电机正反转加时间继电器控制电路原理图解

合集下载

电机正反转控制原理电路图、电路分析及相关资料

电机正反转控制原理电路图、电路分析及相关资料

双重联锁(按钮、接触器)正反转控制电路原理图电机双重联锁正反转控制一、线路的运用场合Array正反转控制运用生产机械要求运动部件能向正反两个方向运动的场合。

如机床工作台电机的前进与后退控制;万能铣床主轴的正反转控制;圈板机的辊子的正反转;电梯、起重机的上升与下降控制等场所。

二、控制原理分析(1)、控制功能分析:怎样才能实现正反转控制?为什么要实现联锁?电机要实现正反转控制:将其电源的相序中任意两相对调即可(简称换相),通常是V相不变,将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。

由于将两相相序对调,故须确保2个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。

为安全起见,常采用按钮联锁(机械)和接触器联锁(电气)的双重联锁正反转控制线路(如原理图所示);使用了(机械)按钮联锁,即使同时按下正反转按钮,调相用的两接触器也不可能同时得电,机械上避免了相间短路。

另外,由于应用的(电气)接触器间的联锁,所以只要其中一个接触器得电,其长闭触点(串接在对方线圈的控制线路中)就不会闭合,这样在机械、电气双重联锁的应用下,电机的供电系统不可能相间短路,有效地保护的电机,同时也避免在调相时相间短路造成事故,烧坏接触器。

(2)、工作原理分析:A、正转控制:按下SB1常闭触头先断开(对KM2实现联锁)SB1常开触头闭合KM1线圈得电KM1电机M启动连续正转工作KM1KM1联锁触头断开(对KM2实现联锁)B、反转控制:M失电,停止正转SB2按下线圈得电SB2KM2电机M启动连续反转工作KM2主触头闭合KM2联锁触头断开(对KM1实现联锁)C、停止控制:按下SB3,整个控制电路失电,接触器各触头复位,电机M失电停转;三、双重联锁正反转控制线路的优点接触器联锁正反转控制线路虽工作安全可靠但操作不方便;而按钮联锁正反转控制线路虽操作方便但容易产生电源两相短路故障。

电机的正反转控制线路图解

电机的正反转控制线路图解

电机的正反转控制线路图解
实现方法:对调沟通电动机的任意两相电源相序。

a接触器互锁正/反转掌握电路
b按钮和接触器双重互锁掌握电路
1、接触器互锁正/反转掌握电路
问题:KMl、KM2同时闭合,造成相间短路。

电气互锁:利用接触器(继电器)的常闭触点串接在对方线圈回路中而形成的相互制约的掌握。

(工作牢靠)
结论:在掌握中,凡具有相反动作的均需电气互锁。

2、按钮和接触器双重互锁掌握电路
工作过程:1)SB1↓—→ KM1+ —→ 正转
2)SB2↓—→KM1— KM2+ —→ 反转
3)SB1↓—→KM2— KM1+ —→ 正转
4)SB3↓—→ 停
机械互锁:利用复合按钮的常闭触点串接在对方线圈回路中而形成的相互制约的掌握。

(操作便利)
3、仅有按钮互锁掌握电路
存在问题:若消失熔焊或衔铁卡在吸合状态的故障时,虽然线圈已失电但是其主触点无法断开。

此时另一接触器一旦得电动作,主电路就会发生短路。

解决:为保证工作的牢靠和操作的便利可采纳按钮和接触器双重互锁。

此时若消失上述故障现象,则接触器的互锁常闭触点必定将另一接触器的掌握电路切断,避开另一接触器线圈得电。

结论:复合按钮不能代替联锁触点的作用。

4、主令掌握器掌握的正反转掌握线路。

电动机正反转接线图及原理

电动机正反转接线图及原理

电动机正反转接线图及原理
电机的正反转原理图分为主回路跟控制回路,其根本远离是改变电源的两个相序实现电动机的正反转,控制回路主要是控制两个接触器的通断,实现两个接触器的主触点完成电动机的正转和反转,主要接线图如下:
主回路是使用工业380伏电压,用熔断器FU进行线路的保护,用热继电器进行过载保护,通过KM1和KM2两个接触器的主触点来改变电源的相序,实现电动机M的正反转,具体如图所示,当按下SB2,KM1线圈得电,KM1常开点闭合,KM1常开主触点闭合,电机正转,而右侧KM1的常闭触电断开,此时的KM2线圈是不得电的,KM2不能吸合,此时KM1和Km2是互锁,防止在KM1动作时候KM2动作造成相间短路。

同理当按下SB3时候,KM2线圈得电,KM2的常开触点闭合,KM2的常闭触点断开,KM2的常开主触点接通,KM1的常开主触点回复,电机实现反转!这是最基础的电机正反转线路,希望大家能会!。

电机正反转控制电路及实际接线图

电机正反转控制电路及实际接线图

三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。

按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。

使KM1的线圈通电,电机开始正转运行。

按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。

除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。

设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。

在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。

由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。

可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。

如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。

为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。

电工知识:时间继电器控制电机正反转,循环运行

电工知识:时间继电器控制电机正反转,循环运行

电工知识:时间继电器控制电机正反转,循环运行
大家好我是小豆,时间继电器控制电机正反转电路,一个时间能实现吗?既然是正反转就要互锁,,下面我们来接线演示。

大家看时间继电器,2--7是电源,5--8常闭,5控制接触器正转,端子5出来进反转的常闭,出来之后进正转的A2.零线直接进接触器A1。

反转,时间继电器端子6,进正转接触器常闭,出来进反转接触器线圈的A2,零线直接进A1。

大家看这是完整电路,只需一个时间继电器就可以控制电机正反转,实际运用当中应该有时间间隔,谢谢阅读,关于电工知识问题,欢迎大家随时召唤小豆,感谢平台让我们更好的交流学习。

继电器
电机。

电机正反转控制电路及实际接线图

电机正反转控制电路及实际接线图

电机正反转控制电路及实际接线图Last updated on the afternoon of January 3, 2021三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步正反转控制的电路和控制,图2与3是功能与它相同的控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。

按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。

使KM1的线圈通电,开始正转运行。

按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。

除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。

设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。

在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。

由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。

可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的短路事故。

如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相短路事故。

电机正反转控制电路及实际接线图

电机正反转控制电路及实际接线图

在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。

按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。

使KM1的线圈通电,电机开始正转运行。

按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。

除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。

设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。

在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。

由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。

可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。

如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。

为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。

电机正反转控制电路图

电机正反转控制电路图

CREATE TOGETHER
DOCS
谢谢观看
THANK YOU FOR WATCHING
• 原理:通过接触器的吸合与断开来改变电机的电源极性 • 优点:电路简单,成本低,适用于大功率电机 • 缺点:控制方式较为简单,无法实现复杂的控制功能
案例二:微型计算机控制的电机正反转电路
• 原理:通过微型计算机发出的控制信号来改变电机的电源极性 • 优点:控制功能强大,可以实现复杂的控制算法,适用于高精度、高 速度的控制系统 • 缺点:成本较高,对计算机性能有一定要求
• 元器件选型:选择正品元器件,保证 电路的性能和可靠性 • 电路设计:电路结构简洁明了,易于 调试和维护 • 安全防护:采取适当的安全保护措施, 防止电气事故的发生
04
电机正反转控制电路图的仿真与调试
电机正反转控制电路 图的仿真软件选择与 设置
• 仿真软件选择:常用的电机正反转控制电路仿真软件有 MATL AB/Simulink、LabVIEW等
电机正反转控制电路图中的元器件选择与参数计算
元器件选择:
• 电源电路:选择合适的电源变压器、整流器等元件 • 控制电路:选择合适的继电器、接触器、微控制器等元件 • 电机电路:选择合适的电机、电刷、换向器等元件
参数计算:
• 电源电路:根据电路结构和元器件参数计算电源电压和电流 • 控制电路:根据控制方式和元器件参数计算控制信号的电压和频率 • 电机电路:根据电机类型和性能要求计算电机的电压、电流、转速等参数
电机正反转控制电路图的拓展功能与技术创新
拓展功能:
• 多电机控制:实现多个电机的正反转控制,提高系统的复杂度和性能 • 遥控控制:通过无线遥控实现电机的正反转控制,提高操作便利性 • 传感器融合:结合传感器技术实现电机的自适应控制和智能控制

电机正反转控制原理电路图、电路分析演示幻灯片

电机正反转控制原理电路图、电路分析演示幻灯片
制电路为了使电动 机能够正转和反转,可采用两只接触 器KM1、KM2换接电动机三相电源的相 序,但两个接触器不能同时吸合,如 果同时吸合将造成电源的短路事故, 为了防止这种事故,在电路中应采取 可靠的互锁,上图为采用按钮和接触 器双重互锁的电动机正、反两方向运 行的控制电路。
原理分析: 1、当按下SB1时,V相经由SB2的常闭触点、KM2的常闭触点后, 接到了KM1线圈A2,些时KM1线圈得电(串接于对方线圈控制回路 中的KM1常闭触点断开,电气上保证避免相间短路),KM1接触器吸 合,电动机电源接通,电机正转;
15
2、当按下SB2时,V相经由SB1的常闭触点、KM1的常闭触点后,接到了 KM2线圈A2,些时KM2线圈得电(串接于对方线圈控制回路中的KM2常 闭触点断开,电气上保证避免相间短路),KM2接触器吸合,电动机电源 (此时已调相)接通,电机反转; 3、若同时按下SB1、SB2,由于它们的常闭触点都串接在对方的控制回路 中,所以KM1、KM2的控制回路都断路,这样就保证了,KM1和KM2不可 能同时得电,同时吸合,造成相间短路;也就是说,当SB1和SB2同时按 下时,引入V相的回路断路,这样KM1和KM2的线圈当然不可能同时得电, 也就不可能在接触器的出线端造成相间短路。即,当其中一个开关按下时, 由于此开关的常闭触点串接在对方线圈控制回路中,造成其断路,从而保 证在其线圈得电的同时,对方线圈永远不可能得电,这也就避免了相间短 路。
4
()2)、工作原理分析:
A、正转控制:
按下SB1
常闭触头先断开(对KM2实现联锁)
S B1常开触头闭合
KM1线圈得电
KKM1自锁触头闭合(实现自锁)
电机M启动连续正转工作
K M1主触头闭合
KM1联锁触头断开(对KM2实现联锁)作

5张电路图教你控制电机正反转怎么接线

5张电路图教你控制电机正反转怎么接线

有很多初学机修的电工朋友,不知道该从哪些地方入手,今天我就列举一个应用最广的电路:控制电机正反转的接线,由浅入深,让你一步步脱离新手。

点动
KM接触器的线圈A1和A2分别连一条火线,SB启动按钮串到任意一条火线都可以实现点动效果,启动按钮都是接的按钮开关的NO常开点。

接触器自锁
比点动多了一条自锁线,SB2是停止按钮,停止按钮都是接的按钮开关的NC常闭一端。

自锁是通过自身的常开点在线圈通电吸合的状态下持续供电的一种接法。

这是个互锁的点动效果,两个接触器线圈A1的位置连一起接的零线,然后A2和另一个接触器的NC常闭点交叉连接。

辅助NC常闭点的出线接启动按钮,这时候同时按下2个启动按钮只能有一个吸合。

接触器互锁
这个图其实就是接触器互锁加上接触器的自锁,KM1和KM2互锁,每个接触器都可以自锁。

这个也是控制电机正反转的电路图。

如果可以的话,SB1和SB2还可以机械互锁。

控制电机正反转的完整电路
这个图比上一个图又多了一个机械互锁,SB2和SB3分别串了彼此的
常闭点,这样就实现了双重互锁。

这个也是控制电机正反转接线的完整电路图。

电动机正反转电路图(动画自动演示)工作原理

电动机正反转电路图(动画自动演示)工作原理

电动机正反转电路图(动画自动演示)工作原理如下图所示,蓝色表示A相,绿色表示B相,红色表示C相,黑色表示合成磁场,横坐标可以表示在空间上的分布,纵坐标可以表示在磁场强度上的大小。

当通入缺相交流电时当通入单相交流电时船乌海底铺设电缆演示图;电动机正反转电路图(动画一)ZNB-S电动机正反转电路如图为ZNB-S电动机正反转电路图。

该电路中,SBF为正转启动按钮,SBR为反转启动按钮,SBP为停止按钮。

为了停止误操作,在正转接触器KM1线圈中串入反转接触器KM2辅助点;同理KM2线圈电路中串入KM1辅助触点。

当按下正转启动按钮SBF时,KM1吸合,电动机正转。

其两对辅助触点。

一对实现自保,即SBF松开后,KM1所能维持吸合状态;另一对常闭触点KM1此时跳开,切断了反转接触器KM2线圈电路,因而即使有人这时按下反转启动按钮SBR也是徒劳的。

三相异步电动机定子回路串联电阻启动控制电路及其Flash模拟演示三相异步电动机正-反转启/停控制电路的Flash模拟演示一、一组gif动画以下是《三相异步电动机正-反转启停控制电路模拟演示》(以下简称:模拟电路) 的时间轴和模拟电路合成的gif动画,时间轴和电路的变换是同步的。

本来启动或停止过程都是很快的,为了阅读的方便,时间轴每隔3秒走一步。

同时动作的电器元件和同一个电器元件的触点则以方便叙述来安排其接通的先后顺序。

因为gif动画是逐帧动画,不理会按钮和AS代码脚本而将其取消了,在FLASH模拟演示的SWF文件中能看见全貌。

二、模拟电路的制作情况正向、反向启动到稳定运行及其总停,不可能安排顺序进行到底,需要在按钮上或在帧上写入转移的AS-好象又叫脚本代码,本Flash动画模拟演示共用40帧,各帧的内容安排如下:1~4帧电路准备就绪(在第4帧写入AS-stop();,),允许正向(在第4帧的正向启动按钮上写入AS-gotoAndPlay(5);)或反向(在第4帧的反向启动按钮上写入AS-gotoAndPlay(12);)启动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电机正反转加时间继电器控制电路原理图解
如下图所示是一种由一台电动机在规定时间范围内作连续可逆的正反方向运转的自动控制电路。

图中用时间继电器KT1、KT2作时间控制元件,中间继电器KA1、KA2起中间控制作用。

合上电源开关Q和旋转开关S,这时时间继电器KT1得电,中间继电器KA1得电吸合。

接触器KM1得电并吸合,电动机作正向限时运转。

待延时时间到,时间继电器KT1常闭延时断开触点断开,使中间继电器KA1断电,其触点KA1断开,接触器KM1线圈断电,主触点KM1断开,电动机瞬时停止正转。

电动机正反转,限时自动往返(时间继电器)控制电路接线图
在时间继电器KT1常闭延时断开触点断开的同时,其常开延时闭合触点KT1闭合,反转中间继电器KA2暂时得电吸合,其常开触点闭合自锁,并使时间继电器KT2得电,反转接触器KM2得电并吸合,电动机作反向限时运转。

待延时时间到,时间继电器KT2的常闭延时断开触点断开,使中间继电器KA2断电,接触器KM2断电,电动机瞬时停止反转。

由于中间继电器KA2的断电,其常闭触点复位,时间继电器KT1得电,中间继电器KA1吸合,KM1得电吸合,电动机又处于正向限时运转状态。

这样周而复始重复前面工作过程,使电动机在规定时间内作连续可逆运转。

若需使电动机停止,可扳开旋转开关S,待KT2延时时间到,电动机停转。

本电路适用于在规定时间内作连续可逆运转的生产机械。

相关文档
最新文档