点场强方向的四个图示中正确的是:5.一个带有负电荷的均匀带电球体外,放置一电偶极子,其电矩的方向如图5.4所示.当电偶极子被释放后,该电偶极子将(A) 沿逆时针方向旋转至电矩p 指向球面而停止.(B)沿逆时针方向旋转至p 指向球面,同时沿电力线方向向着球面移动.图5.2(A)(B)(C)图5.1U U A BC (C) 沿逆时针方向旋转至p 指向球面,同时逆电力线方向远离球面移动. (D) 沿顺时针方向旋转至p 沿径向朝外,同时沿电力线方向向着球面移动. 二、填空题1. 一平行板电容器,极板面积为S ,相距为d . 若B 板接地,且保持A 板的电势U A = U 0不变,如图5.5所示. 把一块面积相同的带电量为Q 的导体薄板C 平行地插入两板之间,则导体薄板C 的电势U C = .任意带电体在导体体内(不是空腔导体的腔内) (填会或不会)产生电场,处于静电平衡下的导体,空间所有电荷(含感应电荷)在导体体内产生电场的 (填矢量和标量)叠加为零.处于静电平衡下的导体 (填是或不是)等势体,导体表面 (填是或不是)等势面, 导体表面附近的电场线与导体表面相互 ,导体体内的电势(填大于,等于或小于) 导体表面的电势. 三、计算题已知某静电场在xy 平面内的电势函数为U =Cx/(x 2+y 2)3/2,其中C 为常数.求(1)x 轴上任意一点,(2)y 轴上任意一点电场强度的大小和方向.2.如图5.6,一导体球壳A (内外半径分别为R 2,R 3),同心地罩在一接地导体球B(半径为R 1)上,今给A 球带负电-Q , 求B 球所带电荷Q B 及的A 球的电势U A .第10章 静电场中的电介质一、选择题A 、B 是两块不带电的导体,放在一带正电导体的电场中,如图6.1所示.设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则:(A) U B > U A≠ 0 . (B) U B < U A = 0 . (C) U B = U A . (D) U B < U A .半径分别为R 和r 的两个金属球,相距很远. 用一根长导线将两球连接,并使它们带电.在忽略导线影响的情况下,两球表面的电荷面密度之比σR /σr 为:(A) R /r .(B) R 2/r 2. (C) r 2/R 2. (D) r /R .一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图6.2所示.已知A 上的电荷面密度为σ,则在导体板B 的两个表面1和2上的感应电荷面密度为:(A) σ1 = -σ , σ2 = +σ. (B) σ1 = -σ/2 , σ2 = +σ/2.A+σ Q图5.6(1)(2)图6.5(C) σ1 = -σ , σ2 = 0.(D) σ1 = -σ/2 , σ2 = -σ /2.4. 欲测带正电荷大导体附近P 点处的电场强度,将一带电量为q 0 (q 0 >0)的点电荷放在P 点,如图6.3所示. 测得它所受的电场力为F . 若电量不是足够小.则(A) F /q 0比P 点处场强的数值小. (B) F /q 0比P 点处场强的数值大. (C) F /q 0与P 点处场强的数值相等.(D) F /q 0与P 点处场强的数值关系无法确定.5. 三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面两板用导线连接.中间板上带电,设左右两面上电荷面密度分别为σ1和σ2,如图6.4所示.则比值σ1/σ2为(A) d 1/d 2 . (B) 1. (C) d 2/d 1. (D) d 22/d 12. 二、填空题分子中正负电荷的中心重合的分子称 分子,正负电荷的中心不重合的分子称 分子.在静电场中极性分子的极化是分子固有电矩受外电场力矩作用而沿外场方向 而产生的,称 极化.非极性分子极化是分子中电荷受外电场力使正负电荷中心发生 从而产生附加磁矩(感应磁矩),称 极化.3. 如图6.5,面积均为S 的两金属平板A ,B 平行对称放置,间距远小于金属平板的长和宽,今给A 板带电Q , (1) B 板不接地时,B 板内侧的感应电荷的面密度为 ; (2) B 板接地时,B 板内侧的感应电荷的面密度为 . 三、计算题如图6.6所示,面积均为S =0.1m 2的两金属平板A ,B 平行对称放置,间距为d =1mm,今给A , B 两板分别带电 Q 1=3.54×10-9C, Q 2=1.77×10-9C.忽略边缘效应,求:(1) 两板共四个表面的面电荷密度 σ1, σ2, σ3, σ4;(2) 两板间的电势差V =U A -U B .四、证明题1. 如图6.7所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止• Pq 0图6.4Q 图6.62σ 2 σ 4于同一导体上的负感应电荷的电场线不能存在.静电场综合练习一、选择题1. 如图7.1, 两个完全相同的电容器C 1和C 2,串联后与电源连接. 现将一各向同性均匀电介质板插入C 1中,则:(A) 电容器组总电容减小. (B) C 1上的电量大于C 2上的电量. (C) C 1上的电压高于C 2上的电压. (D) 电容器组贮存的总能量增大.W 0,在保持电源接通的条件下,在两极间充满相对电容率为εr 的各向同性均匀电介质,则该电容器中储存的能量W 为(A) W = W 0/εr . (B) W = εr W 0. (C) W = (1+εr )W 0. (D) W = W 0.如图7.2所示,两个“无限长”的半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的带电量分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212πελλ+.(B) )(2)(2202101R r R r -+-πελπελ.(C))(22021R r -+πελλ.(D) 20210122R R πελπελ+. 4. 如图7.3,有一带电量为+q ,质量为m 的粒子,自极远处以初速度v 0射入点电荷+Q 的电场中, 点电荷+Q 固定在O 点不动.当带电粒子运动到与O 点相距R 的P 点时,则粒子速度和加速度的大小分别是(A) [v 02+Qq /(2πε0Rm )]1/2, Qq /(4πε0Rm ). (B)[v 02+Qq /(4πε0Rm )]1/2, Qq /(4πε0Rm ).(C) [v 02-Qq /(2πε0Rm )]1/2, Qq /(4πε0R 2m ). (D) [v 02-Qq /(4πε0Rm )]1/2, Qq /(4πε0R 2m ).空间有一非均匀电场,其电场线如图7.4所示.若在电场中取一半径为R 的球面,已知通过球面上∆S 面的电通量为∆Φe ,则通过其余部分球面的电通量为(A) -∆Φe (B) 4πR 2∆Φe /∆S , (C) (4πR 2-∆S ) ∆Φe /∆S , (D)P图7.2图 7.1图7.311 图7.5二、填空题1. 一个平行板电容器的电容值C = 100pF, 面积S = 100cm 2, 两板间充以相对电容率为εr = 6的云母片. 当把它接到50V 的电源上时,云母片中电场强度的大小E = ,金属板上的自由电荷电量q = .半径为R 的细圆环带电线(圆心是O ),其轴线上有两点A 和B ,且OA=AB=R ,如图7.5.若取无限远处为电势零点,设A 、B 两点的电势分别为U 1和U 2,则U 1/U 2为. 真空中半径为R 1和R 2的两个导体球相距很远,则两球的电容之比C 1/C 2= . 当用细长导线将两球相连后,电容C = . 今给其带电,平衡后球表面附近场强之比E 1 / E 2 =.三、计算题一平行板空气电容器,极板面积为S ,极板间距为d ,充电至带电Q 后与电源断开,然后用外力缓缓地把两极间距拉开到2d ,求:(1)电容器能量的改变;(2)在此过程中外力所作的功,并讨论此过程中的功能转换关系.2. 在带电量为+Q 半径为R 的均匀带电球体中沿半径开一细洞并嵌一绝缘细管,一质量为m 带电量为-q 的点电荷在管中运动(设带电球体固定不动,且忽略点电荷所受重力)如图7.6所示.t =0时,点电荷距球心O 为a (a <R ),运动速度v 0=0,试写出该点电荷的运动方程(即点电荷到球心的距离r 随时间的变化关系式).图7.6。

静电场习题及答案

静电场习题及答案

静电场习题及答案静电场习题及答案静电场是物理学中的一个重要概念,它描述了由电荷引起的力的作用。

在学习静电场的过程中,我们常常会遇到一些习题来巩固所学的知识。

本文将介绍一些常见的静电场习题,并给出相应的答案和解析。

习题一:两个点电荷之间的力问题描述:两个点电荷Q1和Q2之间的距离为r,它们之间的电力为F,若将Q1的电荷加倍,Q2的电荷减半,它们之间的电力变为多少?答案与解析:根据库仑定律,两个点电荷之间的电力与它们的电荷量和距离的平方成反比。

设Q1的电荷为q1,Q2的电荷为q2,则有F = k * q1 * q2 / r^2,其中k为电磁力常数。

将Q1的电荷加倍,Q2的电荷减半后,新的电力为F' =k * (2q1) * (0.5q2) / r^2 = 2F。

所以,它们之间的电力变为原来的2倍。

习题二:电场强度的计算问题描述:一均匀带电球体的半径为R,总电荷量为Q,求球心处的电场强度E。

答案与解析:由于球体带电,所以球体上每一点都有电荷。

根据对称性,球心处的电场强度与球体上的电荷分布无关,只与总电荷量和球心距离有关。

根据库仑定律,球心处的电场强度E = k * Q / R^2,其中k为电磁力常数。

所以,球心处的电场强度与球体上的电荷分布无关,只与总电荷量和球心距离有关。

习题三:电势差的计算问题描述:在一个静电场中,一个带电粒子从A点移动到B点,A点的电势为V1,B点的电势为V2,求带电粒子在移动过程中所受的电势差ΔV。

答案与解析:电势差ΔV定义为电势的变化量,即ΔV = V2 - V1。

根据电势的定义,电势是单位正电荷所具有的势能,所以电势差表示单位正电荷从A点移动到B点所具有的势能变化量。

所以,带电粒子在移动过程中所受的电势差为ΔV = V2 - V1。

习题四:电场线的性质问题描述:在一个静电场中,电场线的性质有哪些?答案与解析:电场线是描述电场的一种图形表示方法。

电场线的性质包括以下几点:1. 电场线的方向与电场强度的方向相同,即电场线从正电荷指向负电荷。

物理静电场试题及答案

物理静电场试题及答案

物理静电场试题及答案一、选择题1. 两个点电荷之间的距离为r,它们之间的库仑力大小为F,如果将它们之间的距离增加到2r,则它们之间的库仑力大小为:A. F/2B. F/4C. F/8D. 2F答案:B2. 电场强度的方向是:A. 正电荷所受电场力的方向B. 负电荷所受电场力的方向C. 正电荷所受电场力的反方向D. 与电场线的方向垂直答案:C3. 电容器的电容与下列哪个因素无关?A. 电容器两极板的面积B. 电容器两极板之间的距离C. 电容器两极板的材料D. 电容器两极板之间的电压答案:D二、填空题4. 一个电荷量为q的点电荷在电场中受到的电场力大小为F,则该点电荷所在位置的电场强度E等于______。

答案:F/q5. 两个相同大小的点电荷,分别带有+Q和-Q的电荷,它们之间的距离为r,若将它们之间的距离增加到原来的2倍,则它们之间的库仑力大小将变为原来的______。

答案:1/4三、计算题6. 一个半径为R的均匀带电球体,其电荷量为Q,求球体外距离球心r处的电场强度。

答案:若r > R,则电场强度E = kQ/r^2;若r < R,则电场强度E = 0。

7. 一个平行板电容器,其电容为C,两极板间的电压为U,求电容器所带的电荷量Q。

答案:Q = CU四、简答题8. 简述电场线的特点。

答案:电场线从正电荷出发,指向负电荷;电场线不相交;电场线越密集,电场强度越大。

9. 电容器在充电过程中,其电场能如何变化?答案:电容器在充电过程中,电场能逐渐增加,因为电容器存储了更多的电荷,两极板之间的电势差也随之增大。

静电场题目练习(精编)

静电场题目练习(精编)

静电场题目练习一、单选题1. 如图所示,用两根同样的绝缘细线把甲、乙两个质量相等的带电小球悬挂在同一点上,甲、乙两球均处于静止状态.已知两球带同种电荷,且甲球的电荷量大于乙球的电荷量,F1、F2分别表示甲、乙两球所受的库仑力,则下列说法中正确的是()A. F1一定大于F2B. F1一定小于F2C. F1与F2大小一定相等D. 无法比较F1与F2的大小2. 关于点电荷,以下说法正确的是()A. 体积小的带电体在任何情况下都可以看成点电荷B. 所有的带电体在任何情况下都可以看成点电荷C. 带电体的大小和形状对研究它们之间的作用力的影响可以忽略不计时,带电体可以看成点电荷D. 通常把带电小球看成点电荷,带电小球靠得很近时,它们之间的作用力为无限大3. 电荷量为+Q的点电荷和接地金属板MN附近的电场线分布如图所示,点电荷与金属板相距为2d,图中P 点到金属板和点电荷间的距离均为d.已知P点的电场强度为E0,则金属板上感应电荷在P点处产生的电场强度E的大小为( )A. 0B. kQ d2C. E=E0−kQd2D. E=E024. 如图,两平行金属板水平放置并接到电源上,一个带电微粒P位于两板间恰好平衡,现用外力将P固定住(保持其电荷量不变),然后使两板各绕其中点转过α角,如图中虚线所示,再撤去外力以后,则P在两板间运动,其()A. 重力势能将变大B. 重力势能将变小C. 电势能将变大D. 电势能将变小5. (上海黄浦区一模)如图所示,P为固定的点电荷,周围实线是其电场的电场线。

一带负电的粒子Q进入该电场后沿虚线运动,v a、v b分别是Q经过a、b两点时的速度。

则下列判断正确的是()A. P带正电,v a>v bB. P带负电,v a>v bC. P带正电,v a<v bD. P带负电,v a<v b6. 如图所示,AB和CD为圆上两条相互垂直的直径,圆心为O。

将电荷量分别为+q和-q的两点电荷放在圆周上,其位置关于AB对称且距离等于圆的半径。

静电场计算题

静电场计算题

1.两个正点电荷Q 1=+Q 和Q 2=+4Q 分别固定在光滑绝缘水平面上的A 、B 两点,A 、B 两点相距L ,且A 、B 两点正好位于水平光滑绝缘半圆细管两个端点的出口处,如图所示.(1)在A 、B 连线上,由A 点到B 点,电势如何变化?(2)将一正检验电荷置于A 、B 连线上靠近A 处由静止释放,求它在A 、B 连线上运动的过程中能达到最大速度的位置离A 点的距离;(3)若把另一正检验电荷放于绝缘管内靠近A 点处由静止释放,试确定它在管内运动过程中速度为最大值时的位置P ,即求出图中PA 和AB 连线的夹角θ.2.如图所示,水平向左的匀强电场中,用长为l 的绝缘轻质细线悬挂一小球,小球质量为m ,带电量为q +,将小球拉至竖直方向最低位置A 点处无初速度释放,小球将向左摆动,细线向左偏离竖直方向的最大角度074θ=,(重力加速度为g ,0sin 0.637=,cos 0.837=)(1)求电场强度的大小E ;(2)求小球向左摆动的过程中,对细线拉力的最大值;(3)若从A 点处释放小球时,给小球一个水平向左的初速度0v ,则为保证小球能做完整的圆周运动,0v 的大小应满足什么条件?3.如图所示,在竖直平面内,光滑绝缘直杆AC 与半径为R 的圆周交于B 、C 两点,在圆心处有一固定的正点电荷,B 点为AC 的中点,C 点位于圆周的最低点。

现有一质量为m 、电荷量为q -,套在杆上的带负电小球(可视为质点)从A 点由静止开始沿杆下滑。

已知重力加速度为g ,A 点距过C 点的水平面的竖直高度为3R ,小球滑到B 点时的速度大小为(1)求小球滑至C 点时的速度大小; (2)求A 、B 两点间的电势差AB U ;(3)若以C 点为参考点(零电势点),试确定A 点的电势。

4.电视机的显像管中,电子束的偏转是用电偏转和磁偏转技术实现的.如图甲所示,电子枪发射出的电子经小孔S 1进入竖直放置的平行金属板M 、N 间,两板间所加电压为U 0;经电场加速后,电子由小孔S 2沿水平放置金属板P 和Q 的中心线射入,两板间距离和长度均为;距金属板P 和Q 右边缘处有一竖直放置的荧光屏;取屏上与S 1、S 2共线的O 点为原点,向上为正方向建立x 轴。

选修3-1 静电场经典计算题

选修3-1  静电场经典计算题

的匀强电场,电场线与轨道所在的平面平行,电场强度E=1.0×104N/C.现有
一电荷量q=+1.0×10-4C,质量m=0.10kg的带电体(可视为质点),在水平轨道 上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平
轨道上的D点(图中没有标出) .取g=10m/s2求:
(1)带电体在圆形轨道C点的速度大小. (2)PB间的距离XPB (3)D点到B点的距离XDB.
方向夹角为37° (取sin37°=0.6,cos37°。=0.8)。现将该小球从电场中某
点以初速度v0。竖直向上抛出。求运动过程中: (1)小球受到的电场力的大小及方向;
(2)小球从抛出点至最高点的电势能变化量;
(3)小球的最小速度的大小及方向。
9、如图,在水平方向的匀强电场中有一表面光滑、与水平面成45°角的绝缘 直杆AC,其下端(C端)距地面高度h=0.8m,有一质量为500g的带电小环套在
小滑块,(体积很小可视为质点),从C点由静止释放,滑到水平轨道上的A 点时速度减为零。若已知滑块与水平轨道间的动摩擦因数为μ=0.2,求:
(1)滑块通过B点时的速度大小;
(2)滑块通过B点时圆轨道B点受到的压力大小: (3)水平轨道上A.B两点之间的距离。
19、一个带正电的微粒,从A点射入水平方向的匀强电场中,微粒沿直线AB运 动,如图所示.AB与电场线夹角θ=30°,已知带电粒子的质量m=1.0×10-7
直杆上,正以某一速度沿杆匀速下滑,小环离开杆后通过C端的正下方P点,求:
(1)小环离开直杆后运动的加速度大小和方向; (2)小环从C运动到P过程中的动能增量;
(3)小环在直杆上匀速运动速度的大小;
10、竖直放置的两块足够长的平行金属板间有匀强电场,其电场强度为E,在 该匀强电场中,用丝线悬挂质量为m的带电小球,丝线跟竖直方向成θ角时小球

静电场经典计算题

静电场经典计算题

静电场计算题1、如图所示,绝缘水平面上静止着两个质量均为m ,电量均为+Q 的物体A 和B (A 、B 均可视为质点),它们间的距离为r ,与平面间的动摩擦因数均为μ,求: ①图示A 、B 静止时A 受的摩擦力为多大?②如果将A 的电量增至+4Q ,两物体开始运动,当它们的加速度第一次为零时,A 、B 各运动了多远?2、质量为m 、带电量为+q 的小球从距地面高为h 处以一定的初速度水平抛出.在距抛出点水平距离为l 处,有一根管口比小球直径略大的上下都开口的竖直细管,管的上口距地面12h .为使小球能无碰撞地从管子中通过,可在管子上方的整个区域里加一个电场强度方向水平向左的匀强电场,如图所示.求:小球的初速度v 0、电场强度E 的大小及小球落地时的动能E k .3、如图所示,空间存在着强度E =2.5×102N/C 方向竖直向上的匀强电场,在电场内一长为L =0.5m 的绝缘细线,一端固定在O 点,一端拴着质量m =0.5kg 、电荷量q =4×10-2C的小球.现将细线拉直到水平位置,使小球由静止释放,当小球运动最高点时细线受到的拉力恰好达到它能承受的最大值而断裂.取g =10m/s 2.求: (1)小球的电性;(2)细线能承受的最大拉力;(3)当小球继续运动后与O 点水平方向距离为L 时,小球距O 点的高度.E O4、如图所示.半径为r 的绝缘光滑圆环固定在竖直平面内,环上套有质量为m 的带正电的珠子,空间存在水平向右的匀强电场,珠子所受静电力是其重力的3/4倍.将珠子从环上最低点A 静止释放,求珠子所能获得的最大动能E k .。

5、如图所示,水平地面上方分布着水平向右的匀强电场。

一“L”形的绝缘硬质管竖直固定在匀强电场中。

管的水平部分长为l 1=0.2m ,离水平面地面的距离为h=5.0m ,竖直部分长为l 2=0.1m 。

一带正电 的小球从管的上端口A 由静止释放,小球与管间摩擦不计且小球通过管的弯曲部分(长度极短可不计)时没有能量损失,小球在电场中受到的电场力大小为重力的一半。

静电场三作业解

静电场三作业解

(C)空心球电量多;
(D)实心球电量多。
两球相互接触后,由于电荷仅分布在两球外表面,而 两球外表面完全相同,则均匀分配。
二、填空题:
1.一平行板电容器,极板面积为 S,相距为 d,若 B 板接地, 且保持 A 板的电势 UA= U0 不变,如图,把一块面积相同的带 电量为 Q 的导体薄板 C 平行的插入两板中间,则导体薄板的 电势 UC= _____.
uA
E1
d 2
2Q 1
3 0S
d 2
Qd
3 0 S
(2)若在A、B间充以相对介电常数为 r 的均匀电介质,再
求B板和C板上的感应电荷Q´B、Q ´ C 、及A板的电势U´A 。
uAC uAB
d E1 2 E2d
E1
q1
0S
E2
q2
0 r S
q1 d q2 d
0S 2 0 r S
CA B q1 q2
反证法:设这样一条电力线,在导体内
补线,形成闭合环路。计算该环路环流,
与静电场环路定理比较。
LE dl 0
违反了静电场环路定理,所以不存在这
样一条电力线。
压增大,电容减少。
与电源断开,极板上电量保持不变,则电容器中的场强
E
0
保持不变
C Q 0S
Ud
d增大,电容减小,Q不变,U增大。所以 [ E ] 正确。
5. 有两个带电不等的金属球,直径相等。但一个是空心
的,一个是实心的。现使它们互相接触,则这两个金属球
上的电荷
[B]
(A)不变化;
(B)平均分配;
⑴. 离球心30cm处的场强; ⑵. 两球间的电势差; ⑶. A球的电势。
(1) E Q1 Q2 5.998103v / m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静电场计算题编者:王恒波AB θ静电场计算题1、如图所示,a、b、c、d为匀强电场中四个等势面,相邻等势面间距离为2cm,已知ac间电势差Uac=80V,求:(1)设B点的电势为零,求A点的电势。

(2)将q=2×10-10C的点电荷由B移到C,最后到D,电场力所做的功Wbcd2、如图所示光滑斜面倾角为370,一带有正电荷的小物块质量为m,电荷量为q,置于斜面顶端A点,在沿水平方向加如图所示的匀强电场时,带电小物块恰好静止在斜面上。

(1)计算此时电场强度的大小;(2)从某时刻开始电场强度变成原来的1/2时,求小物块沿斜面下滑的加速度;(3)已知斜面AB长为L,则小物块到达斜面底端B点时的速度是多少?3、在如图所示的匀强电场中,有A、B两点,且A、B两点间的距离为x=0.20 m,已知AB连线与电场线夹角为 =60°,今把一电荷量q=-2x10-8C的检验电荷放入该匀强电场中,其受到的电场力的大小为F=4.0X10-4N,方向水平向左。

求:(1)电场强度E的大小和方向;(2)若把该检验电荷从A点移到B点,电势能变化了多少;(3)若A点为零电势点,B点电势为多少。

4、如图所示,极板A、B间匀强电场的场强E=2X105V/m、a、b两点相距10cm,a距A极板2cm,b距B极板3cm。

求:(1)a、b两点哪点电势高?(2)外力把点电荷q=1x10-7C由b匀速移到a做多少功?如果选b为零电势点,q在a 点的电势能是多少?(3)UAB是多少?5、如图所示,用长为l的绝缘细线拴一个质量为m、带电量为 +q的小球(可视为质点)后悬挂于O点,整个装置处于水平向右的匀强电场中。

将小球拉至使悬线呈水平的位置A后,由静止开始将小球释放,小球从A点开始向下CBA摆动,当悬线转过60角到达位置B 时,速度恰好为零。

求:(1)B、A两点的电势差UBA;(2)电场强度E ;(3)小球到达B点时,悬线对小球的拉力(4)小球到达B点时的加速度大小6、在真空中存在空间范围足够大的、水平向右的匀强电场.若将一个质量为m、带正电、电荷量为q的小球在此电场中由静止释放,小球将沿与竖直方向夹角为53°的直线运动.现将该小球从电场中某点以初速度v0竖直向上抛出,求运动过程中(sin 53°=0.8)(1)此电场的电场强度大小;(2)小球运动的抛出点至最高点之间的电势差U;(3)小球的最小动能.7、如图所示,在O点放置一个正电荷,在过O点的竖直平面内的A点,自由释放一个带正电的小球,小球的质量为m、电荷量为q。

小球落下的轨迹如图中虚线所示,它与以O为圆心、R为半径的圆(图中实线表示)相交于B、C两点,O、C在同一水平线上,∠BOC=30°,A距离OC的竖直高度为h。

若小球通过B 点的速度为v,试求:(1)小球通过C点的速度大小。

(2)小球由A到C的过程中电势能的增加量。

8、如图所示,沿水平方向的场强为E=6×103v/m的足够大的匀强电场中,用绝缘细线系一个质量m=8.0g的带电小球,线的另一端固定于O点,平衡时悬线与竖直方向成α角,α=37°,如图所示,求:(1)小球所带电的种类及电量;(2)剪断细线小球怎样运动,加速度多大?(g取10m/s2)9、夏季某日午后,某地区距地面约1 km的空中有两块乌云,相距3 km,它们因与空气摩擦带电,致使两块乌云之间的电势差能保持约为3×109V不变.已知空气的电场击穿场强为V/m.请对以下问题进行估算.(1)当两块乌云相距多少米时会发生电闪雷鸣?E AO60B(2)当电闪雷鸣时,若两块乌云之间通过的电荷量为500 C,可释放多少能量?(3)这次放电现象历时约0.01 s,则其平均电流约为多大?10、如图所示,光滑绝缘斜面AB长度L=2m,倾角为37°,有一个质量m=0.1kg,电荷量q=l×10﹣4C带电小球,置于斜面顶端A点,当沿水平向右方向加有一个匀强电场时,带电小球恰好能静止在斜面上.从某时刻开始,该电场的电场强度方向不变,大小变为原来的2/3,小球便开始下滑,先沿斜面运动到底端B 点,再进入一段放置在竖直平面内,半径为R=lm的光滑半圆管道BCD,C点为管道的中点(假设小球经过B点前后机械能无损失),求:(1)原来的电场强度大小;(2)小球运动到B点时的速度大小;(3)小球运动到C点时对管壁的作用力.(g取10m/s2)11、如图所示的匀强电场中,有a、b、c三点,ab=5cm,bc=12cm,其中ab 沿电场方向,bc和电场方向成60°角,一电子(其电荷量为e=1.6×10-19C)从a移动到b电场力做功为Wab= 3.2×10-18J求:(1)匀强电场的场强大小及方向。

(2)电子从b移到c,电场力对它做功。

(3)b、c两点的电势差等于多少?12、如图所示,在场强E=104 N/C的水平匀强电场中,有一根长L=15 cm 的细线,一端固定在O点,另一端系一个质量m=3 g,带电荷量q=2×10-6 C 的小球,当细线处于水平位置时,小球从静止开始释放,则小球到达最低点B时的速度是多大.小球的速度最大时绳与竖直方向的夹角是多大?13、空间有一匀强电场,电场方向与纸面平行。

一带正电,电量为q ,质量为m 的小球(重力不计),在恒定拉力F 的作用下沿虚线以速度0v 由M 匀速运动到N ,如图所示.已知力F 和MN 间夹角为 ,MN 间距离为L ,则:(1)匀强电场的电场强度大小为多少?(2)MN 两点的电势差为多少?(3)当带电小球到达N 点时,撤去外力F ,则小球回到过M 点的等势面时的动能为多少?MN14、如图所示,一质量为m、带电量为q的小球,用绝缘细线悬挂在水平向右的匀强电场中,静止时悬线向左与竖直方向成θ角,重力加速度为g。

(1)判断小球带何种电荷。

(2)求电场强度E。

(3)若在某时刻将细线突然剪断,求经过t时间小球的速度vt15、一长为L的细线,上端固定.下端栓一质量为m、带电荷量为q的小球.处于如图所示的水平向右的匀强电场中.开始时,将线与小球拉成水平,小球静止在A点,释放后小球由静止开始向下摆动,当细线转过60°角时小球到达B点时的速度恰好为零.试求(1)、AB两点的电势差UAB;(2)、匀强电场的场强大小;(3)、小球到达B点时,细线对小球拉力的大小;16、如图是一匀强电场,已知场强E=2×102N/C。

现让一个电荷量q=-4×10-8 C的电荷沿电场方向从M点移到N点,MN间的距离s=30 cm。

试求:(1)电荷从M点移到N点电势能的变化;(2)M、N两点间的电势差。

17、如图所示,带等量异种电荷的平行金属板,其间距为d,两板问的电势差为U,极板与水平方向成37°角放置,有一质量为m的带电粒子从下极板上端附近释放,恰好沿水平方向从上极板下端穿过电场,求:(1)粒子带何种电荷?电量多少?(2)粒子的加速度多大?粒子射出电场时的速度多大?18、在一个水平面上建立x轴,在过原点O垂直于x轴的平面的右侧空间有一匀强电场,场强大小E=6×105N/C,方向与x轴正方向相同,在O处放一个带电量q=-5×10-8C,质量m=10g的绝缘物块。

物块与水平面间的滑动摩擦系数μ=0.2,沿x轴正方向给物块一个初速度v=2m/s,如图所示,求物块最终停止时的位置。

(g 取10m/s2)19、如图所示,水平地面上方分布着水平向右的匀强电场。

一“L”形的绝缘硬质管竖直固定在匀强电场中。

管的水平部分长为l1=0.2m ,离水平面地面的距离为h=5.0m ,竖直部分长为l2=0.1m 。

一带正电 的小球从管的上端口A 由静止释放,小球与管间摩擦不计且小球通过管的弯曲部分(长度极短可不计)时没有能量损失,小球在电场中受到的电场力大小为重力的一半。

求: ⑴小球运动到管口B 时的速度大小; ⑵小球着地点与管的下端口B 的水平距离。

(g=10m/s2)20、如图所示,空间存在着强度E=2.5×102N/C 方向竖直向上的匀强电场,在电场内一长为L=0.5m 的绝缘细线,一端固定在O 点,一端拴着质量m=0.5kg 、电荷量q=4×10-2C 的小球.现将细线拉直到水平位置,使小球由静止释放,当小球运动最高点时细线受到的拉力恰好达到它能承受的最大值而断裂.取g=10m/s2.求:(1)小球的电性;(2)细线能承受的最大拉力;(3)当小球继续运动后与O 点水平方向距离为L 时,小球距O 点的高度.21、如图所示,绝缘水平面上静止着两个质量均为m ,电量均为+Q 的物体A 和B (A 、B 均可视为质点),它们间的距离为r ,与平面间的动摩擦因数均为μ,求:①图示A 、B 静止时A 受的摩擦力为多大?②如果将A 的电量增至+4Q ,两物体开始运动,当它们的加速度第一次为零时,A 、B 各运动了多远?22、如图所示,一根长L =1.5 m 的光滑绝缘细直杆MN ,竖直固定在场强为E =1.0×105 N/C 、与水平方向成θ=30°角的倾斜向上的匀强电场中。

杆的下E O B A端M 固定一个带电小球A ,电荷量Q =+4.5×10-6 C ;另一带电小球B 穿在杆上可自由滑动,电荷量q =+1.0×10一6 C ,质量m =1.0×10一2 kg 。

现将小球B 从杆的上端N 静止释放,小球B 开始运动。

(静电力常量k =9.0×109 N·m 2/C 2,取g =l0 m/s 2)⑴小球B 开始运动时的加速度为多大?⑵小球B 的速度最大时,距M 端的高度h 1为多大?⑶小球B 从N 端运动到距M 端的高度h 2=0.6l m 时,速度为v =1.0 m/s ,求此过程中小球B 的电势能改变了多少?23、如图所示.半径为r 的绝缘光滑圆环固定在竖直平面内,环上套有质量为m 的带正电的珠子,空间存在水平向右的匀强电场,珠子所受静电力是其重力的3/4倍.将珠子从环上最低点A 静止释放,求珠子所能获得的最大动能E k .。

24、如图24所示,在E = 103V/m 的水平向左匀强电场中,有一光滑半圆形绝缘轨道竖直放置,轨道与一水平绝缘轨道MN 连接,半圆轨道所在竖直平面与电场线平行,其半径R = 40cm ,一带正电荷q = 10-4C 的小滑块质量为m = 40g ,与水平轨道间的动摩因数 = 0.2,取g = 10m/s 2,求:(1)要小滑块能运动到圆轨道的最高点L ,滑块应在水平轨道上离N 点多远处释放?(2)这样释放的滑块通过P 点时对轨道压力是多大?(P 为半圆轨道中点)25、质量为m 、带电量为+q 的小球从距地面高为h 处以一定的初速度水平抛出.在距抛出点水平距离为l 处,有一根管口比小球直径略大的上下都开口的竖直细管,管的上口距地面h/2.为使小球能无碰撞地从管子中通过,可在管子上方的整个区域里加一个电场强度方向水平向左的匀强电场,如图所示.求:小球的初速度v 0、电场强度E 的大小及小球落地时的动能E k .26、如图所示,挡板P 固定在足够高的水平桌面上,小物块A 和B 大小可忽A B M N E θ略,它们分别带有+QA 和+QB的电荷量,质量分别为mA和mB。

相关文档
最新文档