圆锥曲线知识简介
高考数学中的圆锥曲线知识
高考数学中的圆锥曲线知识高考数学中的圆锥曲线是一道重要的考题,也是很多学生容易失分的一道难题。
圆锥曲线是指平面上坐标系中的一种特殊的曲线,也是数学的重要分支之一。
本文将介绍圆锥曲线的基本概念,分类和应用,希望能对广大考生有所帮助。
一、圆锥曲线的基本概念1.圆锥圆锥是一个由一个圆绕着它的直径周而复始地旋转而成的立体物体,其中:该直径是铅锤线,圆锥的底面是这个圆,圆锥的顶点是铅锤线的另一端。
2.圆锥曲线的概念在平面直角坐标系中,将一个固定的点F(称为焦点)与一个固定的直线L(称为直角准线)连接。
在平面上,连结点P到直线L的距离为PF和P到点F的距离的比等于定值e(e>0)。
这样得到的曲线称为圆锥曲线。
圆锥曲线分为三种情况:椭圆、双曲线和抛物线。
二、圆锥曲线的分类1.椭圆椭圆是平面上与两个焦点F1,F2的距离之和等于定值2a(a>0)的点P的轨迹。
椭圆是圆锥曲线中最简单的一种形式。
椭圆可以通过平移、伸缩、旋转对平面上的圆形进行简单的变换。
2. 双曲线双曲线是平面上与两个焦点F1,F2的距离之差等于定值2a (a>0)的点P的轨迹。
双曲线有两条渐进线,即切射线和渐进线。
3. 抛物线抛物线是平面上焦点F到直线L的距离等于点P到焦点F的距离的平方与定值a(a>0)成正比例的点P的轨迹。
抛物线的形状像一个平翻的碗,有上凸抛物和下凸抛物两种。
三、圆锥曲线的应用1. 物理学圆锥曲线在物理学中得到广泛的应用。
例如,在宇宙空间中,行星的轨迹可以用椭圆来描述。
在天体力学中,利用双曲线描绘有关天体的相对运动情况。
抛物线则可用于描述抛体的轨迹。
2. 工程学圆锥曲线在工程学中也有重要的应用,特别是在光学的设计中。
例如,望远镜的光学系统用到的镜面都是椭圆形的;飞机的机翼、车轮和机器的轮子都是利用圆锥的形状进行设计的。
3. 数学研究圆锥曲线在数学研究中的应用也是相当广泛的,例如,利用双曲线求解微积分中的积分问题;还可以用抛物线中的特殊几何性质证明三次方程有一个实根。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线,是由平面上一个动点到两个定点的距离之比为定值的点的轨迹。
圆锥曲线是解析几何的重要内容,广泛应用于数学、物理、工程等领域。
本文将对圆锥曲线的相关知识进行总结,帮助读者更好地理解和掌握这一概念。
一、基本概念1. 定义:圆锥曲线是平面上一个动点到两个定点的距离之比为定值的点的轨迹。
2. 定点:圆锥曲线的两个定点分别称为焦点。
3. 对称轴:通过两个焦点并垂直于准线的直线称为对称轴。
4. 准线:通过两个焦点的直线段称为准线。
二、椭圆1. 定义:椭圆是圆锥曲线的一种,其离心率小于1,且焦点不重合的曲线。
2. 方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。
3. 性质:椭圆具有对称性、渐近线和切线性质等。
4. 应用:椭圆在天文学、建筑学和电子等领域应用广泛。
三、双曲线1. 定义:双曲线是圆锥曲线的一种,其离心率大于1的曲线。
2. 方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1,其中a和b分别是双曲线的半长轴和半短轴。
3. 性质:双曲线具有渐近线和切线性质,且有两个分支。
4. 应用:双曲线在物理学、天文学和通信等领域有重要应用。
四、抛物线1. 定义:抛物线是圆锥曲线的一种,其离心率等于1的曲线。
2. 方程:抛物线的标准方程为y^2 = 4ax,其中a是抛物线的焦点到准线的距离。
3. 性质:抛物线具有对称性、渐近线和切线性质等。
4. 应用:抛物线在物理学、工程学和天文学等领域有广泛应用。
五、圆1. 定义:圆是圆锥曲线的一种,其离心率等于0的曲线。
2. 方程:圆的标准方程为(x-h)^2 + (y-k)^2 = r^2,其中(h, k)是圆心的坐标,r是半径长度。
3. 性质:圆具有对称性、切线性质和切圆定理等。
4. 应用:圆在几何学、物理学和工程学等领域有广泛应用。
总结:圆锥曲线是解析几何的重要内容,包括椭圆、双曲线、抛物线和圆。
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
一、圆锥曲线的基本概念
1、圆锥曲线:平面内以圆为母线的曲线,又称为圆锥线,是数学上的一类曲线。
2、离心率:圆锥曲线的离心率是有两个参数确定的:它们是焦距a和准线焦距c。
3、双曲线:双曲线是一类特殊的圆锥曲线,a>0, c>0时,它概括了圆锥曲线的一般情况,称为双曲线。
二、圆锥曲线的性质
1、改变离心率可以改变圆锥曲线的形状,当离心率大于1时,曲线呈双曲线,当离心率小于1时,曲线呈凹凸线;
2、圆锥曲线的焦点与顶点之间的距离是两个焦距的和,a+c;
3、圆锥曲线的切线方程的斜率是1/(a+c);
4、圆锥曲线的半矢量的方向是以焦点为圆心,从焦距a出发的方向;
5、圆锥曲线的曲率半径是2a+c;
6、圆锥曲线的弧长是一定积分的表达式,是确定的;
7、圆锥曲线的曲线方程是确定的,但极坐标表示法有两种形式,要根据离心率来确定;
三、圆锥曲线的应用
1、圆锥曲线的应用着重于机械设计领域,如齿轮的设计和制造;
2、圆锥曲线的半径可以用于圆弧的求解和曲线的精度检验;
3、圆锥曲线的弧长可以用于求解同轴运动的轮毂的周长;
4、圆锥曲线的曲线方程可以用于二维图形的绘制;
5、圆锥曲线的曲线方程可以用于求解曲面曲线的面积和表面积;
6、圆锥曲线的曲线方程可以用于求解椭圆锥曲线的主曲线参数,以求解椭球面的曲线参数;
7、圆锥曲线的曲率半径可以用于求解圆的曲率半径参数;
8、圆锥曲线的切线可以用于求解圆弧的切线参数;
9、圆锥曲线的球面可以用于求解曲面的曲率方向;
10、圆锥曲线的曲线可以用于运动学分析和机器学习算法中的运动路径规划。
完美版圆锥曲线知识点总结
完美版圆锥曲线知识点总结圆锥曲线是数学中的一类重要曲线,广泛应用于几何、物理、工程等领域。
由于其独特的性质和广泛的应用,掌握圆锥曲线的知识对于提高数学水平和解决实际问题具有重要意义。
本文将对圆锥曲线的基本概念、性质和常见类型进行总结和归纳。
一、圆锥曲线的基本概念圆锥曲线是由平面和一个固定点(焦点F)以及一个固定直线(准线L)共同确定的曲线。
根据焦点和准线的位置关系,圆锥曲线分为椭圆、抛物线和双曲线三类。
1. 椭圆:椭圆是焦点到准线的距离之和恒定于两倍焦半径的轨迹。
椭圆具有对称性,焦点位于椭圆的两个焦点之间。
2. 抛物线:抛物线是焦点到准线的距离等于焦半径的轨迹。
抛物线具有对称轴,焦点位于抛物线的焦点上方或下方。
3. 双曲线:双曲线是焦点到准线的距离之差恒定于两倍焦半径的轨迹。
双曲线也具有对称性,焦点位于双曲线的两个焦点之间。
二、圆锥曲线的性质圆锥曲线具有一系列重要的性质,为研究和应用圆锥曲线提供了基础。
1. 对称性:椭圆和双曲线具有两个关于准线和两个焦点的对称轴,抛物线具有一个关于准线的对称轴。
2. 焦距和半焦距:焦距是焦点到对称轴的距离,半焦距是焦距的一半。
焦距对于不同类型的圆锥曲线有不同的计算方法,但都是相对于准线和对称轴计算的。
3. 焦半径:焦半径是焦点到曲线上点的距离,焦半径对于同一曲线上不同点的值是相等的。
4. 离心率:离心率是焦半径与半焦距的比值,用e表示。
对于椭圆,离心率范围在0和1之间;对于抛物线,离心率等于1;对于双曲线,离心率大于1。
5. 焦点和准线的关系:焦点和准线的位置关系决定了曲线的类型。
当焦点在准线上时,曲线是抛物线;当焦点在准线之上时,曲线是椭圆;当焦点在准线之下时,曲线是双曲线。
三、常见类型的圆锥曲线。
圆锥曲线知识点整理
圆锥曲线知识点整理圆锥曲线是数学中的重要概念,它包括椭圆、双曲线和抛物线三种形式。
本文将整理圆锥曲线的基本定义、性质和应用。
1. 圆锥曲线的定义圆锥曲线是由平面与一个圆锥相交而产生的曲线。
根据与圆锥相交的方式不同,可以分为三种类型:椭圆、双曲线和抛物线。
2. 椭圆的性质椭圆是圆锥曲线中最简单的一种形式。
它具有以下性质:- 椭圆是一个闭合曲线,其形状类似于拉伸的圆。
- 椭圆有两个焦点,对称轴为椭圆的长轴。
- 椭圆的离心率是一个小于1的正实数。
- 椭圆的周长和面积可以通过一系列公式计算得出。
3. 双曲线的性质双曲线与椭圆相似,但具有一些不同的性质:- 双曲线是一个非闭合曲线,其形状类似于拉伸的超越函数。
- 双曲线有两个焦点,对称轴为双曲线的长轴。
- 双曲线的离心率是一个大于1的正实数。
- 双曲线的性质使得它在几何光学和天体力学等领域中有广泛应用。
4. 抛物线的性质抛物线是另一种常见的圆锥曲线形式,具有以下性质:- 抛物线是一个非闭合曲线,其形状类似于开口向上或向下的碗。
- 抛物线只有一个焦点和一条对称轴。
- 抛物线的离心率为1。
- 抛物线的性质使得它在物理学和工程学等领域中有广泛应用,如抛物线天线和抛物线反射面。
5. 圆锥曲线的应用圆锥曲线在数学和实际应用中有广泛的应用,包括:- 电磁学中的电磁波传播和天线设计。
- 物理学中的天体力学和轨道计算。
- 工程学中的光学设计和结构建模。
总结:圆锥曲线是由平面与一个圆锥相交而产生的曲线,包括椭圆、双曲线和抛物线三种形式。
每种曲线都有其独特的性质和应用。
理解和掌握圆锥曲线的知识对于数学学习和实际应用都具有重要意义。
通过本文的整理,希望读者能够对圆锥曲线有更深入的了解,并能应用于相关领域的问题解决中。
(完整版)圆锥曲线知识点归纳总结
完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。
三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。
构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。
2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。
椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。
椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。
重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。
抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。
重要公式:抛物线的标准方程为(x^2/4a) = y。
4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。
双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。
双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。
椭圆的应用包括轨道运动、天体力学以及密码学等领域。
抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。
双曲线的应用包括电磁波的传播、双曲线钟的标定等。
6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。
对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。
切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。
焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。
此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。
熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。
圆锥曲线知识点
圆锥曲线知识点圆锥曲线是数学中一个重要的概念,它指的是平面上由一个动点P 与一个定点F和一条定直线L确定的一类曲线。
圆、椭圆、抛物线和双曲线都是圆锥曲线的具体例子。
本文将介绍圆锥曲线的定义、特征以及它们在现实生活中的应用。
一、圆锥曲线的定义圆锥曲线是平面几何中的重要概念,它由一个定直线L和一个定点F以及平面上P点的轨迹组成。
其中,定直线L称为准线,定点F称为焦点,而曲线上的点P为动点。
根据焦点与准线之间的距离关系,圆锥曲线可以分为四种类型。
1. 圆:当焦点F与准线L上的点重合时,即F为L的中点时,形成的曲线为圆。
圆锥曲线上的所有点到焦点F的距离都相等,这是圆的特征。
2. 椭圆:当焦点F到准线L的距离小于曲线上点P到焦点F的距离之和时,形成的曲线为椭圆。
椭圆是我们生活中常见到的圆形,特点是离焦点F 越远的点到焦点F的距离与到准线L的距离之和越大。
3. 抛物线:当焦点F到准线L的距离等于曲线上点P到焦点F的距离时,形成的曲线为抛物线。
抛物线可以看作是圆锥曲线的一种极端情况,具有开口向上或向下的特点。
4. 双曲线:当焦点F到准线L的距离大于曲线上点P到焦点F的距离之和时,形成的曲线为双曲线。
双曲线的特点是离焦点F越远的点到焦点F的距离与到准线L的距离之和越大。
二、圆锥曲线的性质圆锥曲线具有许多重要的性质,其中一些性质如下:1. 焦点与准线之间的距离关系:对于椭圆和双曲线而言,焦点F到准线L的距离是一个恒定值。
而对于抛物线而言,焦点F到准线L的距离等于焦距的两倍。
2. 离心率:离心率是一个衡量圆锥曲线形状的重要参数。
对于椭圆而言,离心率介于0和1之间;对于双曲线而言,离心率大于1;而对于抛物线而言,离心率等于1。
3. 对称性:圆锥曲线具有一定的对称性。
例如,椭圆具有关于两个对称轴的对称性,而抛物线具有关于焦点和准线的对称性。
4. 焦点与直线之间的关系:对于给定的圆锥曲线上的一点P,焦点F到点P的连线与准线L之间的夹角相等。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是代数几何中重要的一部分,它由平面和一个定点的两条曲线组成。
在数学的发展历史中,圆锥曲线的研究经历了漫长的时期,涉及到众多的数学家和学者的努力。
本文将对圆锥曲线的基本概念、性质、分类以及应用等知识点进行总结。
一、圆锥曲线的基本概念1. 圆锥曲线的定义圆锥曲线是由平面与一个定点和这个定点到平面上任意一点的连线组成的图形。
2. 圆锥曲线的基本元素圆锥曲线由定点称为焦点和一条固定的直线称为准线组成。
3. 圆锥曲线的标准方程圆锥曲线可以用一般的二次方程表示,即 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。
4. 圆锥曲线的焦点和准线焦点是定点到平面上各点的距离与准线到这些点距离之比的极限值。
准线是过焦点且垂直于对称轴的直线。
二、圆锥曲线的性质1. 直线和圆的特例直线是当离心率为1的圆锥曲线,圆是离心率为0的圆锥曲线。
2. 焦准属性圆锥曲线上的任意一点到焦点的距离与到准线的距离之比始终为常数,这就是焦准属性。
3. 长轴和短轴圆锥曲线的焦点和准线确定了两条互相垂直的轴线,这两条轴线分别称为长轴和短轴。
4. 离心率圆锥曲线的离心率是一个反映离心程度的量,离心率为0时曲线为圆,离心率为1时曲线为直线。
5. 对称性圆锥曲线具有平移和对称性,即曲线在对称轴两侧具有相同的形状。
三、圆锥曲线的分类1. 椭圆圆锥曲线的离心率小于1,且大于0,形状近似于椭圆的曲线称为椭圆。
2. 抛物线圆锥曲线的离心率等于1,形状类似于抛物线的曲线称为抛物线。
3. 双曲线圆锥曲线的离心率大于1,形状类似于双曲线的曲线称为双曲线。
四、圆锥曲线的应用1. 天文学圆锥曲线在天文学中有广泛的应用,例如行星和彗星的轨道可以用圆锥曲线描述。
2. 工程学在工程学中,圆锥曲线被用于设计天桥、隧道、公路弯道等工程项目。
3. 经济学圆锥曲线在经济学中有重要的应用,例如需求曲线和供给曲线可以用圆锥曲线表示。
高三关于圆锥曲线的知识点
高三关于圆锥曲线的知识点圆锥曲线是高中数学学科中一个重要的知识点,它涉及了从代数、几何以及计算器操作等多个方面。
下面就让我们来系统性地了解和掌握圆锥曲线的相关知识。
一、圆锥曲线的定义和分类圆锥曲线是由一个固定点(称为焦点)和到这个点的距离与到一条直线(称为准线)的距离之比等于一个常数(称为离心率)的点构成的集合。
根据离心率的不同,圆锥曲线分为三类:当离心率为0时,是椭圆;当离心率为1时,是抛物线;当离心率大于1时,是双曲线。
二、椭圆的性质和方程椭圆是圆锥曲线中最简单的一类曲线。
它具有很多有趣的性质。
例如,椭圆的对称轴是准线上的线段,焦点在对称轴上,并且椭圆上的任意一点到焦点的距离和到准线的距离之和是一个常数。
椭圆的方程一般为x²/a²+y²/b²=1,其中a和b分别是椭圆的长半轴和短半轴。
三、抛物线的性质和方程抛物线与椭圆相比,更加特殊一些。
它的准线是水平的直线,焦点在准线之上。
抛物线有一个很重要的性质,就是焦点到准线的距离等于焦点到抛物线上任意一点的距离。
抛物线的方程可以有多种形式,例如:y²=4ax和x²=4ay。
其中,焦点在原点,准线与x轴平行,a是一个常数。
四、双曲线的性质和方程双曲线是圆锥曲线中最复杂的一类曲线。
它的准线有两条,且并不平行。
双曲线有两个焦点和两个顶点,同时还有两条渐近线。
它具有很多有趣的性质,例如,双曲线的各个点到焦点的距离差的绝对值等于到准线的距离差的绝对值之比等于一个常数。
双曲线的方程一般有两种形式:x²/a²-y²/b²=1和y²/b²-x²/a²=1,其中a和b分别是双曲线的半轴。
五、圆锥曲线的应用除了了解圆锥曲线的性质和方程,我们还可以通过几何和代数的方法来解决实际问题。
例如,我们可以利用椭圆的性质来解决地球上船只航行问题;我们可以利用抛物线的性质来解决物体抛射问题;我们可以利用双曲线的性质来解决电磁波传播问题等等。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是平面上的一类重要的几何曲线,由易知,它们具有各种各样的性质和特点,广泛应用于数学、物理、工程等领域。
下面将对圆锥曲线的基本概念、方程及其性质进行简要总结。
一、圆锥曲线的基本概念圆锥曲线是由平面和圆锥交于一条封闭曲线形成的曲线。
根据圆锥和平面的位置关系,可以分为椭圆、抛物线和双曲线三类。
(一)椭圆当切割平面与圆锥的两部分相交时,形成椭圆。
椭圆有两个焦点,与这两个焦点的距离之和是常数。
椭圆的方程常用标准方程表示为:(x/a)² + (y/b)² = 1,其中a和b分别表示椭圆的长轴和短轴长度。
(二)抛物线当切割平面与圆锥的一部分相交时,形成抛物线。
抛物线是一条对称曲线,其开口方向由切割平面的位置决定。
抛物线的方程常用标准方程表示为:y = ax²,其中a为常数。
(三)双曲线当切割平面与圆锥的两部分不相交时,形成双曲线。
双曲线有两个焦点,与这两个焦点的距离之差是常数。
双曲线的方程常用标准方程表示为:(x/a)² - (y/b)² = 1,其中a和b分别表示双曲线的长轴和短轴长度。
二、圆锥曲线的方程(一)椭圆的一般方程椭圆的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。
(二)抛物线的一般方程抛物线的一般方程为:Ay² + Bx + C = 0,其中A、B和C为常数。
(三)双曲线的一般方程双曲线的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数,且B² - 4AC > 0。
三、圆锥曲线的性质(一)椭圆的性质1. 椭圆是一个闭合曲线,对称于x轴和y轴。
2. 椭圆的长轴和短轴分别与x轴和y轴平行。
3. 椭圆有两个焦点,对称于椭圆的长轴上。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是二维平面上的几何图形,由直角圆锥与一个平面相交而产生。
它在数学、物理、工程和计算机图形等领域具有广泛的应用。
本文将对圆锥曲线的基本概念、方程、性质和应用进行总结。
一、基本概念1. 定义:圆锥曲线可以分为三种类型,即椭圆、抛物线和双曲线。
它们的定义分别是:- 椭圆:平面上到两个定点的距离之和等于常数的点的集合。
- 抛物线:平面上到一个定点的距离等于定直线的距离的点的集合。
- 双曲线:平面上到两个定点的距离之差等于常数的点的集合。
2. 方程形式:圆锥曲线可以以各种形式的方程表示。
常见的方程形式包括标准方程、参数方程和极坐标方程。
二、椭圆1. 基本性质:椭圆是一个闭合的曲线,两个焦点之间的距离是常数,而离心率小于1。
椭圆对称于两个坐标轴,并且具有两个主轴和两个焦点。
2. 椭圆的方程:椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a和b分别是两个半轴的长度。
3. 参数方程:椭圆的参数方程是x = h + a*cos(t),y = k + b*sin(t),其中t是参数的角度。
4. 极坐标方程:椭圆的极坐标方程是r = (a*b) / sqrt((b*cos(t))² + (a*sin(t))²),其中r是极径,t是极角。
5. 应用:椭圆在日常生活中有多种应用,例如天体运动的轨道、水平仪和椭圆形浴缸等。
三、抛物线1. 基本性质:抛物线是一个开放的曲线,焦点和直线称为准线。
抛物线对称于准线,并且具有一个顶点。
2. 抛物线的方程:抛物线的标准方程是y = a*x² + b*x + c,其中a、b和c是常数。
3. 参数方程:抛物线的参数方程是x = t,y = a*t² + b*t + c,其中t是参数。
4. 极坐标方程:抛物线没有显式的极坐标方程。
5. 应用:抛物线在物理学、工程学和天文学中有多种应用,例如抛物线反射器、天体运动的近似模型和喷泉水流的轨迹等。
圆锥曲线知识要点及重要结论
圆锥曲线知识要点及重要结论圆锥曲线是数学中的一个重要概念,它包括椭圆、双曲线和抛物线三种特殊的曲线形状。
本文将介绍圆锥曲线的基本定义、性质和重要结论,以帮助读者更好地理解和应用这一概念。
1. 圆锥曲线的定义圆锥曲线是由一个可移动的点P和两个固定点F1、F2组成的。
对于椭圆和双曲线而言,这两个固定点称为焦点,而抛物线只有一个焦点。
圆锥线还有一个固定的直线L,称为准线,通过焦点F1、F2的垂线交于准线上的点称为顶点。
圆锥曲线的定义可以用以下公式表示:椭圆:PF1 + PF2 = 2a,其中a为椭圆的大半轴长度;双曲线:|PF1 - PF2| = 2a,其中a为双曲线的距离焦点到准线的距离;抛物线:PF = PL,其中P为抛物线上任意一点,F为焦点,L为准线。
2. 圆锥曲线的性质2.1 椭圆椭圆是圆锥曲线中的一种,它的性质如下:- 所有椭圆上的点到焦点的距离之和等于常数2a,其中a为椭圆的大半轴长度;- 椭圆的长轴是焦点的连线,短轴是准线的连线;- 椭圆是一个封闭曲线,对称于长轴和短轴。
2.2 双曲线双曲线是圆锥曲线中的一种,它的性质如下:- 所有双曲线上的点到焦点的距离之差的绝对值等于常数2a,其中a为焦点到准线距离的一半;- 双曲线的两支分别相交于点F1、F2,这两个点称为焦点;- 双曲线是一个非封闭曲线,它与准线之间没有交点。
2.3 抛物线抛物线是圆锥曲线中的一种,它的性质如下:- 抛物线上的点到焦点的距离等于该点到准线的垂直距离;- 抛物线是一个非封闭曲线,它与准线相切于顶点。
3. 圆锥曲线的重要结论3.1 椭圆的离心率椭圆的离心率是用来衡量椭圆形状扁度的指标,其定义为离心距与长轴长度的比值。
离心率的取值范围为0到1,当离心率为0时,椭圆变成了一个圆,而当离心率为1时,椭圆变成了一个线段。
3.2 双曲线的离心率双曲线的离心率也是衡量其形状的指标,其定义为离心距与焦点距离之差的比值。
离心率的取值范围大于1,当离心率趋近于无穷大时,双曲线的形状趋近于两个平行线。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是解析几何中的重要内容,由平面与一个双曲面、椭圆面或者抛物线面相交而得到。
在高中数学课程中,学习圆锥曲线是必不可少的。
本文将对圆锥曲线的定义、基本方程、性质和应用进行总结。
一、圆锥曲线的定义圆锥曲线就是平面与一个双曲面、椭圆面或者抛物线面相交而得到的曲线,在平面上的图像可以呈现出不同的形状。
二、圆锥曲线的基本方程1. 双曲线:双曲线的基本方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
2. 椭圆:椭圆的基本方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
3. 抛物线:抛物线的基本方程为:$y^2=2px$。
其中,p为抛物线的焦距。
三、圆锥曲线的性质1. 双曲线的性质:双曲线的两个分支镜像对称于原点,焦点到曲线的距离之差为常数。
双曲线还具有渐近线,即曲线趋近于两根直线。
2. 椭圆的性质:椭圆的两个焦点在椭圆的长轴上,且焦点到任意点的距离之和为常数。
此外,椭圆也具有主轴、短轴和焦距等重要概念。
3. 抛物线的性质:抛物线的焦点位于抛物线的顶点上,且焦点到抛物线上任意点的距离等于焦点到该点的法线距离。
四、圆锥曲线的应用1. 双曲线的应用:双曲线在电磁学中有广泛的应用,例如电磁波的传播、天线的辐射以及电磁场分布等方面。
2. 椭圆的应用:椭圆在力学、天文学和导航等领域有着重要的应用。
例如椭圆轨道运动的物体、天体运动规律的研究以及导航系统中的卫星轨道等。
3. 抛物线的应用:抛物线在物理学和工程学中有着广泛的应用。
例如自由落体运动、射击运动以及卫星的发射轨道等。
综上所述,圆锥曲线是解析几何中的重要内容,通过本文的总结,我们了解了圆锥曲线的定义、基本方程、性质和应用。
在学习过程中,我们需要深入理解每个曲线的特点和应用领域,为解决实际问题提供有力的数学工具。
希望本文对你对圆锥曲线的学习有所帮助。
圆锥曲线知识点 总结
圆锥曲线知识点总结1. 圆锥曲线的定义圆锥曲线是指平面内由圆锥截面形成的曲线。
圆锥曲线包括圆、椭圆、双曲线、抛物线等类型。
它们的定义方式如下:- 圆:如果平面内的一条曲线上到定点的距离恒定,那么这条曲线就是一个圆。
- 椭圆:平面内的一条曲线上到两个定点的距离之和恒定,这条曲线就是椭圆。
- 双曲线:平面内的一条曲线上到两个定点的距离之差恒定,这条曲线就是双曲线。
- 抛物线:平面内的一条曲线上到定点的距离等于到直线的距离,这条曲线就是抛物线。
2. 圆锥曲线的基本性质圆锥曲线具有一些共同的基本性质,对于不同的类型曲线具有不同的特点:- 对称性:圆锥曲线可能具有对称轴,可以对称于直线、坐标轴、原点或其他特定点。
- 过焦点性质:圆锥曲线上的任意一点到焦点的距离与到焦距的距离之和始终是一个固定值。
- 直径性质:圆锥曲线可能有两个焦点,双曲线、椭圆和抛物线有两个焦点,而圆只有一个焦点。
- 渐近线性质:双曲线和椭圆的曲线可能有渐近线,这些渐近线与曲线的某些特定方向趋近的直线。
3. 圆锥曲线的参数方程圆锥曲线可以用参数方程来表示。
参数方程是指用参数来表示一个函数或曲线的方程。
对于椭圆、双曲线等圆锥曲线,它们的参数方程可以表示为:- 椭圆:x=a*cos(t) ,y=b*sin(t) 0≤t≤2π- 双曲线:x=a*cosh(t) , y=b*sinh(t) -∞<t<+∞4. 圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程来表示。
极坐标方程是指用极坐标来表示一个函数或曲线的方程。
对于椭圆、双曲线等圆锥曲线,它们的极坐标方程可以表示为:- 椭圆:r(t)=a(1-e^2)/(1+e*cos(t))- 双曲线:r(t)=a(1+e*cos(t))5. 圆锥曲线的焦点和直径对于圆锥曲线来说,焦点和直径是它们的重要性质。
焦点是指椭圆、双曲线、抛物线曲线上的两个固定点,直径是指通过焦点的直线。
6. 圆锥曲线的渐近线部分圆锥曲线,如双曲线和椭圆,可能存在渐近线。
圆锥曲线知识点全归纳(完整精华版)
圆锥曲线知识点全归纳(精华版)圆锥曲线包括椭圆,双曲线,抛物线。
其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
一、圆锥曲线的方程和性质:1)椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。
定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。
标准方程:1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c>0,c^2=a^2-b^2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2.参数方程:X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r)2)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。
定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1.其中a>0,b>0,c^2=a^2+b^2.参数方程:x=asecθy=btanθ(θ为参数 )3)抛物线标准方程:1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>02.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>03.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>04.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。
圆锥曲线知识点归纳总结
圆锥曲线知识点归纳总结圆锥曲线知识点归纳总结一、基本概念圆锥曲线是由一个平面与一个双曲面、抛物面或圆锥相交而得到的曲线。
它包括四种类型:椭圆、双曲线、抛物线和直线。
二、椭圆1. 椭圆的定义:平面上到两个定点F1和F2的距离之和等于常数2a (a>0)的所有点P的轨迹称为椭圆。
2. 椭圆的性质:(1)椭圆的中心为坐标原点。
(2)椭圆的两个焦点在x轴上,距离为2c,满足c^2=a^2-b^2。
(3)椭圆的长轴长度为2a,短轴长度为2b,满足a>b>0。
(4)离心率e=c/a,0<e<1。
(5)对于任意一条过中心点O且与坐标轴夹角为θ的直线,其与椭圆交点到O的距离之和等于常数2a*cosθ。
三、双曲线1. 双曲线的定义:平面上到两个定点F1和F2距离之差等于常数2a (a>0)的所有点P的轨迹称为双曲线。
2. 双曲线的性质:(1)双曲线的中心为坐标原点。
(2)双曲线的两个焦点在x轴上,距离为2c,满足c^2=a^2+b^2。
(3)双曲线有两条渐近线,即横坐标趋近于正无穷或负无穷时,纵坐标趋近于两条直线y=±b/a*x。
(4)离心率e=c/a,e>1。
(5)对于任意一条过中心点O且与坐标轴夹角为θ的直线,其与双曲线交点到O的距离之差等于常数2a*cosθ。
四、抛物线1. 抛物线的定义:平面上到定点F与定直线L距离相等的所有点P的轨迹称为抛物线。
2. 抛物线的性质:(1)抛物线的中心为定直线L上方向原点最近的那个点。
(2)抛物线与定直线L垂直,并以其为对称轴。
(3)焦距等于顶点到焦点或顶点到准直径之间的距离。
(4)顶点为抛物线的最高点,即其纵坐标为最大值。
(5)离心率e=1。
五、直线1. 直线的定义:平面上所有点的轨迹都是直线。
2. 直线的性质:(1)直线可以表示为y=kx+b的形式,其中k是斜率,b是截距。
(2)两条不重合的直线相交于一点。
(3)两条平行的直线永远不会相交。
圆锥曲线知识点总结ppt
圆锥曲线知识点总结ppt一、圆锥曲线概述圆锥曲线是由平面与圆锥相交而产生的曲线,包括椭圆、双曲线和抛物线。
二、椭圆1. 椭圆方程椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1其中,a和b分别表示椭圆在x轴和y轴上的半轴长度。
2. 椭圆的性质(1)椭圆的焦点和两焦距(2)椭圆的离心率(3)椭圆的直径和焦径(4)椭圆的参数方程3. 椭圆的图形特点椭圆是一个闭合曲线,其形状类似于圆形,但长轴和短轴不相等。
4. 椭圆的应用椭圆在工程、天文学和艺术等领域有着广泛的应用,比如天体运动的轨道、椭圆弧的建筑设计等。
三、双曲线1. 双曲线方程双曲线的标准方程为:x^2/a^2 - y^2/b^2 = 1其中,a和b分别表示双曲线在x轴和y轴上的半轴长度。
2. 双曲线的性质(1)双曲线的渐近线(2)双曲线的离心率(3)双曲线的准线(4)双曲线的参数方程3. 双曲线的图形特点双曲线有两个分离的无限远焦点,其形状类似于两个相交的直线。
4. 双曲线的应用双曲线在电磁学、光学和工程等领域有着广泛的应用,比如天线的辐射模式和光学系统的设计等。
四、抛物线1. 抛物线方程抛物线的标准方程为:y^2 = 2px其中,p表示焦点到顶点的距离。
2. 抛物线的性质(1)抛物线的焦点和直径(2)抛物线的对称轴和焦直(3)抛物线的参数方程(4)抛物线的渐近线3. 抛物线的图形特点抛物线呈开口朝上或朝下的弧线,其形状类似于水平抛出的物体的轨迹。
4. 抛物线的应用抛物线在物理学、工程学和建筑学等领域有着广泛的应用,比如抛物线天顶镜、抛物线拱门等。
五、圆锥曲线的性质比较1. 焦点和离心率椭圆和双曲线有两个焦点,抛物线有一个焦点。
椭圆的离心率小于1,双曲线的离心率大于1,抛物线的离心率等于1。
2. 渐近线双曲线有两条渐近线,椭圆和抛物线各有一条渐近线。
3. 图形特点椭圆呈闭合曲线,双曲线呈开口曲线,抛物线也呈开口曲线。
4. 应用领域椭圆主要应用于工程、天文学和艺术等领域;双曲线主要应用于电磁学、光学和工程等领域;抛物线主要应用于物理学、工程学和建筑学等领域。
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结高中数学圆锥曲线知识点总结一、基本概念1、圆锥曲线:圆锥曲线是由一系列圆及其与它们的共轭切面围成的曲线,也可以看作是由一条曲线以及一个光滑曲面所围成的曲线空间。
2、圆弧:圆弧是曲线上一定角度范围内的闭合曲线,实际中常用于表示圆的片段。
3、渐开线:渐开线是由来自同一个圆的两个圆弧构成的弧线,渐开线的共轭切面是一条直线,而此直线又可在空间上做一个新的圆锥曲线。
二、圆锥曲线的性质1、圆锥曲线的曲线部分是由圆弧和渐开线组成的,曲线上每个点都是圆切弧上的一个点;2、圆锥曲线的表面部分是一个椭圆锥曲面,其参数方程由三个椭圆锥参数函数组成,其积分可以计算出圆锥曲面上的面积;3、点P(x,y,z)在圆锥曲线上,则其有连续的x,y,z三个坐标参数,并且满足圆锥曲线的参数方程;4、圆锥曲线的曲线部分是椭圆锥曲线,并且任一点在曲线上的切线方向都是一致的;5、圆锥曲线的曲线与曲面的连接,是一条中间缝合曲线,即渐开线,渐开线也可以看作是空间曲线上的锥面的交线。
6、圆锥曲线的曲线部分与表面部分的连接,是一条中间缝合曲线,被称为椭圆锥曲线,椭圆锥曲线也是一条空间曲线上的椭圆锥面的交线。
7、圆锥曲线的曲线部分与表面部分之间的交点的曲线,也被称为椭圆锥曲线,它也可以看作是圆锥曲线上的椭圆锥线的交点的曲线。
三、圆锥曲线的应用1、圆锥曲线在建筑学上常用于建造拱顶、圆顶、屋顶等,这些曲线具有很好的象征性;2、圆锥曲线在航空和航天工程上常用于设计飞机、火箭的运动轨迹;3、圆锥曲线在汽车制造上常用于设计汽车的底盘,以实现更好的操控性能;4、圆锥曲线在计算机渲染上常用于设计三维物体,以获得更加逼真的渲染效果;5、圆锥曲线在绘画上常用于创作凹凸有致的曲线,以实现更加自然的线条。
总之,圆锥曲线是一种非常有用的曲线,它在不同领域有着广泛的应用。
数学高考圆锥曲线知识点
数学高考圆锥曲线知识点圆锥曲线是高中数学中重要的知识点,广泛应用于数理化、工程学等领域。
本文将介绍圆锥曲线的基本概念和性质,以及与几何图形和实际问题的联系。
一、基本概念圆锥曲线是由圆锥和平面相交所得的曲线。
根据所切割的位置不同,圆锥曲线可分为椭圆、双曲线和抛物线三种类型。
1. 椭圆椭圆是平面与圆锥相交时,切割位置在圆锥两侧并且切割面是圆锥的两个对称面的情况。
椭圆具有如下性质:- 离心率小于1,离焦点距离小于两倍长轴。
- 长轴和短轴是椭圆的两个重要参数,可用于描述椭圆的形态。
2. 双曲线双曲线是平面与圆锥相交时,切割位置在圆锥两侧并且切割面不包含圆锥顶点的情况。
双曲线具有如下性质:- 离心率大于1,离焦点距离大于两倍长轴。
- 长轴和短轴是双曲线的两个重要参数,可用于描述双曲线的形态。
3. 抛物线抛物线是平面与圆锥相交时,切割位置在圆锥两侧并且切割面与圆锥对称的情况。
抛物线具有如下性质:- 离焦点距离等于两倍焦半径。
- 抛物线的开口方向由焦点和准线的相对位置决定。
二、性质和方程圆锥曲线的性质和方程是研究圆锥曲线的核心内容。
根据圆锥曲线的类型,我们可以得到如下性质和方程:1. 椭圆的性质和方程椭圆有很多独特的性质,如焦点、离心率、焦半径等。
椭圆的方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$其中,a为长半轴长度,b为短半轴长度。
2. 双曲线的性质和方程双曲线也有很多独特的性质,如焦点、离心率、焦半径等。
双曲线的方程分为两种情况:- 横轴为x轴时,方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$;- 横轴为y轴时,方程为$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$;其中,a为实轴长度,b为虚轴长度。
3. 抛物线的性质和方程抛物线也有诸多性质,如焦点、准线、抛物线方程等。
抛物线的方程为:$y=ax^2+bx+c$其中,a、b、c为常数,a决定了抛物线的开口方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线圆锥曲线包括椭圆,双曲线,抛物线。
其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
当e>1时为双曲线。
两千多年前,古希腊数学家最先开始研究圆锥曲线,并获得了大量的成果。
古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。
用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面倾斜到“和且仅和”圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。
阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。
事实上,阿波罗尼在其著作中使用纯几何方法已经取得了今天高中数学中关于圆锥曲线的全部性质和结果。
定义几何观点用一个平面去截一个圆锥面,得到的交线就称为圆锥曲线(conic sections)。
通常提到的圆锥曲线包括椭圆,双曲线和抛物线,但严格来讲,它还包括一些退化情形。
具体而言:1) 当平面与圆锥面的母线平行,且不过圆锥顶点,结果为抛物线。
2) 当平面与圆锥面的母线平行,且过圆锥顶点,结果退化为一条直线。
3) 当平面只与圆锥面一侧相交,且不过圆锥顶点,结果为椭圆。
4) 当平面只与圆锥面一侧相交,且不过圆锥顶点,并与圆锥面的对称轴垂直,结果为圆。
5) 当平面只与圆锥面一侧相交,且过圆锥顶点,结果退化为一个点。
6) 当平面与圆锥面两侧都相交,且不过圆锥顶点,结果为双曲线的一支(另一支为此圆锥面的对顶圆锥面与平面的交线)。
7) 当平面与圆锥面两侧都相交,且过圆锥顶点,结果为两条相交直线。
代数观点在笛卡尔平面上,二元二次方程ax^2+bxy+cy^2+dx+ey+f=0的图像是圆锥曲线。
根据判别式的不同,也包含了椭圆,双曲线,抛物线以及各种退化情形。
焦点-准线观点(严格来讲,这种观点下只能定义圆锥曲线的几种主要情形,因而不能算是圆锥曲线的定义。
但因其使用广泛,并能引导出许多圆锥曲线中重要的几何概念和性质)。
给定一点P,一直线L以及一非负实常数e,则到P的距离与L距离之比为e的点的轨迹是圆锥曲线。
根据e的范围不同,曲线也各不相同。
具体如下:1) e=0,轨迹退化为点(即定点P);2) e=1(即到P与到L距离相同),轨迹为抛物线;3) 0<e<1,轨迹为椭圆;4) e>1,轨迹为双曲线。
编辑本段概念(以下以纯几何方式叙述主要的圆锥曲线通用的概念和性质,由于大部分性质是在焦点-准线观点下定义的,对于更一般的退化情形,有些概念可能不适用。
)考虑焦点-准线观点下的圆锥曲线定义。
定义中提到的定点,称为圆锥曲线的焦点;定直线称为圆锥曲线的准线;固定的常数(即圆锥曲线上一点到焦点与准线的距离比)称为圆锥曲线的离心率;焦点到准线的距离称为焦准距;焦点到曲线上一点的线段称为焦半径。
过焦点、平行于准线的直线与圆锥曲线相交于两点,此两点间的线段称为圆锥曲线的通径,物理学中又称为正焦弦。
圆锥曲线是光滑的,因此有切线和法线的概念。
类似圆,与圆锥曲线交于两点的直线上两交点间的线段称为弦;过焦点的弦称为焦点弦。
对于同一个椭圆或双曲线,有两个“焦点-准线”的组合可以得到它。
因此,椭圆和双曲线有两个焦点和两条准线。
而抛物线只有一个焦点和一条准线。
圆锥曲线关于过焦点与准线垂直的直线对称,在椭圆和双曲线的情况,该直线通过两个焦点,该直线称为圆锥曲线的焦轴。
对于椭圆和双曲线,还关于焦点连线的垂直平分线对称。
Pappus定理:圆锥曲线上一点的焦半径长度等于该点到相应准线的距离乘以离心率。
Pascal定理:圆锥曲线的内接六边形,若对边两两不平行,则该六边形对边延长线的交点共线。
(对于退化的情形也适用)Brianchon定理:圆锥曲线的外切六边形,其三条对角线共点。
编辑本段定理由比利时数学家G.F.Dandelin 1822年得出的冰淇凌定理证明了圆锥曲线几何定义与焦点-准线定义的等价性。
即有一以Q为顶点的圆锥(蛋筒),有一平面PI'(你也可以说是饼干)与其相截得到了圆锥曲线,作球与平面PI'及圆锥相切,在曲线为椭圆或双曲线时平面与球有两个切点,抛物线只有一个(或者另一个在无穷远处),则切点为焦点。
又球与圆锥之交为圆,设以此圆所在平面PI与PI'之交为直线d(曲线为圆时d为无穷远线),则d为准线。
图只画了椭圆,证明对抛物线双曲线都适用,即证,任一个切点为焦点,d为准线。
证:假设P为曲线上一点,联线PQ交圆O于E。
设平面PI′与PI 的交角为a,圆锥的母线(如PQ)与平面PI的交角为b。
设P到平面PI 的垂足为H,H到直线d的垂足为R,则PR为P到d的垂线(三垂线定理),而∠PRH=a。
又PE=PF,因为两者同为圆球之切线。
如此则PR sina=PH=PE sinb=PF sinbPF/PR=sina/sinb为常数性质1、椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。
平面内一个动点到两个定点(焦点)的距离和等于定长2a的点的集合。
定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。
标准方程:1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c>0,c^2=a^2-b^2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2。
参数方程:x=acosθ y=bsinθ(θ为参数,0≤θ≤2π)2、双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。
定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1.其中a>0,b>0,c^2=a^2+b^2.参数方程:x=asecθ y=btanθ(θ为参数 )直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)3、抛物线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是等于1。
定点是抛物线的焦点,定直线是抛物线的准线。
参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标y=ax^2+bx+c (开口方向为y轴,a≠0) x=ay^2+by+c (开口方向为x轴,a≠0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-ecosθ)其中e表示离心率,p为焦点到准线的距离。
4、离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
且当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
这里的参数e就是圆锥曲线的离心率,它不仅可以描述圆锥曲线的类型,也可以描述圆锥曲线的具体形状,简言之,离心率相同的圆锥曲线都是相似图形。
一个圆锥曲线,只要确定了离心率,形状就确定了。
特别的,因为抛物线的离心率都等于1,所以所有的抛物线都是相似图形。
5、焦半径圆锥曲线上任意一点到焦点的距离称为焦半径。
圆锥曲线左右焦点为F1、F2,其上任意一点为P(x,y),则焦半径为:椭圆|PF1|=a+ex|PF2|=a-ex双曲线P在左支,|PF1|=-a-ex |PF2|=a-exP在右支,|PF1|=a+ex |PF2|=-a+exP在下支,|PF1|= -a-ey |PF2|=a-eyP在上支,|PF1|= a+ey |PF2|=-a+ey抛物线|PF|=x+p/26、切线方程圆锥曲线上一点P(x0,y0)的切线方程以x0x代替x^2,以y0y代替y^2;以(x0+x)/2代替x,以(y0+y)/2代替y即椭圆:x0x/a^2+y0y/b^2=1;双曲线:x0x/a^2-y0y/b^2=1;抛物线:y0y=p(x0+x)7、焦准距设出弦的两端点坐标(x1,y1)和(x2,y2),代入圆锥曲线的方程,将得到的两个方程相减,运用平方差公式得[(x1+x2)·(x1-x2)]/(a^2)+[(y1+y2)·(y1-y2)/(b^2]=0 由斜率为(y1-y2)/(x1-x2)可以得到斜率的取值。
(使用时注意判别式的问题)10、求点的轨迹方程在求曲线的轨迹方程时,如果能够将题设条件转化为具有某种动感的直观图形,通过观察图形的变化过程,发现其内在联系,找出哪些是变化的量(或关系)、哪些是始终保持不变的量(或关系),那么我们就可以从找出的不变量(或关系)出发,打开解题思路,确定解题方法。
圆锥曲线的曲率(见右图)曲率半径的作图。
第二条垂线与法线的交点Z就是曲率的中心它到P点的距离便是曲率半径。
编辑本段判别法设圆锥曲线的方程为Ax^2+2Bxy+Cy^2+2Dx+2Ey+F=0|A B D|条过焦点的直线由抛物面反射出来以后,都成为平行于轴的直线。
这就是我们为什么要把探照灯反光镜做成旋转抛物面的道理。
由双曲线绕其虚轴旋转,可以得到单叶双曲面,它又是一种直纹曲面,由两组母直线族组成,各组内母直线互不相交,而与另一组母直线却相交。
人们在设计高大的立塔(如冷却塔)时,就采取单叶双曲面的体形,既轻巧又坚固。
由此可见,对于圆锥曲线的价值,无论如何也不会估计过高。
编辑本段历史对于圆锥曲线的最早发现,众说纷纭。
有人说,古希腊数学家在求解“立方倍积”问题时,发现了圆锥曲线:设x、y为a和2a的比例中项,即。
a:x=x:y=y:2a,则x^2=ay,y^2=2ax,xy=2a^2,从而求得x^3=2a^3。
又有人说,古希腊数学家在研究平面与圆锥面相截时发现了与“立方倍积”问题中一致的结果。
还有认为,古代天文学家在制作日晷时发现了圆锥曲线。
日晷是一个倾斜放置的圆盘,中央垂直于圆盘面立一杆。
当太阳光照在日晷上,杆影的移动可以计时。
而在不同纬度的地方,杆顶尖绘成不同的圆锥曲线。
然而,日晷的发明在古代就已失传。
早期对圆锥曲线进行系统研究成就最突出的可以说是古希腊数学家阿波罗尼(Apollonius,前262~前190)。
他与欧几里得是同时代人,其巨著《圆锥曲线》与欧几里得的《几何原本》同被誉为古代希腊几何的登峰造极之作。
在《圆锥曲线》中,阿波罗尼总结了前人的工作,尤其是欧几里得的工作,并对前人的成果进行去粗存精、归纳提炼并使之系统化的工作,在此基础上,又提出许多自己的创见。