课上练习题_概率论 36

合集下载

概率论_习题集(含答案)

概率论_习题集(含答案)

《概率论》课程习题集一、计算题1. 10只产品中有2只次品, 在其中取两次, 每次任取一只,作不放回抽样,求下列事件的概率:(1)两只都是正品;(2)一只是正品,一只是次品;(3)第二次取出的是次品。

2. 一个学生接连参加同一课程的两次考试。

第一次及格的概率为p ,若第一次及格则第二次及格的概率也为p ;若第一次不及格则第二次及格的概率为.2/p 求 (1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率; (2)若已知他第二次已经及格,求他第一次及格的概率3. 用某种方法普查肝癌,设:A ={ 检验反映呈阳性 },C ={ 被检查者确实患有肝癌 },已知()()5.C A P ,.C A P 90950==()5.C P 000=且现有一人用此法检验呈阳性,求此人真正患有肝癌的概率.4. 两台机床加工同样的零件,第一台出现次品的概率是0.03, 第二台出现次品的概率是0.02,加工出来的零件放在一起,并且已知第一台加工的零件比第二台的多一倍。

(1)求随意取出的零件是合格品的概率(2)如果随意取出的零件经检验是次品,求它是由第二台机床加工的概率5. 某人有5把钥匙,但忘了开房门的是哪一把,现逐把试开,求∶(1) 恰好第三次打开房门锁的概率(2) 三次内打开房门锁的概率(3) 如5把钥匙内有2把是开房门的,三次内打开房门锁的概率6. 设X 是连续型随机变量,其密度函数为()()⎩⎨⎧<<-=其它020242x x x c x f求:(1);常数c (2){}.1>X P7. 设X ~⎩⎨⎧≤≤=其他,02,)(x o cx x f 求(1)常数c ;(2)分布函数)(x F ;8. 一工厂生产的某种元件的寿命X (以小时计)服从参数为σμ,160= 的正态分布。

若要求,80.0)200120(≥≤<X P 允许σ最大为多少?9. 证明:指数分布有无记忆性(或称无后效性),即证:如果)(~λE X ,则有)()|(t X P s X t s X P >=>+>,0,0≥≥t s10. 对球的直径作测量,设测量值均匀地分布在],[b a 内,求球的体积的概率密度.11. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤-=其他,021),11(2)(2x xx f ,求X 的分布函数。

《概率论与数理统计》课程练习计算题

《概率论与数理统计》课程练习计算题
(2)若已知取到的是次品,它是第一家工厂生产的概率。
解:设事件 表示:“取到的产品是次品”;事件 表示:“取到的产品是第 家工厂生产的”( )。则 ,且 , 两两互不相容,
(1)由全概率公式得
(2)由贝叶斯公式得
=
12.三家工厂生产同一批产品,各工厂的产量分别占总产量的40%、25%、35%,其产品的不合格率依次为0.05、0.04、和0.02。现从出厂的产品中任取一件,求:
(2)取到的是黑球的概率。
解:设 分别表示:“取到的是黑球、红球、白球”( =1,2,3),则问题(1)化为求 ;问题(2)化为求 。由题意 两两互不相容,所以,
(1) 。因此由条件概率公式得
(2)
9.已知工厂 生产产品的次品率分别为1%和2%,现从由 的产品分别占60%和40%的一批产品中随机抽取一件,求:
4.一批产品共有10个正品2个次品,从中任取两次,每次取一个(不放回)。求:
(1)至少取到一个正品的概率;
(2)第二次取到次品的概率;
(3)恰有一次取到次品的概率。
解:设 表示:“第 次取出的是正品”( =1,2),则
(1)至少取到一个正品的概率
(2)第二次取到次品的概率为
(3)恰有一次取到次品的概率为
三、解答题
1.设对于事件 、 有 , , ,求 、 至少出现一个的概率。
解:由于 从而由性质4知, ,又由概率定义知 ,所以 ,从而由概率的加法公式得
2.设有10件产品,其中有3件次品,从中任意抽取5件,问其中恰有2件次品的概率是多少?
解:设 表示:“任意抽取的5件中恰有2件次品”。则 。5件产品中恰有2件次品的取法共有 种,即 。于是所求概率为
/
3.一批产品共有10个正品2个次品,从中任取两次,每次取一个(有放回)。求:

概率论课后习题答案

概率论课后习题答案

习题1解答1. 写出下列随机试验的样本空间Ω:(1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数;(3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标.解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为{|0,1,2,,100}ii n nΩ==.(2)设在生产第10件正品前共生产了k 件不合格品,样本空间为{10|0,1,2,}k k Ω=+=,或写成{10,11,12,}.Ω=(3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的是正品,样本空间可表示为{00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=.(3)取直角坐标系,则有22{(,)|1}x y x y Ω=+<,若取极坐标系,则有{(,)|01,02π}ρθρθΩ=≤<≤<.2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件. (1)A 发生而B 与C 不发生; (2)A 、B 、C 中恰好发生一个; (3)A 、B 、C 中至少有一个发生; (4)A 、B 、C 中恰好有两个发生; (5)A 、B 、C 中至少有两个发生; (6)A 、B 、C 中有不多于一个事件发生.解:(1)ABC 或A B C --或()A B C -;(2)ABC ABC ABC ;(3)AB C 或ABCABCABCABCABCABCABC ;(4)ABC ABCABC .(5)AB AC BC 或ABC ABC ABCABC ;(6)ABCABCABCABC .3.设样本空间{|02}x x Ω=≤≤,事件{|0.51}A x x =≤≤,{|0.8 1.6}B x x =<≤,具体写出下列事件:(1)AB ;(2)A B -;(3)A B -;(4)A B .解:(1){|0.81}AB x x =<≤; (2){|0.50.8}A B x x -=≤≤;(3){|00.50.82}A B x x x -=≤<<≤或; (4){|00.5 1.62}AB x x x =≤<<≤或.4. 一个样本空间有三个样本点, 其对应的概率分别为22,,41p p p -, 求p 的值. 解:由于样本空间所有的样本点构成一个必然事件,所以2241 1.p p p ++-=解之得1233p p =-=-,又因为一个事件的概率总是大于0,所以3p =- 5. 已知()P A =0.3,()P B =0.5,()P A B =0.8,求(1)()P AB ;(2)()P A B -;(3)()P AB .解:(1)由()()()()P AB P A P B P AB =+-得()()()()030.50.80P AB P A P B P A B =+-=+-=.(2) ()()()0.300.3P A B P A P AB -=-=-=. (3) ()1()1()10.80.2.P AB P AB P AB =-=-=-=6. 设()P AB =()P AB ,且()P A p =,求()P B . 解:由()P AB =()1()1()1()()()P AB P AB P AB P A P B P AB =-=-=--+得()()1P A P B +=,从而()1.P B p =-7. 设3个事件A 、B 、C ,()0.4P A =,()0.5P B =,()0.6P C =,()0.2P AC =,()P BC =0.4且AB =Φ,求()P A B C .解:()()()()()()()()0.40.50.600.20.400.9.P A B C P A P B P C P AB P AC P BC P ABC =++---+=++---+=8. 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:依题意可知,基本事件总数为34个.以,1,2,3i A i =表示事件“杯子中球的最大个数为i ”,则1A 表示每个杯子最多放一个球,共有34A 种方法,故34136().416A P A ==2A 表示3个球中任取2个放入4个杯子中的任一个中,其余一个放入其余3个杯子中,放法总数为211343C C C 种,故211343239().416C C C P A == 3A 表示3个球放入同一个杯子中,共有14C 种放法,故14331().416C P A ==9. 在整数0至9中任取4个,能排成一个四位偶数的概率是多少?解:从0至9 中任取4个数进行排列共有10×9×8×7种排法.其中有(4×9×8×7-4×8×7+9×8×7)种能成4位偶数. 故所求概率为4987487987411098790P ⨯⨯⨯-⨯⨯+⨯⨯==⨯⨯⨯. 10. 一部五卷的文集,按任意次序放到书架上去,试求下列事件的概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中.解:(1)第一卷出现在旁边,可能出现在左边或右边,剩下四卷可在剩下四个位置上任意排,所以5/2!5/!42=⨯=p .(2)可能有第一卷出现在左边而第五卷出现右边,或者第一卷出现在右边而第五卷出现在左边,剩下三卷可在中间三人上位置上任意排,所以 10/1!5/!32=⨯=p .(3)p P ={第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁边}2217551010=+-=. (4)这里事件是(3)中事件的对立事件,所以 10/310/71=-=P .(5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以5/1!5/!41=⨯=P . 11. 把2,3,4,5诸数各写在一X 小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率.解:末位数可能是2或4.当末位数是2(或4)时,前两位数字从剩下三个数字中选排,所以 23342/1/2P A A =⨯=.12. 一幢10层楼的楼房中的一架电梯,在底层登上7位乘客.电梯在每一层都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有两位及两位以上乘客在同一层离开的概率.解:每位乘客可在除底层外的9层中任意一层离开电梯,现有7位乘客,所以样本点总数为79.事件A “没有两位及两位以上乘客在同一层离开”相当于“从9层中任取7层,各有一位乘客离开电梯”.所以包含79A 个样本点,于是7799)(A A P =.13. 某人午觉醒来,发觉表停了, 他打开收音机,想听电台报时, 设电台每正点是报时一次,求他(她)等待时间短于10分钟的概率.解:以分钟为单位, 记上一次报时时刻为下一次报时时刻为60, 于是这个人打开收音机的时间必在),60,0(记 “等待时间短于10分钟”为事件,A 则有(0,60),Ω=)60,50(=A ,⊂Ω于是)(A P 6010=.61= 14. 甲乙两人相约812-点在预定地点会面。

概率论习题集答案

概率论习题集答案

概率论习题集答案概率论是数学的一个分支,它研究随机事件的规律性。

在概率论习题集中,我们通常会解决一些与随机变量、概率分布、期望值、方差等概念相关的问题。

以下是一些概率论习题的答案示例:1. 随机变量的期望值:如果X是一个离散随机变量,其概率质量函数为P(X=x_i)=p_i,那么X的期望值E(X)可以通过以下公式计算:\[ E(X) = \sum_{i} x_i p_i \]2. 二项分布的概率:设随机变量X服从参数为n和p的二项分布,即X~B(n, p),那么X等于k的概率可以通过以下公式计算:\[ P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \]其中,\(\binom{n}{k}\) 是组合数,表示从n个不同元素中选取k 个元素的组合方式数。

3. 正态分布的性质:如果随机变量X服从标准正态分布,即X~N(0,1),那么X的取值在-1到1之间的概率可以通过标准正态分布表来查找。

4. 联合分布函数:如果有两个随机变量X和Y,它们的联合分布函数P(X≤x, Y≤y)可以通过它们的边缘分布和条件分布来计算。

5. 大数定律:根据大数定律,随着试验次数的增加,样本均值会趋近于总体均值。

6. 中心极限定理:中心极限定理指出,即使原始随机变量的分布不是正态分布,它们的和或平均值的分布随着样本量的增加会趋近于正态分布。

7. 协方差与相关系数:两个随机变量X和Y的协方差度量了它们之间线性关系的强度和方向,计算公式为:\[ \text{Cov}(X, Y) = E[(X - E(X))(Y - E(Y))] \] 相关系数是协方差的标准化形式,计算公式为:\[ \rho_{X, Y} = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X) \cdot \text{Var}(Y)}} \]8. 泊松分布的应用:泊松分布常用于描述在固定时间或空间内随机发生的事件数量,其概率质量函数为:\[ P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} \] 其中,λ是单位时间或单位空间内事件发生的平均次数。

《概率论与数理统计》课程练习计算题

《概率论与数理统计》课程练习计算题
( 1 )此人来迟的概率;
( 2 )若已知来迟了,此人乘火车来的概率。
解:设事件 表示:“此人来迟了”;事件 分别表示:“此人乘火车、轮船、汽车、飞机来”( ,4)。则 ,且 , 两两互不相容
(1)由全概率公式得
(2)由贝叶斯公式得
=
14.有两箱同类零件,第一箱50只,其中一等品10只,第二箱30只,其中一等品18只,今从两箱中任选一箱,然后从该箱中任取零件两次,每次取一只(有放回),试求:(1)第一次取到的是一等品的概率;(2)两次都取到一等品的概率。
三、解答题
1.设对于事件 、 有 , , ,求 、 至少出现一个的概率。
解:由于 从而由性质4知, ,又由概率定义知 ,所以 ,从而由概率的加法公式得
2.设有10件产品,其中有3件次品,从中任意抽取5件,问其中恰有2件次品的概率是多少?
解:设 表示:“任意抽取的5件中恰有2件次品”。则 。5件产品中恰有2件次品的取法共有 种,即 。于是所求概率为
(1)恰好取到不合格品的概率;
(2)若已知取到的是不合格品,它是第二家工厂生产的概率。
解:设事件 表示:“取到的产品是不合格品”;事件 表示:“取到的产品是第 家工厂生产的”( )。
则 ,且 , 两两互不相容,由全概率公式得
(1)
(2)由贝叶斯公式得
=
13.有朋友远方来访,他乘火车、轮船、汽车、飞机的概率分别为3/10、1/5、1/10、2/5,而乘火车、轮船、汽车、飞机迟到的概率分别为1/4、1/3、1/12、1/8。求:
/
3.一批产品共有10个正品2个次品,从中任取两次,每次取一个(有放回)。求:
(1)第二次取出的是次品的概率;
(2)两次都取到正品的概率;
(3)第一次取到正品,第二次取到次品的概率。

概率论练习题

概率论练习题

概率论练习题练习题一、单项选择题1.事件C B A 的含义是【】 A 、A 发生 B 、C B 不发生 C 、A 发生且B 、C 都不出现 D 、A 发生,B 和C 中至少有一个不发生2.已知{}0,),1,2,(k /k!C K X P k 1>===-λλ其中则C= 【】 A 、λ-e B 、λe C 、1e --λ D 、1e -λ3.同时抛掷3枚均匀的硬币,则恰好三枚正面向上的概率为【】A 、0.5B 、0.25C 、0.125D 、0.375 4.已知随机变量X 满足{},1612EX X P =≥-则必有( )。

【】 A.41DX = B 、41DX ≥ C 、{}16152EX 1X P =<- D 、41DX <5.设X~N(0,1),Y~N(1,2),且X 与Y 相互独立,则Z=2X+Y 【】A 、Z~N(1,6)B 、Z~N(1,7)C 、Z~N(1,11)D 、Z~N(1,12)6.设事件A 与B 互斥,,0)(,0)(>>B P A P 则下列结论中一定成立的有.【】 (A ) A 与B 互不相容; (B ) A ,B 为对立事件;(C )A 与B 相互独立; (D ) A 与B 不独立. 7.一盒零件有5个正品,2个次品,不放回任取3个,其中至少有2个正品的概率为【】(A ) 7/2; (B ) 7/4; (C )7/5; (D ) 7/6.8某人射击中靶的概率为0.75. 若射击直到中靶为止,则射击次数为3 的概率为【】 (A ) 3)75.0(; (B )2)25.0(75.0; (C )2 )75.0(25.0;(D ) 3)25.0(.9.下列各函数中可以作为某个随机变量X 的分布函数的是 . 【】(A ) x x F sin )(=; (B ) 211)(xx F +=;(C )>≤+=;)0(1,)0(11)(2x x x x F ; (D ) ??>≤≤<=;)1(1,)10(1.1,)0(0)(x x x x F .10.设12,,,n X X X 是来自正态总体(,1)N μ的一个简单随机样本,2,X S 分别为样本均值与样本方差,则 . 【】)(A )1,0(~N X ; )(B )1(~)(221--∑=n X Xini χ;)(C )(~)(221n X i ni χμ-∑=; )(D )1(~1/--n t n S X .二、填空题1、若事件A 、B 互不相容,且===)B P(A 0.7,P(B)0.3,P(A)则______。

概率论课后习题解答

概率论课后习题解答

一、习题详解:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i(5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。

概率论课后习题答案

概率论课后习题答案

概率论课后习题答案概率论课后习题答案概率论是一门研究随机事件发生规律的数学学科。

在学习概率论过程中,课后习题是巩固知识、提高能力的重要环节。

本文将给出一些概率论课后习题的答案,帮助读者更好地理解和应用概率论知识。

1. 掷骰子问题问题:一枚均匀的六面骰子,投掷两次,求两次投掷点数之和为7的概率。

解答:投掷两次,每次都有6种可能的结果,总共有6 * 6 = 36 种可能的结果。

点数之和为7的情况有(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),共计6种情况。

所以,点数之和为7的概率为6/36 = 1/6。

2. 抽取球问题问题:一个袋子里有3个红球和2个蓝球,从中不放回地抽取2个球,求两个球颜色相同的概率。

解答:首先计算总共的抽取方式。

第一次抽取有5种可能的结果,第二次抽取有4种可能的结果,总共有5 * 4 = 20 种可能的结果。

然后计算两个球颜色相同的情况。

红球抽取2个的情况有C(3,2) = 3 种,蓝球抽取2个的情况有C(2,2) = 1 种。

所以,两个球颜色相同的概率为(3 + 1)/20 = 4/20 = 1/5。

3. 生日问题问题:在一个房间里有23个人,求至少有两个人生日相同的概率。

解答:首先计算不同人生日都不相同的概率。

第一个人的生日可以是任意一天,概率为365/365。

第二个人的生日不能与第一个人相同,概率为364/365。

以此类推,第23个人的生日不能与前22个人相同,概率为343/365。

所以,23个人生日都不相同的概率为(365/365) * (364/365) * ... * (343/365) ≈ 0.492703。

因此,至少有两个人生日相同的概率为1 - 0.492703 ≈ 0.507297。

4. 排列组合问题问题:从10个人中选取3个人组成一个小组,求其中至少有一个女生的概率。

解答:首先计算总共的选取方式。

从10个人中选取3个人的组合数为C(10,3) = 120。

概率论课后习题解答

概率论课后习题解答

一、习题详解:写出下列随机试验的样本空间:(1)某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2)掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3)观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4)从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:(5)检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6)观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7)在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8)在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。

概率论课后习题答案

概率论课后习题答案

概率论课后习题答案概率论与数理统计习题及答案习题⼀4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.66.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C ⾄少有⼀事件发⽣的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=3413. ⼀个袋内装有⼤⼩相同的7个球,其中4个是⽩球,3个是⿊球,从中⼀次抽取3个,计算⾄少有两个是⽩球的概率. 【解】设A i ={恰有i 个⽩球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=23. 设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-33. 三⼈独⽴地破译⼀个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】设A i ={第i ⼈能破译}(i =1,2,3),则310.6534=-= 34. 甲、⼄、丙三⼈独⽴地向同⼀飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有⼀⼈击中,则飞机被击落的概率为0.2;若有两⼈击中,则飞机被击落的概率为0.6;若三⼈都击中,则飞机⼀定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i ⼈击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.458习题⼆1.⼀袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表⽰取出的3只球中的最⼤号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ========== 故所求分布律为4.(1)设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a . (2)设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 【解】(1)由分布律的性质知1()e !ka λ-=(2) 由分布律的性质知111()N Nk k aP X k a N======∑∑即 1a =.8.已知在五重贝努⾥试验中成功的次数X 满⾜P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则1422355C (1)C (1)p p p p -=-故 13p =所以 4451210(4)C ()33243P X ===. 21.设X ~N (3,22),(1)求P {222X P X P ---??<≤=<≤11(1)(1)1220.841310.69150.5328ΦΦΦΦ=--=-+ ? ?=-+=433103(410)222X P X P ----??(||2)(2)(2)P X P X P X >=>+<-323323222215151122220.691510.99380.6977X X P P ΦΦΦΦ-----=>+< ? ?=--+-=+- ? ? ? ?????????=+-=333(3)()1(0)0.522X P X P Φ->=>=-=- (2) c=322.由某机器⽣产的螺栓长度(cm )X ~N (10.05,0.062),规定长度在10.05±0.12内为合格品,求⼀螺栓为不合格品的概率.【解】10.050.12(|10.05|0.12)0.060.06X P X P ?-?->=>1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=24.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-?+≥>?(1)求常数A ,B ;(2)求P {X ≤2},P {X >3};(3)求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-==??得11A B =??=-?(2) 2(2)(2)1e P X F λ-≤==-33(3)1(3)1(1e )e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-?≥'==?44.若随机变量X 在(1,6)上服从均匀分布,则⽅程y 2+Xy +1=0有实根的概率是多少?0,x f x ?<24(40)(2)(2)(2)5P X P X P X P X -≥=≥+≤-=≥=习题三(1)求关于X 和关于Y 的边缘分布;(2) X 与Y 是否相互独⽴?【解】(1)X 和Y 的边缘分布如下表(2) 因{2}{0.4}0.20.8P X P Y ===? 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独⽴.习题四1.设随机变量X 的分布律为求【解】(1) 11111()(1)012;82842E X =-?+?+?+?= (2) 2222211115()(1)012;82844E X =-?+?+?+?=(3) 1(23)2()32342E X E X +=+=?+=5.设随机变量X 的概率密度为f (x )=??≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞=332011 1.33x x x ??=+-=?122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=故 221()()[()].6D XE X E X =-=7.设随机变量X ,Y 相互独⽴,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=?-?=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=?+?=习题七2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ?-<X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022()()d ,233x x E X x x x θθθθθθθ??=-=-=令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极⼤似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-?≥?(2) f (x ,θ)=1,01,0,.x x θθ-?<【解】(1)似然函数111(,)ee eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑i i g L n x θθθ===-=∑知 1 nii nxθ==∑所以θ的极⼤似然估计量为1 Xθ=. (2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11?ln ln nniii i n nxx θ===-=-∑∏ii nxθ==-∑10.设某种砖头的抗压强度X ~N (µ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求µ的置信概率为0.95的置信区间. (2)求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) µ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n-== ? ?????(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-??--??=??= ?--其中θ(0<θ<2)是未知参数,利⽤总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极⼤似然估计值. 【解】8i x E X E X x x x θθ=-=-====∑令得⼜所以θ的矩估计值31 .44x θ-== (2)似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==----解2628240θθ-+=得 1,2θ=.由于71,122+>所以θ的极⼤似然估计值为 7?2θ=。

概率论与数理统计习题及答案

概率论与数理统计习题及答案

概率论与数理统计习题及答案概率论与数理统计是数学中的重要分支,涉及到随机现象的规律性和不确定性的研究。

通过习题的练习和答案的掌握,可以帮助我们加深对这门学科的理解和应用。

本文将从概率论和数理统计两个方面,介绍一些常见的习题及其答案,帮助读者更好地掌握这门学科。

一、概率论习题及答案1. 一个骰子被掷一次,求出现奇数的概率。

答案:骰子有6个面,其中3个是奇数(1、3、5),所以出现奇数的概率为3/6=1/2。

2. 从一副扑克牌中随机抽取一张牌,求抽到红心的概率。

答案:一副扑克牌有52张牌,其中有13张红心牌,所以抽到红心的概率为13/52=1/4。

3. 甲、乙两个人轮流掷硬币,甲先掷,掷到正面则甲胜,掷到反面则乙胜,求甲胜的概率。

答案:甲先掷硬币,掷到正面的概率为1/2,乙再掷硬币,掷到正面的概率也为1/2。

所以甲胜的概率为1/2*1/2=1/4。

二、数理统计习题及答案1. 一批产品的重量服从正态分布,均值为10kg,标准差为2kg。

从中随机抽取一件产品,求其重量大于12kg的概率。

答案:首先计算出标准差的Z值,Z=(12-10)/2=1。

然后查找标准正态分布表,得到Z=1时的概率为0.8413。

所以重量大于12kg的概率为1-0.8413=0.1587。

2. 一家电商平台的用户购买金额服从指数分布,平均购买金额为100元。

求一个用户购买金额小于50元的概率。

答案:指数分布的概率密度函数为f(x)=λe^(-λx),其中λ为参数。

平均购买金额为100元,所以λ=1/100。

将x=50代入概率密度函数,得到f(50)=1/100*e^(-1/2)=0.0067。

所以一个用户购买金额小于50元的概率为0.0067。

3. 一批产品的寿命服从正态分布,均值为1000小时,标准差为200小时。

求寿命在800-1200小时之间的产品所占的比例。

答案:首先计算出800和1200的标准差Z值,Z1=(800-1000)/200=-1,Z2=(1200-1000)/200=1。

概率初步练习题及讲解高中

概率初步练习题及讲解高中

概率初步练习题及讲解高中在高中数学课程中,概率论是学生必须掌握的一个重要概念。

它涉及到随机事件及其发生的可能性。

以下是一些概率的初步练习题及讲解,旨在帮助学生理解并应用概率的基本规则。

练习题1:一个袋子里有5个红球和3个蓝球。

随机从袋子中取出一个球,取出红球的概率是多少?答案:总共有8个球,其中5个是红球。

所以取出红球的概率是5/8。

练习题2:如果一个事件A发生的概率是0.4,另一个事件B发生的概率是0.3,这两个事件互斥(即不会同时发生)。

求这两个事件中至少有一个发生的总概率。

答案:由于事件A和事件B互斥,它们的联合概率是它们各自概率的和。

所以至少有一个事件发生的概率是0.4 + 0.3 = 0.7。

练习题3:一个骰子有6个面,每个面上的数字从1到6。

如果投掷一次骰子,出现偶数的概率是多少?答案:骰子的偶数面有2、4和6,共有3个。

所以投掷出偶数的概率是3/6,简化后为1/2。

练习题4:如果一个事件A发生的概率是0.6,事件B发生的条件是事件A已经发生。

如果事件B发生的概率是0.5,求事件A和事件B同时发生的概率。

答案:事件A和事件B同时发生的联合概率是事件A的概率乘以事件B在A发生时的条件概率。

所以联合概率是0.6 * 0.5 = 0.3。

练习题5:一个班级有30个学生,其中15个男生和15个女生。

随机选择一个学生,这个学生是女生的概率是多少?答案:班级中女生的人数是15,总人数是30。

所以随机选择一个学生是女生的概率是15/30,简化后为1/2。

这些练习题和答案旨在帮助学生理解概率的基本概念,如互斥事件、独立事件以及条件概率等。

通过解决这些问题,学生可以更好地准备高中数学的概率部分考试。

《概率论与数理统计》课后练习题册

《概率论与数理统计》课后练习题册

《概率论与数理统计》课后练习题册 习题一 随机事件及其概率和性质1.1 选择题(1)设A 、B 为任意两个事件,则下列关系式成立的是( )。

(A )A B B A =-⋃)( (B )A B B A ⊃-⋂)( (C )A B B A ⊂-⋂)( (D )A B B A =⋃-)((2)以A 表示“甲种产品畅销,乙种产品滞销”,则对立事件A 为( )。

(A )甲种产品滞销,乙种产品畅销 (B )甲、乙产品均畅销(C )甲种产品滞销 (D )甲产品滞销或乙产品畅销 1.2 指出下列关系中那些是正确的,那些是错误的,并说明理由。

(1)(A ∪B )- C = A ∪(B -C ); (2)(A ∪B )- A = B ;(3))(B A ⋃C =A B ∪B C ; (4)AB B A B A B A =⋃⋃;(5)=))((B A AB ∅; (6)若A B ⊂,则A B A =⋃。

1.3 试把C B A ⋃⋃表示成三个两两互不相容事件的和。

1.4 设}20|{≤≤=Ωx x ,}15.0|{≤<=x x A ,}5.125.0|{<≤=x x B ,请具体写出下列各事件:(1)B A ; (2)B A ⋃;(3)B A ; (4)AB 。

1.5 一个工人生产了四件产品,以i A 表示他生产的第i 件产品是正品(4,3,2,1=i ),试用)4,3,2,1(=i A i 表示下列事件:(1)没有一件产品是次品; (2)至少有一件产品是次品;(3)恰有一件产品是次品; (4)至少有两件产品不是次品。

1.6 设A 、B 、C 是三个事件,且41)()()(===C P B P A P ,81)(=AC P , 0)()(==BC P AB P ,求A 、B 、C 中至少有一个发生的概率。

1.7 设A 、B 是两事件,且P (A ) = 0.6,P (B ) =0.7。

问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少?1.8 袋中有白球5只,黑球6只,依次从袋中不放回取出三只,求顺序为黑白黑的概率。

概率论课后题答案.

概率论课后题答案.

7. 人体血型的一个简化模型包括4种血型和2种抗体: A、B、AB与O型, 抗A与抗B. 抗体根据血型与人的血液以
不同的形式发生作用. 抗A只与A、AB型血发生作用, 不与
B、O型血作用, 抗B只与B、AB型血发生作用, 不与A、O
型血作用, 假设一个人的血型是O型血的概率为0.5, 是A
型血的概率为0.34, 是B型血的概率为0.12, 求: (1) 抗A, 抗B分别与任意一人的血型发生作用的概率;
求P(B).
解 由于 P(AB)=P(A)+P(B)-P(A+B)
=P(A)+P(B)-1+P(A+B) =P(A)+P(B)-1+P(A B) 所以, P(A)+P(B)-1=0 即, P(B)=1-P(A)=1-p
第一章习题1.3(第19页)
2. 在1500个产品中, 有400个次品, 1100个正品, 从
5. 进行一个试验: 先抛一枚均匀的硬币, 然后抛一个
均匀的骰子,
(1) 描述该试验的样本空间;
(2) 硬币是正面且骰子点数是奇数的概率是多少?
解 (1) 设试验是观察硬币正反面和骰子的点数, 则 ={ (正面, 1点), (正面, 2点), (正面, 3点), (正面, 4点), (正面, 5点), (正面, 6点), (反面, 1点), (反面, 2点), (反面, 3点), (反面, 4点), (反面, 5点), (反面, 6点), } (2) P=3/12=1/4=0.25
1. 某城市共发行三种报纸A, B, C, 已知城市居民订购
A的占45%, 订购B的占35%, 订购C的占30%, 同时订购A
与B的占10%, 同时订购A与C的占8%, 同时订购B与C的占 5%, 同时订购A, B, C的占3%, 求下列事件的概率: (5) 至少订购一种报纸; P{至少订购一种报纸}=P{只订购一种报纸} +P{正好订购两种报纸}+P{订购三种报纸}=0.9 或 P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC) +P(ABC)=0.9 (6) 不订购任何报纸; P{不订购任何报纸}=1-P{至少订购一种报纸} =1-0.9=0.1

《概率论与数理统计》(韩旭里)课后习题答案

《概率论与数理统计》(韩旭里)课后习题答案

《概率论与数理统计》(韩旭里)课后习题答案概率论与数理统计习题及答案习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)ABC (2)ABC (3)ABC(4)A∪B∪C=ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪ABC=ABC (5) ABC=A B C (6) ABC1(7) ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=ABC∪ABC∪ABC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A B)=0.3,求P(AB).【解】P(AB)=1P(AB)=1[P(A)P(A B)]=1[0.70.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC) =11114+4+312=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】p=C533213C13C13C13/C13528.对一个五人学习小组考虑生日问题:(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率;2(3)求五个人的生日不都在星期日的概率.【解】(1)设A1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P(A1)=115 =()(亦可用独立性求解,下同)757(2)设A2={五个人生日都不在星期日},有利事件数为65,故6565P(A2)=5=() 77(3) 设A3={五个人的生日不都在星期日}P(A3)=1P(A1)=1(15) 79.略.见教材习题参考答案.10.一批产品共N件,其中M件正品.从中随机地取出n件(n&lt;N).试求其中恰有m件(m≤M)正品(记为A)的概率.如果:(1)n件是同时取出的;(2)n件是无放回逐件取出的;(3)n件是有放回逐件取出的.n mn【解】(1)P(A)=CmMCN M/CNn(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有PN种,n次抽取中有m次为正品的组合数为Cmn种.对于固定的一种正品与次品的抽取mn m次序,从M件正品中取m件的排列数有PM种,从N M件次品中取n m件的排列数为PN M种,故mn mCmnPMPN MP(A)= nPN由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成3n mCmMCN MP(A)= nCN可以看出,用第二种方法简便得多.(3)由于是有放回的抽取,每次都有N种取法,故所有可能的取法总数为Nn种,n次抽取中有m次为正品的组合数为Cmn种,对于固定的一种正、次品的抽取次序,m次取得正品,都有M种取法,共有Mm种取法,n m次取得次品,每次都有N M种取法,共有(N M)n m种取法,故mn mn P(A)CmM(N M)/Nn此题也可用贝努里概型,共做了n重贝努里试验,每次取得正品的概率为M,则取得m件正品的概率为Nmn m M M P(A)C1N N mn11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A={发生一个部件强度太弱}10C3/C50 1 196013.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.【解】设Ai={恰有i个白球}(i=2,3),显然A2与A3互斥.1C2184C3P(A2)3,C735C344P(A3)3 C7354故P(A2A3)P(A2)P(A3)223514.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.【解】设Ai={第i批种子中的一粒发芽},(i=1,2)(1) P(A1A2)P(A1)P(A2)0.70.80.56(2) P(A1A2)0.70.80.70.80.94 (3) P(A1A2A1A2)0.80.30.20.70.38 15.掷一枚均匀硬币直到出现3次正面才停止.(1)问正好在第6次停止的概率;(2)问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1)p2121315C111314()()1C5(2)(2)232 (2) p25/32 2516.甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】设Ai={甲进i球},i=0,1,2,3,Bi={乙进i球},i=0,1,2,3,则P(3i0A212iBi3)(0.3)3(0.4)3C130.7(0.3)C30.6(0.4)C2223(0.7)0.3C3(0.6)20.4+(0.7)3(0.6)3=0.32076517.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】p1C411115C2CC2C2213C4102118.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.【解】设A={下雨},B={下雪}.(1)p(BA)P(AB)0.50.2(2)p(A B)P(A)P(B)P(AB)0.30.50.10.719.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】设A={其中一个为女孩},B={至少有一个男孩},样本点总数为23=8,故P(BA)P(AB)6/8P(A)7/8 67或在缩减样本空间中求,此时样本点总数为7.P(BA) 6720.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】设A={此人是男人},B={此人是色盲},则由贝叶斯公式P(AB)P(AB)P(A)P(BA)P(B)P(A)P(BA)P(A)P(BA)60.50.050.50.050.50.0025202121.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x y|&gt;30.如图阴影部分所示.302P 1602 422.从(0,1)中随机地取两个数,求:76的概率;51(2)两个数之积小于的概率. 4(1)两个数之和小于【解】设两数为x,y,则0&lt;x,y&lt;1.(1)x+y&lt;6. 514417 p110.68 1251(2) xy=&lt;. 4p21111dxdy11ln2 4x442123.设P(A)=0.3,P(B)=0.4,P(AB)=0.5,求P(B|A∪B)【解】P(BA B)P(AB)PA()PAB() P(A B)P(A)P(B)P(AB)0.70.51 0.70.60.5424.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】设Ai={第一次取出的3个球中有i个新球},i=0,1,2,3.B={第二次取出的3球均为新球}由全概率公式,有8P(B)P(BAi)P(Ai)i032321C3C3C1C8C9C6C3C3C3699C67960.08933333333C15C15C15C15C15C15C15C1525. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A={被调查学生是努力学习的},则A={被调查学生是不努力学习的}.由题意知P (A)=0.8,P(A)=0.2,又设B={被调查学生考试及格}.由题意知P(B|A)=0.9,P(B|A)=0.9,故由贝叶斯公式知P(A)P(BA)P(AB)(1)P(AB)P(B)P(A)P(BA)P(A)P(BA)0.20.110.02702 0.80.90.20.137即考试及格的学生中不努力学习的学生仅占2.702%P(A)P(BA)P(AB)(2) P(AB)P(B)P(A)P(BA)P(A)P(BA)0.80.140.3077 0.80.10.20.913即考试不及格的学生中努力学习的学生占30.77%.926. 将两信息分别编码为A和B传递出来,接收站收到时,A被误收作B的概率为0.02,而B被误收作A的概率为0.01.信息A与B传递的频繁程度为2∶1.若接收站收到的信息是A,试问原发信息是A的概率是多少?【解】设A={原发信息是A},则={原发信息是B}C={收到信息是A},则={收到信息是B}由贝叶斯公式,得P(AC)P(A)P(CA)P(A)P(CA)P(A)P(CA) 2/30.980.99492 2/30.981/30.0127.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设Ai={箱中原有i个白球}(i=0,1,2),由题设条件知P(Ai)=1,i=0,1,2.又设B={抽出一球为白球}.由贝叶斯公式知3P(A1B)P(BA1)P(A1)P(A1B) 2P(B)P(BAi)P(Ai)i02/31/31 1/31/32/31/311/3328.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】设A={产品确为合格品},B={产品被认为是合格品}由贝叶斯公式得10P(AB)P(A)P(BA)P(AB) P(B)P(A)P(BA)P(A)P(BA)0.960.980.998 0.960.980.040.05 29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年设A={该客户是“谨慎的”},B={该客户是“一般的”},C={该客户是“冒失的”},D={该客户在一年内出了事故}则由贝叶斯公式得P(A|D)P(AD)P(A)P(D|A)P(D)P(A)P(D|A)P(B)P(D|B)P(C)P(D|C)0.20.050.057 0.20.050.50.150.30.330.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设Ai={第i道工序出次品}(i=1,2,3,4).P(Ai)1P(A1A2A3A4) i141P(A1)P(A2)P(A3)P(A4)10.980.970.950.970.12431.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n次独立射击.1(0.8)n0.911即为(0.8)n0.1故n≥11至少必须进行11次独立射击.32.证明:若P(A|B)=P(A|B),则A,B相互独立.【证】P(A|B)即P(A|B)P(AB)P(AB) P(B)P(B)亦即P(AB)P(B)P(AB)P(B)P(AB)[1P(B)][P(A)P(AB)]P(B)因此P(AB)P(A)P(B)故A与B相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为【解】设Ai={第i人能破译}(i=1,2,3),则111,,,求将此密码破译出的概率. 534P(Ai)1P(A1A2A3)1P(A1)P(A2)P(A3) i1314230.6 53434.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A={飞机被击落},Bi={恰有i人击中飞机},i=0,1,2,312由全概率公式,得P(A)P(A|Bi)P(Bi)i03=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1)虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2)新药完全无效,但通过试验被认为有效的概率.【解】(1)p1 Ck0k103k10(0.35)k(0.65)10k0.5138 (2) p2 Ck410(0.25)k(0.75)10k0.224136.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1)A=“某指定的一层有两位乘客离开”;(2)B=“没有两位及两位以上的乘客在同一层离开”;(3)C=“恰有两位乘客在同一层离开”;(4)D=“至少有两位乘客在同一层离开”.【解】由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.24C69(1)P(A),也可由6重贝努里模型:6101321294P(A)C6()() 1010(2)6个人在十层中任意六层离开,故6P10P(B) 6 102(3)由于没有规定在哪一层离开,故可在十层中的任一层离开,有C110种可能结果,再从六人中选二人在该层离开,有C6种离开方式.其余4人中不能31再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有C19C4C8种可4能结果;②4人同时离开,有C19种可能结果;③4个人都不在同一层离开,有P9种可能结果,故2131146P(C)C110C6(C9C4C8C9P9)/10(4)D=B.故6P10P(D)1P(B)1 6 1037. n个朋友随机地围绕圆桌而坐,求下列事件的概率:(1)甲、乙两人坐在一起,且乙坐在甲的左边的概率;(2)甲、乙、丙三人坐在一起的概率;(3)如果n个人并排坐在长桌的一边,求上述事件的概率.【解】(1)p1 1 n 114(2) p3!(n3)!2(n1)!,n 3 (3) p(n1)!11n!n;p3!(n2)!2n!,n 338.将线段[0,a]任意折成三折,试求这三折线段能构成三角形的概率【解】设这三段长分别为x,y,a x y.则基本事件集为由0&lt;x&lt;a,0&lt;y&lt;a,0&lt;a x y&lt;a所构成的图形,有利事件集为由x y a x yx(a x y)yy(a x y)x构成的图形,即0x a20y a 2a2x y a如图阴影部分所示,故所求概率为p 14.39. 某人有n把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k次(k=1,2,…,n)才能把门打开的概率与k无关.【证】p Pk 1n11Pk,k1,2,n ,nn1540.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i面涂有颜色的概率P(Ai)(i=0,1,2,3).【解】设Ai={小立方体有i面涂有颜色},i=0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000(8+96+384)=512个P(A)P[A(B C)]P(AB AC)P(AB)P(AC)P(ABC)P(AB)P(AC)P(BC)42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】设Ai={杯中球的最大个数为i},i=1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故P(AC33!31)4438而杯中球的最大个数为3,即三个球全放入一个杯中,故16C114P(A3)3 416因此P(A2)1P(A1)P(A3)131981616或P(AC1214C3C32)4391643.将一枚均匀硬币掷2n次,求出现正面次数多于反面次数的概率.【解】掷2n次硬币,可能出现:A={正面次数多于反面次数},B={正面次数少于反面次数},C={正面次数等于反面次数},A,B,C两两互斥.可用对称性来解决.由于硬币是均匀的,故P(A)=P(B).所以P(A)1P(C)2由2n重贝努里试验中正面出现n次的概率为P(C)Cn1n1n2n(2)(2)故P(A) 12[1Cn12n22n]44.掷n次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A={出现正面次数多于反面次数},B={出现反面次数多于正面次数},由对称性知P(A)=P(B)(1)当n为奇数时,正、反面次数不会相等.由P(A)+P(B)=1得P(A)=P(B)=0.5 (2) 当n为偶数时,由上题知P(A)1n212[1Cn(2)n]45.设甲掷均匀硬币n+1次,乙掷n次,求甲掷出正面次数多于乙掷出正面次数的概率.17【解】令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数.显然有(甲正&gt;乙正)=(甲正≤乙正)=(n+1甲反≤n乙反)=(甲反≥1+乙反)=(甲反&gt;乙反)由对称性知P(甲正&gt;乙正)=P(甲反&gt;乙反)因此P(甲1正&gt;乙正)=246.证明“确定的原则”(Sure thing):若P(A|C)≥P(B|C),P(A|C)≥P(B|C),则P(A)≥P(B).【证】由P(A|C)≥P(B|C),得P(AC)PP(C)(BC)P(C),即有P(AC)P(BC)同理由P(A|C)P(B|C),得P(AC)P(BC),故P(A)P(AC)P(AC)P(BC)P(BC)P(B)47.一列火车共有n节车厢,有k(k≥n)个旅客上火车并随意地选择车厢.求每一节车厢设Ai={第i节车厢是空的},(i=1,…,n),则18(n1)k1kP(Ai)(1)nkn2P(AiAj)(1)knP(AAn1ki1Ai2in1)(1n)其中i1,i2,…,in1是1,2,…,n中的任n1个. 显然n节车厢全空的概率是零,于是nS P(A)n(111k1ii1n)k C1n(1n)S P(AC222iAj)n(1)k1i j nnSn11i P(An1i1Aii1i2in1n2An1)Cn(1n1kn)Sn0P(ni1Ai)S1S2S3(1)n1SnC11k22knn1n 1n(1n)Cn(1n)(1)Cn(1n)k故所求概率为191k2in1k2n1n11P(Ai)1C1Cn(1) n(1)Cn(1)(1)i1nnnn48.设随机试验中,某一事件A出现的概率为ε&gt;0.试证明:不论ε&gt;0如何小,只要不断地独立地重复做此试验,则A迟早会出现的概率为1.【证】在前n次试验中,A至少出现一次的概率为1(1)n1(n)49.袋中装有m只正品硬币,n只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r次,已知每次都得到国徽.试问这只硬币是正品的概率是多少?【解】设A={投掷硬币r次都得到国徽}B={这只硬币为正品}由题知P(B)mn,P(B) m nm nP(A|B)1,P(A|B) 1 r2则由贝叶斯公式知P(B|A)P(AB)P(B)P(A|B) P(A)P(B)P(A|B)P(B)P(A|B)m1rm rm1nr1m2nm n2m n50.巴拿赫(Banach)火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r根的概率又有多少?20【解】以B1、B2记火柴取自不同两盒的事件,则有P(B1)P(B2) 1.(1)发现一盒已空,另一盒恰剩r根,说明已取了2n r次,设n次取自B1盒(已2空),n r次取自B2盒,第2n r+1次拿起B1,发现已空。

概率论习题集与答案

概率论习题集与答案

概率论习题一、填空题1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 .2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率.3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 .4、()0.7,()0.3,P A P A B =-= 则().P AB =5、()0.3,()0.4,()0.5,P A P B P AB === 则(|).P B A B ⋃=6、掷两枚硬币,至少出现一个正面的概率为..7、设()0.4,()0.7,P A P A B =⋃= 假设,A B 独立,则().P B =8、设,A B 为两事件,11()(),(|),36P A P B P A B === 则(|).P A B = 9、设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是.10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 .11、一枚硬币独立的投3次,记事件A =“第一次掷出正面〞,事件B =“第二次掷出反面〞,事件C =“正面最多掷出一次〞。

那么(|)P C AB = 。

12、男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相等的表示为互不相容事件的和是 。

15、,,A B C 中不多于两个发生可表示为 。

二、选择题1、下面四个结论成立的是〔 〕2、设()0,P AB =则以下说法正确的选项是〔 〕3、掷21n +次硬币,正面次数多于反面次数的概率为〔 〕4、设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有〔 〕5、设A 、B 相互独立,且P (A )>0,P (B )>0,则以下等式成立的是〔 〕.A P (AB )=0.B P (A -B )=P (A )P (B ).C P (A )+P (B )=1 .D P (A |B )=06、设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有〔 〕.A P (AB )=l.B P (A )=1-P (B ) .C P (AB )=P (A )P (B ) .D P (A ∪B )=17、()0.5P A =,()0.4P B =,()0.6P A B +=,则(|)P A B =〔 〕.A 0.2 .B 0.45 .C 0.6 .D8、同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为〔 〕.A 0.125 .B 0.25.C 0.375 .D 0.509、设事件,A B 互不相容,()0.4P A =,()0.5P B =,则()P AB =〔 〕.A .B .C .D 110、事件A ,B 相互独立,且()0P A >,()0P B >,则以下等式成立的是〔 〕11、设1)(0<<A P ,1)(0<<B P ,1)|()|(=+B A P B A P ,则〔 〕..A 事件A 与B 互不相容.B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立12、对于任意两事件A 和B ,)(B A P -=〔 〕.13、设A 、B 是两事件,且P 〔A 〕=0.6,P(B)=0.7则P 〔AB 〕取到最大值时是〔 〕.A 0.6 .B 0.7 .C 1 .D14、某人忘记了 号码的最后一个数字,因而他随意地拨号。

概率论课后习题

概率论课后习题

第一章 概率论的基本概念(一)1、多选题:⑴ 以下命题正确的是( )。

A B A AB a =)()(.Y ; A AB B A b =⊂则若,.;A B B A c ⊂⊂则若,.; B B A B A d =⊂Y 则若,..⑵ 某学生做了三道题,i A 表示第i 题做对了的事件)3,2,1(=i ,则至少做对了两道题的事件可表示为( ). ;.;.133221321321321A A A A A A b A A A A A A A A A a Y Y Y Y ..;.321321321321133221A A A A A A A A A A A A d A A A A A A c Y Y Y Y Y2、A 、B 、C 为三个事件,说明下述运算关系的含义:.)6(.)5(.)4(.)3(.)2(.1ABC C B A C B A C B A C B A Y Y )(3、个工人生产了三个零件,i A 与i A )3,2,1(=i 分别表示他生产的第i 个零件为正、次品的事件。

试用i A 与i A )3,2,1(=i 表示以下事件:⑴ 全是正品;⑵ 至少有一个零件是次品;⑶ 恰有一个零件是次品;⑷ 至少有两个零件是次品。

4、下列命题中哪些成立,哪些不成立: ⑴B B A B A Y Y =;⑵ B A B A Y =;⑶ C B A C B A =Y ;⑷ ()∅=)(B A AB ;⑸ AB A B A =⊂则若;⑹ A B B A ⊂⊂则若。

(二)1、选择题:⑴ 若事件A 与B 相容,则有( ))()()(.B P A P B A P a +=Y ; )()()()(.AB P B P A P B A P b -+=Y ; )()(1)(.B P A P B A P c --=Y ; )()(1)(.B P A P B A P d -=Y⑵ 事件A 与B 互相对立的充要条件是( ),1)(0)(.),()()(.===B A P AB P b B P A P AB P a Y 且∅=Ω=∅=AB d B A AB c .,..Y 且2、袋中有12个球,其中红球5个,白球4个,黑球3个。

(完整版)概率论高等数学习题解答

(完整版)概率论高等数学习题解答

习 题 二(A )三、解答题1.一颗骰子抛两次,以X 表示两次中所得的最小点数 (1) 试求X 的分布律; (2) 写出X 的分布函数.解: (1)分析:这里的概率均为古典概型下的概率,所有可能性结果共36种,如果X=1,则表明两次中至少有一点数为1,其余一个1至6点均可,共有1-612⨯C (这里12C 指任选某次点数为1,6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为612⨯C 多算了一次)或1512+⨯C 种,故{}36113615361-611212=+⨯=⨯==C C X P ,其他结果类似可得.(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤=+=+=+=+=<≤=+=+=+=<≤=+=+=<≤=+=<≤=<=6165}5{}4{}3{}2{}1{54 }4{}3{}2{}1{43 }3{}2{}1{32}2{}1{21}1{1 0 )(x x X P X P X P X P X P x X P X P X P X P x X P X P X P x X P X P x X P x x F ,,,,,,,⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<≤<=6 165363554 363243 36273236202136111 0 x x x x x x x ,,,,,,,2.某种抽奖活动规则是这样的:袋中放红色球及白色球各5只,抽奖者交纳一元钱后得到一次抽奖的机会,然后从袋中一次取出5只球,若5只球同色,则获奖100元,否则无奖,以X 表示某抽奖者在一次抽取中净赢钱数,求X 的分布律.解:注意,这里X 指的是赢钱数,X 取0-1或100-1,显然{}1261299510===C X P . 3.设随机变量X 的分布律为0;,2,1,0,!}{>===λλΛk k ak X P k为常数,试求常数a .解:因为1!==-∞=∑λλae k ak k,所以λ-=e a .4.设随机变量X 的分布律为(1) 求X 的分布函数;(2) 求}21{≤X P ,}2523{≤<X P ,}32{≤≤x P .解:(1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤-<=⎪⎪⎩⎪⎪⎨⎧≥<≤=+-=<≤--=<=3x 132432141-1x 03x 132}2{}1{21}1{-1x 0)(,,,,,,,,x x x X P X P x X P x F ,(2) {}41121=-==⎭⎬⎫⎩⎨⎧≤X p X P 、 {}2122523===⎭⎬⎫⎩⎨⎧≤<X P X P , {}{}{}{}{}{}43323232==+=====≤≤X P X P X X P X P Y . 5.设随机变量X 的分布律为Λ,2,1,21}{===k k X P k求: (1) P {X = 偶数} (2) P {X ≥ 5} (3) P {X = 3的倍数}解:(1) {}3121121121lim 212121222242=⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=++++==∞→i i iX P ΛΛ偶数, (2) {}{}16116151212121211415432=-=⎭⎬⎫⎩⎨⎧+++-=≤-=≥X P X P ,(3) {}7121121121lim 21333313=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-===∞→∞=∑i i i i X P 的倍数.6. 某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为0.5t 的泊松分布,而与时间间隔的起点无关(时间以小时计)(1) 求某一天中午12时至下午3时没有收到紧急呼救的概率. (2) 求某一天中午12时至下午5时至少收到一次紧急呼救的概率. 解:(1) ()()5.15.0~P t P X = {}5.10-==e X P . (2) 5.25.0=t {}{}5.21011--==-=≥e x P x P .7. 某人进行射击,每次射击的命中率为0.02,独立射击400次,试求至少击中2次的概率.解:设射击的次数为X ,由题意知().20400~,B X , {}{}∑=--=≤-=≥10400400,98.002.01112k k k kC X P X P由于上面二项分布的概率计算比较麻烦,而且X 近似服从泊松分布P (λ)(其中λ=400×0.02),所以P {X ≥2}∑=--≈18!81k k e k , 查表泊松分布函数表得:P {X ≥2}9972.028.01=-≈8. 设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号.现进行5次独立试验,试求指示灯发出信号的概率.解:设X 为事件A 在5次独立重复实验中出现的次数,().305~,B X 则指示灯发出信号的概率{}{})7.03.07.03.07.03.0(131********55005C C C X P X P p ++-=<-=≥=1631.08369.01=-=.9. 设顾客在某银行窗口等待服务的时间X (以分钟计)服从参数为5指数分布.某顾客在窗口等待服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.写出Y 的分布律,并求P {Y ≥ 1}. 解:因为X 服从参数为5的指数分布,则51)(xex F --=,{}2)10(110-=-=>e F X P ,()25~-e B Y ,,则50,1,k ,)1()(}{5225Λ=-==---kk k e e C k Y P .0.516711}0{-1}1{52=--===≥-)(e Y P Y P 10.设随机变量X 的概率密度为⎪⎩⎪⎨⎧>≤=2||,02||,cos )(ππx x x a x f ,试求: (1) 系数a ; (2) X 落在区间)4,0(π内的概率.解:(1) 由归一性知:⎰⎰-∞+∞-===222cos )(1ππa xdx a dx x f ,所以21=a .(2) .42|sin 21cos 21}40{404===<<⎰πππx xdx X P . 11.设连续随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x Ax x x F 试求:(1) 系数A ;(2) X 落在区间(0.3,0.7)内的概率;(3) X 的概率密度. 解 (1)由F (x )在x =1的连续性可得)1()(lim )(lim 11F x F x F x x ==-→+→,即A=1.(2){}=<<7.03.0X P 4.0)3.0()7.0(=-F F .(3)X 的概率密度⎩⎨⎧<<='= ,010,2)()(x x x F x f .12.设随机变量X 服从(0,5)上的均匀分布,求x 的方程02442=+++X Xx x 有实根的概率.解:因为X 服从(0,5)上的均匀分布,所以⎪⎩⎪⎨⎧<<=其他05051)(x x f若方程024422=+++X Xx x 有实根,则03216)4(2≥--=∆X X ,即0)1)(2(≥+-X x ,得2≥X 或1-≤X ,所以有实根的概率为{}{}53510511252152==+=-≤+≥=⎰⎰-∞-x dx dx X P X P p 13.设X ~N (3,4)(1) 求};3{},2{},104{},52{>>≤<-≤<X P X P X P X P (2) 确定c 使得};{}{c X P c X P ≤=>(3) 设d 满足9.0}{≥>d X P ,问d 至多为多少? 解: (1) 因为4)(3~,N X所以}1235.0{}23523232{}52{≤-<-=-≤-<-=≤<X P X P X P5328.016915.08413.01)5.0()1()5.0()1(=-+=-+=--ΦΦΦΦ{}=≤<-104X P )234()2310(----=ΦΦ 9996.019998.021)5.3(2)5.3()5.3(=-⨯=-=--=ΦΦΦ{}{}212≤-=>X P X P {}221≤≤--=X P[])2()2(1---=F F [])5.2()5.0(1-Φ--Φ-= [])5.0()5.2(1Φ-Φ-=3023.01-=6977.0={}{}313≤-=>X P X P )3(1F -=)0(1Φ-=5.01-=5.0=.(2){}{}c X P c X P ≤-=>1,则{}21=≤c X P 21)23()(=-Φ==c c F ,经查表得21)0(=Φ,即023=-c ,得3=c ;由概率密度关于x=3对称也容易看出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论:
1、The probability of winning on a single
toss of the dice is p. A starts, and if he fails, he passes the dice to B, who then attempts to win on her toss. They continue tossing the dice back and forth until one of them wins. What are their respective probabilities of winning?
2、Assume that each child who is born is
equally likely to be a boy or a girl. If a family has two children, what is the probability that both are girls given that
(a) the eldest is a girl, (b) at lease one is
a girl?
3、If the occurrence of B makes A more
likely, does the occurrence of A make B
more likely?
4、Bill and George go target shooting
together. Both shoot at a target at the
same time. Suppose Bill hits the target
with probability 0.7, whereas George,
independently, hits the target with
probability 0.4. (a) Given that exactly
one shot hit the target, what is the
probability that it was George’s shot? (b) Given that the target is hit, what is the
probability that George hit it?
5、Urn 1 contains two white balls and one
black ball, while urn 2 contains one white ball and five black balls. One ball is drawn at random from urn 1 and placed in urn 2. A ball is then drawn from urn 2. It happens to be white.
What is the probability that the transferred ball was white?
6、(a) A gambler has in his pocket a fair
coin and a two-headed coin. He selects one of the coins at random, and when he flips it, it shows heads. What is the probability that it is the fair coin? (b) Suppose that he flips the same coin a second time and again it shows heads.
Now what is the probability that it is the fair coin? (c) Suppose that he flips the same coin a third time and it shows tails.
Now what is the probability that it is the fair coin?
7、An urn contains b black balls and r red
balls. One of the balls is drawn at random, but when it is put back in the urn, c additional balls of the same color are put in with it. Now suppose that we draw another ball. Find the probability that the first ball drawn was black given that the second ball drawn was red.。

相关文档
最新文档