向量的定比分点公式运用

合集下载

(完整版)向量公式大全

(完整版)向量公式大全

向量公式设a=( x, y),b=(x' , y') 。

1、向量的加法向量的加法知足平行四边形法例和三角形法例。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a 。

向量加法的运算律:互换律: a+b=b+a;联合律: (a+b)+c=a+(b+c) 。

2、向量的减法假如 a、 b 是互为相反的向量,那么 a=-b ,b=-a ,a+b=0. 0 的反向量为 0AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y')则a-b=(x-x',y-y').4、数乘向量实数λ和向量 a 的乘积是一个向量,记作λa,且∣λ a∣ =∣λ∣ ?∣ a∣。

当λ> 0 时,λ a 与 a 同方向;当λ< 0 时,λ a 与 a 反方向;当λ =0 时,λ a=0,方向随意。

当a=0 时,对于随意实数λ,都有λ a=0。

注:按定义知,假如λ a=0,那么λ =0 或 a=0。

实数λ叫做向量 a 的系数,乘数向量λ a 的几何意义就是将表示向量 a 的有向线段伸长或压缩。

当∣λ∣> 1 时,表示向量 a 的有向线段在原方向(λ> 0)或反方向(λ< 0)上伸长为本来的∣λ∣倍;当∣λ∣< 1 时,表示向量 a 的有向线段在原方向(λ> 0)或反方向(λ< 0)上缩短为本来的∣λ∣倍。

数与向量的乘法知足下边的运算律联合律: ( λa) ?b=λ(a ?b)=(a ?λ b) 。

向量对于数的分派律(第一分派律):( λ+μ)a= λ a+μa.数对于向量的分派律(第二分派律):λ (a+b)= λa+λ b.数乘向量的消去律:① 假如实数λ≠ 0 且λ a=λ b,那么 a=b。

②假如 a≠0且λ a=μ a,那么λ =μ。

3、向量的的数目积定义:已知两个非零向量a,b 。

作 OA=a,OB=b,则角 AOB称作向量 a 和向量 b的夹角,记作〈 a,b 〉并规定 0≤〈 a,b 〉≤π定义:两个向量的数目积(内积、点积)是一个数目,记作a?b。

定比、定比分点公式

定比、定比分点公式

(3)定比、定比分点公式一、教学内容分析本节是的第三节课,是学习向量坐标表示及运算、向量的模与平行之后的又一个新的知识点.它既是对前两节内容复习与巩固,又是对向量知识的进一步深化与拓展,如式子 12PP PP λ=中的λ由实数推广到定比.同时,经历定比分点公式的推导过程,让学生领悟定比分点的多元化表示方法.本节的教学重点是定比分点公式的形成、深化、拓展与应用.难点是定比λ的理解、确定及定比分点公式中分点、始点、终点坐标位置的识别.根据本节特点,教师采取启发、提问为主的教学方法;学生则进行自主学习.即课前进行主动预习,课中进行讨论与交流,课后进行探索研究. 二、教学目标设计1理解定比的概念,掌握定比分点公式;2通过定比分点公式的推导过程,巩固向量的运算方法; 感悟定比分点的几种表达方式;3通过本节的学习,提升发现能力、推理能力,渗透数形结合思想. 三、教学重点及难点定比的概念,定比分点公式的推导和应用. 四、教学流程设计五、教学过程设计一、 情景引入观察思考,引入新课问题1:设)1,2(A ,)1,2(--B ,)2,4(C 三点共线,可知BA ∥AC ,即存在实数λ,使BA = λAC ??,那么实数λ= . 而若?BC CA λ=,则λ= .[说明](1)本问题由共线三点坐标求实数λ,它既是对前一节向量平行的复习与巩固,同时又为定比λ的产生作好铺垫(2)通过本题可以看出使两向量平行的实数λ的取值可正可负. 问题2:设1P (1,1),2P (4,4), λ=1.当12PP PP λ=时,你能求出点P的坐标吗(引出课题)[说明]问题2是由共线三点中的两点坐标和定比λ的值求第三点坐标,本题给出的点具有一定的特殊性,这样便于学生利用数形结合思想猜出结果,尝试成功的快乐. 二、学习新课 1.定比分点公式一般地,设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一点,且满足 12PP PP λ=,求点P 的坐标.解:由12PP PP λ= ,可知{)()(2121x x x x y y y y -=--=-λλ,因为λ≠-1, 所以⎩⎨⎧++=++=λλλλ112121x x x y y y ,这就是点P 的坐标.师生通过上面的结论共同解决(一)中的问题2.[说明]此例题的结论可作为公式掌握,此公式叫线段21P P 的定比分点公式. 2.小组交流(1)定比分点公式中反映了那几个量之间的关系当λ=1时,点P的坐标是什么 (2)满足式子12PP PP λ=的点P 称为向量 12PP 的分点.思考:上式中正确反映 P 1,P ,2P 三点位置关系的是( ) A 、 始→分,分→终.B 、始→分,终→分.C 、终→分,分→始 (3)关于定比λ和分点P 叙述正确的序号是1)点P 在线段21P P 中点时,λ=1;2)点P 在线段21P P 上时,λ≥0 3)点P 在线段21P P 外时,λ﹤0; 4)定比λR ∈[说明]由定比分点公式可知λ=1 时有⎪⎩⎪⎨⎧+=+=222121x x x y y y ,此公式叫做线段21P P 的中点公式. 此公式应用很广泛.3.例题辨析例1、已知平面上A 、B 、C 三点的坐标分别为A (),11y x , ),(22y x B , ),(33y x C ,G 是△ABC 的重心,求点G 的坐标.解:由于点G 是△ABC 的重心,因此CG 与AB 的交点D 是AB 的中点,于是点D 的坐标是(2,22121y y x x ++). 设点G 的坐标为),(y x ,且2CG GD =则由定比分点公式得 ⎪⎩⎪⎨⎧+++=+++=21222122213213x x x x y y y y ,整理得 ⎪⎩⎪⎨⎧++=++=3332121x x x x y y y y 这就是△ABC 的重心G 的坐标.[说明]本题难度不大,但综合性却比较强.不仅涉及到定比的概念,而且用到了中点公式、定比分点公式.(2)此结论可作为三角形重心的坐标公式.例2、)15,12(),0,3(),5,2(21P P P - 且有12PP PP λ=求实数λ的值.解1: 由已知可求 1(10,10)PP =,2(15,15)PP λλ=-- 故10=λ .(-15), 所以定比λ=-32.解2: 因为12PP PP λ=,所以P 1,P ,2P 三点共线,由定比分点公式得12=λλ+-⨯+1)3(2 解出实数λ=-32.解3:由图形可知点P 在线段21P P 外,故λ﹤0 ,又21PP PP = 32,所以λ=-32 .[说明] 本题已知三点坐标求定比λ的值,学生往往偏爱第一种解法;解法二是定比分点公式的一个应用,其前提是三点共线,代公式时要注意始点、终点、分点坐标的位置;解法三是求定比λ的有效方法,简洁方便,鼓励学生大胆去尝试.三、演练反馈,巩固知识1设12PP PP λ= ,21P P PPλ'= ,则下列正确的是( ) (A )λλ'= (B )λλ'=- (C ) 1λλ=' (D )1λλ=-'2、△ABC 中,A (2,3),B (-3,4),重心G (-)34,32,求C 点的坐标.3、已知:A (3,-1),B (-4,-2),点P 在直线AB 上,且2AP =3BP ,求P 点坐标.四、知识梳理,提升思维1知识与技能小结:(1)主要的知识点有定比λ的概念,中点公式、定比分点公式,及定比分点公式的多元化表示.(2)主要的应用有定比λ的意义与范围,三点共线问题,三角形重心公式及综合应用.2 学生的体会和感悟:对本节学习过程的认识、理解和体会;提出新的疑点和问题.五、作业布置,课后探究 1、填空题(1)已知三点A 、B 、C 满足AB =2BC ,设1AC CB λ=2BA AC λ=则=•21λλ(2)△ABC 中,A (1,2),B (-2,3),C (4,-1),D 为BC 中点,且 3= ,则G 点坐标是 2、选择题(1)若 2143PP P -=,则下列各式中不正确的是( ) (A ) 12P P =P P 131 (B )P P 1234= (C ) 2113P P P -= (D )1224P PP =(2) 设点P 是12PP 反向延长线上任意一点且12PP PP λ=,则实数λ的范围是( )(A )(-∞,0) (B )(—∞,-1) (C )(-1,0) (D )[-1,0)3、解答题(1)△ABC 中,已知A (3,1),AB 的中点D (2,4),△ABC 的重心G (3,4),求B 、C 两点的坐标.(2)已知设1P (3,2),2P (-8,3) , P (12,y ),若12PP PP λ=,求λ与y 的值.。

定比分点坐标公式在解题中的应用

定比分点坐标公式在解题中的应用

定比分点坐标公式在解题中的应用河北 陈庆新许多同窗可能已经能够熟练地应用有向线段的定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x 及定比的坐标公式λ=x -x 1x 2-x ,求解有向线段的定比分点坐标及定点分有向线段所成的比了.事实上用这两个公式,还可巧妙地用于解决其它一些问题.如用得好,会使解题进程显得别具一格,简捷明快,充分展现咱们思维的独创性.下面举例说明其解题中的应用. 一、在几何问题中的应用(一)关于公式的正用例1. 证明:三角形内角平分线分其对边之比等于夹那个角的两边长度之比.证明:以ΔOAB 的极点O 为原点,∠AOB 的平分线OC 因此直线为x 轴,成立平面直角坐标系如下图,设|OA|=m ,|OB|=n ,∠AOC =∠COB =θ,那么A(m cos θ,m sin θ),B(n cos θ,-nsin θ),设C 点分−→−AB 的所成的比为λ,由定比分点的坐标公式:m sin θ-λn sin θ1+λ=0,解之得,λ=m n ,即|AC||CB|=|OA||OB|.点评:本例的结论在解题中有着很多的应用。

请看下面的例子。

例2.已知△ABC 三个极点的坐标别离为A(-1,1),B(3,1),C(2,5),角A 的内角平分线交对边于D ,那么向量AD −−→的坐标为 .解析:容易计算|AB −−→|=4,|AC −−→|=5。

依照三角形内角平分线的性质知:ABAC=BD DC ,于是可知点D 分有向线段BC −−→所成的比为45,从而由定比分点坐标公式可求得点D 的坐标(239,259),于是AD −−→=(329,169).例3.已知三点A(1,2)、B(4,1)、C(3,4),在线段AB 上取一点P ,使过P 且平行于BC 的直线把△ABC 的面积分成4∶5两部份,求点P 的坐标.A C OBx y解析:由题意得:ABCAPQ S S ∆∆=2⎪⎭⎫ ⎝⎛AB AP =49.因此AP AB =23,即−→−AP =2−→−PB ,λ=2,设P(x ,y ),那么x =1+2×41+2=3,y =2+2×11+2=43.因此P 点的坐标为(3,43).例4.已知在△ABC 中,BC =a ,CA =b ,AB =c ,且A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3),求△ABC 的内心坐标.解析:设I 为△ABC 的内心,AD 为∠A 的平分线,那么AB AC =BD DC =cb ,∴点D 分−→−BC 所成的比为cb ,∴由定比分点的坐标公式可求得D 点的坐标:x D =x 2+c b ×x 31+c b=bx 2+cx 3b +c,y D =by 2+cy 3b +c.又AI ID =AB BD =AC CD ,∴AI ID =AB +AC BD +CD=b +ca ,即点I 分−→−AD 所成的比b +c a . ∴xI=acb c b cx bx a c b x ++++⋅++1321=ax 1+bx 2+cx 3a +b +c ,同理yI=ay 1+by 2+cy 3a +b +c .∴△ABC 的内心坐标为(ax 1+bx 2+cx 3a +b +c ,ay 1+by 2+cy 3a +b +c).(二)公式的逆用例5.已知一次函数y =-mx -2图象与线段AB 有交点,假设A(-2,3)、B(3,2),求实数m 的取值范围.解析:设一次函数的图象直线l 交AB 于点P(x ,y )且−→−AP =λ−→−PB (λ≥0),当λ=0时,直线过A 点,那么由定比分点坐标公式知⎪⎪⎩⎪⎪⎨⎧++=++-=λλλλ123132y x ,又因P 在直线l 上,故m ·-2+3λ1+λ+3+2λ1+λ+2=0,解得:λ=2m -53m +4≥0,从而m ≥52或mACBDI<-43.又当点P 与点B 重合时符合题意,因此将B(3,2)代入直线l 的方程,求得m =-43.故m 的取值范围为m ≥52或m ≤-43.本例能够推行为:已知定点P 1(x 1,y 1)、P 2(x 2,y 2)及直线l :A x +B y +C=0,设直线l 与直线P 1P 2相交于点P ,求证:点P 分有向线段12P P −−→所成的比λ=-A x 1+B y 1+CA x 2+B y 2+C.略解:设点P 分有向线段12P P −−→所成的比λ,由定比分点坐标公式可求得点P的坐标为:121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,将点P 的坐标代入直线l 的方程:A 121x x λλ+++B 121y y λλ+++C=0,整理得:(A x 1+B y 1+C )+λ(A x 2+B y 2+C)=0,解之得:λ=-A x 1+B y 1+CA x 2+B y 2+C .点评:假设利用那个结论来解答一下例5,就显得超级简捷:设点P(x ,y )分有向线段AB −−→所成的比为λ,则λ=-A x 1+B y 1+CA x 2+B y 2+C =--2m +3+23m +2+2=2m -53m +4,因为P 为内分点,因此λ=2m -53m +4≥0,解之得:m ≥52或 m <-43,当直线l 过点B时,有m =-43.综上知:m ≥52或m ≤-43. 二、在代数问题中的应用 (一)、解不等式例6.解不等式2-x1+3x≥1.解析:令y =2-x 1+3x -1≥0,那么x =1-y 4+3y=14+3y 4×(-13)1+3y 4,且y ≥0,于是此问题可转化为:数轴上以P 1(14)为起点,P 2(-13)为终点,定比λ=34y ≥0时,求分点P 的坐标x 的范围问题.由λ=34y ≥0知点P 为有向线段−→−21P P 的内分点,或与点P 1重合,故应有-13<x ≤14.例7. 解不等式1<x 2-2x -1x 2-2x -2<2.解析:在数轴上取P 1,P ,P 2点依次表示1,x 2-2x -1x 2-2x -2,2,由−→−P P 1=λ−→−2PP 得λ=1x 2-2x -3,因为P 内分有向线段−→−21P P ,因此λ>0,即x 2-2x -3>0,解之即得原不等式的解集为:{x |x <-1或x >}3. (二)、求函数的值域例8. 求函数y =1+3x +11-x +1的值域.解析:令λ=-x +1,那么λ≤0,依题意有y =-1+λ(-3)1+λ,依照上式可知λ为点P(y )分有向线段−→−21P P 所成的比,其中P 1(1)、P 2(-3),于是函数y 为分点P 的坐标,由定比的坐标公式:λ=x -x 1x 2-x =y -1-3-y≤0,解之得y <-3或y ≥1.即原函数的值域为(-∞,-3)∪[1,+)∞.例9.求函数y =e x -1e x +1的反函数的概念域.解析:问题等价于求原函数的值域.令λ=e x >0,P 1(-1),P(y ),P 2(1),那么y =e x -1e x +1=-1+e x ·11+e x =-1+λ1+λ,∵λ>0,∴P 为有向线段−→−21P P 的内分点,∴-1<y <1,故原函数的值域为(-1,1),即其反函数的概念域为(-1,1).例10.求函数y =x 2-x +1x 2+x +1(1<x <)3的值域.解析:将原函数式变形为:y =x 2-x +1x 2+x +1=-1+(x +1x )·11+(x +1x ),设P 1(-1,0)、P 2(1,0),λ=x +1x ,其中1<x <3.由函数λ=x +1x 的单调性可求得,2<λ<103.又当λ=2时,y =13;λ=103时,y =713,因此所求函数的值域为(13,713). (三)、求函数的解析式例11.二次函数f (x )=ax 2+bx +c 的图像通过点(-1,0)且x ≤f (x )≤12(x 2+1),对一切实数x 都成立,求f (x ).解析:因为当x ∈R ,总有x ≤f (x )≤12(x 2+1),为此不妨设P 1(x )、P[f (x )]、P 2(x 2+12)为数轴上三点,那么−→−P P 1=λ−→−2PP ,其中λ≥0,于是由定比分点坐标公式得: f (x )= x +λ·x 2+121+λ,又因为y = f (x )通过点(-1,0),代入上式得,0=-1+λ1+λ,解得λ=1,再将λ=1代入f (x )= x +λ·x 2+121+λ得,f (x )= 14x 2+12x +14.(四)、用于处置三角问题例12. 证明:y =2sin x +12sin x -1的值不在区间(13,3)内.证明:①当sin x =1时,y =3∉(13,3); ②当sin x =-1时,y =-1∉(13,3);③当sin x ≠±1时,将P(y )视为数轴上的点A(13)与B(3)的分点,由定比的坐标公式:λ=x -x 1x 2-x ,得λ=y -133-y =sin x +13(sin x -1)<0,即点P(y )为有向线段−→−AB 的外分点,故有y ∉(13,3). 综上可知,y =2sin x +12sin x -1的值不在区间(13,3)内.(六)、用于解决数列问题数列是概念在正整数集上的特殊函数.而等差数列的通项公式为:a n =a 1+(n -1)d =dn +(a 1-d )为变量n 的一次函数(d ≠0),其图象为直线.故而有A(m ,a m )、B(n ,a n )、C(p ,a p )三点共线(其中a m 、a n 、a p 别离为项数是m 、n 、p 的数列中的项).为此咱们把C 视为−→−AB 的一个定比分点,那么有λ=p -mn -p,a p=a m +λa n 1+λ.例13 .在3与19之间插入31个数,使它们成等差数列,求通项公式. 解析:设通项为a n ,令点P(n ,a n )分A(1,a 1),B(33,a 33)两点连成的线段所成的比为λ,那么有λ=n -133-n ,又由题意,a 1=3,a 33=19,于是有a n =a 1+λa 331+λ=3+n -133-n ×191+n -133-n =12n +52. 即通项a n =12n +52.命题2. 设数列{ a n }是等差数列,S n 是数列的前n 项和,其中S P 、S m 、S n 知足λ=p -m n -p (λ≠-1),那么S m m =S p p+λS n n1+λ.例14. 设S n 是等差数列的前n 项和,已知S 10=100,S 100=10,求S 110. 解析:取λ=110-10100-110=-10,那么S 110110=S 1010+λS 1001001+λ =10010+(-10)101001+(-10) =-1,因此S 110=-110.。

向量公式大全

向量公式大全

向量公式设a=(x,y),b=(x',y')。

1、向量的加法向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。

当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。

②如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积定义:已知两个非零向量a,b。

作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。

若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。

向量公式大全

向量公式大全

向量公式之蔡仲巾千创作设a=(x,y),b=(x',y')。

1、向量的加法向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。

当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将暗示向量a的有向线段伸长或压缩。

当∣λ∣>1时,暗示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,暗示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。

② 如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积定义:已知两个非零向量a,b。

作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。

若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。

向量公式汇总

向量公式汇总

向量公式汇总平面向量1、向量得加法向量得加法满足平行四边形法则与三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法得运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量得减法如果a、b就是互为相反得向量,那么a=-b,b=-a,a+b=0、0得反向量为0 AB-AC=CB、即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y')、3、数乘向量实数λ与向量a得乘积就是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。

当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a得系数,乘数向量λa得几何意义就就是将表示向量a得有向线段伸长或压缩。

当∣λ∣>1时,表示向量a得有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来得∣λ∣倍;当∣λ∣<1时,表示向量a得有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来得∣λ∣倍。

数与向量得乘法满足下面得运算律结合律:(λa)•b=λ(a•b)=(a•λb)。

向量对于数得分配律(第一分配律):(λ+μ)a=λa+μa、数对于向量得分配律(第二分配律):λ(a+b)=λa+λb、数乘向量得消去律:①如果实数λ≠0且λa=λb,那么a=b。

②如果a≠0且λa=μa,那么λ=μ。

4、向量得得数量积定义:已知两个非零向量a,b。

作OA=a,OB=b,则角AOB称作向量a与向量b 得夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量得数量积(内积、点积)就是一个数量,记作a•b。

若a、b 不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。

定比分点的向量公式及应用

定比分点的向量公式及应用

定比分点的向量公式及应用向量是在数学中广泛应用的一种重要概念。

在向量中,可以定义加法、减法和数量乘法等运算,这些运算规则以及向量的模、方向等性质,使得向量在数学、物理和工程等领域的应用中具有重要的意义。

在计算机科学和计算机图形学中,向量被广泛用于表示三维空间中的点、方向和位移等概念。

这些向量通常表示为[x,y,z],其中x、y和z分别表示在三个坐标轴上的分量。

定比分点的向量公式可以用于计算两个点之间的中点、分点以及线段的长度。

假设有两个点A和B,它们的坐标分别为A(x1,y1,z1)和B(x2,y2,z2),我们可以使用如下的公式来计算两个点之间的中点:M=(A+B)/2其中M是点A和点B之间的中点,"+"表示向量的加法运算,"/"表示向量与标量的除法运算。

通过这个公式,我们可以计算出两个点之间的中点的坐标。

在计算两个点之间的分点时,可以使用类似的方法。

假设有一个分点P,它位于点A和点B之间的t比例处,我们可以使用如下的公式来计算分点的坐标:P=A+t*(B-A)其中t是一个介于0和1之间的比例值。

当t等于0时,分点P的坐标就是点A的坐标;当t等于1时,分点P的坐标就是点B的坐标。

通过改变t的值,我们可以在点A和点B之间找到任意位置的分点。

除了计算中点和分点之外,向量的长度也是一个重要的概念。

在三维空间中,向量的长度可以通过计算其模来获得。

一个向量的模定义为其各个分量的平方和的平方根。

对于一个三维向量V=[x,y,z],其模的计算公式如下:V, = sqrt(x^2 + y^2 + z^2)通过计算向量的模,我们可以获得向量的长度信息。

定比分点的向量公式在计算机图形学中有许多应用。

例如,在三维建模中,我们经常需要计算物体的表面上的点的位置和属性。

通过定比分点的向量公式,我们可以在物体的两个顶点之间找到任意位置的点,从而进行物体的细分或者其他形变操作。

此外,向量的线性插值也是一个重要的应用。

定比分点的向量公式及应用_慕泽刚

定比分点的向量公式及应用_慕泽刚

1 b= 4 a+ 5 b. 399
解 析 二 由 已 知 条 件 得 D 分 AB 所 成 的 λ=
5 , 则O!"D = 1 O!"A + λ !O"B = 4 a+ 5 b.

1+λ 1+λ 9 9
评注 用已知向量表示其他向量也是一个热
点, 常规的解法是利用三角形法则或平行四边形法
则, 而本题利用定比分点的向量公式, 过程相对较
B!"P = 1 P!"A = 1 !B"A = 1 a,

1+m
1+m
因为 Q 分!A"D 的比为 n, 则
人 教 大 纲
专 业S
精心策划
!B"Q = 1 !B"A + n !B"D = 1 a+ n ( a+b) =
1+n
1+n
1+n 1+n

a+ n b,

1+n
B!"R = 1 B!"P + λ B!"C =
在线段
AB 上 ,
且 AP PB
=m, Q 在 线 段
AD 上 ,

AQ QD
=n, BQ 与 CP 相交于 R, 求 PR 的值. RC



PR


解析 设!B"A =a, B!"C =b, P!"R =λR!"C ,
所以
PR RC
=λ,
由题意有!A"P =mP!"B , A!"Q =nQ!"D , 则
1+λ 1+n

n 1+m)(
1+n)
, 即 PR RC

向量的坐标表示及其运算

向量的坐标表示及其运算

向量的坐标表示及其运算【知识概要】1. 向量及其表示1)向量:我们把既有大小又有方向的量叫向量(向量可以用一个小写英文字母上面加箭头来表示,如a 读作向量a ,向量也可以用两个大写字母上面加箭头来表示,如AB ,表示由A 到B 的向量. A 为向量的起点,B 为向量的终点).向量AB(或a )的大小叫做向量的模,记作AB (或a ).注:① 既有方向又有大小的量叫做向量,只有大小没有方向的量叫做标量,向量与标量是两种不同的量,要加以区别;② 长度为0的向量叫零向量,记作00的方向是任意的 注意0与0的区别③ 长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都是只限制大小,不确定方向.例1 下列各量中不是向量的是( DA.浮力B.风速C.位移D.密度 例2 下列说法中错误..的是( A )A.零向量是没有方向的 B .零向量的长度为0C. D.例 3 把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是( D ) A. B . C. D.2)向量坐标的有关概念① 基本单位向量: 在平面直角坐标系中,方向分别与x 轴和y 轴正方向相同的两个单位向量叫做基本单位,记为i 和j .② 将向量a 的起点置于坐标原点O ,作OA a =,则OA 叫做位置向量,如果点A 的坐标为(,)x y ,它在x 轴和y 轴上的投影分别为,M N ,则,.OA OM ON a OA xi y j =+==+③ 向量的正交分解在②中,向量OA 能表示成两个相互垂直的向量i 、j 分别乘上实数,x y 后组成的和式,该和式称为i 、j 的线性组合,这种向量的表示方法叫做向量的正交分解,把有序的实数对(,)x y 叫做向量a 的坐标,记为a =(,)x y .一般地,对于以点111(,)P x y 为起点,点222(,)P x y 为终点的向量12PP ,容易推得122121()()PP x x i y y j =-+-,于是相应地就可以把有序实数对2121(,)x x y y --叫做12PP 的坐标,记作12PP =2121(,)x x y y --. 3)向量的坐标运算:1122(,),(,)a x y b x y ==,R λ∈则1212121212(,);(,);(,)a b x x y y a b x x y y a x x λλλ+=++-=--=. 4) 向量的模:设(,)a x y =,由两点间距离公式,可求得向量a 的模()norm .22a x y =+.注:① 向量的大小可以用向量的模来表示,即用向量的起点与终点间的距离来表示; ② 向量的模是个标量,并且是一个非负实数.例4 已知点A 的坐标为(2,0),点B 的坐标为(3,0)-,且4,3AP BP ==,求点P 的坐标.解:点P 的坐标为612(,)55- 或 612(,)55--. 例5 已知2(4,3),2(3,4)a b a b +=--=,求a 、b 的坐标. 解:(1,2),(2,1)a b =-=-- 例6 设向量,,,,a b c R λμ∈,化简:(1)()()()()a b c a b c b c λμμλμλ+--+-+--; (2)2()(22)2a b c a b c λμλμλμμ+--++. 解:都为0.2. 向量平行的充要条件平行向量:方向相同或相反的非零向量叫平行向量(我们规定0与任一向量平行). 已知a 与b 为非零向量,若1122(,),(,)a x y b x y ==,则//a b 的充要条件是1221x y x y =,所以,向量平行的充要条件可以表示为:1221//().a b a b x y x y λλ⇔=⇔=其中为非零实数例7 已知向量(2,3)a =-,点(2,1)A -,若向量AB 与a 平行,且213AB =,求向量OB 的坐标.解:OB 的坐标为(6,7)- 或 (2,5)-.3. 定比分点公式1)定比分点公式和中点公式① 12,P P 是直线l 上的两点,P 是l 上不同于12,P P 的任一点,存在实数λ, 使P P 1=2PP λ,λ叫做点P 分21P P 所成的比,有三种情况:(内分) λ>0 (外分) λ<-1 (外分) -1<λ<0② 已知111(,)P x y 、222(,)P x y 是直线l 上任一点,且P P 1=2PP λ(,1)R λλ∈≠.P 是直线12P P 上的一点,令(,)P x y ,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,这个公式叫做线段12P P 的定比分点公式,特别地1λ=时,P 为线段12P P 的中点,此时121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩,叫做线段12P P 的中点公式.注:① 12PP PP λ=⋅可得12PP PP λ=±⋅;② 当1λ=-时,定比分点的坐标公式121x x x λλ+=+和121y y y λλ+=+显然都无意义,也就是说,当1λ=-时,定比分点不存在2)三角形重心坐标公式设ABC ∆的三个点的坐标分别为112233(,),(,),(,)A x y B x y C x y ,G 为ABC ∆的重心,则12312333G G x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩例8 在直角坐标系内12(4,3),(2,6)P P --,点P 在直线12P P 上,且122PP PP =,求出P 的坐标.解:当P 在12P P 上时,(0,3)P ;当P 在12P P 延长线上,(8,15)P -.例9 已知(3,1),(4,2)A B ---,P 是直线AB 上一点,若23AP AB =,求点P 的坐标. 解: 注意定比分点的定点,可得155(,)22P --.*方法提炼*几个重要结论1. 若,a b 为不共线向量,则a b +,a b -为以,a b 为邻边的平行四边形的对角线的向量;2. 22222()a b a b a b ++-=+;3. G 为ABC ∆的重心0GA GB GC ⇔++=123123(,)33x x x y y y G ++++⇔ 112233[(,),(,)(,)]A x y B x y C x y【基础夯实】1. 判断下列命题是否正确,若不正确,请简述理由. ①向量AB 与CD 是共线向量,则A 、B 、C 、D④四边形ABCD 是平行四边形的充要条件是AB =DC ⑤模为0⑥共线的向量,若起点不同,则终点一定不同.解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB 、AC 在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥不正确.如图AC 与BC 共线,虽起点不同,但其终点却相同.评述:本题考查基本概念,对于零向量、单位向量、平行向量、共线向量的概念特征及相互关系必须把握好.2.下列命题正确的是( CA.a与b共线,b与c共线,则a与cB.C.向量a与b不共线,则a与bD.有相同起点的两个非零向量不平行3. 在下列结论中,正确的结论为( D (1)a ∥b 且|a |=|b |是a =b(2)a ∥b 且|a |=|b |是a =b(3)a 与b 方向相同且|a |=|b |是a =b(4)a 与b 方向相反或|a |≠|b |是a ≠bA. (1)(3)B. (2)(4)C. (3)(4)D. (1)(3)(4) 4. 已知点A 分有向线段BC 的比为2,则在下列结论中错误的是( D )A. 点C 分AB 的比是-31B.点C 分BA 的比是-3C 点C 分AC 的比是-32D 点A 分CB 的比是25. 已知两点1(1,6)P --、2(3,0)P ,点7(,)3P y -分有向线段21P P 所成的比为λ,则λ、y的值为( C )A -41,8 B.41 C -41,-8 D 4,816. △ABC 的两个顶点A(3,7)和B(-2,5),若AC 的中点在x 轴上,BC 的中点在y 轴上,则顶点C 的坐标是( A )A (2,-7)B (-7,2)C (-3,-5)D (-5,-3)7. “两个向量共线”是“这两个向量方向相反”的 条件. 答案:必要非充分8. 已知a 、b 是两非零向量,且a 与b 不共线,若非零向量c 与a 共线,则c 与b 必定 . 答案:不共线9. 已知点A(x,2),B(5,1),C(-4,2x)在同一条直线上,那么x=答案:2或2710. △ABC 的顶点A(2,3),B(-4,-2)和重心G(2,-1),则C 点坐标为 答案:(8,-4)11. 已知M 为△ABC 边AB 上的一点,且18AMC ABC S S ∆∆=,则M 分AB 所成的比为 答案:71【巩固提高】12. 已知点(1,4)A =--、(5,2)B ,线段AB 上的三等分点依次为1P 、2P ,求1P 、2P 点的坐标以及,A B 分21P P 所成的比λ.解:P 1(1,-2),P 2(3,0),A 、B 分21p p 所成的比λ1、λ2分别为-21,-213. 过1(1,3)P 、2(7,2)P 的直线与一次函数5852+=x y 的图象交于点P ,求P 分21P P 所成的比值解:12514. 已知平行四边形ABCD 一个顶点坐标为A(-2,1),一组对边AB 、CD 的中点分别为M(3,0)、N(-1,-2),求平行四边形的各个顶点坐标 解:B(8,-1),C(4,-3),D(-6,-1)15. 设P 是ABC ∆所在平面内的一点,2BC BA BP +=,则( B ) (A). 0PA PB += (B). 0PC PA += (C). 0PB PC += (D). +0PA PB PC +=16. 若平面向量,a b 满足1,a b a b +=+平行于x 轴,(2,1)b =-,则(1,1)(3,1)a =--或.17.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点.若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-6,21)B .(-2,7)C .(6,-21)D .(2,-7)解析:选A.AC →=2AQ →=2(PQ →-PA →)=(-6,4),PC →=PA →+AC →=(-2,7),BC →=3PC →=(-6,21).18.已知O 为坐标原点,向量(2,),(,1),(5,1).OA m OB n OC =-==-若A,B,C 三点共线,且2m n =,求实数,m n 的值19.已知点A(3,0),B(-1,-6), P 是直线AB 上一点,且1||||3AP AB =,求点P 的坐标.20. 已知向量(cos ,sin )m θθ=和(2sin ,cos ),(,2)n θθθππ=-∈,且8||25m n +=,求cos()28θπ+的值。

平面向量广义定比分点公式_袁微维

平面向量广义定比分点公式_袁微维

○袁微维平面向量广义定比分点公式 在学习平面向量知识时,自然会接触到定比分点的概念及其计算公式,推广线段的定比分点,更有助于使用向量工具处理数学问题.定理:若在■ABC中,点E、F分别分向量AB、AC所成的比为λ、μ,且BF交CE于点M,则A=λ1+λ+μA+μ1+λ+μA证明:如图1,因为点B、M、F共线,所以A=(1-t)A+tA.同理A=(1-t′)A+t′A(这是因为C、M、E三点共线).所以(1-t)A+tA=(1-t′)A+t′A①因为E分A所成的比为λ,即A=λE,所以AE=λ1+λAB.②同理A=μ1+μA.③(这是因为F分AC所成的比为μ)将②、③代入①得(1-t)AB+tμ1+μA=(1-t′)A+t′λ1+λA因为向量A、A不共线所以1-t=t′λ1+λtμ1+μ=1-t′消去t′可得t=1+μ1+λ+μ.所以AM=(1-t)AB+tμ1+μAC=(1-1+μ1+λ+μ)AB+1+μ1+λ+μ·μ1+μA=λ1+λ+μA+μ1+λ+μA.例1 如图2,已知■ABC中,点P在■ABC内,且3AP+4BP+5CP=O,延长AP交BC于点D,设A=,A=,试用、表示AD.解:由3A+4B+5C= 3(A+BP)+4BP+5(CB+BP)=O BP=312BA+512BC.设CP交AB于点E,BE=λEA,BD=μD,根据广义定比分点公式,得λ1+λ+μ=312μ1+λ+μ=512λ=34μ=54从而BD=54DC AD-AB=54(AC-A) A=49+59(已知A=,A=),例2 已知■ABC的三边a、b、c成等差数列,且a<b<c,G为■ABC的重心,1为■ABC的内心,O是平面上任一点.·17·数理化学习(高中版)求证:(1)=aOA+bOB+cOCa+b+c;(2)GI∥AC.证明:(1)如图3,设角B、C的平分线BE、CF分别交AC、AB于点E、F,由内角平分线定理知λ=AFFB=ba,μ=AEEC=ca,从而1+λ+μ=a+b+ca.根据广义定比分点公式=λ1+λ+μA+μ1+λ+μA =ba+b+cA+ca+b+cA O-O=ba+b+c(OB-OA)+ca+b+c(OC-OA)O=aO+bO+cOa+b+c(*)(2)如图4,设■ABC的中线BM、CN,则BM交CN于点G,从而λ′=ANNB=1,μ′=AMMC=1.1+λ′+μ′=3.根据广义定比分点公式A=λ′1+λ′+μ′A+μ′1+λ′+μ′A=13A+13A.所以O-O=13(OB-OA)+13(OC-O),所以O=13O+13O+13O(**)将式(*)与(**)相减,得OI-OG=(aa+b+c-13)OA+(ba+b+c-13)OB+(ca+b+c-13)OC.因为a<b<c且a、b、c成等差数列,所以不妨设公差为d,则d=c-b=b-a>0,所以O-O=d3b(OC-OA),所以GI=d3bAC.显然,内心I不在AC上,所以GI∥AC,(注:式(**)也可以从重心方程GA+GB+GC=0得到)例3 设D、E■ABC的边AB、AC上,DC与EB交于F,且AD=AE,FB=FC,求证:AB=AC.证明:如图5,设■ABC的角A、B、C所对边分别为a、b、c,令A=λD,A=μE,则AD=λ1+λAB,AE=μ1+μAC.又已知 A = A ,所以λc-μb=λμ(b-c).①根据广义定比分点公式得A=λ1+λ+μA+μ1+λ+μA,从而B=BA+μBC1+λ+μ,C=CA+λCB1+λ+μ.因为已知B2=CF2·18·数理化学习(高中版)所以(B+μB)2=(CA+λCB)2所以c2+μ2a2+2μB·B=b2+λ2a2+2λC·C.在■ABC中,运用余弦定理可得2B·B=a2+c2-b2,2C·C=a2+b2-c2,所以c2+μ2a2+μ(a2+c2-b2)=b2+λ2a2+λ(a2+b2-c2),所以(1+λ+μ)[(μ-λ)a2+(c2-b2)]=0.所以(μ-λ)a2=b2-c2②若b>c,则由②知μ>λ,所以μb>λc.由①可得 λμ(b-c)<0,所以b<c,矛盾.所以b≤c.同理c≤b于是b=c,即AC=AB.以上几例充分说明广义定比分点公式是平面向量内容中较重要的向量方程,掌握定比分点推广式有利于提高解题能力.贵州省安顺市双阳中学(561018)○梁克强以正方体为载体研究空间角 正方体的六个面都是正方形,有众多相等的线段和角,还有很多平行和垂直以及对称的条件,这些都为研究空间角提供了有效的依据,只要很好的运用,空间角的问题是不难解决的.一、垂连求角正方体有很多垂直关系,只要善于利用,就能将空间角转化为平面角.例1 正方体ABCD-A1B1C1D1的棱长是1,P是AD的中点,求二面角A-BD1-P的大小.解:如图1,过P作BD1及AD1的垂线,垂足分别是E、F,连结EF.由AB⊥平面AD1,得AB⊥PF,又PF⊥AD1,所以PF⊥平面ABD1,而PE⊥BD1,故EF⊥BD1,∠PEF为所求二面角平面角.Rt■ADD1∽■AFP,利用相似比得PF=24.在■PBD1中,PD1=PB=52,因为PE⊥BD1,所以BE=32.在Rt■PEB中,PE=PB2-BE2=22.在Rt■PFE中,sin∠PEF=PFPE=12,所以∠PEF=π6.例2 如图2,在棱长为1的正方体ABCD-A1B1C1D1中,P是侧棱CC1上的一点,CP=m,试确定m,使得直线AP与平面BDD1B1所成角的正切值为32.解:连AC,设AC∩BD=0.AP与平面BDD1B1交于G,连OG,由PC∥面BDD1B1,得OG∥PC,故OG=12PC=m2.又AO⊥DB,AO⊥BB1,从而AO⊥面BDD1B1,故∠AGO为直线AP与平面BDD1B1所成角.在Rt■AOG中,tan∠AGO=2m=32,所以m=13.故当m=13时,AP与平面BDD1B1所成角正切值为32.二、射影法正方体的六个面都是正方形,有很多对称·19·数理化学习(高中版)。

完整版向量公式汇总

完整版向量公式汇总

向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则AB+BC=AC 。

a+b=(x+x' ,y+y')。

a+0=0+a=a 。

向量加法的运算律:交换律:a+b=b+a ;结合律:(a+b)+c=a+(b+c) 。

2、向量的减法如果a、b 是互为相反的向量,那么a=-b,b=-a,a+b=0. 0 的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3、数乘向量实数入和向量a的乘积是一个向量,记作入a且I X al = I XI ?l a I。

当入〉0时,Xa与a同方向;当XV 0时,Xa与a反方向;当X =0时,X a=0方向任意。

当a=0时,对于任意实数人都有X a=0注:按定义知,如果X a=0那么X =0或a=0。

实数X叫做向量a的系数,乘数向量Xa的几何意义就是将表示向量a的有向线段伸长或压缩。

当I XI > 1时,表示向量a的有向线段在原方向(X>0)或反方向(XV0) 上伸长为原来的I XI倍;当I XI V 1时,表示向量a的有向线段在原方向(X>0)或反方向(XV0) 上缩短为原来的I XI倍。

数与向量的乘法满足下面的运算律结合律:( X a)?b= X (a?b)=(a?。

X b)向量对于数的分配律(第一分配律):(X + 11 )a= X a+ !i a. 数对于向量的分配律(第二分配律):X(a+b)= X a+X b.数乘向量的消去律:① 如果实数入工且X a=X,那么a=b。

② 如果a^0且X a= 1,!那么X =14、向量的的数量积定义:已知两个非零向量a,b。

作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定O w〈a,b〉<n定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。

用定比分点向量公式的特点解高考题_高召

用定比分点向量公式的特点解高考题_高召
得到它们系数之间的关系式 , 可得λ+ μ 的值 . 解 连结 A 交O B, C 于 D.
图6
λ 3 λ 由于 B, 所以得1 P, N 三点共线, = + , 2 4
解得λ= 4 . 5 4 → , → → → , 因此A 从而A P= AM P= 4PM 5 所以 A P∶PM = 4 ∶ 1 . 综上可以看出 , 定比分 点 向 量 公 式 及 其 特 点在解决共线问题时具 有 很 大 的 简 捷 性 , 而用 好这一公 式 的 关 键 是 如 何 借 助 向 量 运 算 和 已 知条件建 立 共 起 点 且 终 点 共 线 的 三 个 向 量 之 间的关系式 .
→ → → → -O A, P B=O B-O P, → → P → -O → → → ( , 由A P= B得 O A= O B-O P) λP λ → → → ) 于是 ( 1 + O P=O A+ O B, λ λ → → O A + O B 1 → λ λ → 所 以O P= = O A+
例 5 ( 2 0 0 7年陕 , 如图6 平 西省 高 考 题 )
λ → 3 λ→ A B+ AN . 2 4
→ 面 内 有 三 个 向 量O A、 → → → 其 中 与O O B、 O C, A与 → → , O B的 夹 角 为 1 2 0 ° O A → , 与 且 O C的 夹 角 为 3 0 ° → → → → A → , 若O O A = O B O C C= 3, | | | |=1 | |=2 槡 λO → , 则λ+ + B( . λ, μO μ∈R) μ 的值为 , , 分析 连结 A 与 交 于 利 用 已 知 B O C D → A → →、 条件可建立O 从而 D与O O B之 间 的 关 系 式 ,

(完整版)向量公式大全

(完整版)向量公式大全

向量公式设a=(x,y),b=(x',y')。

1、向量的加法向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。

当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。

②如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积定义:已知两个非零向量a,b。

作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。

若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。

向量公式大全

向量公式大全

向量公式设a=〔x,y〕,b=(x',y')。

1、向量的加法向量的加法满足平行四边形法那么和三角形法那么。

AB+BC=AC。

a+b=(x+x' ,y+y')。

a+0=0+a=a。

向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减〞a=(x,y)b=(x',y') 那么a-b=(x-x',y-y').4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。

当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向〔λ>0〕或反方向〔λ<0〕上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向〔λ>0〕或反方向〔λ<0〕上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律结合律:(λa)?b=λ(a?b)=(a?λb)。

向量对于数的分配律〔第一分配律〕:(λ+μ)a=λa+μa.数对于向量的分配律〔第二分配律〕:λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。

②如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积定义:两个非零向量a,b。

作OA=a,OB=b,那么角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积〔内积、点积〕是一个数量,记作a?b。

假设a、b不共线,那么a?b=|a|?|b|?cos〈a,b〉;假设a、b共线,那么a?b=+-∣a∣∣b∣。

定比分点公式的向量形式及应用

定比分点公式的向量形式及应用

定比分点公式的向量形式及应用马洪炎 吴文尧(宁波市北仑中学,浙江 315800) 众所周知,向量法是解决平面几何问题的重要方法,而定比分点公式是解析几何中应用非常广泛的重要公式.本文介绍定比分点公式的向量形式及其在解决平面几何问题中的应用,供大家参考.1 定理及其推论定理 (定比分点公式的向量形式)设点P 分P 1P 2的比为λ(即P 1P =λPP 2,λ≠-1),Q 为平面上的任意一点,则QP =11+λQP 1+λ1+λQP 2.证明 ∵P 1P =λP P 2,∴QP -QP 1=λ(QP 2-QP ),即(1+λ)QP =QP 1+λQP 2,即QP =11+λQP 1+λ1+λQP 2.推论1 设点P 为■O AB 的边AB 上的点,且AP =m ,P B =n ,则OP =n m +n OA +mm +nOB .推论2 设点P 为■O AB 的边AB 的中点,则OP =12(OA +OB ).推论3 ■OAB 中,点P 在直线AB 上的充要条件是:存在实数t ,使OP =t OA +(1-t )OB 成立.推论4 (定比分点公式)在直角坐标平面中,设P 1(x 1,y 1),P 2(x 2,y 2),P (x ,y ),且点P 分P 1P 2的比为λ(其中λ≠-1),则x =x 1+λx 21+λ,y =y 1+λy 21+λ.2 应用举例2.1证明比例线段关系例1 如图1,在■ABC 中,D ,E 是BC 边的三等分点,D 在B 和E 之间,F 是AC的中点,G 是AB 的中点,设H 是线段D F与EG 的交点,求比值E H ∶HG .分析 要求比值E H ∶HG 的大小,只须得到向量E H 与向量EG 之间的线性关系,由平面向量基本定理可知,可选择一组合适的基底使向量E H 、向量EG 都可用这组基底的线性组合表示,一旦表示成功,则结论也唾手可得了.图1 例1图解 设CB =a ,CA =b ,连结CG ,EF ,由于BE =2EC ,由推论1可知:GE =23GC +13GB=23GC +13(CB -CG )=13CB -CG =13CB -12(CB +CA )=-16a -12b ,即EG =16a +12b ;∵D ,H ,F 三点共线,∴E H =t ED +(1-t )EF=t ED +(1-t )(CF -CE )=t 3a +(1-t )(12b -13a )=2t -13a +1-t 2b .∵EG 与E H 是共线向量,∴16·1-t 2-12·2t -13=0,即t =35,40数学通讯 2007年第24期故E H =25(16a +12b )=25E G ,∴E H ∶H G =2∶3.评注 ①由于本题的相关点均“生长”在■ABC 的三边上,所以选择以向量CB =a ,CA =b 作为基底比较合理.②在向量运算过程中,通过合理的运用上述定理的推论,可简化运算过程,甚至可直奔结论.例2 (第23届IMO 试题)已知AC ,CE 是正六边形ABCD EF 的两条对角线,点M ,N 分别内分AC ,CE ,使得AM ∶AC =CN ∶CE =r ,如果B ,M ,N 三点共线,求r 的值.分析 ①要求出r 的值,只须得到关于r 的一个方程,故解决问题的关键是如何结合其它已知条件,把条件“B ,M ,N 三点共线”翻译成关于r 的一个方程.②由于B ,M ,N 三点所在直线过顶点B ,因此选择向量B A 、BC 作为基底比较合理,再把向量B M ,B N 用基底表示之,则不难得到关于r 的方程.图2 例2图解 ∵AM ∶AC =CN ∶CE =r ,∴AM ∶MC =CN ∶N E =r ∶(1-r ).由推论1可知BM =r BC +(1-r )B A ,B N =r BE +(1-r )BC .∵ABCDEF 是正六边形,∴B E =2(B A +BC ),∴B N =2r (B A +B C )+(1-r )BC=(1+r )B C +2r B A .∵B ,M ,N 共线,∴r ·2r -(1-r )(1+r )=0,解得r =33.评注 由于本题的“情景”与推论1的使用条件非常吻合,因此上述解法通过推论1的应用使运算过程显得非常简捷,极大地缩短了解题的长度.2.2 证明三角形的面积关系例3 如图3所示,已知■AB C 的面积为14cm 2,D ,E 分别是边AB ,BC 上的点,且AD ∶DB =B E ∶EC =2∶1,求■P AC 的面积.分析 由于已知■AB C 的面积,因此要计算■P AC 的面积,只须求这两个三角形的面积比,注意到■ABC 与■P AC 是同底三角形,设直线BP 与AC 交于点Q ,则只须求出点P 分BQ 的比,若选择以向量B A =a ,BC =c 为基底,再把向量BQ ,B P 用基底表示之,则就大功告成了.图3 例3图解 连结BP 并延长交AC 于Q ,设B A=a ,BC =c .∵C ,P ,D 三点共线,∴B P =t BD +(1-t )BC ,又∵BD =13B A =13a ,∴B P =t 3a +(1-t )c .∵A ,P ,E 三点共线,∴B P =λB A +(1-λ)B E ,即B P =λa +2(1-λ)3c .由平面向量基本定理可知t3=λ且1-t =2(1-λ)3,解得λ=17,∴B P =17a +47c .设BQ =μBP =μ7a +4μ7c ,因为A ,Q ,C三点共线,所以μ7+4μ7=1,即μ=75,∴B P =57BQ ,PQ =27BQ ,S ■PAC =27S ■BAC =4cm 2.评注 在用向量方法解决平面几何问题时,除注意基底的合理选择外,还需注意方程412007年第24期 数学通讯思想的应用,虽然上述解法操作过程有一定的技巧性,但若在操作过程中始终以方程思想为指导,则思路还是比较自然.2.3证明三点共线问题例4 (2004年斯洛文尼亚数学奥林匹克试题)设O,P是平面上的两个不同的点,四边形AB CD是平行四边形,两条对角线相交于点O,点P不在直线AB关于直线CD 对称的图形上,M,N分别是线段P A,PB的中点,Q是直线MC与直线ND的交点.证明:P,Q,O三点共线,且点Q的位置与平行四边形ABCD的选择无关.分析 要证明P,Q,O三点共线,只须证明PO=λPQ,注意到O是AC的中点,即有PO=12(P A+P C)成立,故可选择向量P A,PC为基底,再设法把向量PQ也用基底表示之即可.图4 例4图证明 ∵M,N分别是线段PA,PB的中点,∴MN瓛12AB.∵ABCD是平行四边形,∴AB瓛C D,即MN瓛12CD,∴Q C=2MQ,由推论1可知PQ=23PM+13PC=13P A+13P C.又因为O是线段AC的中点,由推论2可知PO=12(P A+PC),所以PQ=23PO,即PQ,PO共线,且PQ=23PO,即P,Q,O三点共线,且点Q的位置与平行四边形ABCD 的选择无关.评注 证明三点共线是平面几何中的难点之一,利用平面向量方法证明之的思路自然且易于操作.2.4证明平面几何中的定值问题例5 已知G是■ABC的重心,过点G 任作一条直线l,分别交边AB,AC于点D, E,若AD=x AB,AE=y AC.求证:1x+1y为定值.分析 当点D与点B重合,即x=1时,且E为AC之中点,即y=12,此时1x+1y=3,因此只须证明1x+1y=3即可.所以只须得到关于x,y应满足的方程即可,注意到D,G,E三点共线及G是■ABC的重心,因此可选择以向量AB,AC为基底,由向量AG 的两种不同的表示方法得到此方程.图5 例5图证明 ∵D,G,E三点共线,∴AG=λAD+(1-λ)AE=λx AB+(1-λ)y AC,又∵G是■ABC的重心,所以AG=23AF=13AB+13AC,由平面向量基本定理可知λx=13,且(1-λ)y=13,∴1x+1y=3λ+3(1-λ)=3(定值).通过以上各例的解法不难发现,用定比分点公式的向量形式及其推论解决平面几何问题的解题程序如下:1)把平面几何问题转化为平面向量问题;2)合理选择一组基底;3)把问题涉及的向量用基底表示之;4)得到需要的结论并回归到平面几何问题.(收稿日期:2007-09-04)42数学通讯 2007年第24期。

向量的定比分点公式运用

向量的定比分点公式运用

向量的定比分点公式运用设有向量AB表示一条线段,点C为分割点,将AB分成的两个线段分别为AC和CB。

那么根据向量的定比分点公式,我们可以得到以下关系式:AC=λABCB=(1-λ)AB其中,λ是一个标量,表示分割点C到点A的距离与线段AB的长度之比。

下面我们将介绍向量的定比分点公式的几种具体运用。

1.证明三点共线:给定三个点A、B、C,要证明它们共线,可以使用向量的定比分点公式。

假设分割点C在点A和点B之间,那么根据向量的定比分点公式,可以得到AC=λAB,CB=(1-λ)AB。

若AC与CB的坐标相同,则说明三点共线。

2.点的坐标求解:已知线段AB的坐标,要求分割点C的坐标。

根据向量的定比分点公式,我们可以得到AC=λAB,即(x_C-x_A,y_C-y_A)=λ(x_B-x_A,y_B-y_A)。

令点C的坐标为(x_C,y_C),代入这个关系式可以求解出点C的坐标。

3. 矢量平均值:给定一组n维向量,要求它们的平均值。

可以使用向量的定比分点公式求解。

假设向量集合为{v_1, v_2, ..., v_n},则平均向量v_avg可以表示为v_avg = λ_1*v_1 + λ_2*v_2 + ... +λ_n*v_n。

其中,λ_1 + λ_2 + ... + λ_n = 1,且λ_i >= 0。

这样可以求得平均向量v_avg的坐标。

4.线段的等分点:已知线段AB的长度,要求线段上的一个点C,使得AC与AB的长度比为m:n。

根据向量的定比分点公式,我们可以得到AC=λAB,其中λ=(m/(m+n))。

将AB的长度乘以λ,得到AC的长度,即可得到分割点C的坐标。

5.找出一些点到线段的最近点:假设有线段AB和点P,要求点P到线段AB上的最近点Q的坐标。

根据向量的定比分点公式,可以得到向量AQ=λAB,其中λ表示AQ与AB的长度之比。

我们可以通过遍历0≤λ≤1的所有值,计算出对应的点Q的坐标,再选择距离最近的点作为最近点Q的坐标。

线段的定比分点公式及应用

线段的定比分点公式及应用

线段的定比分点公式及应用河北 史彩玉向量代数中,关于线段的定比分点问题,具有严格的定义,定比分点公式实际上有三种形式,一个定义式;一个坐标式;一个向量式。

教材中只给出了定义式和坐标式。

其实,在解决一些几何问题时,向量式有时很方便。

关于定比分点公式三种形式的简述如下:1、定义式:设P 1与P 2为直线l 上的两点,点P 为直线l 上不同于P 1、P 2的任意一点,则存在一个实数λ,使得12PP PP λ=,λ叫做P 分有向线段12PP 所成的比。

当λ>0时,P 为内分点;当λ<0时,P 为外分点;特别地当λ=12时,P 为P 1P 2的中点。

2、坐标式:若设P 1(x 1,y 1)、P 2(x 2,y 2)、P (x ,y),将坐标代入12PP PP λ=中得到定比分点公式121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩。

特例当λ=12时, 121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩。

3、向量式:如图1所示,若设1OP =a ,2OP =b ,由于12PP PP λ=,则OP -1OP =λ(2OP -OP )即OP -a =λ(b -OP ),整理得定比分点公式11OP λ=+a+1λλ+b 。

典例剖析如下: 一、定义式的运用例1 (1)已知点P 分AB 所成的比为13,则点B 分AP 所成的比为___________。

(2)若|12PP |=3,点P 在12PP 的延长线上,且2||PP =2,则点P 分12PP 所成的比为_______。

OabP 1P 2P图1(3)点P 在12PP 所在直线上,且12||2||PP PP =,则点P 分12PP 所成的比为_______。

解析:作出示意,解析:观察图形,根据定义得:(1)点B 分AP 所成的比为43-;(2)点P 分12PP 所成的比为52-; (3)若点P 为12PP 的内分点,则2λ=;若点P 为12PP 的外分点,则λ=-2。

向量公式大全

向量公式大全

向量公式之五兆芳芳创作设a=(x,y),b=(x',y').1、向量的加法向量的加法满足平行四边形法例和三角形法例.AB+BC=AC.a+b=(x+x',y+y').a+0=0+a=a.向量加法的运算律:互换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB. 即“配合起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.当λ>0时,λa与a同标的目的;当λ<0时,λa与a反标的目的;当λ=0时,λa=0,标的目的任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将暗示向量a的有向线段伸长或压缩.当∣λ∣>1时,暗示向量a的有向线段在原标的目的(λ>0)或反标的目的(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,暗示向量a的有向线段在原标的目的(λ>0)或反标的目的(λ<0)上缩短为原来的∣λ∣倍.数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb).向量对于数的分派律(第一分派律):(λ+μ)a=λa+μa.数对于向量的分派律(第二分派律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ.3、向量的的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规则0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b 共线,则a•b=+-∣a∣∣b∣.向量的数量积的坐标暗示:a•b=x•x'+y•y'.向量的数量积的运算律a•b=b•a(互换律);(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分派律);向量的数量积的性质a•a=|a|的平方.a⊥b 〈=〉a•b=0.|a•b|≤|a|•|b|.向量的数量积与实数运算的主要不合点1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.2、向量的数量积不满足消去律,即:由a•b=a•c (a≠0),推不出 b=c.3、|a•b|≠|a|•|b|4、由 |a|=|b| ,推不出 a=b或a=-b.4、向量的向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的标的目的是:垂直于a 和b,且a、b和a×b按这个次序组成右手系.若a、b共线,则a×b=0.向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a‖b〈=〉a×b=0.向量的向量积运算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的.向量的三角形不等式1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;①当且仅当a、b反向时,左边取等号;②当且仅当a、b同向时,右边取等号.2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.①当且仅当a、b同向时,左边取等号;②当且仅当a、b反向时,右边取等号.定比分点定比分点公式(向量P1P=λ•向量PP2)设P1、P2是直线上的两点,P是l上不合于P1、P2的任意一点.则存在一个实数λ,使向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.若P1(x1,y1),P2(x2,y2),P(x,y),则有OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ).(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公式三点共线定理若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线三角形重心判断式在△ABC中,若GA +GB +GC=O,则G为△ABC的重心[编辑本段]向量共线的重要条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb. a//b的重要条件是 xy'-x'y=0.零向量0平行于任何向量.[编辑本段]向量垂直的充要条件a⊥b的充要条件是a•b=0.a⊥b的充要条件是 xx'+yy'=0.零向量0垂直于任何向量.。

向量公式汇总

向量公式汇总

向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。

当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律结合律:(λa)?b=λ(a?b)=(a?λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。

②如果a≠0且λa=μa,那么λ=μ。

4、向量的的数量积定义:已知两个非零向量a,b。

作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。

若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。

向量公式汇总

向量公式汇总

向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。

当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。

②如果a≠0且λa=μa,那么λ=μ。

4、向量的的数量积定义:已知两个非零向量a,b。

作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。

若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

补充知识1: 向量的定比分点公式
第五讲 等和线 1.等和线
平面内一组基底OA , OB 及任一向量OP ,OP = λOA + μOB (λ, μ∈ R ) ,若点 P 在直线 AB 上或在平行于 AB 的直线上,则λ+ μ= k (定值) ,反之也成立,我们把直线 AB 以及与直线 AB 平行的直线成为等和线.
①当等和线恰为直线 AB 时, k = 1 ;
②当等和线在O 点和直线 AB 之间时, k ∈ (0,1) ; ③当直线 AB 在O 点和等和线之间时, k ∈ (1, +∞) ; ④当等和线过O 点时, k = 0 ;
⑤若两等和线关于O 点对称,则定值 k 互为相反数; ⑥定值 k 的变化与等和线到O 点的距离成正比; 2.等和线定理应用背景:
在平面向量基本定理的表达式中,若需研究两系数的和时,可以用等值线法.
例1 (2017新课标Ⅲ)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切
的圆上.若AP AB AD λμ=+,则λμ+的最大值为
A .3
B .22
C .5
D .2
例2 给定两个长度为1的平面向量OA →和OB →,
它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC
→=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.
例3 (2018·杭州五校联盟一诊)在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =5
2,若AP →=λAB →+μAD →(λ,μ∈R ),则5λ+3μ的最大值为______. 答案
102
1.(2018·菏泽一诊)如图,在扇形OAB 中,60AOB ︒
∠=,C 为弧AB 上的一个动点.若OC -→xOA y OB -→-→
=+,则y x 4+的取值范围是 .
2.(2018·合肥一诊)如图,四边形是边长为1的正方形,,点为内(含边界)的动点,设,则的最大值等于
3.如图,在中,是线段上的一点,且,过点的直线分别交直线于点,若,,则的最小值是 .
4.已知向量OB OA ,满足1=+OB OA ,OB OA ⊥,OB OA OC μλ+=)、(R ∈μλ,若M 为线段AB 的中点,并且1M =C ,则μλ+的最大值是( )。

A: 21+
B: 21-
C:
1-2
D: 1
5.如图正六边形ABCDEF 中,P 点三角形CDE 内(包括边界)的动点,设AF AB AP y x +=,则y x +
的取值范围是________.
6.(2013安徽卷9)在平面直角坐标系中,o 是坐标原点,两定点,A B 满足2,OA OB OA OB ===则点集,1,,|P OP OA OB R λμλμλμ==++≤∈所表示的区域的面积是
(A )22 (B )23(C ) 42 (D )43
7.如图,在直角梯形ABCD 中,AB ⊥AD ,AB ∥DC ,AB=2,AD=DC=1,图中圆弧所在圆的圆心为点C ,
半径为2
1
,且点P 在图中阴影部分(包括边界)运动.若B C AB AP y x +=,其中x ,y ∈R ,则y
x -4的取值范围是( )
OABC 3=OD P BCD ∆(,)OP OC OD R αβαβ=+∈αβ+ABC ∆D BC 4BC BD =D ,AB AC ,M N AM AB λ=(0,0)AN AC μλμ=>>3λμ+
A ]4
2
33,2[+ B.]2
53,2[+
C. ]253,42-
3[+ D.]2
173,2173[+-
补充知识2: 极化恒等式
1.极化恒等式:(
)(
)[]
.4
12
2b a b a b a --+=•
在ABC ∆中,若AM 是ABC ∆的BC 边中线,有以下两个重要的向量关系:()()
⎪⎩
⎪⎨⎧-=+=.
21
,21AB AC BM AB AC AM
定理1 平行四边形两条对角线的平分和等于两条邻边平分和的两倍.以此类推到三角形,若AM 是ABC ∆的中线,则().22222BM AM AC AB +=+
定理 2 (极化恒等式的三角形模式)在ABC ∆中,若M 是BC 的中点,则有
.
41
2222
BM AM BC AM AC AB -=-=•
例1 (2017新课标Ⅱ)已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则
()PA PB PC ⋅+的最小值是
A .2-
B .32-
C .4
3
- D .1-
例2 【2018届江苏省苏锡常镇四市高三调研(二)】如图,扇形的圆心角为90°,半径为1,点是圆弧上的动点,作点关于弦的对称点,则的取值范围为____.
例3 (2017·广东七校联考)在等腰直角△ABC 中,∠ABC =90°,AB =BC =2,M ,N 为AC 边上的
两个动点(M ,N 不与A ,C 重合),且满足|MN →|=2,则BM →·BN
→的取值范围为________.
1.在ABC ∆中,60BAC ∠=若2AB =,3BC =,D 在线段AC 上运动,DA DB ⋅的最小值为
2.已知AB 是圆O 的直径,AB 长为2,C 是圆O 上异于,A B 的一点,P 是圆O 所在平面上任意一点,则()
PA PB PC +⋅的最小值为____________
3.在ABC ∆中,3AB =,4AC =,60BAC ∠=,若P 是ABC ∆所在平面内一点,且2AP =,则PB PC ⋅的最大值为
4. 若点O 和点(2,0)F -分别是双曲线2
221(0)x y a a
-=>的中心和左焦点,点P 为双曲线右支上任
意一点则OP FP ⋅的取值范围是 .
5.在Rt ABC ∆,2AC BC ==,已知点P 是ABC ∆内一点,则)(PB PA PC +⋅的最小值
是 .
6.已知B A 、是单位圆上的两点,O 为圆心,且MN AOB o ,120=∠是圆O 的一条直径,点C 在圆内,且满足)10()1(<<-+=λλλOB OA OC ,则CN CM ⋅的取值范围是( )
A .⎪⎭⎫⎢⎣⎡-1,21
B .[)1,1-
C .⎪⎭⎫
⎢⎣⎡-0,43 D .[)0,1-
3PB AP。

相关文档
最新文档