人教版数学七年级下第五章平行线知识结构图
人教版七年级下册数学教学课件 第五章 相交线与平行线 命题、定理、证明
课程讲授
2 真命题与假命题
归纳: 1.要判断一个命题为真命题,可以用演绎推理加以
论证; 2.要判断一个命题为假命题,只要举出一个例子,
说明该命题不成立.
课程讲授
3 定理与证明
定义:数学中这些命题的正确性是人们在长期实践中
总结出来的,并把它们作为判断其他命题真假的原始 依据,即出发点.这样的真命题视为基本事实.我们也 称它为公理.
理才能作出判断,这个推理过程叫作证明.
证明几何命题的一般步骤:
1.明确命题中的_已__知___和__求__证__; 2.根据题意,_画__出__图__形__,并用数学符号表示已知和求证; 3.经过分析,找出由已知推出_要__证__的__结__论_的途径,写出证明过程.
课程讲授
3 定理与证明
例 已知直线b∥c, a⊥b .求证:
a⊥c.
b
c
证明:∵ a ⊥b(已知), ∴ ∠1=90°(垂直的定义).
1
2
a
∵ b ∥ c(已知),
∴∠1=∠2(两直线平行,同位角相等),
∴ ∠2=∠1=90°(等量代换), ∴ a ⊥ c(垂直的定义).
课程讲授
3 定理与证明
练一练:求证:内错角相等,两直线平行.
已知:如图,直线l3分别与l1,l2交于点A,点B,且∠1=∠2.
求证:l1∥l2. 证明:∵ ∠1=∠2 (已知),
∠3=∠2 (对顶角相等),
l3
1(
)3 B
l2
)2 A
l1
∴ ∠1=∠3 (等量代换).
∴ l1∥l2 (同位角相等,两直线平行).
随堂练习
1.下列句子中,哪些是命题?哪些不是命题? ⑴对顶角相等; 是 ⑵画一个角等于已知角; 不是 ⑶两直线平行,同位角相等; 是 ⑷a,b两条直线平行吗?不是 ⑸温柔的李明明; 不是 ⑹玫瑰花是动物; 是 ⑺若a2=4,求a的值; 不是 ⑻若a2= b2,则a=b. 是
人教版七年级下册数学课件第5章5.2.1平行线及其基本事实
精彩一题 17.问题:两条直线可以将平面分成几部分?
解:如图 a,两条直线平行时,它们将平面分成三部分; 如图 b,两条直线不平行时,它们将平面分成四部分.
【思路点拨】 根据三条直线的交点个数情况(0 个、1 个、2 个、 3 个)进行分类讨论.
精彩一题 根据上述内容,解答下面的问题. (1)上面问题的解题过程应用了__分__类____的数学思想(填“转 化”“分类”或“整体处理”); (2)三条直线可以将平面分成几部分? 解:如图所示.
【答案】A
课堂导练
4.如果线段 AB 与线段 CD 没有交点,则( C ) A.线段 AB 与线段 CD 一定平行 B.线段 AB 与线段 CD 一定不平行 C.线段 AB 与线段 CD 可能平行 D.以上说法都不正确
课堂导练 5.如图,将一张长方形纸对折三次,产生的折痕间的位置关系
是( C )
A.平行
B.垂直
C.平行和垂直 D.无法确定
课堂导练 6.如图,经过点 P 画一条直线使它与直线 l 平行.
画法:(1)一落:把三角尺的一边落在__直__线__l____上; (2)二____靠____:紧靠三角尺的另一边放一直尺 AB;
课堂导练
(3)三____移____:把三角尺沿直尺的边移到三角尺的第一边恰 好经过点 P 的位置;
经 (1)过直直线线l 外(2一)靠点,(3有)移且只(有4)画
D.不存在或者只有一条
提一示条: 直点线击与这条进直入线习平题行
【点拨】 当点 第一五条章 直线相与交这线条与直平线行平线行
(第1)1直课线时l 平(2行)靠线及(3其)移基本(事4)画实
P
在直线
AB
上时,这样的直线不存在;当点
新人教版七年级数学下册平行线及判定
③过一点可以而且只可以画一条直线与已知直线
平行。
(╳)
D 2、用符号“∥”表示图中平行四
C
边形的两组对边分别平行。
AB∥ CD,AD∥ BC。 A
B
巩固练习
下列说法正确的是( D )
A、在同一平面内,两条直线的位置关系有相交, 垂直,平行三种。
B、在同一平面内,不垂直的两直线必平行。 C、在同一平面内,不平行的两直线必垂直。 D、在同一平面内,不相交的两直线一定不垂直。
5.2 平行线及其判定 5.2.2 平行线的判定
平行线的画法
一放 二靠 三移 四画
从画图过程,三角板起到什么作用?
要判断直线a //b,你有办法了吗?
平行线的判定定理1: 两条直线被第三条直线所截, 如果同位角相等,那么两直线 平行。简单地说: 同位角相等,两直线平行。 如图: ∵ ∠1=∠2(已知)
C
相交的两
Hale Waihona Puke 条直线。 abB
直线AB平行
AB D
CD 于直线CD
a b 直线a平行
于直线b
平面内的两条直线除平行 外还有什么位置关系?
同一平面内的两条不重 合的直线的位置关系只有两种:
相交或平行
课内练习
1、判断下列说法是否正确,并说明理由。
①不相交的两条直线是平行线。
(╳)
②在同一平面内,两条不相交的线段是平行线。(╳)
E
A
B
4
C
7
D
F
两条直线被第三条直线所截, 如果同旁内角互补,那么这两条直线平行.
简单地说:同旁内角互补,两直线平行.
判定两条直线平行的方法
文字叙述
符号语言
七年级数学人教版下册第五章5.3相交线、平行线中角的计算的四种常见题型课件(共25张PPT)
解:∵在三角形EFG中,∠EFG=90°,∠E=35°,
∴∠EGF=180°-90°-35°=55°.
∴∠AOE=2∠BOD=2x°,
题型 2 利用垂线求角 ∴∠BOC=
×180°=35°,
(4)由(3)可知∠BOC+∠AOD=180°,
∴∠AOD=∠AOC+∠COD=90°-∠BOC+90°=180°-∠BOC.
再见
∴∠EFB=∠EHB-∠E=55°-35°=20°.
∴∠EGF=∠EGD=55°.
(4)由(3)可知∠BOC+∠AOD=180°,
(3)∠AOD与∠BOC互补.理由如下:
(3)根据(1)(2)的结果猜想∠AOD与∠BOC有怎样的关系,并 根据图①说明理由;
(4) 如 图 ② , 若 ∠ BOC ∶ ∠ AOD = 7 ∶ 29 , 求 ∠ BOC 和 ∠AOD的度数.
人教版数学七年级下册
第五章
5.3.4 相交线、平行线中角的四种常见题型
合作探究 题型 1 利用余角、平角、对顶角转换求角
1.如图,三条直线AB,CD,EF相交于同一点O.若∠AOE =2∠BOD,∠COF比∠AOE大30°,求∠AOC的度数.
解:设∠AOC=x°,则∠BOD=∠AOC=x°. ∴∠AOE=2∠BOD=2x°, ∠COF=∠AOE+30°=2x°+30°. ∵∠AOE+∠AOC+∠COF=180°, ∴2x+x+2x+30=180,解得x=30. ∴∠AOC=30°.
解:∠AOD 与∠BOC 互补.理由如下: ∵OA⊥OB,∴∠AOB=90°. ∴∠AOC=∠AOB-∠BOC=90°-∠BOC. ∵OC⊥OD, ∴∠COD=90°. ∴∠AOD=∠AOC+∠COD=90°-∠BOC+ 90°=180°-∠BOC. ∴∠AOD+∠BOC=180°,即∠AOD 与∠BOC 互补.
人教版数学初一下册第五章 相交线与平行线 5.3.2:命题、定理、证明(1)课件
如果两个角是同旁内角,那么这两个角互补;
(5)对顶角相等.如果两个角是对顶角,那么这两个角相等.
16
知识点一:命题
学以致用
2、改写成“如果……那么……”的形式。并指出下列各命题 的题设和结论,
①、内错角相等; ②、两条平行线被第三直线所截,同位角相等; ③、同角的余角相等; ④、同平行于一直线的两直线平行; ⑤、直角三角形的两个锐角互余; ⑥、等角的补角相等; ⑦、正数与负数的和为0。
①如果一个数能被4整除,那么它也能被2整除。 ②如果两个角互补,那么它们是邻补角。
③相等的角是对顶角.
1
2
1 2
20
知识点二:真命题和假命题
归纳总结
判断一个命题真假的方法:
利用已有的知识,通过观察、验证、推理、举 反例等方法。
判断一个命题是假命题的方法:
判断一个命题是假命题,只要举出一个例子, 说明该命题不成立就可以了,这种方法称为举反例。
,那么..."的形式,会区分命题的题设和结论。 2.知道真命题和假命题的概念,会通过举反例判 断一个命题是假命题.
重点难点 重点:命题的概念以及真命题和假命题的概念.
难点:区分命题的题设和结论.
3
知识点一:命题
新知探究
刚刚我们复习了平行线的性质与判定,这些语句都对某 一件事情作出判断,如:同位角相等,两条直线平行.
(2)题设是“两直线平行”,结论是“同位角相等”;
(3)题设是“两个角是邻补角”,结论是“这两个角互补”.
13
知识点一:命题
互动探究
先独立完成导学案互动探究2,再同桌相互交流, 最后小组交流;
七年级数学下册:第五章相交线与平行线5.1相交线5.1.2垂线第2课时垂线段教学课件(新版新人教版)
解:如答图所示, (1)沿 AB 走,两点之间线段最短; (2)沿 AC 走,垂线段最短; (3)沿 BD 走,垂线段最短.
7.如图 5-1-34,为了解决 A,B,C,D 四个小区的缺水问题,市政府准备 投资修建一个水厂.
(1)不考虑其他因素,请你画图确定水厂 H 的位置,使之与四个小区的距离 之和最小;
知识管理
1.垂线段的概念及性质 定 义:从直线外一点引一条直线的 垂 线,这点和 垂足 之间的线
段叫做垂线段. 性 质:连接直线外一点与直线上各点的所有线段中,垂线段最短,简 单说成:垂线段最短.
2.点到直线的距离 定 义:直线外一点到这条直线的 垂线段 的长度,叫做点到直线的距离.
注 意:垂线、垂线段和点到直线的距离是三个不同的概念,不能混淆.垂 线是直线;垂线段是一条线段;点到直线的距离是垂线段的长度,是一个数 量,不能说垂线段是点到直线的距离.
7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。 8、真想干总会有办法,不想干总会有理由;面对困难,智者想尽千方百计,愚者说尽千言万语;老实人不一定可靠,但可靠的必定是老实人;时间,抓起来是黄金,抓不起来是流水。14、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。
9、成功的道路上,肯定会有失败;对于失败,我们要正确地看待和对待,不怕失败者,则必成功;怕失败者,则一无是处,会更5、别着急要结果,先问自己够不够格,付出要配得上结果,工夫到位了,结果自然就出来了。 6、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。
7、别人对你好,你要争气,图日后有能力有所报答,别人对你不好,你更要争气望有朝一日,能够扬眉吐气。 8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。 9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。
七年级下册数学知识点归纳
七年级下册第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平移命题、定理二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
三、定理与性质对顶角的性质:对顶角相等。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
第六章平面直角坐标系一、知识结构图有序数对平面直角坐标系平面直角坐标系用坐标表示地理位置坐标方法的简单应用用坐标表示平移二、知识定义有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
人教版数学七年级下册思维导图
第五章相交线与平行线5.1相交线5.1.1相交线1.邻补角(定义:一条公共边,另一边互为反向延长线)2.对顶角(定义:两边互为反向延长线)性质:对顶角相等(同角的补角相等)5.1.2垂线1.垂线(定义:两条线互相垂直,其中一条直线是直线的垂线)2.垂足(定义:两条互相垂直的线的交点)3.定理:①在同一平面内,过一点有且只有一条直线与已知直线垂直②垂线段最短:连接直线外一点与直线上个点的所有线段中,垂线段最短③点到直线的距离(定义:直线外一点到这条直线的垂线段的长度)5.1.3同位角、内错角、同旁内角1.同位角(定义:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角)2.内错角(定义:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间)3.同旁内角(定义:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,)5.2平行线及其判定5.2.1 平行线1.平行(定义:永不相交)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)5.2.2平行线的判定1.同位角相等,两直线平行2.内错角相等,两两直线平行直线平行3.同旁内角互补,两直线平行5.3平行线的性质5. 3.1平行线的性质1.两直线平行,同位角相等2.两直线平行,内错角相等3.两直线平行,同旁内角互补5. 3. 2命题、定理、证明1.命题:题设、结论①真命题:题设成立,结论一定成立②假命题:题设成立,结论不一定成立2.定理3.证明5. 4平移6.1 平方根1.算术平方根、被开方数(规定:0 的算术平方根是 0)2.平方根、开平方①正数有两个互为相反数的平方根②0 的平方根为 0 ③负数没有平方根6.2立方根1.立方根、开立根6.3实数1.无理数:无限不循环的小数2.有理数:有限小数和无限循环小数(包含 0)3.实数 a 的相反数是-a4.一个正实数的绝对值是它本身,一个负实数的绝对值时它的相反数,0 的绝对值是07. 1平面直角坐标系7. 1. 1有序数对(a, b)7. 1. 2平面直角坐标系1.横轴X,纵轴y,原点2.象限(坐标轴上的点不属于任何象限)7. 2坐标方法的简单应用7. 2. 1用坐标表示地理位置7. 2. 2用坐标表示平移& 1二元一次方程组1.二元一次方程:两个未知数的次数都是1& 2消元一一解二元一次方程组1.带入消元法2.加减消元法&3实际问题与二元一次方程组1.设未知数2.列方程组*8. 4三元一次方程组的解法9.1不等式9. 1. 1不等式及其解集1•不等式的解(值)2•解集(含未知数的不等式的所有的解)9. 1. 2不等式的性质1∙不等式两边加(或减)同一个数(或式子),不等号的方向不变2.不等式两边乘(或除以)同一个正数,不等号的方向不变3.不等式两边乘(或除以)同一个负数,不等号的方向改变9. 2 一元一次不等式9. 3 一元一次不等式组第十章数据的收集、整理与描述< ______________________________________ √10.1统计调查1•全面调查2.抽样调查3.简单随机抽样调查4.数据处理的一般过程:调查、收集数据、整理数据(制表)、描述数据(绘图10.2直方图1.计算最大值和最小值的差2.决定组距和组数3.列频数分布表4.画频数分布直方图10. 3课题学习从数据谈节水:条形图,扇形图,折线图,直方图)、分析数据、得出结论。
人教版七年级数学课件《平行线》
两端可以无限延伸的三条直线.转动直线a,想象一下,在这个过
程中,有没有直线a与直线b不相交的位置呢?
平行线定义:
在同一个平面内,不相交的两条直线叫
做平行线.
(在同一平面内,不重合的两条直线只有
两种位置关系:相交和平行.)
知识精讲
人教版数学七年级下册
平行线在生活中是很常见的,你能在下面的图片中找出平行线吗?
A.3个
B.2个
②若与相交,与相交,则与相交;
④过一点有且只有一条直线与已知直线平行.
C.1个
D.0个
【分析】根据平行线公理及推论可知,①正确;
若与相交,与相交,则与可能相交或平行,②错误;
对顶角相等,但相等的角不一定是对顶角,③错误;
过直线外一点有且只有一条直线与已知直线平行,④错误.
情景引入
人教版数学七年级下册
你喜欢滑雪运动吗?早在5000年前,人们就把滑雪作为雪上
旅行的一种方式,今天滑雪在许多国家和地区都是一项十分普及
的运动.
你知道滑雪运动最关键是什么吗?
滑雪运动最关键是要保持两只雪橇板
的平行!
知识精讲
人教版数学七年级下册
如图,分别将木条a、b与木条c钉在一起,并把它们想象成
人教版数学七年级下册
第五章第2节—
PEOPLE
EDUCATION
学校:XXXX
VERSION
OF
老师:XXXX
THE
平行线
SEVEN
GRADE
MATH
VOLUME
学习目标
1.理解平行线的定义;
2.掌握平行线的画法及平行公理及其推论.(重
点、难点)
人教版数学七年级下册
人教版七年级数学下册知识点及典型试题汇总——适用于期末总复习
人教版七年级数学下册知识点汇总第五章相交线与平行线相交线相交线垂线同位角、内错角、同旁内角平行线:在同一平面内,不相交的两条直线叫平行线定义:___________________________________________判定1 :同位角相等,两直线平行平行线及其判定平行线及其判定平行线的判定判定2 :内错角相等,两直线平行判定3 :同旁内角互补,两直线平行判定4 :平行于同一条直线的两直线平行性质1:两直线平行,同位角相等性质2:两直线平行,内错角相等平行线的性质性质3:两直线平行,同旁内角互补性质4:平行于同一条直线的两直线平行命题、定理平移、知识网络结构二、知识要点1、在同一平面内,2、在同一平面内, 两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
不相交的两条直线叫平行线。
如果两条直线只有-可编辑修改-一个公共点,称这两条直线相交;如相交线与平行线的两个角叫同位角。
图3中,共有对同位角:果两条直线没有公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角的性质:邻补角互补。
如图1所示,与互为邻补角,_____ 与___ 互为邻补角。
____ + _ = 180 ° ;______ +____ = 180 ° ;_____ +____ = 180 ° ;____ +____ = 180 °。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。
对顶角的性质:对顶角相等。
如图1所示,与互为对顶角。
= ;=5、两条直线相交所成的角中,如果有一个是直角或90。
时,称这两条直线互相垂直,其中一条叫做另一条的垂线。
如图2所示,当=90。
时,丄o b垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
人教版七年级下数学《命题、定理、证明》相交线与平行线PPT课件
作用
线段的基本事实:两点间线段最短.
平行线的判定-基本事实:同位角相等,两直线平行.
平行线的基本事实:经过直线外的一点有且仅有 一条直线与已知直线平行.
定理:有些真命题它们的正确性是经过推理证实的, 也可以作为继续推理的依据.
作用 学过的定理: (1)补角的性质:同角或等角的补角相等.
(2)余角的性质:同角或等角的余角相等.
3.下列说法正确的是__①__④__⑤___ ① -3是9的平方根; ②25的平方根是5; ③ -36的平方根是-6; ④平方根等于0的数是0; ⑤64的算术平方根是8.
4.下列说法不正确的是___B___ A.0的平方根是0 B. 22 的平方根是2 C.非负数的平方根互为相反数 D.一个正数的算术平方根一定大于这个数的相反数
第五章 相交线与平行线
命题、定理、证明
知识回顾
前面, 我们学过一些对某一件事情作出判断的语句, 例如:
(1)如果两条直线都与第三条直线平行, 那么这两条直线 也互相平行;
(2)两条平行线被第三条直线所截, 同旁内角互补;
(3)对顶角相等;
(4)等式两边加同一个数, 结果仍是等式.
你能说明其中的条件 和结论分别是什么吗?
情景导入
操场上,裁判员向老师汇报训练成绩.
小刚的百米成 绩有进步,已 达到9秒9.
好!继续努 力,争取跑
进9秒.
获取新知 知识点一:命题的概念、形式和分类
能对一件事情作出判断的语句, 叫做命题.
备注: 1.只要能作出判断,无论判断的结果是对还是错 如对顶角相等(对);互补的角是邻补角(错); 2.常见的不能作出判断的情况 表示动作,或疑问句,或类似感叹句,或表示选择
没有,因为一个数的平方不可能是负数.
人教版数学七年级下册平行线教学课件2
不努力,理想与现实永远不会相交;
平行线定义:在同一平面内,不相交的两条直线叫做平行线。
03课堂练习 那么过直线外一点作直线的平行线能画几条呢?
经过直线外一点,有且只有一条直线与这条直线平行.(平行公理)
因为AB//EF,CD//EF
因为AB//EF,CD//EF
也就是说,AB与CD不能相交,只能平行。
经过直线外一点有且只有一条直线与已知直线平行
2.相交、垂直 人教版七年级数学下册第五章相交线与平行线
经过直线外一点,有且只有一条直线与这条直线平行.(平行公理)
那么直线AB与CD可能相交吗?
3.平行、垂直 说明:人们在长期实践中总结出来的结论叫基本
如图:AB与CD平行吗?这又说明了什么? 如何表示它们之间的位置关系呢?
平行线画法:一贴、二靠、三移、四画。
4.相交、垂直、平行 完成下列推理,并在括号内
人教版七年级数学下册第五章相交线与平行线
那么过直线外一点作直线的平行线能画几条呢?
∴A、B、C三点______(
)
如果两条直线都和第三条直线平行,那么这两条直线也互相平行.
探究二:平行线的画法(画一画)
(1)贴 (2)靠 (3)移 (4)画
平行公理:经过直线外一点,有且只有一条直线 与这条直线平行(唯一性)。
平行公理的推论:如果两条直线都和第三条直线 平行,那么这两条直线也互相平_EF(
)
寄语
每个图形中的两条直线会相交吗?
平行于同一直线的两条直线平行.
完成下列推理,并在括号内
因为AB//EF,CD//EF
现实 只要努力,理想也会变成现实. 作图:会用直尺和三角板画平行线,会根据几何语句画出图形;
平行线定义:在同一平面内,不相交的两条直线叫做平行线。
人教版数学第5章平行线的性质与判定及辅助线模型
平行线判定和性质以及四大模型汇总第一部分平行线的判定判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.第二部分平行线的性质性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补第三部分平行线的四大模型模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型点P在EF左侧,在AB、CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.第四部分平行线的四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.第五部分平行线的四大模型的应用案例1如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .2如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.3如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .4如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .5如图所示,AB ∥CD ,∠E =37°,∠C = 20°,则∠EAB 的度数为 .6 如图,AB ∥CD ,∠B =30°,∠O =∠C .则∠C = .7如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.8如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).9如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .10如图,己知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.11如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.12如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°133如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .14如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .15 已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.16已知AB∥EF,求∠l-∠2+∠3+∠4的度数.17如图(l ),已知MA 1∥NA n ,探索∠A 1、∠A 2、…、∠A n ,∠B 1、∠B 2…∠B n -1之间的 关系.(2)如图(2),己知MA 1∥NA 4,探索∠A 1、∠A 2、∠A 3、∠A 4,∠B 1、∠B 2之间的关系. (3)如图(3),已知MA 1∥NA n ,探索∠A 1、∠A 2、…、∠A n 之间的关系.如图所示,两直线AB ∥CD 平行,求∠1+∠2+∠3+∠4+∠5+∠6.18如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F . (1) 若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;(2) 当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPBQ∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;(3) 当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPBQ∠∠的值足否定值,请在图2中将图形补充完整并说明理由.第六部分 平行线的四大模型实战演练1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).A . 180°B . 270°C . 360°D . 450° 2 若AB ∥CD ,∠CDF =32∠CDE ,∠ABF =32∠ABE ,则∠E :∠F =( ).A .2:1B .3:1C .4:3D .3:23.如图3,己知AE ∥BD ,∠1=130°,∠2=30°,则∠C = .4.如图,已知直线AB ∥CD ,∠C =115°,∠A = 25°,则∠E = .5. 6. 7.8.如阁所示,AB∥CD,∠l=l l0°,∠2=120°,则∠α= .9.如图所示,AB∥DF,∠D =116°,∠DCB=93°,则∠B= .10.如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50°,∠2 =60°,则∠3的度数为 .11.如图,AB∥CD,EP⊥FP, 已知∠1=30°,∠2=20°.则∠F的度数为.9.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数.10.已知,直线AB∥CD.(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是.第七部分平行线的性质和判定综合应用1.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD =95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120°D.125°2.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°3.如图,AE∥BF,∠1=110°,∠2=130°,求∠3的度数为()4.如图,∠B+∠C=180°,∠A=50°,∠D=40°,则∠AED=.5.如图,如果∠C=70°,∠B=135°,∠D=110°,那么∠1+∠2=6.如图,AB∥CD,求∠1+∠2+∠3+∠4=7.如图,AB∥CD,试找出∠B、∠C、∠BEC三者之间的数量关系.8.如图,三角形ABC中,点E为BC上一点(1)作图:过点E作EM∥AC交AB于M,过点E作EN∥AB交AC于N;(2)求∠A+∠B+∠C的度数,写出推理过程.9.如图,AB∥CD,BE平分∠ABF,DE平分∠CDF,∠BFD=120°,求∠BED.10.如图,AC∥BD.(1)作图,过点B作BM∥AP交AC于M;(2)求证:∠PBD﹣∠P AC=∠P.11.如图,AB∥CD,∠B=∠C,求证:BE∥CF.12.如图①,木杆EB与FC平行,木杆的两端B,C用一橡皮筋连接,现将图①中的橡皮筋拉成下列各图②③的形状,请问∠A、∠B、∠C之间的数量关系?。
人教版七年级数学下册精品教学课件 第五章 相交线与平行线 平行线的判定
∴a∥b(同位角相等,两直线平行).
∵∠3=∠4,∠2=∠5,∠2+∠3=180°, ∴∠4+∠5=180°,
∴a∥b(同旁内角互补,两直线平行).
课堂小结
判定两条直线是否平行的方法有: 1.平行线的定义. 2.如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 3.平行线的判定方法: (1)同位角相等, 两直线平行. (2)内错角相等, 两直线平行. (3)同旁内角互补, 两直线平行 4.如果两条直线都与第三条直线垂直,那么这两条直线也互相平行.
知识点四 在同一平面内,垂直于同一条直线的两条直线平行 在同一平面内,如果两条直线都垂直于同一条直线,那么
两条直线平行吗?为什么?
已知条件:直线 b 与直线 c 都垂直于直线 a .要说明的
结论:直线 b 与直线 c 平行吗? 解法一:如图,∵ b⊥a,∴ ∠1= 90°.
同理∠2= 90°.∴ ∠1=∠2.
A
明,如果同位角相等,那么AB∥CD.
E
P
H1
D
G2 B F
一般地,有如下利用同位角判定两条直线平行的方法:
判定方法1 两条直线被第三条直线所截,如果同位角相等,
那么这两条直线平行.
简单说成:同位角相等,两直线平行.
A
几何语言:
1
∵∠1=∠2(已知)
∴l1∥l2(同位角相等,两直线平行)
l2
2
l1
c
a
2
43
b
1
2.如图,直线AE ,CD 相交于点O ,如果∠A=110°,∠1= 70°,就可以说明AB∥CD,这是为什么?
解:因为∠1=∠AOD(对顶角相等),∠1= 70°,所以∠AOD=70°. 又因为∠A=110°,所以∠A+∠AOD=
(新人教版)七年级数学下册:5.2.2《平行线的判定》教学课件PPT
【答案】平行
5.2.2直线平行的条件
1.如图5-41,点E在CD上,点F在BA上,G是AD延长线上一点. (1)若∠A=∠1,则可判断__C__D___∥__A__B___,因为 ___同__位__角__相__等__,_两__直__线__平__行___. (2)若∠1=∠____C_____,则可判断 AG∥BC,因为_内__错__角__相__等__,__两__直__线__平__行. (3)若∠2+ ∠__E__F_B__=180°,则可判 断CD∥AB,因为_同__旁__内__角__互__补__,_两__直__线_ 平行
5.2.2直线平行的条件
【例3】如图3,E是AB上的一点.
(1)知道了∠DEC=∠ADE,可以判定哪两条直线平行?为 什么?
(2)知道了∠AEC+∠DCE=180°,
可以判定哪两条直线平行?为什么? D
C
(3)知道了∠AED=∠B,可以判定 哪两条直线平行?为什么?
A
E
B
【解答】(1)AD∥CE,内错角相等,两直线平行;
方法2:两条直线被第三条直线所截,如果内错角相等,那么 这两条直线平行.(简称:内错角相等,两直线平行.)
5.2.2直线平行的条件
问题:在图4中,如果同旁内角∠2+∠4=180°,那么a,b 平行吗? 解∵∠2+∠4=180°(已知) 又∵∠1+∠4=180°(邻补角的定义)
∴∠1=∠2(同角的补角相等) ∴a∥b (同位角相等,两直线平行) 方法3: 两条直线被第三条直线所截,如果同旁内角互补,那 么这两条直线平行.(简称:同旁内角互补,两直线平行.)
4.如图5-44,直线AB、CD被直线EF所截,使
∠1=∠2≠90°,则( D )