概率论与数理统计练习题附答案详解
(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。
若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。
2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。
3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。
4.1)()(==X D X E 。
若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。
5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。
7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。
8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。
9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。
10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。
但当增⼤置信⽔平时,则相应的置信区间长度总是。
⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。
设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。
三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。
概率论和数理统计练习题与答案解析

概率论与数理统计练习题集及答案一、选择题:1.某人射击三次,以i A 表示事件“第i 次击中目标〞,则事件“三次中至多击中目标一次〞的正确表示为〔 〕〔A 〕321A A A ++ 〔B 〕323121A A A A A A ++ 〔C 〕321321321A A A A A A A A A ++ 〔D 〕321A A A2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为〔 〕 〔A 〕365 〔B 〕364 〔C 〕363 〔D 〕3623.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则〔 〕〔A 〕)(1)(B P A P -= 〔B 〕)()()(B P A P AB P = 〔C 〕1)(=+B A P 〔D 〕1)(=AB P4.随机变量X 的概率密度为⎩⎨⎧<≥=-00)(2x x ce x f x ,则=EX 〔 〕〔A 〕21〔B 〕1 〔C 〕2 〔D 〕41 5.以下各函数中可以作为某随机变量的分布函数的是〔 〕〔A 〕+∞<<∞-+=x x x F ,11)(21 〔B 〕⎪⎩⎪⎨⎧≤>+=001)(2x x x x x F 〔C 〕+∞<<∞-=-x e x F x ,)(3 〔D〕+∞<<∞-+=x x x F ,arctan 2143)(4π6.随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为〔 〕〔A 〕)2(2y f X - 〔B 〕)2(y f X - 〔C 〕)2(21yf X --〔D 〕)2(21y f X -7.二维随机向量),(Y X 的分布及边缘分布如表hgp fe d x c b a x p y y y XY Y jX i 61818121321,且X 与Y 相互独立,则=h 〔 〕〔A 〕81 〔B 〕83 〔C 〕41 〔D 〕31 8.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY E 〔 〕〔A 〕3 〔B 〕6 〔C 〕10 〔D 〕129.设X 与Y 为任意二个随机变量,方差均存在且为正,假设EYEX EXY ⋅=,则以下结论不正确的选项是〔 〕〔A 〕X 与Y 相互独立 〔B 〕X 与Y 不相关 〔C 〕0),cov(=Y X 〔D 〕DY DX Y X D +=+)(答案:1. B2. A3.D4.A5.B6. D7. D8. C9. A1.某人射击三次,以i A 表示事件“第i 次击中目标〞,则事件“三次中恰好击中目标一次〞的正确表示为〔 C 〕 〔A 〕321A A A ++ 〔B 〕323121A A A A A A ++ 〔C 〕321321321A A A A A A A A A ++ 〔D 〕321A A A2.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为〔 A 〕〔A 〕2242 〔B 〕2412C C 〔C 〕24!2A 〔D 〕!4!23.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则〔 D 〕 〔A 〕)()|(A P B A P = 〔B 〕)()()(B P A P AB P = 〔C 〕)()()|(B P A P B A P = 〔D 〕0)|(=B A P4.随机变量X 的概率密度为⎩⎨⎧∈=其他),0(2)(a x x x f ,则=EX 〔 A 〕 〔A 〕32〔B 〕1 〔C 〕38 〔D 〕316 5.随机变量X 的分布函数⎩⎨⎧≤>+-=-0)1()(x x e x A x F x,则=A 〔 B 〕 〔A 〕0 〔B 〕1 〔C 〕2 〔D 〕3 6.随机变量X 的概率密度为)(x f X ,令X Y 3-=,则Y 的概率密度)(y f Y 为〔 D 〕〔A 〕)3(3y f X - 〔B 〕)3(yf X - 〔C 〕)3(31y f X -- 〔D 〕)3(31y f X - 7.二维随机向量),(Y X 的分布及边缘分布如表hgp fe d x c b a x p y y y XY Y jX i 61818121321,且X 与Y 相互独立,则=e 〔 B 〕〔A 〕81〔B 〕41 〔C 〕83 〔D 〕31 8.设随机变量Y X ,相互独立,且)5.0,16(~b X ,Y 服从参数为9的泊松分布,则=+-)12(Y X D 〔 C 〕〔A 〕-14 〔B 〕13 〔C 〕40 〔D 〕41 9.设),(Y X 为二维随机向量,则X 与Y 不相关的充分必要条件是〔 D 〕〔A 〕X 与Y 相互独立 〔B 〕EY EX Y X E +=+)( 〔C 〕DY DX DXY ⋅= 〔D 〕EY EX EXY ⋅= 一、填空题A ,B 是两个随机事件,5.0)(=A P ,8.0)(=+B A P ,)1(假设A 与B 互不相容,则)(B P = ;)2(假设A 与B 相互独立,则)(B P = .2.一袋中装有10个球,其中4个黑球,6个白球,先后两次从袋中各取一球〔不放回〕.第一次取出的是黑球,则第二次取出的仍是黑球的概率为 .X 的概率分布为}{k a k X P 3==, ,2,1=k ,则常数=a . X 的分布函数为 则常数=a ,}31{<<X P = .X 的概率分布为则)33(2+X E = .6.如果随机变量X 服从],[b a 上的均匀分布,且3)(=X E ,34)(=X D ,则a = ,b = .X ,Y 相互独立,且都服从参数为6.0的10-分布,则}{Y X P == .X ,Y 是两个随机变量,2)(=X E ,20)(2=X E , 3)(=Y E ,34)(2=Y E ,5.0=XY ρ,则)(Y X D - = .答案:1. 3.0,6.0 2. 313. 414.41,435. 5.46. 1,57. 8. 21A ,B 是两个随机事件,3.0)(=A P ,)()(B A P AB P =,则)(B P = .2.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为0.8,0.7,0.6,则密码能译出的概率为 .X 的概率分布为,5,4,3,2,1,15}{===k kk X P 则}31123{<<X P = . 4.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x x x F ,则=<}6{πX P .5.设随机变量X 服从]3,1[上的均匀分布,则X1的数学期望为 .21,X X 相互独立,其概率分布分别为 则}{21X X P == .7.设X ,Y 是两个随机变量,)3,0(~2N X ,)4,1(~2N Y ,X 与Y 相互独立,则~Y X + .8.设随机变量21,X X 相互独立,且都服从[0,1]上的均匀分布,则=-)3(21X X D .9.设随机变量X 和Y 的相关系数为5.0,=)(X E 0)(=Y E ,=)(2X E 2)(2=Y E ,则2)(Y X E + = . 答案:1. 0.72. 0.9763. 314. 0.55. 3ln 216.95 7. )5,1(2N 8. 659. 6二、有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球. 现随机地选取一个箱子,再从这个箱子中任取1个球.〔1〕求取到的是白球的概率;〔2〕假设取出的球是白球,求它属于第二个箱子的概率.解:设事件i A 表示该球取自第i 个箱子)3,2,1(=i ,事件B 表示取到白球.三、某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是2.0. 在一天中,假设三部机器均无故障,则该厂可猎取利润2万元;假设只有一部机器发生故障,则该厂仍可猎取利润1万元;假设有两部或三部机器发生故障,则该厂就要亏损5.0万元. 求该厂一天可猎取的平均利润.设随机变量X 表示该厂一天所获的利润〔万元〕,则X 可能取5.0,1,2-,且512.08.0}2{3===X P ,384.08.02.0}1{213=⨯⨯==C X P ,104.0384.0512.01}5.0{=--=-=X P .所以356.1104.0)5.0(384.01512.02)(=⨯-+⨯+⨯=X E 〔万元〕 四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f .)1(求}{Y X P <;)2(求Y X ,的边缘密度,并推断X 与Y 的独立性.解: (1)5.0)1(24),(}{102110=-===<⎰⎰⎰⎰⎰<dx x x xydy dx dxdy y x f Y X P x yx ;(2)由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 的密度函数为⎩⎨⎧≤≤=其它,010,3)(2x x x f X ,求随机变量12+=X Y 的密度函数.解法一:Y 的分布函数为)21(}21{}12{}{)(-=-≤=≤+=≤=y F y X P y X P y Y P y F X Y ,两边对y 求导,得解法二:因为12+=x y 是10≤≤x 上单调连续函数,所以 注:21)(-==y y h x 为12+=x y 的反函数。
概率论和数理统计练习题与答案解析

概率论与数理统计练习题集及答案1. 某人射击三次,以A 表示事件“第,次击中目标”,则事件“三次中至多击中目标一次”的正确表示为()(C) A^ Ay 4 + A 4+4 A> A ( D ) 4 A A2. 掷两颗均匀的骰子,它们出现的点数之和等丁 8的概率为() (A) —(B) —(C) —(D)—363636363.设随机事件A^B 互不相容,且P(A)>0,P(B)>0,则( (A ) P(A) = 1-P(B) ( B ) P(AB) = P(A)P(B} (D) P(AB) = 1“7" x> 0 ni,i zt 则 EX=(0 x<0(A)斤(X)= ----- , —s < X < +s1 + x"/^(%) =-O0 < X < +cc(A) J 4| + A T +(B) 4 4 + 4 A+ 4 4(C ) P(A + B) = 14.随机变量X 的概率密度为/(%) =(B) 1 (C) 2(A)-25.下列各函数中可以作为某随机变量的分布函数的是(D)4(B) F2(X ) = <I + X0 X > 0耳(x) = —+——arctanx , - oo < x < +oo42兀6.己知随机变星X的概率密度为办(JV),令Y = —2X ,则y的概率密度/心)为((A ) 2办(-2y ) (D )7 .已知二维随机向量(X,F )的分布及边缘分布如表(D ) i3&设随机变量X~S1、5],随机变量Y~N (2,4),且X 与y 相互独立, 贝 ij£(2xy -y)=(EXY=EX EY,则下列结论不正确的是(1.某人射击三次,以4表示事件“第,次击中目标”,则事件“三次(B )办(-却>且X 与Y 相互独立,贝显=( (A) 3(B) 6(C) 10(D) 129.设X 与y 为任意二个随机变量,方差均存在且为正,若(A ) X 与Y 相互独立 (B ) X 与y 不相关 (C) cov(x,r)= o(D) D(X + r)= DX + Dy答案:1. B2. A 6. D7. D8.C9. A中恰好击中目标一次”的正确表示为(C )(c) 44 + 4 A 4 + 4 人 42.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为(A )(D)-4!3.设随机事件A •与S 互不相容,且P (A )>0,P (B )>0,则(D ) (B) P(AB) = P(A)P(B) (C) P (AIB) = ^^(D) P(AIB) = O/心)为(D )(A ) 3A (-3y ) (B ) A (-|)(07 .己知二维随机向暈(x,y )的分石弋边缘分布如表(A) J 4| + A T +(B ) 4 Ay + 4 & + A 4(A) P(A\B) = P(A) 4.随机变量X 的概率密度为/(x )=: X e(O,rt),则£;X= ( A )(A)扌(B) 1(C)£(D)35.随机变量X 的分布函数F (x )= A-(l + Q严2°,则A= ( B )x<0(A) 0 (B) 1(D) 36.己知随机变量X 的概率密度为厶W , 则y 的概率密度(A) -(B) -(C)-(D)-8483&设随机变量XV 相互独立,且X~饭16,0.5), y 服从参数为9的泊 松分布,则 D(X-2y + l)= ( C )9•设(XM)为二维随机向量,则X 与y 不相关的充分必要条件是(D ) (A) X 与 y 相互独立 (B) E(X + Y) = EX + EY (C) DXY = DX DY (D) EXY = EX • EY一、填空题:L 设是两个随机事件,P(A) = 0.5, P (A + B) = 0.8, (1)若A 与B 互不相容,则P(B) = __________ ; (2)若4与B 相互独立,则P(B)= _______ .2.—袋中装有20个球,其中4个黑球,6个白球,先后两次从袋中各 取一球(不放回).已知第一次取出的是黑球,则第二次取出的仍 是黑球的概率为 _____ .3. 设离散型随机变量X 的概率分布为P{X=k}=3a , R = l,2,…,则常数d= _________ .4. 设随机变量X 的分布函数为,x<Q,0<x<2,且X 与y 相互独立,贝|^= ( B )(A) -14(B) 13 (C) 40 (D) 41F(x) = iax,x>2 0,P {1<X<3} =5. 设随机变量X 的概率分布为则 £(3X2+3) =46. 如果随机变量X 服从[a,b] h 的均匀分布,且£(X) = 3, D(X) = -,贝ia= ____ , b= _____ .7. 设随机变量X, Y 相互独立,且都服从参数为0.6的0-1分布,则P[X=Y} =8•设X, y 是两个随机变量,E(X) = 2, £(%") = 20,答案:1. 0.3, 0.6 4.5 /2.- 36. 1. 57. 0.52& 212.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为,,,则密码能译出的概率为 _____ .则常数d = E(y)=3,F(y-) = 34> Pxr = 0.5 ,则D(X-Y)=5.1.设A^B 是两个随机事件, P(B)= _________ .P(A) = 0・3 , P (AB) = P(A B) > 则3.设随机变量X 的概率分布为P{X=k ] = -^,k=l, 2,3,4,5,则卩{|<7}=sin X, 0<x<— 贝g21 兀 1 , X > —25•设随机变量X 服从[1,3]上的均匀分布,则丄的数学期望X7. 设X, Y 是两个随机变量,互独立,则X + Y~ _______ •8. ________________ 设随机变量X'X 相互独立,且都服从[0,2]上的均匀分布,则 D (3X,-X,)= .9.设随机变星X 和y 的相关系数为0.5 , E(X)= E{Y) = Q ,E(X-)=E(Y-) = 2,则£(X+Y)2 = _____________ .4•设随机变量X 的分布函数为F{x )= < 6•设随机变量^2相互独立,则P{X^=X,} =1 2X , ■11133 ppJ 2 23亍X ~N (O ,32), 丫~川(1,牢),X 与y 相其概率分布分别为27. Na 5-) 二、有三个箱子,第一个箱子中有3个黑球1个口球,第二个箱子中 有3个黑球3个口球,第三个箱子中有3个黑球5个口球.现随机地 选取一个箱子,再从这个箱子中任取1个球.(1)求取到的是口球的 概率;(2)若已知取出的球是口球,求它属于第二个箱子的概率•解:设事件A 表示该球取自第,个箱子(/ = 1,23).事件B 表示取 到口球.3 111 3 1 5 11P(B)=zm)p(^-A)=-x-.-x-.-x-=_三. 某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是0.2.在一天中,若三部机器均无故障,则该厂可获取 利润2万元;若只有一部机器发生故障,则该厂仍可获取利润1万元; 若有两部或三部机器发生故障,则该厂就要亏损0.5万元.求该厂一 天可获取的平均利润.答案:1. 0.72.4. 0.55.9. 6P(B)设随机变量X 表示该厂一天所获的利润(万元),则X 可能取2JT.5,且P{X=2} = 0・y =0.512,P{X=1} = C ;X O ・2X O ・82 =0.384,P{X=-0・5} = l-0・512-0・384 = 0・104・所以 £(X) = 2x0512 + 1x0384+(-0.5)x0,104 = 1.356 (万元)四、设随机向星(X,Y )的密度函数为八3)= {罗°笃丁 3 ⑴求 P{X<y };(2)求XM 的边缘密度,并判断X 与y 的独立性.解:P[X < y) = jj f (X,y)dxdy = J= {^2x(1 — x")dx = 0.5 ;x<y由氏(兀)齐0) = /(兀』)知随机变量x,y 相互独立・匸4兀)込=2x, I 0 ,J ;4xydx=2y, 0 ,0<x<l其它0<y<l其它y=2x + i 的密度函数解法一:y 的分布函数为F,(y) = P{r<y} = P{2X + l<>} = P{X<^) = F,(^:两边对y 求导,得解法二:因为y = 2x + l 是OMxMl 上单调连续函数,所以注:x*(y ) = ¥为y = 2x + l 的反函数。
《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
概率论与数理统计作业与解答

概率论与数理统计作业及解答第一次作业 ★ 1.甲.乙.丙三门炮各向同一目标发射一枚炮弹•设事件ABC 分别表示甲.乙.丙 击中目标.则三门炮最多有一门炮击中目标如何表示• 事件E 丸事件A, B,C 最多有一个发生},则E 的表示为E =ABC ABC ABC ABC;或工 ABU AC U B C;或工 ABU ACU BC;或工 ABACBC ;或工 ABC_(AB C ABC A BC ).(和 A B 即并AU B,当代B 互斥即AB 二'时.AU B 常记为AB)2. 设M 件产品中含m 件次品.计算从中任取两件至少有一件次品的概率★ 3.从8双不同尺码鞋子中随机取6只.计算以下事件的概率A 二{8只鞋子均不成双}, B={恰有2只鞋子成双}, C 珂恰有4只鞋子成双}.C 6 (C 2 )6 32C 8C 4(C 2)4 800.2238, P(B) 8 皆 0.5594,P(A) 8/143★ 4.设某批产品共50件.其中有5件次品•现从中任取3件•求 (1) 其中无次品的概率-(2)其中恰有一件次品的概率‘ /八 C 5 1419 C :C 5 99⑴冷0.724.⑵虫产0.2526. C 50 1960C 503925. 从1〜9九个数字中•任取3个排成一个三位数•求 (1) 所得三位数为偶数的概率-(2)所得三位数为奇数的概率•4(1) P {三位数为偶数} = P {尾数为偶数}=-,9⑵P {三位数为奇数} = P {尾数为奇数} = 5,9或P {三位数为奇数} =1 -P {三位数为偶数} =1 -彳=5.9 96. 某办公室10名员工编号从1到10任选3人记录其号码 求(1)最小号码为5的概率 ⑵ 最大号码为5的概率 记事件A ={最小号码为5}, B={最大号码为5}.1 12 C m C M m C mm(2M - m -1)M (M -1)6 —C 16143P(C)二 C 8CJC 2)300.2098.143C 16C 2 iC 2⑴ P(A)=# 詁;(2) P(B )X =C 10 12C 107. 袋中有红、黄、白色球各一个 每次从袋中任取一球.记下颜色后放回 共取球三次 求下列事件的概率:A={全红} B ={颜色全同} C ={颜色全不同} D ={颜色不全同} E ={无 黄色球} F ={无红色且无黄色球} G ={全红或全黄}.1 11A 3!2 8P (A)=3^2?P (B )=3P (A )=9, P(C^#=?=9, P(DH ^P(BH?28 1 1 2P(E)亏方P(F)亏审 P(G r 2P(A)盲☆某班n 个男生m 个女生(m^n 1)随机排成一列•计算任意两女生均不相邻的概率☆ •在[0 ■ 1]线段上任取两点将线段截成三段•计算三段可组成三角形的概率14第二次作业1.设 A B 为随机事件 P(A)=0.92 ■ P(B)=0.93 P(B|Z)=0.85 求 ⑴ P(A|B) (2) P (AU B) ■ (1) 0.85 =P(B| A) =P(A B )P (AB ),P (A B )=0.85 0.08=0.068,P(A) 1-0.92P(AB)二 P(A) -P(AB)二 P(A) - P(B) P(AB) = 0.92 -0.93 0.068 = 0.058,P(A| B): = P(AB) = 0.。
《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章《随机事件及概率》练习题一、单项选择题1、设事件 A 与 B 互不相容,且P (A )> 0, P (B )> 0,则一定有()(A ) P(A)1 P(B) ; (B )P(A|B) P(A) ;(C ) P(A| B)1; (D ) P(A|B)1。
2、设事件 A 与 B 相互独立,且P (A )> 0, P (B )> 0,则()一定成立(A ) P(A|B) 1 P(A);( B ) (C ) P( A) 1P(B) ;( D )P(A|B)0;P(A|B)P(B)。
3、设事件 A 与 B 满足 P (A )> 0, P ( B )> 0,下面条件( )成立时,事件 A 与 B一定独立( A )( C )P( AB) P( A)P(B) ;(B ) P( A B) P( A)P(B) ; P(A|B) P(B) ;(D ) P(A|B)P(A)。
4、设事件 A 和 B 有关系 BA ,则下列等式中正确的是()( A )( C )P( AB) P( A) ;(B ) P(B|A) P(B); (D )P(A B) P(A); P(B A)P(B)P( A) 。
5、设 A 与 B 是两个概率不为0 的互不相容的事件,则下列结论中肯定正确的是()(A ) A 与 B 互不相容;(B ) A 与 B 相容;(C ) P(AB)P(A)P(B); (D ) P(AB) P(A)。
6、设 A 、B 为两个对立事件,且P (A ) ≠0, P (B ) ≠0,则下面关系成立的是()(A ) P( AB) P( A) P( B); (B ) P( A B) P(A) P(B);(C ) P( AB )P( A) P( B) ;(D ) P(AB)P(A)P(B)。
7、对于任意两个事件 A 与 B , P( AB) 等于()(A ) P( A)P( B) (B ) P( A) P(B) P( AB) ;(C ) P( A)P( AB) ;(D ) P(A)P(B) P(AB) 。
二、填空题1、若 AB , AC ,P (A )=0.9, P(B C) 0.8,则 P( ABC ) =__________。
2、设 P (A )=0.3,P ( B )=0.4,P (A|B )=0.5,则 P (B|A )=_______ , P( B | AB ) =_______。
、已知 P( A) 0.7 , P(A B) 0.3 ,则 P(AB) 。
34、已知事件 A 、 B 满足 P( AB) P( AB) ,且 P( A)p,则P( B) =。
5、一批产品,其中 10 件正品, 2 件次品,任意抽取 2 次,每次抽 1 件,抽出后不再放回,则第 2 次抽出的是次品的概率为_____________。
6、设在 4 次独立的试验中,事件 A 每次出现的概率相等,若已知事件 A 至少出现 1 次的概率是65 81,则 A 在 1 次试验中出现的概率为__________。
7、设事件 A,B 的概率分别为P(A) 1 3, P( B) 1 6 ,①若A与B相互独立,则P( A B)_________;②若A与B互不相容,则P( A B)___________。
8、有 10 个球,其中有 3 个红球和 7 个绿球,随机地分给10 个小朋友,每人 1 个,则最后 3 个分到球的小朋友中恰有 1 个得到红球的概率为__________。
9、两射手彼此独立地向同一目标射击,设甲击中的概率为0.8,乙击中的概率为0.7,则目标被击中的概率为___________ 。
三、计算题1、某工厂生产的一批产品共100 个,其中有 5 个次品;从这批产品中任取一半来检查,求取到的次品不多于 1 个的概率。
2、某城市的电话号码为六位数,且第一位为 6 或 8;求(1)随机抽取的一个电话号码由完全不相同的数字组成的概率;(2) 随机抽取的电话号码末位数是8 的概率。
3、已知P( A) P(B)P(C ) 1 4,P(AB)=0, P( AC )P(BC) 1 16 ,求A,B,C至少有一个发生的概率。
4、设 10 件产品中有 4件不合格品,从中任取 2 件,已知所取 2 件中有一件是不合格品,求另外一件也是不合格品的概率。
5、一个工厂有一,二,三 3 个车间生产同一个产品,每个车间的产量占总产量的45% , 35% ,20% ,如果每个车间成品中的次品率分别为5% ,4%,2% ,①从全厂产品中任意抽取 1 个产品,求取出是次品的概率;②从全厂产品如果抽出的 1 个恰好是次品,求这个产品由一车间生产的概率。
6、有两箱同类零件,第一箱装50 只(其中一等品10 只),第二箱装 30 只(其中一等品 18 只);今从两箱中任挑一箱,然后从该箱中依次不放回地取零件两次,每次一只;已知第一次取到的是一等品,求第二次取到的也是一等品的概率。
7、右边是一个串并联电路示意图, A 、 B、C 都B0.70A是电路中的元件,它们下方的数是它们各自独立C0.90正常工作的概率 ( 可靠性 ) ,求电路的可靠性。
0.70四、证明:若 P( B | A)P(B | A) ,则事件A与B相互独立。
第二、三章《随机变量及其分布》练习题一、单项选择题1、设离散型随机变量X 的分布列为X012P0.30.30.4F ( x) 为X的分布函数,则 F (1.5) =()(A)0;(B)0.3;( C)0.6;(D)1。
2. 如下四个函数中,哪一个不能作为随机变量X 的分布函数()0,x0,(A )(C)1/ 3,0x10,x0, F ( x)1/ 2,1x;(B) F ( x)ln(1x) ,x;20 1,x21x0,x0,F ( x)1x2 ,0x 2;(D) F (x)0,x0,;1 e x, x041,x2b3、当常数 b=()时, p kk (k(k 1,2,) 为某一离散型随机变量的概率分布1)(A)2;(B)1;(C)1/2;(D)3。
4、设随机变量X 的分布函数为F X (x),则随机变量的分布函数F Y ( y)是()Y2X1(A )F (y1) ;(B )F (y1) ;(C)2F ( y) 1 ;( D )1F ( y) 1 。
222225、设随机变量X ~ N (a ,a 2 ) ,且 Y aX b ~ N (0,1),则 a , b 应取()( A)a2, b 2 ;( B )a2, b 1 ;( C)a1, b 1 ;( D)a1,b 1 。
6、设某一连续型随机变量X 的概率密度f ( x) 在区间 [a, b]上等于 sin x ,而在此区间外等于0,则区间 [ a, b]为()(A )[0,/2];(B)[0, ];(C)[/ 2,0];( D)[0,3/2]。
7、设随机变量X ~ N (,2) ,则随的增大,则 P{| X|} ()8、设两个随机变量 X 与 Y 相互独立且同分布,P{ X1} P{Y1}1/ 2,P{ X 1} P{Y 1} 1/ 2,则下列式子成立的是()(A ) P{X Y} 1/ 2; (B ) P{ XY} 1;(C ) P{ XY0}1/4;(D ) P{ XY 1} 1/ 4。
9、设随机变量 X 与 Y 相互独立,它们的分布函数分别为 F X ( x), F Y ( y) ,则 Z min( X ,Y ) 的分布函数为()(A ) F Z ( z) F X ( z)( B ) F Z ( z) F Y ( z) ;(C ) F Z (z) min{ F X ( z), F Y (z)} ;( D ) F Z ( z)1 [1 F X ( z)][1 F Y ( z)] 。
二、填空题0, x 1,a, 1 x 1,1、设离散型随机变量 X 的分布函数 F ( x)2 a ,1 x且P{X 2}1/ 2,3 2,a b, x 2,则 a______, b____ _ _,X 的分布列为 __________。
abx 2 , x 1,2、设随机变量 X 的分布函数 F ( x)0, x 1,则 a ______, b ____ _, P{ 1 X2}__ ,X 的概率密度 f (x) =__ ____ 。
3、将一颗均匀骰子重复独立地掷 10 次,设 X 表示 3 点朝上的次数,则 X ~ ____ _ _,X 的概率分布为___________ __。
4、设随机变量 X 的概率密度为f ( x)4 x 3 , 0x 1, 则使 P{Xa} P{ X a} 成立的常0,其它,数 a ______ 。
5、某一时期在纽约股票交易所登记的全部公司股东所持有的股票利润率服从正态分布,期望值为10.2%,且具有 3.2 %的标准差,这些公司股东所持有的股票利润率在 15-17.5%之间的概率为。
6、设 X ~ N ( , 2) ,其概率密度 f ( x)1 exp{ ( x 3)2 } ,则 ___, ___ 。
2 47、 (X, Y) 的分布律为YX12311/61/91/1821/3a b则 X 的分布律为,Y 的分布律为;P{X Y};当 a =_____ ,b =_____ 时,X 与 Y 相互独立。
8、设随机变量X 与 Y 相互独立,且 X、 Y 的分布律分别为X-3- 2-1Y123 P1/41/41/2P2/51/52/5则 X 与 Y 的联合分布律为__________ ;Z=X+Y 的分布律为__________ 。
9、设 D 由 y = 1/x , y = 0, x = 1, x = e 2围成,(X, Y) 在 D 上服从均匀分布,则(X, Y) 的概率密度为 _______________。
10、若 X 与Y独立,而X ~N(1, 12),Y ~ N( 2,22 ),则X+Y~_____。
Y ~ e (1)即f Y( y)e y,y0,11、 X 与 Y 相互独立,且X ~ U (-1, 1),0,y, 0,则 X 与 Y 的联合概率密度 f ( x , y)__ ___ ,1,X Y,Z0,X Y,的分布为 ______ 。
三、计算题1、 3 个不同的球,随机地投入编号为1,2,3, 4 的四个盒子中,X 表示有球盒子的最小号码,求X 的分布律。
2、某产品表面的疵点数服从泊松分布,规定没有疵点为特等品, 1 个为一等品, 2 至 4 个为二等品, 4个以上为废品,经检测特等品的概率为0.4493,则试求产品的废品率。
A1,, x |3、设随机变量X 的概率密度为 f ( x )1x20,其它 .(2)P {X|| 1/2}4、设某人造卫星偏离预定轨道的距离(米)服从0, 4 的正态分布,观测者把偏离值超过10 米时称作“失败” ,使求 5 次独立观测中至少有 2 次“失败”的概率。