台达A2伺服原点回归

合集下载

台达DVP-ES2C系列与ASDA-A2伺服电机调试方法

台达DVP-ES2C系列与ASDA-A2伺服电机调试方法

台达绝对型编码器伺服系统的参数设置(DVP32ES200RC/TC与ASDA-A2 伺服驱动器)使用之前需要对CANopen型号的PLC进行韧体的更新。

(对应的版本为V3.43)刻录方式:1.PC 要与 ES2-C PLC 通过 IFD6601 链接。

2.点开有.exe 的文件,选择正确的 COM口。

3.鼠标点击 START burn 开始刻录,待PLC上面的EPROM指示灯闪烁红色以后,重新启动PLC,4.重启后,再次鼠标点击 START burn 开始刻录可以看到白色进度条在移动(红色进度条也是一样的,白色代表版本升级,红色代表版本降级),同时看到 Progress 有显示百分数值,到达百分之百为刻录完成。

5.刻录后检查版本刻录情况一,硬件 DI 信号配置 :DI1 → PL : 正向运转禁止极限,为 B 接点,必须时常导通(ON),否则驱动(P2-10),用常闭接近开关,设置为23.器显示异警。

DI2 → NL : 逆向运转禁止极限,为 B 接点,必须时常导通(ON),否则驱(P2-11),用常闭接近开关,设置为22.动器显示异警。

DI3 → EMGS : 为 B 接点,必须时常导通(ON),否则驱动器显示异警。

(P2-12),用常闭接近开关,设置为21.DI4 → ORGP : 在内部位置缓存器模式下,在搜寻原点时,此讯号接通后伺服将此点之位置当成原点。

(可以不接)二,手动设定参数 :在使用伺服专用指令之前,需要先将伺服做一些初始化设定,步骤如下 :1.将伺服 P2-08 设置为 10,回归原厂设定。

2.将伺服断电后重新上电。

3.设定伺服控制模式,将 P1-01 设置为 0001(PR 模式)具体方向可以根据实际情况更改。

4.P3-01通讯速度设置为 0403(1M)。

5.站号设定 : 依照需要的台数,分别设置每台伺服的 P3-00,请依序设定为 1、2、3 …最多可设定 8 台。

6.将伺服断电后重新上电。

台达DVP-ES2C系列与ASDA-A2伺服电机调试方法

台达DVP-ES2C系列与ASDA-A2伺服电机调试方法

台达绝对型编码器伺服系统的参数设置(DVP32ES200RC/TC与ASDA-A2 伺服驱动器)使用之前需要对CANopen型号的PLC进行韧体的更新。

(对应的版本为V3.43)刻录方式:1.PC 要与 ES2-C PLC 通过 IFD6601 链接。

2.点开有.exe 的文件,选择正确的 COM口。

3.鼠标点击 START burn 开始刻录,待PLC上面的EPROM指示灯闪烁红色以后,重新启动PLC,4.重启后,再次鼠标点击 START burn 开始刻录可以看到白色进度条在移动(红色进度条也是一样的,白色代表版本升级,红色代表版本降级),同时看到 Progress 有显示百分数值,到达百分之百为刻录完成。

5.刻录后检查版本刻录情况一,硬件 DI 信号配置 :DI1 → PL : 正向运转禁止极限,为 B 接点,必须时常导通(ON),否则驱动(P2-10),用常闭接近开关,设置为23.器显示异警。

DI2 → NL : 逆向运转禁止极限,为 B 接点,必须时常导通(ON),否则驱(P2-11),用常闭接近开关,设置为22.动器显示异警。

DI3 → EMGS : 为 B 接点,必须时常导通(ON),否则驱动器显示异警。

(P2-12),用常闭接近开关,设置为21.DI4 → ORGP : 在内部位置缓存器模式下,在搜寻原点时,此讯号接通后伺服将此点之位置当成原点。

(可以不接)二,手动设定参数 :在使用伺服专用指令之前,需要先将伺服做一些初始化设定,步骤如下 :1.将伺服 P2-08 设置为 10,回归原厂设定。

2.将伺服断电后重新上电。

3.设定伺服控制模式,将 P1-01 设置为 0001(PR 模式)具体方向可以根据实际情况更改。

4.P3-01通讯速度设置为 0403(1M)。

5.站号设定 : 依照需要的台数,分别设置每台伺服的 P3-00,请依序设定为 1、2、3 …最多可设定 8 台。

6.将伺服断电后重新上电。

台达PLC控制伺服电机实现原点回归和定位

台达PLC控制伺服电机实现原点回归和定位

台达PLC控制伺服电机实现原点回归和定位一、引言随着现代工业自动化的发展,伺服电机作为一种高性能的执行器被广泛应用于各种自动化设备中。

伺服电机通过PLC控制可以实现精确的运动控制和定位,其中包括对伺服电机进行原点回归和定位操作。

本文将介绍如何使用台达PLC控制伺服电机实现原点回归和定位。

二、伺服电机原点回归伺服电机的原点回归是指将伺服电机运动到事先设定好的原点位置。

下面是实现伺服电机原点回归的步骤:1.设定原点位置:首先,在PLC程序中定义伺服电机的原点位置。

原点位置可以是一个特定的坐标或一个传感器信号。

2.设置运动参数:根据实际情况,设置伺服电机的运动速度、加速度和减速度等参数。

3.启动伺服电机:通过PLC程序,给伺服电机发送运动指令,使其开始运动。

同时,监控伺服电机的位置。

4.到达原点位置:当伺服电机到达定义的原点位置时,通过PLC程序停止伺服电机的运动。

5.记录位置信息:记录伺服电机的位置信息,方便后续的定位操作。

三、伺服电机定位伺服电机的定位是指将伺服电机准确地移动到给定的位置。

下面是实现伺服电机定位的步骤:1.设定目标位置:在PLC程序中定义伺服电机的目标位置。

目标位置可以是一个特定的坐标或一个传感器信号。

2.设置运动参数:根据实际情况,设置伺服电机的运动速度、加速度和减速度等参数。

3.启动伺服电机:通过PLC程序,给伺服电机发送运动指令,使其开始运动。

同时,监控伺服电机的位置。

4.到达目标位置:当伺服电机到达指定的目标位置时,通过PLC程序停止伺服电机的运动。

5.记录位置信息:记录伺服电机的位置信息,方便后续的定位操作。

四、PLC控制台达伺服电机实现原点回归和定位的注意事项在使用PLC控制台达伺服电机实现原点回归和定位时,需要注意以下事项:1.伺服电机位置的监控:通过PLC程序实时监控伺服电机的位置,可以根据实际情况进行调整。

2.运动参数的设置:根据实际需求,设置伺服电机的运动速度、加速度和减速度等参数。

伺服运动控制的原点回归问题以及常见的方式

伺服运动控制的原点回归问题以及常见的方式

伺服运动控制的原点回归问题以及常见的方式原点回归,又名原点复位、伺服回零...等等。

在进行伺服定位操作之前一般都需要先进行原点回归,否则伺服电机可能会罢工,说是在「原点回归未完成时启动」。

那么,为什么要进行原点回归?以及,怎样进行原点回归的操作呢?1、原点回归的必要性所谓定位,就是要让伺服电机走到一个确定的位置。

这个位置可以是增量式的,也可以是绝对式的。

打个比方,我们现在在路上,我们要往前走 10 米,相当于我们的位置要往前增加十米,这个十米就是一个位置增量。

而如果我们要去这条街上某处地方的咖啡店,我们就需要知道它的确切地址,假设这条街的地址不是门牌号,而是从街的一端开始为0 米(基准位置),这样就能确定这条街上每个位置的地址,比如这家咖啡店的地址是这条街 100 米的位置,那么这个 100 米就是一个绝对位置,我们不管在哪一个位置,都能通过走到这条街100 米的位置找到这家咖啡店。

在定位指令里,就分为增量式的INC 指令和绝对式的ABS 指令。

增量(INC)方式以当前停止的位置为起点,指定移动方向和移动量后进行定位。

绝对值(ABS)方式定位到指定的地址,该地址是以原点为基准的位置。

所以,当我们需要进行绝对式定位时,我们就需要对应的机械系统上具有地址,这也就需要一个基准位置,通过这个基准位置去确定机械系统上的每个位置的地址。

而这个基准位置,在伺服定位系统里称为原点。

2、两个信号在三菱的伺服定位系统里,有两个关于原点的关键信号:原点回归请求信号(原点复位请求标志)这个信号ON 的时候,说明伺服系统目前没有原点,需要进行原点回归。

原点回归完成信号(原点复位完成标志)当原点回归执行完成时,该信号会ON。

然后如果执行定位或者其他正常方式使得伺服电机离开原点位置时,该信号会OFF,但是此时原点还是存在的。

判断是否需要原点回归可以借助原点回归请求信号,而不应该借助原点回归完成信号。

对于增量式系统,每次断电复位、重新上电之后都需要进行原点回归。

伺服电机原点回归方式、原理以及作用

伺服电机原点回归方式、原理以及作用

伺服电机原点回归方式、原理以及作用伺服电机原点回归问题1. 伺服回零的作用零点位置是通过程序复位控制回零或者在回零过程中感应到原点限位的时候,把当前位置值清零,表示原点或零点,一切位置都是以原点为基础,确定零点位置的时候,应先确定运动的正向和负向,以及电机的实际运动方向。

2. 伺服回零情况2.1 原点搜索是原点没有建立的情况下执行。

2.2 原点返回是原点已经建立的情况下,返回到原点位置。

第一次上电先用建立原点,当后面的动作远离了这个原点,想返回去的时候,选择原点返回。

2.3 一般来说,伺服电机的编码器有两种,绝对值编码器和增量式编码器.绝对值编码器断电可以保持,只要电池还有电,是不需要寻原点的;增量式编码器由于断电后会丢失电机多圈数值,故需要寻原点操作。

3. 伺服启动的初始定位3.1 伺服定位原理3.1.1 伺服系统不允许系统在没有任何准备的情况下使电机旋转。

电机转子在任何位置永磁伺服系统都能准确定位,定位时间很短,最多经过十多次的定位试探,电机转子就能咬合。

运行中利用光电编码盘的Z 信号对电机反馈脉冲进行修正。

3.1.2 对矢量控制的分析,当输出电流矢量与转子轴不重合时,电机转子会转动到该处并与定子输出电流矢量方向重合。

基于这种控制思想来对转子初始位置进行检测。

伺服系统中采用Z脉冲作为复位信号,因此必须知道该信号产生的位置和定子a相轴线的夹角,而这一夹角取决于光电编码器的安装位置。

3.1.3 由于光电编码盘的安装问题, 常常使Z脉冲的位置和定子a 相轴线不重合, 此时需要先进行调零处理。

可以分为硬件和软件的调零;硬件调零就是通过旋转光电码盘的位置, 使Z脉冲出现的位置与定子a 相轴线重合;软件调零可以检测出Z脉冲的位置和定子 a相轴线的夹角, 并进行软件补偿。

3.2 启动初始定位的作用:电机伺服系统离不开对转子位置(或磁场)的检测和初始定位。

只有检测到初始转子实际位置后,控制系统才能正常工作。

台达PLC控制伺服电机实现原点回归和定位

台达PLC控制伺服电机实现原点回归和定位

台达PLC控制伺服电机实现原点回归和定位PLC是一种常用的工业自动化控制设备,可以通过编程实现对各种设备的控制和监测。

伺服电机是一种精密、高效的电机,常用于需要精确定位和高速运动的应用中。

在工业自动化中,使用台达PLC控制伺服电机实现原点回归和定位是一种常见的应用。

原点回归是指将伺服电机恢复到初始位置的过程。

定位是指将伺服电机定位到指定位置的过程。

下面将详细介绍如何使用台达PLC控制伺服电机实现原点回归和定位。

首先,需要连接PLC和伺服电机。

通常情况下,PLC通过数字I/O或者模拟输出的方式与伺服电机进行通信。

通过控制信号来实现对伺服电机的运动控制。

接下来,需要进行编程。

在PLC编程软件中,可以使用LAD(梯形图)或SFC(顺序功能图)等编程语言进行编程。

以下是使用LAD进行编程的步骤:1.设定伺服电机的回零信号:首先,将一个输入模块(通常是数字输入模块)连接到PLC,并将其配置为接收伺服电机的回零信号。

在PLC编程软件中,设置一个变量用来接收回零信号,并将其与输入模块的输入点相连。

2.设定伺服电机的运动控制信号:将一个输出模块(通常是数字输出模块)连接到PLC,并将其配置为输出伺服电机的运动控制信号。

在PLC编程软件中,设置一个变量用来控制运动控制信号,并将其与输出模块的输出点相连。

3.编写原点回归程序:在PLC编程软件中,使用LAD或SFC语言编写原点回归的程序。

程序中需要包含以下几个步骤:a.等待回零信号:使用一个等待指令,等待回零信号的到来。

当接收到回零信号时,程序将继续执行下一步。

b.发送运动控制信号:将设定好的运动控制信号发送给伺服电机,使其执行原点回归的动作。

c.等待回零完成信号:使用一个等待指令,等待回零完成信号的到来。

当接收到回零完成信号时,程序将继续执行下一步。

4.编写定位程序:在PLC编程软件中,使用LAD或SFC语言编写定位的程序。

程序中需要包含以下几个步骤:a.接收定位信号:使用一个等待指令,等待定位信号的到来。

台达plc控制伺服电机实现原点回归和定位

台达plc控制伺服电机实现原点回归和定位

台达plc控制伺服电机实现原点回归和定位台达PLC 控制伺服电机实现原点回归和定位所有范例仅供初学者参考。

范例的目的仅仅是说明指令的用法!暂連XI【卞1紧急停止X7ffSxi!to【控制宴求】由PLC 和伺服电机组成一个系统iKJPLC 控制伺服电机,实现机构的原点回归、椰寸定位和绝对定位功能。

原点回归X2昂常XS 刘相对定位?I 绝对定掘自相对定位?:鲍对定位 o脉冲輪出伺服电机咼占后退 ----- --- A 前进 A JK .rA 、【元件说明】K2 XO Xl4 M1 M2 M3 M4HH-H H woH 原点回归指令执行箫件相对定位拷令1擠行衆件相对定傥楷令2执行条件 Ht M3XO X14 MO M1 M2 M4HHMOWF纶对定位楷专1执行条件X6 XO X14 MO Ml M2 M3Htl__11_II_1/1_H_H_l/l"M4纯竝定位指令2挾行兼怦-DZRN K100000 K50CJ0 X13Y0原点0 寸劫逬点脉进输归速度14 -DDRVI K1 00000K50000m Y1輛出脉冲于输出脉脉冲输旋转方向馥(正方向)冲烦率出装童信号瑜出■ DDRV1k-WOOQO K5Q000¥0Y1何服电机税行原点回白动祚何服电机枫行相对定位伺服电机执行相对定位i;轄滋SSI豔矍精DDRVA K5 00000Kwaooq Y0Y1DDRVA K10D0Kiaoaoo Y0Y1何服电机执行绝对足位F趟出出曲1编码器共有10根线与伺服驱动器的CN2连接连接器的接线端外型□按脚編号如F 图所示:91 Il=l l=l E=l 1=1 1=11□ EZ] □□ ICA/2连擾器(公》刊面接线端各信号的竜义说明如卜‘:Pin No 倚号名称端子记号'.;;L接头快速接头机能、说明 2 亿相轴入 /Z G Afi 编码轟忆相输出 4 /A 相输人;A B A2 編码魁/A 相输出 5 A #l I 输人 A A Ai 编码器A 相输出 7 B 相输人 B C A3编码器B 阳输出 9 IB 相输人IBD M编码器/B 相输出 10 Z 相输人Z F A5 编码器Z 相输出 14,16 编码器电源 +5V S A7 编码器用5V 电源13,15编科器电源GNDRAS接地[JO 口 === EH主机J2JN'<-v b ,~^~ 24GXI■Z^Z X3X4~歴「x&T7~运IDKI rxiX15xiF Jil? 22 ttVAC 監±dSAS DAIv+i-M O—a0*11Y □—■'—Q-Q--'*—B~5—11—o~o~~11—Gro—1-H^O—1相巧宅役毬廂斟■腿捏?耳总停止疋粹莊隔讦養饭怖旖圈丑黑-★近点僖号—*SRDY_ +苗FD—^TPO£—^ALAMre ~和a ■yiGN1VD0 I'COMH24V匚0Z 5ti吨24Z——盘瞰引爭点席引 .T'"□ 11 0加砧?钊DI4 g□IS 33 016 12'口区1。

台达PLC控制伺服电机实现原点回归和定位

台达PLC控制伺服电机实现原点回归和定位

台达PLC控制伺服电机实现原点回归和定位原点回归是指将伺服电机的位置重新回归到设定的原点位置。

定位是
指将伺服电机移动到指定的位置。

这两个功能通常需要使用伺服电机控制
器和编码器。

首先,我们需要在台达PLC程序中设置相关的参数和变量。

例如,我
们可以设置一个变量来记录伺服电机的位置,以及一个变量来存储原点位
置的位置。

同时,我们还需要设置一个变量来指示是否需要回归到原点或
移动到指定的位置。

接下来,在PLC程序中,我们需要编写一段代码来控制伺服电机的运动。

首先,我们需要判断是否需要回归到原点或移动到指定的位置。

如果
需要回归到原点,我们可以将伺服电机移动到原点位置,并将当前位置设
置为原点位置。

如果需要移动到指定的位置,我们可以将伺服电机移动到
指定位置,并将当前位置设置为指定位置。

在代码中,我们还需考虑到伺服电机的运动速度和加减速度等参数。

这些参数可以在PLC程序中进行设置,以确保伺服电机的运动平稳和精确。

此外,在代码中,我们还可以添加一些保护措施,例如限制运动范围、错误处理等,来增强系统的稳定性和可靠性。

在实际操作中,我们还需要进行一些调试和测试。

例如,我们可以通
过监视伺服电机的位置和状态来验证系统的运行是否符合预期。

如果有异
常情况,我们可以通过调整参数或修改代码来进行调试。

总结来说,通过合理设置参数和编写PLC程序,台达PLC可以控制伺
服电机实现原点回归和定位功能。

这样可以帮助我们在自动化生产线或机
械设备中更方便地控制和操作伺服电机,提高生产效率和质量。

伺服电机回零

伺服电机回零

伺服电机回零Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-EVOC,SOKON,华北工控,硕控智能,蓝天,四维,首控工控,艾雷斯研华工控机,华北工控机,研祥工控机leetro乐创伺服电机原点复归1.原点搜索是原点没有建立的情况下执行。

2.原点返回是原点已经建立的情况下,返回到原点位置。

原点信号又伺服驱动器给出,原点附近信号由传感器指定如果使用绝对脉冲, 那么每次发送的脉冲量, 都是相对与这个原点来说的原点输入信号没有限定由谁给定, Z相信号给定也是可以的. 不过建立原点有3种模式, 可以选择只使用原点输入信号来建立原点第一次上电, 先用建立原点.当后面的动作远离了这个原点,想返回去的时候, 选择原点返回实找零的方法有很多种,可根据所要求的精度及实际要求来选择。

可以伺服电机自身完成(有些品牌伺服电机有完整的回原点功能),也可通过上位机配合伺服完成,但回原点的原理基本上常见的有以下几种。

一、伺服电机寻找原点时,当碰到原点开关时,马上减速停止,以此点为原点。

这种回原点方法无论你是选择机械式的接近开关,还是光感应开关,回原的精度都不高,就如一网友所说,受温度和电源波动等等的影响,信号的反应时间会每次有差别,再加上从回原点的高速突然减速停止过程,可以百分百地说,就算排除机械原因,每次回的原点差别在丝级以上。

二、回原点时直接寻找编码器的Z相信号,当有Z相信号时,马上减速停止。

这种回原方法一般只应用在旋转轴,且回原速度不高,精度也不高。

三、此种回原方法是最精准的,主要应用在数控机床上:电机先以第一段高速去找原点开关,有原点开关信号时,电机马上以第二段速度寻找电机的Z相信号,第一个Z相信号一定是在原点档块上(所以你可以注意到,其实高档的数控机床及中心机的原点档块都是机械式而不会是感应式的,且其长度一定大于电机一圈转换为直线距离的长度)。

找到第一个Z相信号后,此时有两种方试,一种是档块前回原点,一种是档块后回原点(档块前回原点较安全,欧系多用,档块后回原点工作行程会较长,日系多用)。

台达A伺服原点回归

台达A伺服原点回归

定义外部端子(SHM )启动原点回归:PTPR模式下都可以,通过伺服内参数定义原点回归1.原点回归的行走路径:下面的是分别是向前寻找Z脉冲和向后寻找Z脉冲,不管是什么品牌的伺服,原点回归的路径都一样①.寻找不寻找Z脉冲(反向或者正向)3种②.寻找零点(正方向或者反方向)(零点定义)2种③.在一转的范围内寻找 Z脉冲(正方向或者反方向)000正反向寻找零点 PL并返回寻找Z010正反向寻找零点PL正向回寻找Z020正反向寻找零点 PL不去寻找Z001反方向寻找零点 NL并返回寻找Z011 021002 正方向寻找零点ORGOFF/ON为零点,返回寻找Z012 022003 反方向寻找零点,OFF/ON为零点,返回寻找Z013 023004 在一圈范围正方向寻找零点005 在一圈范围反方向寻找零点006 正方向寻找零点ORG,ON/OFF为零点,返回寻找Z016 026007 反方向寻找零点 ORG,ON/OFF为零点,返回寻找Z017 027008 直接定义原点以目前位置当做原点BOOT:驱动器启动时第一次serveron时是否执行原点回归0:不做原点回归1:自动执行原点回归MJDLY :延时时间的选择P5-40--P5-45作用:?????DEC1/DEC2 :第一/二段回原点减速时间的选择P5-40--P5-55ACC :加速时间的选择对应到P20--P35PATH :路径的形式0:原点回归后停止1-63:原点回归后,执行指定的路径作用:可以让电机回到原点后,再移动的位置原点回归牵涉到的其它的参数:P5-05:第一段高速原点回归速度的设定P5-06:第二段高度原点回归速度的设定P1-01:01PR64个命令程序,程序C#0为零为原点回归其它的为普通用户自定义程序例子:P2-10: 101ServeronY0P2-11:108CTRGP2-11: 127SHM 启动原点回归Y1P2-12: 124ORGP原点Y2P5-04:002正方向寻找零点ORG,OFF/ON为原点,反方向寻找ZP5-05:第一段高速原点回归速度设定P5-06:第二段高速原点回归速度设定这种情况下监控C-PUU不会为0,很有可能是因为找到Z脉冲时减速停止造成的P5-04:23反方向寻找零点ORG,ON/OFF为零点P6-00:02回零完成后执行自定义程序 2这种情况下监控的C-PUU会为零上面的情况就是回零后出现不是在零点的位置,有偏差:A.A系列中的P1-47原点回归模式中可以设置拉回原点设置的选项,在A2中不提供,而是通过另一种方式实现的。

台达A2系列伺服电机调试步骤

台达A2系列伺服电机调试步骤

台达A2系列伺服电机调试步骤调试步骤如下:1.首先,了解A2系列伺服电机的参数和特性。

了解电机的额定转矩、额定转速、电机编号等参数。

同时,了解伺服电机的工作原理和控制方式,以便在调试过程中能够理解和解决问题。

2.确定伺服电机的机械连接。

将电机和负载连接在一起,例如通过联轴器。

确保机械连接牢固可靠,以保证传递电机的转动力矩和转速给负载。

3.进行电气连接。

将伺服电机的输入端(通常是三相交流电源)和输出端(通常是编码器和控制器)与其他电气设备连接好。

检查电气连接是否正确,例如插头是否插紧,线路是否接触良好等。

4.设置参数。

根据实际情况,对伺服电机的控制器进行参数设置。

这些参数包括速度环、位置环、加速度环等。

根据机械系统的特性,调整这些参数以使电机能够稳定工作,并实现所需的性能。

5.进行功率调试。

通过控制器提供的接口,调整电机的工作功率。

测试电机在不同负载和转速下的输出性能,并记录相应的数据。

根据测试结果,调整功率参数或机械系统,以优化电机的功率输出。

6.进行控制调试。

通过控制器的接口设定所需的控制模式,例如位置控制、速度控制或力矩控制等。

测试电机在不同控制模式下的响应性能,并记录相应的数据。

根据测试结果,调整控制参数或机械系统,以实现更好的控制性能。

7.进行保护调试。

根据实际需要,为电机设置保护功能,例如过流保护、过热保护、过载保护等。

通过模拟和测试不同的故障和异常情况,检验保护功能的可靠性和响应性,并记录相应的数据。

根据测试结果,调整保护参数或机械系统,以提高电机的安全性和可靠性。

8.进行稳定性调试。

通过控制器的接口设定所需的稳定性要求,例如阻尼、迟滞等。

测试电机在不同负载、转速或控制模式下的稳定性,并记录相应的数据。

根据测试结果,调整稳定性参数或机械系统,以使电机能够稳定工作在所需的工况下。

9.进行性能验证。

将伺服电机安装在实际工作环境中,并进行性能验证。

测试电机在实际工况下的工作性能、响应性能和稳定性,并记录相应的数据。

台达A2系列伺服电机调试步骤

台达A2系列伺服电机调试步骤

第七轴通过伺服电机运行的调试步骤一、概述此文档将介绍如何通过西门子PLC来控制伺服电机的正转、反转、以某一速度进行绝对位置的定位以及电机运行错误后如何复位,伺服驱动器如何设置参数等一些最基本的伺服电机的运行操作步骤。

二、需准备的材料1、西门子S7-1200系列PLC一台(我们准备的S7-1200 CPU1215C DC/DC/DC)2、台达伺服电机ECMA-L110 20RS一台3、台达伺服控制器ASD-A2-2023-M一台4、威纶通触摸屏MT-8012IE一台5、博途V15设计软件6、威纶通EBproV6.0设计软件三、调试步骤及简单说明调试之前首先将所有设备按照安装说明书上控制接线部分的介绍正确的接入电源,所有设备中需要特别注意的是伺服控制器的进线是三项220V 的电压。

建议先让伺服电机在无负载的作用下正常运作,之后再将负载接上以免造成不必要的危险,伺服驱动器的控制用CN1信号端口来接线控制(CN1端口如何接线将提供接线图来接线)。

1、伺服驱动器的参数设置1)、伺服驱动器面板介绍2)、启动电源面板将显示以下几种报警画面,根据需要将参数调整到位。

画面一:将参数P2-15、P2-16、P2-17三个参数设定为0画面二:将参数P2-10~P2-17参数中没有一个设定为21 画面三:将参数P2-10~P2-17参数中没有一个设定为233)、以上步骤调整好之后可以利用JOG寸动方式来试转电机和驱动器,操作步骤如下图4)、JOG模式调试正常后,在通过PLC控制伺服电机运转,需设定以下几个参数用来。

①、P1-01设定成Pt模式 00000②、P1-00设定成脉冲列+符号 00002③、P0-02 设置驱动器显示状态监视输入脉冲 01④、设定电子齿轮比P1-44(分子)和P1-45(分母)电子齿轮比需计算,计算方式如下:前提所需条件:a.产品所要达到的精度要求比如0.001mm,相当于一个脉冲想走的距离0.001mm;b.行走速度200mm/s,PLC最大发脉冲数2000000*0.001(目前伺服电机最快20m/min)c.电机编码器分辨率1280000P/Rd.齿轮分度圆直径63.66mme.减速机速比10f.m/n电机轴与负载轴的机械减速比⑤、将P1-44设为8400,P1-45设为3183⑥、重新启动伺服驱动器,即可。

台达伺服复位参数

台达伺服复位参数

台达伺服复位参数引言:台达伺服是一种常用的精密控制器件,其复位参数是指在某些特定情况下,对伺服进行复位操作时所需的参数设置。

本文将介绍台达伺服复位参数的相关知识,并对其进行详细解析。

一、复位参数的定义伺服复位参数是指在对台达伺服进行复位操作时,所需设置的一些参数值。

这些参数值可以影响伺服的复位过程,使其能够按照预期的方式进行复位。

二、复位参数的作用复位参数的设置可以对伺服的复位过程进行精确控制,保证伺服在复位后能够回到初始状态,并能够正常工作。

通过合理设置复位参数,可以提高伺服的复位效果,减少可能出现的故障。

三、复位参数的设置方法设置台达伺服的复位参数可以通过以下步骤进行:1. 连接伺服与控制系统,确保通信正常。

2. 进入伺服的参数设置界面,找到复位参数设置选项。

3. 根据实际需求,调整复位参数的数值。

4. 确认设置后,保存参数并退出设置界面。

5. 断开伺服与控制系统的连接,重新连接后,伺服将按照新设置的复位参数进行复位。

四、常见的复位参数及其作用1. 复位速度:设置伺服在复位过程中的运动速度。

合理设置复位速度可以提高复位效率,减少复位时间。

2. 复位加速度:设置伺服在复位过程中的加速度。

通过调整复位加速度,可以使伺服在复位过程中平稳加速,减少可能的震动和冲击。

3. 复位位置:设置伺服复位后的目标位置。

合理设置复位位置可以确保伺服复位后能够回到预定的位置。

4. 复位偏差:设置伺服在复位过程中允许的偏差范围。

通过设置复位偏差,可以保证伺服在复位过程中不会超出预定的偏差范围,从而提高复位的准确性。

5. 复位方式:设置伺服的复位方式,如正向复位、反向复位等。

通过设置复位方式,可以使伺服按照预定的方式进行复位。

五、复位参数的注意事项在设置台达伺服的复位参数时,需要注意以下几点:1. 根据实际需求进行参数的设置,避免盲目调整参数值。

2. 在调整复位参数时,需要确保伺服与控制系统的连接正常,以保证参数设置能够成功生效。

20201127【推荐】伺服控制为什么要进行原点回归?怎样实现原点回归?

20201127【推荐】伺服控制为什么要进行原点回归?怎样实现原点回归?

20201127【推荐】伺服控制为什么要进行原点回归?怎样实现原点回归?原点回归,又名原点复位、伺服回零...等等。

在进行伺服定位操作之前一般都需要先进行原点回归,否则伺服电机可能会罢工,说是在「原点回归未完成时启动」。

那么,为什么要进行原点回归?以及,怎样进行原点回归的操作呢?1、原点回归的必要性所谓定位,就是要让伺服电机走到一个确定的位置。

这个位置可以是增量式的,也可以是绝对式的。

打个比方,我们现在在路上,我们要往前走 10 米,相当于我们的位置要往前增加十米,这个十米就是一个位置增量。

而如果我们要去这条街上某处地方的咖啡店,我们就需要知道它的确切地址,假设这条街的地址不是门牌号,而是从街的一端开始为0 米(基准位置)。

这样就能确定这条街上每个位置的地址,比如这家咖啡店的地址是这条街 100 米的位置,那么这个 100 米就是一个绝对位置,我们不管在哪一个位置,都能通过走到这条街100 米的位置找到这家咖啡店。

在定位指令里,就分为增量式的 INC 指令和绝对式的 ABS 指令。

增量(INC)方式以当前停止的位置为起点,指定移动方向和移动量后进行定位。

起点地址为5000,移动量为-7000时,对-2000的位置进行定位。

绝对值(ABS)方式定位到指定的地址,该地址是以原点为基准的位置。

起点地址(当前的停止位置)为1000,终点地址(定位地址)为8000时,向正方向进行移动量7000(8000-1000)的定位。

所以,当我们需要进行绝对式定位时,我们就需要对应的机械系统上具有地址,这也就需要一个基准位置,通过这个基准位置去确定机械系统上的每个位置的地址。

而这个基准位置,在伺服定位系统里称为原点。

2 两个信号在三菱的伺服定位系统里,有两个关于原点的关键信号:原点回归请求信号(原点复位请求标志)这个信号ON 的时候,说明伺服系统目前没有原点,需要进行原点回归。

原点回归完成信号(原点复位完成标志)当原点回归执行完成时,该信号会ON。

台达伺服原点回归

台达伺服原点回归

实验器材:ASDA-A2 DVP-20EH定义外部端子(SHM)启动原点回归:PT PR模式下都可以,通过伺服内参数定义原点回归1.原点回归的行走路径:下面的是分别是向前寻找Z脉冲和向后寻找Z脉冲,不管是什么品牌的伺服,原点回归的路径都一样①.寻找不寻找Z脉冲(反向或者正向)3种②.寻找零点(正方向或者反方向)(零点定义)2种2.P6-00参数定义BOOT:驱动器启动时第一次server on时是否执行原点回归0:不做原点回归1:自动执行原点回归DLY:延时时间的选择P5-40--P5-45作用:?????DEC1/DEC2:第一/二段回原点减速时间的选择P5-40--P5-55ACC:加速时间的选择对应到P20--P35PATH:路径的形式0:原点回归后停止1-63:原点回归后,执行指定的路径作用:可以让电机回到原点后,再移动的位置原点回归牵涉到的其它的参数:P5-05:第一段高速原点回归速度的设定P5-06:第二段高度原点回归速度的设定P1-01:01 PR 64个命令程序,程序C#0为零为原点回归其它的为普通用户自定义程序例子:P2-10:101 Server on Y0P2-11:108 CTRG P2-11:127 SHM 启动原点回归Y1 P2-12:124 ORGP 原点Y2P5-04:002 正方向寻找零点ORG,OFF/ON为原点,反方向寻找ZP5-05:第一段高速原点回归速度设定P5-06:第二段高速原点回归速度设定这种情况下监控C-PUU不会为0,很有可能是因为找到Z脉冲时减速停止造成的P5-04:23 反方向寻找零点ORG,ON/OFF为零点P6-00: 02 回零完成后执行自定义程序2这种情况下监控的C-PUU会为零上面的情况就是回零后出现不是在零点的位置,有偏差:A.A系列中的P1-47原点回归模式中可以设置拉回原点设置的选项,在A2中不提供,而是通过另一种方式实现的。

台达DVP15MC11T与ASDA-A2伺服电机调试方法

台达DVP15MC11T与ASDA-A2伺服电机调试方法

台达绝对型编码器伺服系统的参数设置(DVP15MC11T与ASDA-A2 伺服驱动器)一,手动设定参数 :在使用伺服专用指令之前,需要先将伺服做一些初始化设定,步骤如下 :1.将伺服 P2-08 设置为 10,回归原厂设定。

2.将伺服断电后重新上电。

1.设置伺服驱动器站号(P3-00),伺服从1开始依次设定。

2.设置伺服电机与PLC的通讯速率(P3-01,可以设置为403)3.设置伺服电机的运动模式(P1-01如设置为000B就是CANopen模式搭配台达PLC(DVP15MC11T)),第三位数值可以设置电机运行方向。

4.设置伺服电机的正反向禁止极限,和急停触发。

(P2-10-P2-17) 检测P2-10到P2-18,(P2-10到P2-17,对应DI1到DI8)报警代号:AL013,紧急停止报警,检查P2-10到P2-17中有没有设定为21,将其设定为反向信号,或者设定为0。

报警代号:AL014,反向运作极限报警,检查P2-10到P2-17中有没有设定为22,将其设定为反向信号,或者设定为0。

报警代号:AL015,正向运作极限报警,检查P2-10到P2-17中有没有设定为23,将其设定为反向信号,或者设定为0。

正常限位接DI6,DI7,对应的是P2-15,P2-16,5.设置电机在绝对型编码器下的参数。

首先P2-69(绝对型编码器设定)为1,设置P2-08为271,设置P2-71(绝对位置归零,1:将目前编码器位置归零)为1,然后设置P3-12为100(只适用于P1-01=000B,即CANopen模式),设置完成后断电重启。

6.再设置伺服电的电子齿轮比,在CANopen Builder软件中也可设定,软件中设定后伺服驱动器上面就不用设置。

7.设置驱动器状态显示(P0-02为00,就是电机回授脉冲数)8.伺服电机回原点设置参数为:以下参数也可在CANopen Builder软件中设定,一般设定原点回归模式为:模式17。

台达A2伺服原点回归

台达A2伺服原点回归

实验器材:A S D A-A2D V P-20E H 定义外部端子(SHM)启动原点回归:PTPR模式下都可以,通过伺服内参数定义原点回归1.原点回归的行走路径:下面的是分别是向前寻找Z脉冲和向后寻找Z脉冲,不管是什么品牌的伺服,原点回归的路径都一样①.寻找不寻找Z脉冲(反向或者正向)3种②.寻找零点(正方向或者反方向)(零点定义)2种③.在一转的范围内寻找Z脉冲(正方向或者反方向)000 正反向寻找零点PL并返回寻找Z 010 正反向寻找零点PL正向回寻找Z020 正反向寻找零点PL不去寻找Z001 反方向寻找零点NL并返回寻找Z011 021002 正方向寻找零点ORGOFF/ON为零点,返回寻找Z012 022003 反方向寻找零点,OFF/ON为零点,返回寻找Z013 023004 在一圈范围正方向寻找零点005 在一圈范围反方向寻找零点006 正方向寻找零点ORG,ON/OFF为零点,返回寻找Z016 026007 反方向寻找零点ORG,ON/OFF为零点,返回寻找Z017 027008 直接定义原点以目前位置当做原点2.P6-00参数定义BOOT:驱动器启动时第一次serveron时是否执行原点回归0:不做原点回归1:自动执行原点回归DLY:延时时间的选择P5-40--P5-45作用:?????DEC1/DEC2:第一/二段回原点减速时间的选择P5-40--P5-55ACC:加速时间的选择对应到P20--P35PATH:路径的形式0:原点回归后停止1-63:原点回归后,执行指定的路径作用:可以让电机回到原点后,再移动的位置原点回归牵涉到的其它的参数:P5-05:第一段高速原点回归速度的设定P5-06:第二段高度原点回归速度的设定P1-01:01PR64个命令程序,程序C#0为零为原点回归其它的为普通用户自定义程序例子:P2-10:101ServeronY0P2-11:108CTRGP2-11:127SHM启动原点回归Y1P2-12:124ORGP原点Y2P5-04:002正方向寻找零点ORG,OFF/ON为原点,反方向寻找ZP5-05:第一段高速原点回归速度设定P5-06:第二段高速原点回归速度设定这种情况下监控C-PUU不会为0,很有可能是因为找到Z脉冲时减速停止造成的P5-04:23反方向寻找零点ORG,ON/OFF为零点P6-00:02回零完成后执行自定义程序2这种情况下监控的C-PUU会为零上面的情况就是回零后出现不是在零点的位置,有偏差:A.A系列中的P1-47原点回归模式中可以设置拉回原点设置的选项,在A2中不提供,而是通过另一种方式实现的。

台达运动控制卡系统35种原点回归模式详解

台达运动控制卡系统35种原点回归模式详解

台达运动控制卡系统35种原点回归模式详解一,原点回归软件接口函数原点回归的软件接口函数有3条,_DMC_01_set_home_config指令负责配置原点回归的参数,需要传入的参数如下:_DMC_01_set_home_config(U16 CardNo,U16 NodeID,U16 SlotID ,U16 Mode,I32 offset,U16 lowSpeed,U16 highSpeed,F64 acc)//CardNo是运动轴所属的轴卡卡号。

//NodeID是运动轴的站号。

//SlotID是运动轴的端口号。

//Mode是原点回归模式编号,对应1~35。

//offset是针对参考点的偏移量,单位是脉冲数。

//lowSpeed是运动轴寻找原点的速度,单位是1~500转每分。

//highSpeed是运动轴寻找参考点的速度,单位是1~2000转每分。

//acc是运动轴从零速度提高到最大速的加速时间,单位秒。

在原点回归参数配置完成后,_DMC_01_set_home_move指令负责启动原点回归的动作,需要传入的参数如下:_DMC_01_set_home_move(U16 CardNo, U16 NodeID, U16 SlotID)//CardNo是运动轴所属的轴卡卡号。

//NodeID是运动轴的站号。

//SlotID是运动轴的端口号。

如在原点回归过程中,有某些特殊情况发生,需要停止回原点,则可以执行指令_DMC_01_escape_home_move,需要传入的参数如下:_DMC_01_escape_home_move(U16 CardNo, U16 NodeID, U16 SlotID)//CardNo是运动轴所属的轴卡卡号。

//NodeID是运动轴的站号。

//SlotID是运动轴的端口号。

二,原点回归35种模式通过_DMC_01_set_home_config指令的Mode参数,可以根据设备需求,选用35中原点回归模式中的一种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验器材:ASDA-A2 DVP-20EH
定义外部端子(SHM)启动原点回归:PT PR模式下都可以,通过伺服内参数定义原点回归
1.原点回归的行走路径:下面的是分别是向前寻找Z脉冲和向后寻找Z脉冲,不管是什么品牌的伺服,原点回归的路径都一样
①.寻找不寻找Z脉冲(反向或者正向)3种
②.寻找零点(正方向或者反方向)(零点定义)2种
③.在一转的范围内寻找Z脉冲(正方向或者反方向)
000正反向寻找零点PL并返回寻找Z 010正反向寻找零点
PL正向回寻找Z
020正反向寻找零点PL不去
寻找Z
001反方向寻找零点NL并
返回寻找Z
011021 002正方向寻找零点
ORGOFF/ON为零点,返回寻找Z 012
022
003反方向寻找零点,
OFF/ON为零点,返回
寻找Z
013023
004在一圈范围正方向寻找零点
005在一圈范围反方向寻找零点
006正方向寻找零点
ORG,ON/OFF为零点,
返回寻找Z 016026
007反方向寻找零点ORG,
ON/OFF为零点,返回
寻找Z
017027
008直接定义原点以目前位置当做原点
2.P6-00参数定义
BOOT:驱动器启动时第一次server on时是否执行原点回归
0:不做原点回归
1:自动执行原点回归
DLY:延时时间的选择P5-40--P5-45
作用:?????
DEC1/DEC2:第一/二段回原点减速时间的选择P5-40--P5-55
ACC:加速时间的选择对应到P20--P35
PATH:路径的形式
0:原点回归后停止
1-63:原点回归后,执行指定的路径
作用:可以让电机回到原点后,再移动的位置
原点回归牵涉到的其它的参数:
P5-05:第一段高速原点回归速度的设定
P5-06:第二段高度原点回归速度的设定
P1-01:01 PR 64个命令程序,程序C#0为零为原点回归其它的为普通用户自定义程序
例子:P2-10:101 Server on Y0
P2-11:108 CTRG P2-11:127 SHM 启动原点回归Y1 P2-12:124 ORGP 原点Y2
P5-04:002 正方向寻找零点ORG,OFF/ON为原点,反方向寻找Z
P5-05:第一段高速原点回归速度设定
P5-06:第二段高速原点回归速度设定
这种情况下监控C-PUU不会为0,很有可能是因为找到Z脉冲时减速停止造成的
P5-04:23 反方向寻找零点ORG,ON/OFF为零点
P6-00: 02 回零完成后执行自定义程序2
这种情况下监控的C-PUU会为零
上面的情况就是回零后出现不是在零点的位置,有偏差:
A.A系列中的P1-47原点回归模式中可以设置拉回原点设置的选项,在A2中不提供,而是通过另一种方式实现的。

找到原点后,必须减速停止,停止的时候可定会超出原点一段距离,:
若不拉回可使P6-00的PATH为0
若拉回可使P6-00的PATH为为零,设置的路径为值为原点
B.新原点的设定方法为:
ORG_DEF(原点定义值)+S(希望移动的偏移量)=P(新原点)
P6-01(例如)
原点定义值:是找到Z脉冲后反运动方向拉回的脉冲个数
例如:12点钟的方向为Z脉冲点P1-01=101顺时针为正
PT模式下的原点回归:
API 156: ZRN S1 S2 S3 D
S1:寻找零点的速度
S2:DOG由OFF/ON的寸动速度
S3:近点信号
D:脉冲输出装置
按照说明书上的回零步骤为:以S1的速度,方向以Sign的正负寻找零点,在S3由OFF/ON电机由S3的速度离开接近开关直到电机ON/OFF
但是现在是一碰到接近开关就停止
以M5点作为近点信号(DOG)时,当碰到接近开关时以S3的速度离开接近开关,当X5由ON/OFF时,电机停止
实验现象2:
以X5点作为近点信号(DOG)时,碰到接近开关时就停止,我是以20EH,以不同的输入点为接近开关信号,都是这种现象,和说明ZRN指令的说明不同。

P2-08 10 参数复位在server off
P2-10---P2-17 恢复出厂设置时将P2-15---P2-17全设置为0就行了
1.先判断伺服的输出和PLC的输入是否正确
A.P4-6
2.判断伺服的输入和PLC的输出是否正确
A.P4-07 由外部输入端子触发显示
3.a接点是常开接点b接点是常闭接点
[此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]。

相关文档
最新文档