定比分点坐标公式

合集下载

定比点差法及其应用解说

定比点差法及其应用解说

定比点差法及其应用解说一、定比分点若,则称点为点、的定比分点.当时,点在线段上,称为内分点;当()时,点在线段的延长线上,称为外分点.定比分点坐标公式:若点,,,则点的坐标为二、点差法点差法其实可以看作是方程的相减,是对方程的一个巧妙的处理。

若点在有心二次曲线上,则有两式作差得此即有心二次曲线的垂径定理,可以解决与弦的中点相关的问题.1、弦的中点点差法一个妙用:例1 已知椭圆,直线交椭圆于两点,为的中点,求证:为定值。

分析用常规方法设直线也可以解决,但是计算就很繁杂,在这里使用点差法。

解设,,在椭圆上:,作差得:即:,因为所以,为定值。

以上结论与弦的中点有关,也称为垂径定理。

考虑当椭圆为圆的时候,,则,,正好也符合圆的“垂径定理”。

在双曲线中同样有类似的结论,但定值为,在这里就不再推导了。

2、弦上的定比分点当弦上的点不再是中点时,就成了定比分点:设,,,则点坐标可以表示为:,证明设,,化简可得:,同理这时候就出现了这样形式的式子。

如果再凑出,可能大家就会有点感觉了:可以将椭圆的方程乘上一个再作差,得到这样的式子。

因此我们想到了“定比点差法”这样的技巧。

例2 已知椭圆,在椭圆外,过作直线交椭圆于两点,在线段上且满足:,求证:点在定直线上。

分析按照以上思路,要出现和这样的式子,很容易想到设的坐标,再表示出的坐标。

解设,,,则,结合图形得:则,在椭圆上:①,②得:即,所以在定直线上。

下面介绍定比点差法:若点在有心二次曲线上,则有两式作差得这样就得到了例7、过异于原点的点引椭圆的割线,其中点在椭圆上,点是割线上异于的一点,且满足.求证:点在直线上.证明:直接运用定比点差法即可.设,则有,设,则有又因为点在椭圆上,所以有两式作差得两边同除以,即可得到命题得证.例8、已知椭圆,过定点的直线与椭圆交于两点(可以重合),求的取值范围.解析:设,,则.于是,于是又因为点在椭圆上,所以有两式相减得将(1)代入(2)中得到由(1)(3)解得从而解得的取值范围为,于是的取值范围为.例9、设、为椭圆的左、右焦点,为椭圆上任意一点,直线分别交椭圆于异于的点、,若,,求证:.证明:设,,,则于是有又由点在椭圆上得到两式相减得从而有结合(4)式可解得同理可得结合(5)式得到于是有整理得,命题得证.例10、已知椭圆,点,过点作椭圆的割线,为关于轴的对称点.求证:直线恒过定点.解析:因为三点共线,三点也共线,且三点都在椭圆上,我们用定比点差法去解决这个问题.设,,则,设与轴的交点为,,,则于是有由点在椭圆上得两式相减得将(2)代入(3)得。

5-4新田中学-线段的定比分点与平移

5-4新田中学-线段的定比分点与平移
解析:设原来函数图象上任一点坐标为(x,y),平移后 其对应点坐标为(x′,y′). π x′=x- , 4 由平移公式,得 y′=y-2, π 又∵y′=sin(x′+ )-2, 4
π π ∴y-2=sin[(x-4)+4]-2, 化简,得 y=sinx. ∴原来函数的解析式为 y=sinx.
→,当P1Q=-3P2Q即 λ=3 时 xQ=-1+2λ=5,yQ= → → 3P2 Q 4
1+λ -5+4λ 7 5 7 =4,∴Q 点坐标为(4,4). 1+λ → → 当P1Q=3P2Q即 λ=-3 时 -1+2λ 7 -5+4λ 17 xQ= =2,yQ= =2. 1+λ 1+λ 7 17 ∴Q 点坐标为(2, 2 ).


启示:函数与方程思想贯穿于整个中学数学, 则向量模的关系转化为解不等式,再由解不 等式探求不等式成立的条件,再由a·e=1,
●回归教材 1.已知点 P 分有向线段P→ 2的比为 λ,则下列结论中正 1P 确的是 A.λ 可以是任意实数 B.λ 是不等于零的实数 C.当 λ<-1 时,点 P 必在P→ 2的延长线上 1P D.当-1<λ<0 时,点 P 在P→ 2的延长线上 1P ( )
-5+4λ1 解析:(1)由已知 1= 解得 λ1=2, 1+λ1 -1+2λ1 x= =1. 1+λ1 → =2PP2得P1P=2(PP1+P→ 2)整理得P→ 1 =- 3 → → → (2)由P1P 1P 2P 2 → .∴λ2=-3. P1P 2
→ → → → → → → (3)由P1Q∥P2Q且|P1Q|=3|P2Q|知P1Q=3P2Q或P1Q=-
则点 P 分P→ 2所成的比是________. 1P → 2的延长线上,则P1P=3. → 解题思路:如图,P 在P1P

线段的中点坐标公式

线段的中点坐标公式

的分点C的坐标
2
2 1 (5)

x 2 1 1
4ቤተ መጻሕፍቲ ባይዱ (5) 1 21 3
2
y
3 1
1 4 2 1
64 2 1
2 3
2
因此分点C的坐标为(-
1 , 3
2) 3
2、线段的定比分点坐标公式
x x1 x2 , y y1 y2 ( 1)
1
1
练习 1、 设点C分线段AB成定比 ,求分点C的坐标:
设D,E,F分别是边BC,AC,AB的中点,求点D,E,F的坐标
解 点D的坐标为 (2, 3) 2
点E的坐标为 (1 , 1) 2
点F的坐标为 ( 1 , 1 ) 22
1、线段的中点坐标公式: x x1 x2 y y1 y2
2
2
例2 已知线段AB的中点M的坐标为(3, 1 ) ,端点A的坐标为(4,2)
使得 | AC |
1
y1) (x2
| CB |
,
y2 ) ,设C是线段AB上的一点,
试问:点C的坐标是多少?
2
y
.B
A.
C.
e2
o e1
x
思考:
如图,已知线段AB的两个端点A,B的坐标
分别为, (x1,
使得 | AC |
1
y1) (x2
| CB |
,
y2 ) ,设C是线段AB上的一点,
试问:点C的坐标是多少?
2
y
.B
C.
A.
e2
o e1
x
2、线段的定比分点坐标公式
(1)定比分点 在直线AB上任取一点C,使得AC λ CB ,我们称

解析几何之定比点差法

解析几何之定比点差法

解析几何之“定比点差法”文章来源: 作者:意琦行 时间:2016年1月5日 介绍定比点差法之前,先介绍一些解析几何中的基础知识: 一、定比分点若λMB ⃗⃗⃗⃗⃗⃗ ,则称点M 为点A 、B 的λ定比分点. 当λ>0时,点M 在线段AB 上,称为内分点; 当λ<0(λ≠−1)时,点M 在线段AB 的延长线上,称为外分点. 定比分点坐标公式:若点A(x 1,y 1),B(x 2,y 2),AM ⃗⃗⃗⃗⃗⃗ =λMB ⃗⃗⃗⃗⃗⃗ ,则点M 的坐标为M (x 1+λx 21+λ,y 1+λy21+λ).二、点差法若点A(x 1,y 1),B(x 2,y 2)在有心二次曲线x 2a 2±y 2b 2=1上,则有x 12a 2±y 12b 2=1,x 22a 2±y 22b2=1, 两式作差得(x 1+x 2)(x 1−x 2)a 2±(y 1+y 2)(y 1−y 2)b 2=0.此即有心二次曲线的垂径定理,可以解决与弦的中点相关的问题.下面介绍定比点差法:若点A(x 1,y 1),B(x 2,y 2)在有心二次曲线x 2a 2±y 2b 2=1上,则有x 12a 2±y 12b 2=1,λ2x 22a 2±λ2y 22b2=λ2 两式作差得(x 1+λx 2)(x 1−λx 2)a 2±(y 1+λy 2)(y 1−λy 2)b2=1−λ2. 这样就得到了1a 2⋅x 1+λx 21+λ⋅x 1−λx 21−λ±1b 2⋅y 1+λy 21+λ⋅y 1−λy 21−λ=1. 例1 过异于原点的点P(x 0,y 0)引椭圆x 2a 2+y 2b 2=1(a >b >0)的割线PAB ,其中点A,B 在椭圆上,点M 是割线PAB 上异于P 的一点,且满足AM MB =AP PB.求证:点M 在直线x 0x a 2+y 0y b 2=1上.证明 直接运用定比点差法即可.设AP⃗⃗⃗⃗⃗ =λPB ⃗⃗⃗⃗⃗ ,则有AM ⃗⃗⃗⃗⃗⃗ =−λMB ⃗⃗⃗⃗⃗⃗ ,设A(x 1,y 1),B(x 2,y 2),M(x M ,y M ),则有 x 0=x 1+λx 21+λ,y 0=y 1+λy 21+λ;x M =x 1−λx 21−λ,y M =y 1−λy 21−λ.又因为点A,B 在椭圆上,所以有x 12a 2+y 12b 2=1,λ2x 22a 2+λ2y 22b2=λ2 两式作差得(x 1+λx 2)(x 1−λx 2)a 2+(y 1+λy 2)(y 1−λy 2)b2=1−λ2. 两边同除以1−λ2,即可得到x 0x M a 2+y 0y M b 2=1.命题得证.练习1 (2008高考数学安徽卷理科)设椭圆C :x 2a2+y 2b 2=1(a >b >0)过点M(√2,1),且焦点为F 1(−√2,0). (1)求椭圆的方程;(2)过点P(4,1)的动直线l 与椭圆C 相交于不同点A,B 时,在线段AB 上取点Q ,满足|AP|⋅|QB|=|AQ|⋅|PB|,证明:点Q 总在某定直线上. 答案 (1)x 24+y 22=1;(2)点Q 在直线2x +y −2=0上. 例2 已知椭圆x 29+y 24=1,过定点P(0,3)的直线与椭圆交于两点A,B (A,B 可以重合),求PAPB的取值范围.解:设A(x 1,y 1),B(x 2,y 2),AP ⃗⃗⃗⃗⃗ =λPB ⃗⃗⃗⃗⃗ ,则PAPB =−λ.于是P (x 1+λx 21+λ,y 1+λy 21+λ)=(0,3),于是x 1+λx 2=0,y 1+λy 2=3(1+λ) (1)又因为点A,B 在椭圆上,所以有x 129+y 124=1,λ2x 229+λ2y 224=λ2,两式相减得(x 1+λx 2)(x 1−λx 2)9+(y 1+λy 2)(y 1−λy 2)4=1−λ2.(2)将(1)代入(2)中得到y 1−λy 2=43(1−λ).(3)由(1)(3)解得y 1=3(1+λ)+43(1−λ)2=136+56λ∈[−2,2].从而解得λ的取值范围为[−5,−15],于是PAPB 的取值范围为[15,5]. 练习2 设D(0,16),M,N 是椭圆x 225+y 216=1上的两个动点(可以重合),且DM ⃗⃗⃗⃗⃗⃗⃗ =λDN⃗⃗⃗⃗⃗⃗ ,求实数λ的取值范围. 答案 [35,53].例3 设F 1(−c,0)、F 2(c,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上任意一点,直线PF 1,PF 2分别交椭圆于异于P 的点A 、B ,若PF 1⃗⃗⃗⃗⃗⃗⃗ =λF 1A ⃗⃗⃗⃗⃗⃗⃗ ,PF 2⃗⃗⃗⃗⃗⃗⃗ =μF 2B ⃗⃗⃗⃗⃗⃗⃗ ,求证:λ+μ=2⋅a 2+c 2a 2−c 2.证明 设P(x 0,y 0),A(x 1,y 1),B(x 2,y 2),则F 1(x 0+λx 11+λ,y 0+λy 11+λ),F 2(x 0+μx 21+μ,y 0+μy 21+μ).于是有x 0+λ x 1=−(1+λ )c,y 0+λ y 1=0;(4) x 0+μ x 2=(1+μ )c,y 0+μ y 2=0.(5)又由点P,A 在椭圆上得到x 02a2+y 02b 2=1,λ2x 12a 2+λ2y 12b 2=λ2,两式相减得(x 0+λx 1)(x 0−λx 1)a 2+(y 0+λy 1)(y 0−λy 1)b2=1−λ2.(6) 从而有 λx 1=a 2c(λ−1).结合(4)式可解得 2x 0=a 2c(λ−1)−c(1+λ).同理可得 x 0−μx 2=a 2c (1−μ).结合(5)式得到 x 0=a 2c(1−μ)+c(1+μ).于是有 a 2c (λ−1)−c(1+λ)=a 2c(1−μ)+c(1+μ).整理得λ+μ=2⋅a 2+c 2a 2−c 2, 命题得证.练习3 已知过椭圆x 22+y 2=1的左焦点F 的直线交椭圆于A,B 两点,且有FA ⃗⃗⃗⃗⃗ =3BF ⃗⃗⃗⃗⃗ ,求点A 的坐标. 答案 A(0,±1).定比点差法实际上是直线的参数方程的变异形式,只不过将其中的t 变作了λ,也就是说只要是共线点列的问题都可以在考虑运用直线的参数方程的同时考虑定比点差法.定比点差法在处理圆锥曲线上过定点的直线的证明题时往往可以起到简化运算的作用.但定比点差法无法应用于抛物线,并且它采用的参数λ在解析几何问题中并不通用,在求解具体的斜率、弦长与面积时往往会引起运算上的麻烦(当然,求坐标还是很简便的),所以并不是所有的共线问题都适用用定比点差法解决.。

定比分点坐标公式在解题中的应用

定比分点坐标公式在解题中的应用

定比分点坐标公式在解题中的应用河北 陈庆新许多同窗可能已经能够熟练地应用有向线段的定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x 及定比的坐标公式λ=x -x 1x 2-x ,求解有向线段的定比分点坐标及定点分有向线段所成的比了.事实上用这两个公式,还可巧妙地用于解决其它一些问题.如用得好,会使解题进程显得别具一格,简捷明快,充分展现咱们思维的独创性.下面举例说明其解题中的应用. 一、在几何问题中的应用(一)关于公式的正用例1. 证明:三角形内角平分线分其对边之比等于夹那个角的两边长度之比.证明:以ΔOAB 的极点O 为原点,∠AOB 的平分线OC 因此直线为x 轴,成立平面直角坐标系如下图,设|OA|=m ,|OB|=n ,∠AOC =∠COB =θ,那么A(m cos θ,m sin θ),B(n cos θ,-nsin θ),设C 点分−→−AB 的所成的比为λ,由定比分点的坐标公式:m sin θ-λn sin θ1+λ=0,解之得,λ=m n ,即|AC||CB|=|OA||OB|.点评:本例的结论在解题中有着很多的应用。

请看下面的例子。

例2.已知△ABC 三个极点的坐标别离为A(-1,1),B(3,1),C(2,5),角A 的内角平分线交对边于D ,那么向量AD −−→的坐标为 .解析:容易计算|AB −−→|=4,|AC −−→|=5。

依照三角形内角平分线的性质知:ABAC=BD DC ,于是可知点D 分有向线段BC −−→所成的比为45,从而由定比分点坐标公式可求得点D 的坐标(239,259),于是AD −−→=(329,169).例3.已知三点A(1,2)、B(4,1)、C(3,4),在线段AB 上取一点P ,使过P 且平行于BC 的直线把△ABC 的面积分成4∶5两部份,求点P 的坐标.A C OBx y解析:由题意得:ABCAPQ S S ∆∆=2⎪⎭⎫ ⎝⎛AB AP =49.因此AP AB =23,即−→−AP =2−→−PB ,λ=2,设P(x ,y ),那么x =1+2×41+2=3,y =2+2×11+2=43.因此P 点的坐标为(3,43).例4.已知在△ABC 中,BC =a ,CA =b ,AB =c ,且A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3),求△ABC 的内心坐标.解析:设I 为△ABC 的内心,AD 为∠A 的平分线,那么AB AC =BD DC =cb ,∴点D 分−→−BC 所成的比为cb ,∴由定比分点的坐标公式可求得D 点的坐标:x D =x 2+c b ×x 31+c b=bx 2+cx 3b +c,y D =by 2+cy 3b +c.又AI ID =AB BD =AC CD ,∴AI ID =AB +AC BD +CD=b +ca ,即点I 分−→−AD 所成的比b +c a . ∴xI=acb c b cx bx a c b x ++++⋅++1321=ax 1+bx 2+cx 3a +b +c ,同理yI=ay 1+by 2+cy 3a +b +c .∴△ABC 的内心坐标为(ax 1+bx 2+cx 3a +b +c ,ay 1+by 2+cy 3a +b +c).(二)公式的逆用例5.已知一次函数y =-mx -2图象与线段AB 有交点,假设A(-2,3)、B(3,2),求实数m 的取值范围.解析:设一次函数的图象直线l 交AB 于点P(x ,y )且−→−AP =λ−→−PB (λ≥0),当λ=0时,直线过A 点,那么由定比分点坐标公式知⎪⎪⎩⎪⎪⎨⎧++=++-=λλλλ123132y x ,又因P 在直线l 上,故m ·-2+3λ1+λ+3+2λ1+λ+2=0,解得:λ=2m -53m +4≥0,从而m ≥52或mACBDI<-43.又当点P 与点B 重合时符合题意,因此将B(3,2)代入直线l 的方程,求得m =-43.故m 的取值范围为m ≥52或m ≤-43.本例能够推行为:已知定点P 1(x 1,y 1)、P 2(x 2,y 2)及直线l :A x +B y +C=0,设直线l 与直线P 1P 2相交于点P ,求证:点P 分有向线段12P P −−→所成的比λ=-A x 1+B y 1+CA x 2+B y 2+C.略解:设点P 分有向线段12P P −−→所成的比λ,由定比分点坐标公式可求得点P的坐标为:121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,将点P 的坐标代入直线l 的方程:A 121x x λλ+++B 121y y λλ+++C=0,整理得:(A x 1+B y 1+C )+λ(A x 2+B y 2+C)=0,解之得:λ=-A x 1+B y 1+CA x 2+B y 2+C .点评:假设利用那个结论来解答一下例5,就显得超级简捷:设点P(x ,y )分有向线段AB −−→所成的比为λ,则λ=-A x 1+B y 1+CA x 2+B y 2+C =--2m +3+23m +2+2=2m -53m +4,因为P 为内分点,因此λ=2m -53m +4≥0,解之得:m ≥52或 m <-43,当直线l 过点B时,有m =-43.综上知:m ≥52或m ≤-43. 二、在代数问题中的应用 (一)、解不等式例6.解不等式2-x1+3x≥1.解析:令y =2-x 1+3x -1≥0,那么x =1-y 4+3y=14+3y 4×(-13)1+3y 4,且y ≥0,于是此问题可转化为:数轴上以P 1(14)为起点,P 2(-13)为终点,定比λ=34y ≥0时,求分点P 的坐标x 的范围问题.由λ=34y ≥0知点P 为有向线段−→−21P P 的内分点,或与点P 1重合,故应有-13<x ≤14.例7. 解不等式1<x 2-2x -1x 2-2x -2<2.解析:在数轴上取P 1,P ,P 2点依次表示1,x 2-2x -1x 2-2x -2,2,由−→−P P 1=λ−→−2PP 得λ=1x 2-2x -3,因为P 内分有向线段−→−21P P ,因此λ>0,即x 2-2x -3>0,解之即得原不等式的解集为:{x |x <-1或x >}3. (二)、求函数的值域例8. 求函数y =1+3x +11-x +1的值域.解析:令λ=-x +1,那么λ≤0,依题意有y =-1+λ(-3)1+λ,依照上式可知λ为点P(y )分有向线段−→−21P P 所成的比,其中P 1(1)、P 2(-3),于是函数y 为分点P 的坐标,由定比的坐标公式:λ=x -x 1x 2-x =y -1-3-y≤0,解之得y <-3或y ≥1.即原函数的值域为(-∞,-3)∪[1,+)∞.例9.求函数y =e x -1e x +1的反函数的概念域.解析:问题等价于求原函数的值域.令λ=e x >0,P 1(-1),P(y ),P 2(1),那么y =e x -1e x +1=-1+e x ·11+e x =-1+λ1+λ,∵λ>0,∴P 为有向线段−→−21P P 的内分点,∴-1<y <1,故原函数的值域为(-1,1),即其反函数的概念域为(-1,1).例10.求函数y =x 2-x +1x 2+x +1(1<x <)3的值域.解析:将原函数式变形为:y =x 2-x +1x 2+x +1=-1+(x +1x )·11+(x +1x ),设P 1(-1,0)、P 2(1,0),λ=x +1x ,其中1<x <3.由函数λ=x +1x 的单调性可求得,2<λ<103.又当λ=2时,y =13;λ=103时,y =713,因此所求函数的值域为(13,713). (三)、求函数的解析式例11.二次函数f (x )=ax 2+bx +c 的图像通过点(-1,0)且x ≤f (x )≤12(x 2+1),对一切实数x 都成立,求f (x ).解析:因为当x ∈R ,总有x ≤f (x )≤12(x 2+1),为此不妨设P 1(x )、P[f (x )]、P 2(x 2+12)为数轴上三点,那么−→−P P 1=λ−→−2PP ,其中λ≥0,于是由定比分点坐标公式得: f (x )= x +λ·x 2+121+λ,又因为y = f (x )通过点(-1,0),代入上式得,0=-1+λ1+λ,解得λ=1,再将λ=1代入f (x )= x +λ·x 2+121+λ得,f (x )= 14x 2+12x +14.(四)、用于处置三角问题例12. 证明:y =2sin x +12sin x -1的值不在区间(13,3)内.证明:①当sin x =1时,y =3∉(13,3); ②当sin x =-1时,y =-1∉(13,3);③当sin x ≠±1时,将P(y )视为数轴上的点A(13)与B(3)的分点,由定比的坐标公式:λ=x -x 1x 2-x ,得λ=y -133-y =sin x +13(sin x -1)<0,即点P(y )为有向线段−→−AB 的外分点,故有y ∉(13,3). 综上可知,y =2sin x +12sin x -1的值不在区间(13,3)内.(六)、用于解决数列问题数列是概念在正整数集上的特殊函数.而等差数列的通项公式为:a n =a 1+(n -1)d =dn +(a 1-d )为变量n 的一次函数(d ≠0),其图象为直线.故而有A(m ,a m )、B(n ,a n )、C(p ,a p )三点共线(其中a m 、a n 、a p 别离为项数是m 、n 、p 的数列中的项).为此咱们把C 视为−→−AB 的一个定比分点,那么有λ=p -mn -p,a p=a m +λa n 1+λ.例13 .在3与19之间插入31个数,使它们成等差数列,求通项公式. 解析:设通项为a n ,令点P(n ,a n )分A(1,a 1),B(33,a 33)两点连成的线段所成的比为λ,那么有λ=n -133-n ,又由题意,a 1=3,a 33=19,于是有a n =a 1+λa 331+λ=3+n -133-n ×191+n -133-n =12n +52. 即通项a n =12n +52.命题2. 设数列{ a n }是等差数列,S n 是数列的前n 项和,其中S P 、S m 、S n 知足λ=p -m n -p (λ≠-1),那么S m m =S p p+λS n n1+λ.例14. 设S n 是等差数列的前n 项和,已知S 10=100,S 100=10,求S 110. 解析:取λ=110-10100-110=-10,那么S 110110=S 1010+λS 1001001+λ =10010+(-10)101001+(-10) =-1,因此S 110=-110.。

定比分点公式

定比分点公式

定比分点公式
定比分点坐标介绍
定比分点坐标公式是数学中一种重要的工具,如果应用得当,常常可以巧妙地解决函数、等差数列、解析几何和不等式中的一些数学难题。

和两点间的中点公式一样,定比分点公式是一种给出中点坐标的公式。

定比分点应该理解为:“固定比例分割点的坐标公式”,中点公式是他的一种特殊情况。

我们可以用它寻找三角形的内心、质心和外心。

他是在一个线段中按照固定比例将线段分为两部分。

定比分点坐标公式是:
x=(x1+kx2)/(1+k)
设x轴上点A(x1),B(x2),坐标分别为x1,x2,点M(x)分AB为定比k:AM:MB=K
则(x-x1):(x2-x)=k
去分母得:x-x1=kx2-kx
所以x(1+k)=x1+kx2
所以x=(x1+kx2)/(1+k)
这就是定比分点的坐标公式
类似的方法可以推导平面上的定比分点的坐标公式
设A(X1,Y1),B(X2,Y2),点M(X,Y)分AB为定比k:AM:MB=K
则有公式x=(x1+kx2)/(1+k) , y=(y1+ky2)/(1+k)。

定点分比定理公式

定点分比定理公式

定点分比定理公式
固定点分比定理是一种实用及经典的数学推理方法,它是一种艺术结合科学技术的创新,极为重要。

固定点分比定理更多地运用了数学的模型和实践,来检验问题的准确性和合理性。

简要来说,固定点分比定理是一种确定比例因子的方法,通过固定点和比例尺寸,它可以确定一个点与另一个点之间的距离。

举个例子,当一个点在一个集合变换中不变时,则称该点为固定点,而变换就会影响其他的点,即分比的系数即比例因子。

固定点分比定理的公式是:α:β=γ:δ。

即:α:β=γ:δ可以确定α:β与γ:δ之间的比例关系。

比如,固定点A的坐标是(1,1),B的坐标是(2,2),则可以得到A:B=1:1,也就是说从A到B的距离与它们之间的比例关系恒定不变。

固定点分比定理在求解不同称重比例、面积和距离问题中也有重要应用,最关键的是,它可以帮助我们根据一定规律,将复杂的问题简化,使之不仅简单而且易懂。

例如,在求解称重问题时,只要能够根据固定点分比定理求出比例因子,就可以得出各组称重值的比例,从而使之更容易地求解。

固定点分比定理可以帮助我们更清楚地了解几何问题的规律,是一种有用的数学理论。

它为工程应用、经济学及其它科学研究带来了许多好处,值得被更多人探索和研究。

高三数学线段的定比分点

高三数学线段的定比分点
线段的定比分点与平移
高三备课组
一、基础知识
1、 线段的定比分点
(1)定义
设P1,P2是直线L上的两点,点P是L上不同 于P1,P2的任意一点,则存在一个实数 , P 使p1 p pp , 所 2 叫做点P分有向线段 1P 2 成的比。
0 ;当点P在线 当点P在线段 P 上时, 1P 2 <0 段 P1 P2 或 P2 P1 的延长线上时,
(2)定比分点的向量表达式:
点P分有向线段 P 所成的比是 ,则 1P 2 1 OP OP1 OP2 1 1 (O为平面内任意点)

(3)定比分点的坐标形式
x1 x 2 x 1 y y 2 y 1 1
,

(4)中点坐标公式
当 =1时,分点P为线段的中点,即有
练习:
若直线x+2y+m=0,按向量a 1,2平移后与圆C:
x 2 y 2 2x 4 y 0
相切
则实数m的值等于
例5.是否存在这样的平移,使抛物线: y x 2 平移后 过原点,且平移后的抛物线的顶点和它与 x 轴的两个 交点构成的三角形面积为 1 ,若不存在,说明理由;若 存在,求出函数的解析式。 例4.设函数
x1 x y y 1 x2 2 y2 2
ABC 的重心坐标公式: (5)
x A x B xC x 3 y A y B yC y 3
2、平移
(1)图形平移的定义
设F是坐标平面内的一个图形,将图上的所有 点按照同一方向移动同样长度,得到图形 F’ , 我们把这一过程叫做图形的平移。
A(4,1), B(3,4), C (1,2) , BD 是角 ABC 的平分 线,求点D的坐标及BD的长。

03线段的定比分点及平移

03线段的定比分点及平移
2 + 5λ −1 + 3λ k − + 1 = 0 ⇒ (5k − 2)λ = −2k + 2 1+ λ 1+ λ
>0
点不能与B点重合 点重合, QP点不能与 点重合,所以 5k − 2 ≠ 0
2k + 2 2 ∴λ = − > 0得 − 1 < k < 5k − 2 5
进行平移, 6.将函数 y = − x 进行平移,使得到的图象与原函数的 图象的两交点关于原点对称.求平移后图象的解析式. 图象的两交点关于原点对称.求平移后图象的解析式.
3.三角形重心公式及推导 三角形重心公式及推导 x1 + x 2 + x3 y1 + y 2 + y 3 三角形重心公式: , ) 三角形重心公式: ( 3 3
二、平移及平移公式 1.图形平移:设 F 是坐标平面内的一个图形,将 F 上 图形平移: 是坐标平面内的一个图形, 图形平移 所有的点按照同一方向移动同样长度(即按向量 所有的点按照同一方向移动同样长度 即按向量 a 平 移),得到图形 F`,我们把这一过程叫做图形的平移。 , ,我们把这一过程叫做图形的平移。 r 2.平移公式:点 P ( x, y ) 按向量 a = ( h, k ) 平移到 P′ ( x', y' ) 平移公式: 平移公式
一、线段的定比分点 1.定义 设 P 、P2 是直线 l 上的两点 点 P 是 l 上不同于 定义:设 1 上的两点, 定义 uuu r uuur P 、P2 的任意一点,则存在一个实数 λ 使 P P = λ PP2 , 1 1 uuuu r λ 叫做点 P 分有向线段 P P2 所成的比.(如图) 1
r r r 例 2 设函数 f ( x) = a ⋅ b ,其中向量 a = (2 cos x ,1) , 其中向量 r b = (cos x, 3 sin 2 x ), x ∈ R .

高三数学线段的定比分点

高三数学线段的定比分点

《我爱这土地》中写“为什么我的眼里常含泪水”,上文结尾也写到了“流泪”,简要分析“眼泪”背后两位作者思想感情的异同。 3、文中的语言富有表现力,请结合句中加点的词语作简要分析。 一阵沙尘扑面而来,豆大的雨点砸了下来,劈头劈脸,欢笑的人群直往外冲。 ? 4、文
章第④段的“对我来说,去圆明园是一种凭吊,一种拜谒,甚至是一种提醒。”简要说说作者要“凭吊、拜谒”什么? “提醒”什么呢? 5、简要分析第⑤段中划线句在文中有什么作用? ? 6、请你为圆明园遗址准备一条宣传语,要能揭示遗址给人的警示。(不超过20字,至少用一种
修辞手法) ? 参考答案: 1、A 理由:用拟人手法,容易引起读者的注意;更能表达作者对造成这种现象的悲痛心情(主题)。 2、相同点:都有对祖国的深切的爱。 不同点:艾青是目睹山河破碎、人民涂炭的现实,心中的痛苦。 本文作者是因为部分国人不知铭记历史而十分伤心、
难过。 3、“扑”表现风来得猛,“砸”表现雨下得大,这样写更能突出作者对人们不理解废墟价值的一种愤怒与悲哀。(言之有理,可酌情给分) 4、凭吊、拜谒无数在此长眠的死难者(中华民族屈辱的历史) 提醒自己不忘历史的耻辱,不能让悲剧重演。(意同即可) 5、一方面突
(5)ABC 的重心坐标公式:

x

y

xA yA

xB
3 yB

xC yC

3
2、平移
(1)图形平移的定义
设F是坐标平面内的一个图形,将图上的所有 点按照同一方向移动同样长度,得到图形F’, 我们把这一过程叫做图形的平移。
(2)平移公式
设P(x,y)是图形F上任意一点,它在平移后图形上的
起来,用极低的声音问:“老师,我可以带馒头吗?”一阵其实并没有恶意的笑声刺激着女孩,她的脸通红通红的,低着头默默地坐下,眼泪沿着脸颊流了下来。李老师走过去,抚摸着她的头说:“你放心,可以带馒头的。” ③出发的前一天,女孩子拿着饭票在学校食堂买了六个馒头,

线段定比分点

线段定比分点

练习:

例、已知抛物线 y x 2x 8
2
(1)求抛物线顶点的坐标 (2)求将这条抛物线的顶 点平移到 点(2, 3)时的函数解析式 (3)将此抛物线按怎样的向 量平移,能使
平移后的曲线的函数解 析式为y x
2
(3)将函数y log3 (2 x 1) 4的图象,按向量 a平移 后得到的函数是 y log3 2 x, 求a
知识提要 3、图形的平移
所有点 将平面坐标系内的图形F上___________ 同一方向移动相同的长度 得到图形, 按照________________________, 把这一过程叫做图形的平移
4、平移公式
将P ( x , y )按a ( h, k )平移到P ( x , y ),
' ' '
(2)ABC中三个顶点的坐标分别 是A(2,1), B(3,4), C (2,1)则ABC的重心坐标是(-1,2) _____
(3)已知点A( x,5)关于点P(1, y)的对称点 是B(2,3), 求点(x, y)到原点的距离 17
(4)已知两点A(1,6), B(3,0), 在直线AB上 1 求一点P, 使的 AP AB 3
x x h 则平移公式: ' y yk
'
(1) y 2 x 1的图象C按a (2,0)平移得到
y 2 x 3 C ' , 则C '的解析式为_________
(2)把一个函数的图象按 a ( ,2)平移 6 后得到图象的解析式为 y 2 cos(x ) 2 6 y 2 cos x 则原函数解析式为_________
P 1P PP2

解析几何中的定比分点问题

解析几何中的定比分点问题

解析几何中的定比分点问题在解析几何中,定比分点问题是指在一条线段上,已知两个点A和B以及它们之间的比例关系,求解线段上的某一点C,使得AC与CB的比例与已知的比例相等。

这是一个常见的几何问题,在实际应用中有着广泛的应用。

一、问题描述假设已知线段AB的长度为a,点A的坐标为(x1, y1),点B的坐标为(x2, y2),已知AC与CB的比例为m:n,其中m和n为正整数。

我们需要求解点C的坐标。

二、解法分析为了求解点C的坐标,我们可以利用坐标系中的比例关系和线段长度来推导出点C的坐标。

具体的解法如下:1. 计算线段AB的长度根据两点坐标的距离公式,线段AB的长度可以计算为:AB = √((x2-x1)^2 + (y2-y1)^2)2. 计算AC与CB的比例已知AC与CB的比例为m:n,我们可以假设AC的长度为mx,CB的长度为nx。

根据比例关系,我们可以得到以下等式:mx + nx = AB其中,AB为已知的线段长度。

3. 求解点C的坐标已知AC的长度为mx,我们可以利用类似的思路来计算点C的坐标。

假设点C的坐标为(x, y),则有以下等式:x - x1 = (mx/AB) * (x2 - x1)y - y1 = (mx/AB) * (y2 - y1)将上述两个等式整理,可得:x = x1 + (mx/AB) * (x2 - x1)y = y1 + (mx/AB) * (y2 - y1)4. 求解点C的坐标将上述计算得到的x和y代入,即可得到点C的坐标。

三、示例为了更好地理解定比分点问题的解法,我们举一个具体的例子来说明。

假设已知线段AB的长度为10,点A的坐标为(1, 2),点B的坐标为(5, 6),已知AC与CB的比例为2:3。

我们需要求解点C的坐标。

1. 计算线段AB的长度AB = √((5-1)^2 + (6-2)^2) = √(16 + 16) = √32 ≈ 5.6572. 计算AC与CB的比例假设AC的长度为2x,CB的长度为3x,则有:2x + 3x = 5.6575x = 5.657x ≈ 1.13143. 求解点C的坐标根据上述的解法分析,我们可以得到点C的坐标为:x = 1 + (2/5.657) * (5-1) ≈ 2.2628y = 2 + (2/5.657) * (6-2) ≈ 3.5256因此,点C的坐标为(2.2628, 3.5256)。

5-4线段的定比分点与平移

5-4线段的定比分点与平移

答案:A
)
首页Βιβλιοθήκη 上页下页末页
第五章
平面向量
4.(教材P1352题改编)将点A(-4,3)按向量a=(5,-2)
平移后的坐标是 ( A.(9,-5) C.(1,1) B.(-9,5) D.(-8,1) )
《 走 向 高 考 》 高 考 总 复 习 · ( 数 学 配 统 编 教 材 版
解析:按向量平移公式计算得知应选C.
为________.
答案:y=log2(x+6)+4
)
首页
上页
下页
末页
第五章
平面向量
5.将函数 y=2sin2x 的图象按向量 a 的方向平移,得到 π 函数 y=2sin(2x+ )+1 的图象,则向量 a 的坐标为( 3 π A.(-3,1) π B.(-6,1) )
《 走 向 高 考 》 高 考 总 复 习 · 数 学 配 统 编 教 材 版
《 走 向 高 考 》 高 考 总 复 习 · ( ) 数 学 配 统 编 教 材 版
首页
上页
下页
末页
第五章
平面向量
2.平移公式 设 P(x,y)为图形 F 上任一点,它按向量 a=(h,k)平移 后的图形 F′上对应点为
x′=x+h P′(x′, y′), 则有 y′=y+k

《 走 向 高 考 》 高 考 总 复 习 · ( 数 学 配 统 编 教 材 版
首页
上页
下页
末页
第五章
平面向量
《 走 向 高 考 》 高 考 总 复 习 · ( ) 数 学 配 统 编 教 材 版
首页
上页
下页
末页
第五章
平面向量
该类问题要正确地选取线段的起点与终点,应用定比

教案 高教版(数学)第二册——7.7 线段的中点坐标公式和定比分点坐标公式

教案 高教版(数学)第二册——7.7 线段的中点坐标公式和定比分点坐标公式

线段的中点坐标公式和定比分点坐标公式教学目标1、理解点P 分有向线段所成的比λ的含义,能确定λ的正负号;明确点P 的位置与λ的范围的关系;2、掌握有向线段的定比分点和中点的坐标公式,并能熟练运用这两个公式解决实际问题;3、向学生渗透数形结合的思想,培养学生的思维能力,发现事物间的变化规律。

教学重点线段的定比分点和中点坐标公式的应用。

教学难点利用线段定比分点坐标公式解题时确定λ的值。

教学过程一、定比分点设P 1、P 2是直线l 上的两个点,P 是l 上不同于P 1,P 2的点,则存在一个实数λ,使得12PP PP λ=,则λ叫做点P 分有向线段12PP 所成的比,点P 叫做定比分点。

注意:1、1212,,PP PP PP 均是有向线段,P 1为起点,P 2为终点,P 为分点,这三条有向线段的顺序不能颠倒,否则λ的值会改变.记忆规律:1PP :起点到分点;2PP :分点到终点。

2、当点P 在线段P 1P 2上时,λ>0,这时称P 为内分点;当点P 在线段P 1P 2或P 2P 1的延长线上时,λ<0(1λ=-),此时称P 为外分点。

具体地说,当点P 在线段P 1P 2的延长线上时,1λ<-;当点P 在线段P 2P 1的延长线上时,10λ-<<。

3、具体解题时,起点、分点、终点可根据情况灵活决定.这样计算过程稍有不同,但结果一样。

二、定比分点公式 1、坐标形式设点P 分有向线段12PP 所成的比为λ,即12PP PP λ=,则12111OP OP OP λλλ=+++ (线段的定比分点的向量公式) ⎪⎪⎩⎪⎪⎨⎧++=++=.1,12121λλλλy y y x x x (线段定比分点的坐标公式)(1)2、特别地,当1λ=时,显然此时点P 为12PP 的中点,1212121212(1)12x x x x x x y y y y y y λλλλλ++⎧⎧==⎪⎪⎪⎪+≠⇒⎨⎨++⎪⎪==⎪⎪+⎩⎩……….中点坐标公式(2)我们将(2)式称为有向线段12PP 的中点坐标公式。

数轴定比分点公式推导过程

数轴定比分点公式推导过程

数轴定比分点公式推导过程
嘿,咱今儿就来聊聊数轴定比分点公式的推导过程,这可有意思啦!
咱先想象一下,数轴就像是一条长长的跑道,上面有好多好多的点
在排队呢。

那定比分点呢,就像是在这条跑道上找一个特别的位置。

比如说,咱有两个点 A 和 B,它们在数轴上的位置是确定的。

然后呢,咱要找一个点 P,让 AP 和 PB 之间有个特定的比例关系。

那怎么找这个点 P 呢?别急,咱慢慢来。

咱先设 A 点的坐标是 x1,B 点的坐标是 x2,定比是λ。

那咱就可
以开始捣鼓啦。

从 A 到 P 的距离,不就是 P 点的坐标减去 A 点的坐标嘛。

同样,
从 P 到 B 的距离,就是 B 点的坐标减去 P 点的坐标。

然后呢,根据定比的关系,咱就可以列出一个等式呀。

就是从 A 到
P 的距离和从 P 到 B 的距离的比值等于定比λ。

这就像你分糖果一样,要按照一定的比例来分。

把这些式子一整理,一化简,哇塞,不就得出数轴定比分点公式啦!
你看,其实也没那么难嘛!就是这么一步步推导出来的呀。

咱再想想,生活中好多事情不也是这样嘛,得一点点去分析,去琢磨,才能找到答案。

就像解开一道谜题一样,过程可能有点麻烦,但一旦解开了,那成就感可不是一般的大呀!
所以呀,别害怕这些数学公式推导,就把它当成一个有趣的游戏,去探索,去发现。

说不定你会发现其中的乐趣无穷呢!以后再遇到类似的问题,你就可以拍拍胸脯说:“这我会呀!”这不挺棒的嘛!
总之呢,数轴定比分点公式的推导过程就是这么回事,只要你用心去理解,肯定能搞明白的。

加油吧!。

向量定理七个公式

向量定理七个公式

向量定理七个公式平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。

平面向量用a,b,c 上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。

输入分数,查看能上的大学测一测能上的大学1向量的加法1、向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=(x+x',y+y').a+0=0+a=a.2、向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).2向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3向量的的数量积1、定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.2、向量的数量积的坐标表示:a•b=x•x'+y•y'.3、向量的数量积的运算律a•b=b•a(交换律);(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分配律);4、向量的数量积的性质a•a=|a|的平方.a⊥b 〈=〉a•b=0.|a•b|≤|a|•|b|.5、向量的数量积与实数运算的主要不同点(1)向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.(2)向量的数量积不满足消去律,即:由a•b=a•c (a≠0),推不出b=c.(3)|a•b|≠|a|•|b|(4)由|a|=|b| ,推不出a=b或a=-b.4数乘向量1、实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.2、数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.5向量的向量积1、定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.2、向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a‖b〈=〉a×b=0.3、向量的向量积运算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的.6向量的三角形不等式1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;① 当且仅当a、b反向时,左边取等号;② 当且仅当a、b同向时,右边取等号.2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.① 当且仅当a、b同向时,左边取等号;② 当且仅当a、b反向时,右边取等号.7定比分点定比分点公式(向量P1P=λ•向量PP2)设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数λ,使向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.若P1(x1,y1),P2(x2,y2),P(x,y),则有OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ).(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公式8其他公式1、三点共线定理若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线2、三角形重心判断式在△ABC中,若GA +GB +GC=O,则G为△ABC的重心3、向量共线的重要条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb. a//b的重要条件是xy'-x'y=0.4、零向量0平行于任何向量.5、向量垂直的充要条件a⊥b的充要条件是a•b=0.a⊥b的充要条件是xx'+yy'=0.6、零向量0垂直于任何向量.。

巧用定比分点坐标公式解题

巧用定比分点坐标公式解题

巧用定比分点坐标公式解题
杜蓉;陈昌全;熊锡成
【期刊名称】《成都教育学院学报》
【年(卷),期】2000(014)007
【摘要】有向线段P1P2-(其中P1(x1,y1),P2(x2,y2))的定分点坐标公式是
x=x1+λ·x2/1+λ,y=y1+λ·y2/1+λ(λ≠-1),这是一个结构整齐,对称,数学美感强的公式,当且仅当λ>0时,分点位于p1,p2之间;当且仅当λ<0且λ≠-1时,分点位于p1p2-的延长线上或反向延长线上,或者p1p2-退缩为一点。

【总页数】3页(P60-62)
【作者】杜蓉;陈昌全;熊锡成
【作者单位】四川崇州市蜀城中学,崇州611230
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.也谈用定比分点坐标公式解题 [J], 王辉;刘康宁
2.巧设定比分点利用坐标公式解题 [J], 郑作慧;刘晖
3.也谈用定比分点坐标公式解题 [J], 王辉;刘康宁
4.也谈用定比分点坐标公式解题 [J], 王辉; 刘康宁
5.应用定比分点坐标公式解题例说 [J], 杜青文
因版权原因,仅展示原文概要,查看原文内容请购买。

定比分点的坐标表示

定比分点的坐标表示

定比分点的坐标表示
哎呀,说起这个定比分点的坐标表示啊,就像咱们四川人摆龙门阵一样,得细细道来,才有味道。

你想象一下,咱们坐在茶馆里,泡上一杯热腾腾的盖碗茶,边喝边聊这数学里的“小秘密”。

首先啊,你得明白,定比分点,这个名字听起来就有点儿玄乎,但其实它讲的是两个点之间,按照一定比例分出来的一个新点。

就像咱们分蛋糕,一人一半或者我多点你少点,总有个比例在那儿。

在数学里,这个比例就是咱们说的“定比”,而那个点,就是咱们要找的“定比分点”。

坐标表示嘛,简单说,就是用数字来给这个点定位。

咱们在平面直角坐标系里头,每个点都有它的横坐标和纵坐标,对吧?那定比分点也不例外,它也有自己的坐标位置。

怎么找呢?就得用到公式了,公式就像是咱们手里的指南针,告诉你方向,让你能准确地找到那个点。

说到这儿,你可能要问了,为啥这个知识点这么重要呢?嘿,这你就问到点子上了。

定比分点的坐标表示,它不仅仅是个数学工具,更是连接几何和代数的桥梁。

有了它,咱们可以更方便地在图形上“动手术”,比如找中点、分割线段,甚至解决一些复杂的几何问题。

而且,它还能培养咱们的逻辑思维和计算能力,让咱们的大脑更灵活,更聪明。

所以啊,朋友们,下次遇到定比分点的坐标表示,别急着头疼,静下心来,用咱们四川人的智慧和耐心,一步一步去攻克它。

就像咱们爬山一
样,虽然路陡,但山顶的风景,绝对值得你付出汗水。

好了,今天咱们就聊到这儿,下次有机会再摆摆其他的数学龙门阵哈!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档