吸收与解吸实验报告

合集下载

吸收解吸实验报告

吸收解吸实验报告

吸收解吸实验报告
一、实验目的
1. 了解吸收和解吸的原理;
2. 熟悉吸收解吸反应的实验操作;
3. 通过实验了解吸收解吸实验现象特征;
4. 探讨不同物质的吸收和解吸特性。

二、实验原理
吸收:某些物质以气态存在时,当其与液态或固体物质混合时,它们之间发生化学反应,从而使气态物质溶于液体或固体中,称为吸收。

吸收也可以简单的理解为物质以气态形式被液态或固体物质所吸收。

解吸:当反应液守解断温度提高时,吸收气体会有部分还原,溶解在液态物质中的气体物质有部分被挥发出去,这种过程叫做解吸,也就是气态物质溶解在液态或固体物质中,在提高温度或变化其它条件后又被部分急出的过程。

解吸也可以简单的理解为物质以液态形式被气体所解吸。

三、实验原料及仪器
实验原料:苯、氢氧化钠、硫酸钠、有机溶液、乙醇、乙醚
实验仪器:分液漏斗、容量瓶、橡皮球、加热器、吸气器。

四、实验步骤
1. 将苯倒入容量瓶中,再加入少量硫酸钠,用橡皮球搅拌均匀;
2. 把上述混合物倒入分液漏斗,用加热器加热,直至反应液守
解断温度;
3. 加入少量氢氧化钠,使反应液浊化,把物质吸收到容量瓶中;
4. 再将有机溶液、乙醇、乙醚一一加入容量瓶中,并很好搅拌均匀;
5. 用吸气器逐步把容量瓶中的反应液抽减至最少;
6. 再加入少量氢氧化钠,使液态发生变化,进行解吸实验,观察现象。

五、实验结果
实验结果表:
物质名称气态物质液体溶质
苯无沉淀白色沉淀
乙醇无沉淀白色沉淀
乙醚无沉淀白色沉淀
实验结论:可以看出,不同的物质在吸收过程中均会生成白色沉淀物,而解吸过程中则会析出白色沉淀物。

吸收解吸的实验报告

吸收解吸的实验报告

1. 了解吸收和解吸的原理。

2. 熟悉吸收解吸反应的实验操作。

3. 通过实验观察吸收解吸实验现象特征。

4. 探讨不同物质的吸收和解吸特性。

二、实验原理吸收和解吸是化学工程中常见的传质过程。

吸收是指气体中的溶质被液体吸收剂吸收的过程,而解吸则是将吸收剂中的溶质释放出来的过程。

本实验采用物理吸收法,即利用液态吸收剂对气体混合物中的特定组分进行吸收和解吸。

三、实验材料与仪器1. 实验材料:CO2气体、NaOH溶液、盐酸、苯、四氯化碳等。

2. 实验仪器:气体发生器、气体流量计、吸收塔、解吸塔、冷凝器、温度计、压力计、秒表等。

四、实验步骤1. 吸收实验:(1)将CO2气体通入装有NaOH溶液的吸收塔中,调节气体流量和温度。

(2)观察气体在吸收塔中的流动状态,记录吸收前后的气体流量和温度。

(3)将吸收后的气体通入装有盐酸的解吸塔中,调节气体流量和温度。

(4)观察气体在解吸塔中的流动状态,记录解吸前后的气体流量和温度。

2. 解吸实验:(1)将苯通入装有四氯化碳的吸收塔中,调节气体流量和温度。

(2)观察气体在吸收塔中的流动状态,记录吸收前后的气体流量和温度。

(3)将吸收后的气体通入装有苯的解吸塔中,调节气体流量和温度。

(4)观察气体在解吸塔中的流动状态,记录解吸前后的气体流量和温度。

1. 吸收实验:(1)CO2气体在吸收塔中流速逐渐减慢,气体颜色变浅。

(2)解吸后的气体在解吸塔中流速逐渐加快,气体颜色变深。

2. 解吸实验:(1)苯气体在吸收塔中流速逐渐减慢,气体颜色变浅。

(2)解吸后的气体在解吸塔中流速逐渐加快,气体颜色变深。

六、实验数据与分析1. 吸收实验:(1)吸收前后的气体流量:Q1 = 0.2 L/min,Q2 = 0.1 L/min。

(2)吸收前后的气体温度:T1 = 25℃,T2 = 20℃。

(3)根据实验数据,计算吸收系数K1和吸收速率V1。

2. 解吸实验:(1)吸收前后的气体流量:Q3 = 0.2 L/min,Q4 = 0.3 L/min。

吸收与解吸实验实验报告

吸收与解吸实验实验报告

吸收与解吸实验实验报告吸收与解吸实验实验报告引言:吸收与解吸是化学实验中常见的操作和现象。

通过这个实验,我们可以了解物质在溶液中的吸收和解吸的过程,以及相关的实验技巧和方法。

本实验报告将详细介绍吸收与解吸实验的步骤、结果和分析。

实验目的:1. 了解物质在溶液中的吸收和解吸过程;2. 掌握吸收和解吸实验的基本操作技巧;3. 分析吸收和解吸实验的结果,探讨影响吸收和解吸的因素。

实验材料和仪器:1. 玻璃试管;2. 氢氧化钠溶液;3. 氯化铵溶液;4. 氢氧化钠固体;5. 氯化铵固体;6. 酚酞指示剂;7. 打火石;8. 酒精灯;9. 钳子;10. 温度计。

实验步骤:1. 准备两个玻璃试管,分别标记为A和B。

2. 在试管A中加入适量的氢氧化钠溶液,试管B中加入适量的氯化铵溶液。

3. 向试管A中加入少量的酚酞指示剂,使溶液呈现红色。

4. 将试管A和B放置在一个装有水的容器中,保持试管A的底部接触水面,试管B则悬空于水中。

5. 用打火石点燃酒精灯,将试管B加热至沸腾状态。

6. 观察试管A中溶液的颜色变化。

实验结果:在进行实验的过程中,我们观察到以下现象:1. 在试管A中,溶液的颜色由红色逐渐变为无色。

2. 在试管B中,溶液开始加热后,溶液的颜色保持不变。

实验分析:根据实验结果,我们可以得出以下结论:1. 氢氧化钠溶液中的酚酞指示剂在加热的过程中逐渐褪色,说明溶液中的氢氧化钠被吸收了。

2. 氯化铵溶液中的酚酞指示剂在加热的过程中保持不变,说明溶液中的氯化铵没有被吸收。

进一步分析:吸收和解吸实验的结果可以归因于溶液中物质的化学性质和溶解度。

氢氧化钠是一种强碱,具有很强的吸收能力,可以与酚酞指示剂发生化学反应,导致溶液颜色的变化。

而氯化铵是一种盐类,其溶解度较高,不容易被吸收。

因此,在加热的过程中,氢氧化钠被吸收,而氯化铵保持不变。

结论:通过吸收与解吸实验,我们了解到物质在溶液中的吸收和解吸过程。

氢氧化钠溶液具有较强的吸收能力,可以吸收酚酞指示剂,导致溶液颜色的变化。

吸收(解吸)实验报告

吸收(解吸)实验报告

吸收(解吸)实验报告化⼯基础实验报告实验名称吸收(解吸)系数的测定班级化21 姓名张腾学号2012011864 成绩实验时间2014.5 同组成员张煜林努尔艾⼒·麦麦提⼀、实验⽬的1、了解吸收(解析)操作的基本流程和操作⽅法;2、测定氧解吸液相总体积传质系数K x a和液体流量的关系;3、测定筛板塔的板效率与液体流量和⽓体流量的关系。

⼆、实验原理吸收是⼯业上常⽤的操作。

在吸收过程中,⽓体混合物和吸收剂分别从塔底和塔顶进⼊塔内,⽓液两相在塔内实现逆流接触,使⽓体混合物中的溶质较完全地溶解在吸收剂中,于是塔顶获得较纯的惰性组分,从塔底得到溶质和吸收剂组成的溶液(通称富液)。

当溶质有回收价值或吸收剂价格较⾼时,把富液送⼊再⽣装置进⾏解吸,得到溶质或再⽣的吸收剂(通称贫液),吸收剂返回吸收塔循环使⽤。

吸收是⽓液相际传质过程,所以吸收速率可⽤⽓相内,液相内或者两相间的传质速率来表⽰。

在连续吸收操作中,这三种传质速率表达式计算结果相同。

对于低浓度吸收过程。

计算公式如下。

⽓相内传质的吸收速率:N A=k y(y?y i)F液相内传质的吸收速率:N A=k x(x i?x)F⽓、液两相相际传质的吸收速率:N A=K y F(y?y?)=K x F(x??x)式中:y,y i—分别表是⽓相主体和⽓相界⾯处的溶质摩尔分率;x,x i—分别表⽰液相主体和液相界⾯处的溶质摩尔分率;x?,y?—分别为与y和x呈平衡的液相和⽓相摩尔分率;k x,K x—分别为以液相摩尔分率差为推动⼒的液相传质分系数和传质总系数;k y,K y—分别为以⽓相摩尔分率差为推动⼒的⽓相传质分系数和传质总系数;F—传质⾯积,m2。

对于难溶溶质的吸收,常⽤液相摩尔分率差和液相传质系数表达的吸收速率式。

对于易溶⽓体的吸收,常⽤⽓相摩尔分率差和⽓相传质系数表达的吸收速率式。

本实验为⼀解析过程,是⽤空⽓与富氧⽔接触,因富氧⽔中氧的浓度⾼于同空⽓处于平衡的⽔中氧的浓度。

吸收与解吸实验报告

吸收与解吸实验报告

吸收与解吸实验报告摘要本实验采用静态吸收(SA)和动态解吸(DE)两种方法,对一种悬浮液进行实验研究,以观察两种方法之间的不同。

实验结果显示,静态吸收的吸附率高于动态解吸的吸附率。

此外,实验结果还显示,在实验条件下,在不影响吸附率的情况下,静态吸附的吸附量随着增加的分子量和比表面积(BET)值而下降。

关键词:静态吸附,动态解吸,悬浮液,分子量,比表面积(BET)1实验目的本实验旨在比较基于静态吸附(SA)和动态解吸(DE)两种方法的悬浮液的吸附率,并为更好地了解吸附行为提供参数。

本实验中采用的悬浮液类型为HCl溶液,具体物理化学参数参见表1.2实验原理吸附是物理和(或)化学反应的一种形式,指的是气体或溶液分子被连接到固体表面或其他溶剂表面上凝聚物的表现。

通常情况下,吸附行为受到固体或溶剂表面类型以及吸附分子之间的相互作用的影响。

本实验使用HCl溶液,参照物理和化学反应原理,以研究其与SA和DE系统的吸附行为。

3实验装置实验装置采用的是常规的压力/温度控制实验室装置,可实现室温和压力的控制。

装置中运用了延迟开关,以对吸附与解吸实验时间做出控制,并可实现自动记录与存储过程数据。

4实验步骤(1)首先,将装置调节到设定好的参数,待稳定后启动装置;(2)然后,将HCl溶液以稀释供给装置回路,使装置模拟静态吸附(SA)过程;(3)程序控制装置设置参数,以完成模拟动态解吸(DE)过程;(4)最后通过观察装置读数,随时间的变化,记录两种方法的吸附量值;(5)根据读数,计算出SA和DE所得到的吸附率值并作出比较。

5结果与讨论6结论。

吸附解吸实验报告

吸附解吸实验报告

一、实验目的1. 了解吸附和解吸的基本原理及实验方法;2. 掌握吸附和解吸实验的操作技能;3. 探究吸附和解吸过程中影响因素的变化规律;4. 分析吸附剂的选择对吸附和解吸效果的影响。

二、实验原理1. 吸附原理:吸附是指吸附剂表面与吸附质分子之间由于分子间力、化学键等作用,使吸附质分子在吸附剂表面富集的过程。

吸附过程包括物理吸附和化学吸附两种类型。

2. 解吸原理:解吸是指吸附质分子从吸附剂表面释放出来的过程。

解吸过程通常受温度、压力、溶剂等因素的影响。

三、实验材料与仪器1. 实验材料:活性炭、苯、甲苯、正己烷、氯仿、蒸馏水等。

2. 实验仪器:吸附柱、吸附剂、搅拌器、分析天平、分光光度计、恒温水浴锅、滴定管等。

四、实验步骤1. 准备工作(1)称取一定量的活性炭,置于吸附柱中。

(2)将吸附柱固定在支架上,连接好搅拌器。

(3)准备吸附剂溶液,用蒸馏水稀释至一定浓度。

2. 吸附实验(1)将吸附剂溶液缓慢加入吸附柱中,使溶液在吸附柱中充分接触活性炭。

(2)开启搅拌器,保持溶液在吸附柱中充分搅拌。

(3)在一定时间后,关闭搅拌器,让溶液在吸附柱中静置。

(4)取出一定量的吸附液,测定吸附液中的吸附质浓度。

3. 解吸实验(1)将吸附液缓慢加入吸附柱中,使溶液在吸附柱中充分接触活性炭。

(2)加热吸附柱,提高溶液温度,加速吸附质从活性炭表面释放。

(3)在一定时间后,关闭加热设备,让溶液在吸附柱中静置。

(4)取出一定量的解吸液,测定解吸液中的吸附质浓度。

4. 数据处理与分析(1)根据吸附液和解吸液中吸附质的浓度,计算吸附率和解吸率。

(2)分析吸附和解吸过程中影响因素的变化规律。

(3)比较不同吸附剂的选择对吸附和解吸效果的影响。

五、实验结果与分析1. 吸附实验结果实验结果表明,活性炭对苯、甲苯、正己烷、氯仿等有机物的吸附效果较好。

在一定条件下,吸附率随吸附时间的延长而增加,但超过一定时间后,吸附率趋于稳定。

2. 解吸实验结果实验结果表明,提高溶液温度可以加速吸附质从活性炭表面释放,解吸率随温度升高而增加。

氧气的吸收与解吸实验报告

氧气的吸收与解吸实验报告

氧气的吸收与解吸实验报告一、实验目的探究氧气在水中的溶解与解吸过程,了解氧气在水中的溶解度与温度、压强的关系。

二、实验原理氧气在水中的溶解度与温度、压强和溶液中其他物质浓度有关。

当温度升高或压强降低时,氧气的溶解度会减小;而当温度降低或压强增加时,氧气的溶解度会增大。

此外,当水中其他物质浓度增加时,也会影响氧气的溶解度。

三、实验器材1. 水槽2. 水银汞柱3. 热水器4. 水银汞球四、实验步骤1. 将水槽内注满水,并放入一个水银汞柱。

2. 将热水器接通电源,将其放入水槽内加热。

3. 在热水器加热过程中,用手持式吸管将一只装有少量水银汞球的试管倒置于水槽内。

4. 观察试管内汞球变化情况,并记录下时间和温度。

5. 等热水器加热至一定温度后,关闭电源,等待水温下降。

6. 当水温下降至一定程度时,观察试管内汞球变化情况,并记录下时间和温度。

7. 将实验数据整理并进行分析。

五、实验结果在加热过程中,试管内的汞球逐渐变小;而在停止加热后,试管内的汞球逐渐变大。

随着时间的推移,汞球的大小逐渐趋于稳定。

六、实验分析根据实验结果可以得出结论:氧气在水中的溶解度与温度有关。

当水温升高时,氧气的溶解度减小;而当水温降低时,氧气的溶解度增大。

此外,在压强不变的情况下,溶液中其他物质浓度增加也会导致氧气的溶解度减小。

七、实验注意事项1. 实验过程中要注意安全。

2. 水槽内应注满水,并保持水平。

3. 实验过程中要注意控制热水器加热时间和温度。

4. 实验结束后要将器材清洗干净。

八、实验总结通过本次实验,我们了解了氧气在水中的溶解与解吸过程,并探究了氧气的溶解度与温度、压强和溶液中其他物质浓度的关系。

同时,我们也学会了如何进行实验并分析数据。

这些知识对我们深入理解化学原理和应用化学具有重要意义。

吸收解吸实验报告

吸收解吸实验报告

吸收解吸实验报告吸收解吸实验报告引言:吸收解吸实验是一种常见的实验方法,用于研究溶质在溶剂中的吸收和解吸现象。

通过该实验,我们可以了解溶质在不同条件下的吸收速率、解吸速率以及吸收解吸平衡的特性。

本文将对吸收解吸实验的原理、实验步骤以及实验结果进行详细讨论。

一、实验原理吸收解吸实验是基于物质在溶液中的分子间相互作用力的变化来进行的。

在吸收过程中,溶质分子被溶剂分子吸引,从而进入溶液中。

而在解吸过程中,溶剂分子与溶质分子的相互作用力减弱,导致溶质分子从溶液中脱离。

吸收解吸速率与溶质和溶剂的性质、浓度、温度等因素有关。

二、实验步骤1. 准备实验器材和试剂:实验器材包括吸收解吸装置、试管、移液管等;试剂包括溶剂和溶质。

2. 设置实验条件:根据实验要求,确定溶剂的浓度、温度等条件。

3. 吸收实验:将一定量的溶剂倒入试管中,加入适量的溶质,并充分搅拌,观察溶质的吸收情况。

4. 记录数据:记录吸收实验的时间、溶质的质量或浓度等数据。

5. 解吸实验:将已吸收的溶质置于适当的条件下,观察溶质的解吸情况。

6. 记录数据:记录解吸实验的时间、溶质的质量或浓度等数据。

三、实验结果根据实验步骤进行吸收解吸实验后,我们可以得到一系列的实验结果。

通过对实验结果的分析,我们可以得出以下结论:1. 吸收速率与溶剂浓度成正比:当溶剂浓度增加时,吸收速率也会增加。

这是因为溶剂浓度的增加会增加溶剂分子与溶质分子的相互作用力,从而促进溶质的吸收。

2. 吸收速率与溶质浓度成正比:当溶质浓度增加时,吸收速率也会增加。

这是因为溶质浓度的增加会增加溶质分子与溶剂分子的碰撞频率,从而增加吸收的可能性。

3. 吸收速率与温度成正比:当温度升高时,吸收速率也会增加。

这是因为温度升高会增加溶剂分子的平均动能,从而增加溶质分子与溶剂分子的碰撞能量,促进溶质的吸收。

4. 解吸速率与溶剂浓度成反比:当溶剂浓度增加时,解吸速率会减小。

这是因为溶剂浓度的增加会增加溶质分子与溶剂分子的相互作用力,使得溶质分子更难从溶液中解吸出来。

二氧化碳的吸收与解吸实验报告

二氧化碳的吸收与解吸实验报告

二氧化碳的吸收与解吸实验报告摘要:本实验旨在研究二氧化碳的吸收与解吸过程,并观察其对环境条件的敏感性。

通过使用氢氧化钠(NaOH)溶液作为吸收剂,测量二氧化碳溶液中的pH值和溶液的体积变化,以评估吸收和解吸的效果。

实验结果表明,二氧化碳能够被NaOH 溶液吸收,并在一定条件下释放。

1. 引言二氧化碳(CO2)是一种常见的气体,它在大气中的浓度增加与全球气候变化密切相关。

因此,研究CO2的吸收与解吸过程对于理解和控制大气中CO2浓度的变化至关重要。

本实验旨在模拟CO2吸收与解吸的过程,并观察其在不同条件下的反应情况。

2. 实验步骤2.1 实验材料:-氢氧化钠(NaOH)固体-蒸馏水-二氧化碳气源- pH计-称量器具-实验室玻璃器皿2.2 实验过程:(1)准备NaOH溶液:称取适量的NaOH固体,加入一定量的蒸馏水中,搅拌溶解。

(2)装置实验装置:将NaOH溶液倒入实验室玻璃器皿中,置于实验台上。

(3)测量初始条件:使用pH计测量NaOH溶液的初始pH 值,并记录初始溶液的体积。

(4)注入CO2气体:将二氧化碳气体缓慢地通入NaOH溶液中,观察溶液的变化,并记录每次通气的时间和CO2气体的体积。

(5)测量pH值:定期使用pH计测量溶液的pH值,并记录下来。

(6)测量溶液体积:测量在吸收和解吸过程中溶液的体积变化,并记录下来。

3. 实验结果实验期间,我们记录了二氧化碳气体通入溶液的时间、CO2气体的体积以及溶液的pH值变化。

根据实验结果,我们绘制了相应的数据表和图表。

4. 讨论与分析根据实验结果,我们观察到二氧化碳气体通入NaOH溶液后,溶液的pH值逐渐下降,说明二氧化碳被NaOH吸收并生成了碳酸。

随着二氧化碳的继续通入,溶液的体积也有所增加,这是由于二氧化碳的溶解导致溶液的体积增大。

在观察解吸过程时,我们停止通入二氧化碳气体,溶液开始释放二氧化碳,并逐渐恢复到初始状态。

此时,溶液的pH 值逐渐升高,说明碳酸在解吸过程中分解为二氧化碳和水,并释放出二氧化碳气体。

氧吸收解吸实验报告

氧吸收解吸实验报告

氧吸收解吸实验报告氧吸收解吸实验报告引言:氧气是地球上最重要的元素之一,对于维持生命活动至关重要。

人类和其他生物通过呼吸将氧气吸入体内,然后将其与食物中的营养物质一起利用,产生能量和二氧化碳。

为了更好地理解氧气在生物体内的吸收和解吸过程,我们进行了一系列实验。

实验一:氧气吸收速率与温度的关系我们首先研究了氧气吸收速率与温度之间的关系。

为此,我们准备了三个试管,分别装有20°C、30°C和40°C的水。

在每个试管中,我们加入了相同量的酵母和蔗糖溶液。

然后,我们立即将一个试管放入恒温箱中,将另一个试管放在常温下,将第三个试管放入冰水中。

结果显示,随着温度的升高,氧气吸收速率明显增加。

在40°C的试管中,氧气吸收速率最高,而在冰水中的试管中,氧气吸收速率最低。

这表明温度对氧气吸收过程有显著影响,高温有利于氧气的吸收。

实验二:氧气解吸速率与压力的关系为了研究氧气解吸速率与压力之间的关系,我们使用了一个封闭的容器,并在其中放入了一定量的氧气和水。

然后,我们逐渐增加容器内的压力,观察氧气解吸的速率。

结果显示,随着压力的增加,氧气解吸速率也随之增加。

当压力达到一定值时,氧气解吸速率开始饱和,不再随压力的增加而增加。

这说明压力对氧气解吸过程有一定的影响,但并非线性关系。

实验三:氧气吸收速率与浓度的关系为了探究氧气吸收速率与浓度的关系,我们分别准备了不同浓度的氧气溶液。

然后,我们将相同量的酵母和蔗糖溶液加入不同浓度的氧气溶液中,并观察氧气吸收的速率。

结果显示,随着氧气浓度的增加,氧气吸收速率也随之增加。

当氧气浓度达到一定值后,氧气吸收速率开始饱和,不再随浓度的增加而增加。

这表明氧气浓度对氧气吸收过程有一定的影响,但并非线性关系。

结论:通过以上实验,我们可以得出以下结论:1. 温度对氧气吸收速率有显著影响,高温有利于氧气的吸收。

2. 压力对氧气解吸速率有一定的影响,但并非线性关系。

6吸收(解吸)实验

6吸收(解吸)实验

φ100×100mm,比表面积700m2/m3。 θ环散装填料:
(3)转子流量计;
条 介质
最大流量
空气
4m3/h
最小刻度 0.1 m3/h
标定介质 空气
ቤተ መጻሕፍቲ ባይዱ
件 标定条件 20℃ 1.0133×105Pa
CO2
60 L/h
10 L/h
空气
20℃ 1.0133×105Pa

1000L/h
20 L/h

20℃ 1.0133×105Pa
(3)测定塔顶和塔底气相组成y1和y2; (4)平衡关系。
本实验的平衡关系可写成 y = mx
(1-36 )
式中: m---相平衡常数,m=E/P;
E---亨利系数,E=f(t),Pa,根据液相温度由附录查得;
P---总压,Pa,取1atm。
对清水而言,x2=0,由全塔物料衡算可得x1 。
6.1.4实验装置与流程
A.计算公式 填料层高度Z为
z
Z
dZ
L
0
K xa
x1 dx x2 x x
H OL
NOL
(1-33)
式中:L为液体通过塔截面的摩尔流量,kmol / (m2·s);
Kxa是以△X为推动力的液相总体积的传质系数, kmol/(m3·s);
HOL为液相总传质单元高度,m;
NOL为液相总传质单元数,无因次。
令:吸收因数A=L/mG
(1-34)
N OL
1 ln[(1 1 A
A)
y1 mx 2 y1 mx1
A]
(1-35)
B.测定方法
(1)空气流量和水流量的测定
本实验采用转子流量计测得空气和水的流量,并根据实 验条件

吸收与解吸实验

吸收与解吸实验

一、实验目的12 3 4二、实验原理㈠、吸收实验根据传质速率方程,在假定Kxa 低浓、难溶等] 条件下推导得出吸收速率方程:Ga=Kxa ·V ·Δx m 则: Kxa=Ga/(V ·Δx m )式中:Kxa ——体积传质系数 [kmolCO 2/m 3hr Ga ——填料塔的吸收量 [Kmol CO 2 V ——填料层的体积 [m 3] Δx m ——填料塔的平均推动力 1、Ga 的计算已知可测出:Vs[m 3/h]、V B [m 3/h](可由色谱直接读出)Ls[Kmol/h]=Vs ×ρ水/M 水1011'29]/[ρρρρV M V h Kmol G B B B =⋅=⋅=空气 标定情况:T 0=273+20 P 0=101325 测定情况:T 1=273+t1 P 1=101325+ΔP 因此可计算出L S 、G B 。

又由全塔物料衡算:G a =Ls(X 1-X 2)=G B (Y 1-Y 2) 22211111y y Y y y Y -=-=且认为吸收剂自来水中不含CO 2,则X 2=0,则可计算出G a 和X 1 2、Δx m 的计算根据测出的水温可插值求出亨利常数E[atm],本实验为P=1[atm] 则 m=E/Pmy x m y x x x x x x x x x x x x e e e e m 11221112221212ln ==-=∆-=∆∆∆∆-∆=∆㈡、解吸实验低浓、难溶等] Ga=K Y a ·V 则: K Y a=Ga/(V 式中:K Y a Ga V ΔY m 1、Ga 的计算已知可测出:y 2 ]/[h Kmol G B 标定情况:T 0 测定情况:T 1因此可计算出L S 、G B 。

又由全塔物料衡算:G a =Ls(X 1-X 2)=G B (Y 1-Y 2) 011222111=-=-=y y Y y y Y且认为空气中不含CO 2,则y 2=0;又因为进塔液体中X 1有两种情况,一是直接将吸收后的液体用于解吸,则其浓度即为前吸收计算出来的实际浓度X 1;二是只作解吸实验,可将CO 2用文丘里吸碳器充分溶解在液体中,可近似形成该温度下的饱和浓度,其X 1*可由亨利定律求算出:mm y x 1*1==则可计算出G a 和X 2 2、ΔY m 的计算根据测出的水温可插值求出亨利常数E[atm],本实验为P=1[atm] 则 m=E/P11221112221212ln x m y x m y Y Y Y Y Y Y Y Y Y Y Y e e e e m ⋅=⋅=-=∆-=∆∆∆∆-∆=∆根据 e e Y y yy Y 换算成将-=1三、实验装置CO2:钢瓶中的CO2经根部阀、减压阀、针型调节阀,一路经流量计V CO2-1进入吸收塔;另一路经流量计V CO2-2进入文丘里吸碳器与饱和罐中的循环水充分混合可形成饱和CO2水溶液。

吸收解吸化工实验报告

吸收解吸化工实验报告

一、实验目的1. 理解并掌握吸收和解吸的基本原理及操作方法;2. 掌握填料塔的结构、操作及性能评价;3. 学习吸收和解吸实验的装置搭建、操作及数据处理;4. 分析实验数据,得出吸收和解吸的传质系数等参数。

二、实验原理吸收和解吸是化工生产中常见的操作过程,它们分别涉及气液两相之间的传质。

在吸收过程中,气体中的溶质被吸收剂吸收,从而得到较纯的气体;在解吸过程中,吸收剂中的溶质被解吸剂解吸,从而得到较纯的溶质。

本实验采用填料塔作为吸收和解吸的设备,通过改变操作条件,研究气液两相间的传质过程。

实验中,气相从塔底进入,液相从塔顶进入,气液两相在填料层中逆流接触,实现传质。

三、实验装置1. 填料塔:采用不锈钢材质,内装填料层,填料层高度为2m;2. 气源:氮气,纯度99.999%;3. 液源:水,去离子水;4. 气体流量计:精度为±0.5%;5. 液体流量计:精度为±1%;6. 温度计:精度为±0.5℃;7. 压力计:精度为±0.5%。

四、实验步骤1. 搭建实验装置,连接好气源、液源、气体流量计、液体流量计、温度计和压力计;2. 开启氮气气源,调节气体流量计,使气体流量为0.5m³/h;3. 开启去离子水液源,调节液体流量计,使液体流量为1L/min;4. 记录实验开始时的温度和压力;5. 改变操作条件,如气体流量、液体流量、填料层高度等,观察气液两相间的传质过程;6. 记录实验过程中的温度、压力、气体流量、液体流量等数据;7. 关闭实验装置,整理实验器材。

五、实验结果与分析1. 吸收过程根据实验数据,得到吸收过程气相中溶质摩尔分率与液相中溶质摩尔分率的关系曲线。

通过曲线斜率,计算出吸收过程传质系数K_x_a。

2. 解吸过程根据实验数据,得到解吸过程气相中溶质摩尔分率与液相中溶质摩尔分率的关系曲线。

通过曲线斜率,计算出解吸过程传质系数K_y_a。

3. 影响因素分析(1)气体流量:气体流量越大,气液两相间的传质速率越快,但过大的气体流量会导致液膜过厚,传质效果降低。

二氧化碳吸收与解吸实验报告

二氧化碳吸收与解吸实验报告

二氧化碳吸收与解吸实验报告一、实验目的通过实验观察二氧化碳在不同环境下的吸收和解吸情况,了解二氧化碳在自然界中的循环过程。

二、实验材料二氧化碳气体、水、氢氧化钠溶液、酚酞指示剂、容量瓶、试管、滴定管、酒精灯等。

三、实验原理二氧化碳在自然界中的循环过程包括二氧化碳的吸收和解吸,其中吸收后的二氧化碳可以被植物利用进行光合作用,解吸后的二氧化碳则会进入大气层中。

实验中,利用二氧化碳和水反应生成碳酸酸,再通过与氢氧化钠溶液反应,使碳酸酸转化为碳酸钠,观察其变化。

四、实验步骤1. 取一定量的二氧化碳气体,放入容量瓶中。

2. 加入一定量的水,使其中溶解的二氧化碳达到饱和状态。

3. 取一定量的氢氧化钠溶液,滴入试管中。

4. 加入少量的酚酞指示剂,观察其颜色变化。

5. 缓慢将第2步中的饱和二氧化碳气体通过试管中的氢氧化钠溶液中。

6. 观察指示剂的变化,记录颜色变化时间和颜色变化程度。

7. 重复实验,改变环境温度等条件,观察结果。

五、实验结果在常温下,通过饱和二氧化碳气体通入氢氧化钠溶液中,指示剂由粉红色变为无色,表明有二氧化碳吸收反应发生。

当环境温度提高时,吸收二氧化碳的速度会加快,颜色变化时间会缩短,颜色变化程度也会加深。

六、实验分析本实验通过观察酚酞指示剂颜色变化,可以判断二氧化碳气体是否被吸收。

在自然界中,植物通过光合作用吸收二氧化碳气体,并利用其进行生长等活动。

同时,二氧化碳也会通过植物的呼吸、动物的呼吸和燃烧等过程释放出来,进入大气层中。

通过本实验的观察,我们可以更加深入地了解二氧化碳在自然界中的循环过程。

七、实验结论通过本实验,我们可以得出以下结论:1. 二氧化碳气体可以被水吸收,并与水反应生成碳酸酸。

2. 碳酸酸可以与氢氧化钠溶液反应,生成碳酸钠。

3. 通过酚酞指示剂的变化,可以判断二氧化碳气体是否被吸收。

4. 环境温度的变化会影响二氧化碳的吸收速率。

八、实验注意事项1. 实验过程中要小心操作,防止产生危险。

化工原理吸收与解吸实验报告

化工原理吸收与解吸实验报告

化工原理吸收与解吸实验报告一、实验目的:通过本次实验,学生们可以了解化工原理中吸收与解吸的基本原理,掌握吸收塔的操作技能,以及熟悉吸收剂的选择和使用方法。

二、实验原理:1. 吸收与解吸的基本原理吸收是指气体在接触液体时被液体所溶解或被化学反应转化为溶质的过程。

而解吸则是指气体从液体中逸出或分离出来的过程。

在化工生产过程中,常用于气体分离、纯化和回收等方面。

2. 吸收塔吸收塔是一种常见的设备,用于进行气液相接触和传质过程。

其主要结构包括进料口、出料口、填料层等。

填料层可以增加气液接触面积,提高传质效率。

3. 吸收剂吸收剂是指用于吸收气体的液体,在选择时需要考虑其对目标气体的亲和力、溶解度、稳定性以及成本等方面因素。

三、实验步骤:1. 将制备好的NaOH溶液倒入吸收塔中,并将塔内温度升至60℃左右。

2. 将CO2气体通过气体流量计和压力表接入吸收塔顶,调节气体流量和压力使其稳定。

3. 观察吸收塔内液位变化,记录液位高度和时间,计算出CO2的吸收速率。

4. 停止供气后,将塔内液体倒出并加入硫酸溶液进行解吸,记录解吸速率。

四、实验结果:1. 吸收速率:在60℃下,CO2的吸收速率为0.016mol/min。

2. 解吸速率:在添加硫酸溶液后,CO2的解吸速率为0.014mol/min。

五、实验分析:1. 实验结果表明,在所选条件下,NaOH溶液对CO2具有较好的亲和力和溶解度。

2. 在实际生产中,需要根据具体情况选择合适的吸收剂,并结合填料层设计等因素来提高传质效率。

六、实验结论:本次实验成功地展示了化工原理中吸收与解吸的基本原理,并通过操作塔内填料层等设备提高了传质效率。

同时还验证了NaOH溶液对CO2具有较好的亲和力和溶解度。

化工原理吸收与解吸实验报告

化工原理吸收与解吸实验报告

化工原理吸收与解吸实验报告一、引言1.1 实验目的实验目的是通过对吸收与解吸过程的研究,了解吸收与解吸的基本原理,并掌握吸收与解吸实验的操作方法和计算技巧。

### 1.2 实验原理吸收是指气体或溶质与液体或固体之间相互作用,使溶质从气体相转变为液体或固体相的过程。

解吸则是溶质从液体或固体转变为气体相的过程。

吸收与解吸常用于气体的分离、净化和某些溶剂的回收等工艺中。

二、实验设备和试剂2.1 实验设备•吸收塔•解吸塔•气液分离器•气液流动调节器 ### 2.2 试剂•饱和盐水溶液•乙酸乙酯溶液三、实验步骤3.1 吸收实验1.将吸收塔与气液分离器连接。

2.将饱和盐水溶液注入吸收塔中。

3.将待吸收的气体通过塔底进气管导入吸收塔底部。

4.调节气体流量和液体流量,保持稳定。

5.收集吸收后的液体样品,进行后续分析。

3.2 解吸实验1.将解吸塔与气液分离器连接。

2.将乙酸乙酯溶液注入解吸塔中。

3.将吸收塔中的液体样品通过塔底进液管导入解吸塔底部。

4.调节气体流量和液体流量,保持稳定。

5.收集解吸后的气体样品,进行后续分析。

四、实验数据分析4.1 吸收实验数据采集吸收塔中的液体样品,并测量其溶质浓度。

### 4.2 解吸实验数据采集解吸塔中的气体样品,并测量其溶质浓度。

五、结果与讨论5.1 实验结果分析吸收实验数据和解吸实验数据,得出吸收和解吸过程中溶质的浓度变化情况,并绘制相关曲线图。

### 5.2 讨论分析吸收与解吸过程中可能出现的影响因素,探讨导致实验结果差异的原因。

六、结论通过吸收与解吸实验,我们深入了解了吸收与解吸的原理和操作方法,并获得了相关的实验数据。

实验结果表明,在特定条件下,吸收与解吸能够有效实现气体与液体或固体的相互转换。

实验过程中注意到仍存在一些影响因素,需进一步研究和优化实验条件。

七、参考文献[1] 张三, 李四, 王五. 吸收与解吸原理及应用[M]. 化学出版社, 20XX. [2] ABC. 吸收与解吸的研究进展[J]. 中国化学, 20XX, 38(3): 1-10.。

吸收解吸操作实验报告

吸收解吸操作实验报告

一、实验目的1. 理解吸收和解吸操作的基本原理和过程。

2. 掌握吸收和解吸实验的操作技能。

3. 通过实验数据,分析影响吸收和解吸效率的因素。

二、实验原理吸收是指气体中的溶质被液体吸收剂吸收的过程。

解吸则是溶质从液体中被释放出来,重新回到气相的过程。

这两个过程在化工、环保、医药等领域有广泛的应用。

吸收过程可用以下公式表示:C_g = C_l K_a X_l其中,C_g为气相中溶质的浓度,C_l为液相中溶质的浓度,K_a为吸收系数,X_l 为液相中溶质的摩尔分数。

解吸过程与吸收过程类似,只是方向相反。

三、实验仪器与试剂1. 仪器:吸收塔、解吸塔、气泵、流量计、温度计、压力计、实验记录仪等。

2. 试剂:水、二氧化碳气体、吸收剂(如碳酸钠溶液)。

四、实验步骤1. 吸收实验(1)将吸收塔中的吸收剂加入一定量的水中,搅拌均匀。

(2)将二氧化碳气体通过气泵引入吸收塔,调节气泵,使气体流量稳定。

(3)记录实验过程中的温度、压力、气体流量等数据。

(4)观察吸收塔中液相的变化,分析吸收效果。

2. 解吸实验(1)将吸收塔中的富液取出,加入解吸塔中。

(2)调节气泵,使空气通过解吸塔,将溶质从液体中解吸出来。

(3)记录实验过程中的温度、压力、气体流量等数据。

(4)观察解吸塔中液相的变化,分析解吸效果。

五、实验数据与结果1. 吸收实验实验过程中,气相中二氧化碳的浓度逐渐降低,液相中二氧化碳的浓度逐渐升高。

通过实验数据计算得出,吸收系数K_a为0.8。

2. 解吸实验实验过程中,气相中二氧化碳的浓度逐渐升高,液相中二氧化碳的浓度逐渐降低。

通过实验数据计算得出,解吸系数K_d为0.7。

六、分析与讨论1. 吸收和解吸效率受多种因素影响,如温度、压力、气体流量、吸收剂浓度等。

2. 实验结果表明,吸收和解吸系数K_a和K_d与实验条件密切相关。

3. 通过调节实验条件,可以优化吸收和解吸效果。

七、结论1. 通过本次实验,掌握了吸收和解吸操作的基本原理和操作技能。

吸收(解吸)实验报告

吸收(解吸)实验报告

实验名称:吸收(解吸)实验一、实验目的1 了解填料塔吸收装置的基本结构及流程;2 掌握总体积传质系数的测定方法;3 测定填料塔的流体力学性能;4 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响;5 了解气相色谱仪和六通阀在线检测CO2浓度和测量方法;6 学会化工原理实验软件库的使用。

二、实验装置流程示意图及实验流程简述1〕装置流程本实验装置流程如图6-1所示:水经转子流量计后送入填料塔塔顶再经喷淋头喷淋在填料顶层。

由风机输送来的空气和由钢瓶输送来的二氧化碳气体混合后,一起进入气体混合稳压罐,然后经转子流量计计量后进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程可看成是等温吸收过程。

2〕主要设备(1)吸收塔:高效填料塔,塔径100mm,塔内装有金属丝网板波纹规整填料,填料层总高度2000mm.。

塔顶有液体初始分布器,塔中部有液体再分布器,塔底部有栅板式填料支承装置。

填料塔底部有液封装置,以避免气体泄漏。

(2)填料规格和特性:金属丝网板波纹填料:型号JWB—700Y,填料尺寸为φ100×50mm,比表面积700m2/m3。

(4)气泵:层叠式风机,风量0~90m3/h,风压40kPa;(5)二氧化碳钢瓶;(6)气相色谱仪(型号:SP6801);(7)色谱工作站:浙大NE2000。

三、简述实验操作步骤及安全注意事项1 实验步骤(1)熟悉实验流程及弄清气相色谱仪及其配套仪器结构、原理、使用方法及其注意事项;(2)打开仪表电源开关及风机电源开关;(3)开启进水总阀,使水的流量达到400L/h左右。

让水进入填料塔润湿填料。

(4)塔底液封控制:仔细调节阀门○2的开度,使塔底液位缓慢地在一段区间内变化,以免塔底液封过高溢满或过低而泄气。

(5)打开CO2钢瓶总阀,并缓慢调节钢瓶的减压阀(注意减压阀的开关方向与普通阀门的开关方向相反,顺时针为开,逆时针为关),使其压力稳定在0.1Mpa左右;(6)仔细调节空气流量阀至1m3/h,并调节CO2调节转子流量计的流量,使其稳定在100L/h~160 L/h;(7)仔细调节尾气放空阀的开度,直至塔中压力稳定在实验值;(8)待塔操作稳定后,读取各流量计的读数及通过温度数显表、压力表读取各温度、压力,通过六通阀在线进样,利用气相色谱仪分析出塔顶、塔底气相组成;(9)改变水流量值,重复步骤(6)(7)(8)。

大学化工原理实验六 气体的吸收与解吸实验

大学化工原理实验六 气体的吸收与解吸实验

五、实验操作步骤
系统稳定运转后,用测氧仪测定不同的含 氧量。水样分析可以有两种,先分析解吸 塔或解吸塔与吸收塔同时分析。
实验结束后,停水、停气,并停测氧仪和 毫伏表。
六、注意事项
饱和水浓度测定,确定准确基点 三塔串联操作,注意系统物料平衡,保持
上游塔的水流量略大于下游塔水流量 每次改变操作条件都需要足够的稳定时间
整理实验数据,写实验报告 实验中要求纪录的数据包括进塔水流量、
水温、氮气、空气流量、进出塔水中溶解 氧浓度及饱和水浓度和温度
五、实验基本操作步骤
制取饱和水,由泵输送至饱和塔3顶部,空 气泵将空气送入塔3的底部;用饱和水标定 测氧仪。
饱和水槽溢流以后,即可向解吸塔1和吸收 塔2供水,同时向塔内通入气体。气体流量 保持恒定,水流量从10L/h至60L/h改变6次。
xm
x1 ln
x2 x1
x2
二、基本原理
稳定操作条件下,测得水的进出口O2浓度 x1和 x2,水流量L,由(6-2)可求得传质系数 Kxa。忽略其相传质阻力 kx a K x a
液相传质系数kxa (或kLa)与喷淋密度L的关 系
k x a L0.6~0
为内径100mm的有
一、实验目的和任务
熟悉吸收—解吸的工艺流程,了解填料塔 的结构
掌握吸收—解吸过程的操作和调节方法 测定吸收塔中用水吸收氧气时的气相传质
系数(或单元操作高度)及其与液体喷淋 密度的关系
测定解吸塔中用氮气解吸水中的氧时的液 相传质系数(或单元操作高度)及其与液 体喷淋密度的关系
一、实验目的和任务
本实验采用O2在水中的吸收及解吸过程 测定填料塔的液相传质系数。吸收塔通入 的是空气;解吸时用N2作载气,在常温、 常压下测定不同喷淋密度下的液相传质系 数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吸收与解吸实验报告
吸收与解吸实验报告
实验目的:通过进行吸收与解吸实验,探究不同条件下物质的吸收与解吸过程,以及相关因素对吸收与解吸的影响。

实验原理:吸收与解吸是物质在溶液中的相互转移过程。

在吸收过程中,物质
从溶液中被吸附到吸附剂表面;而在解吸过程中,物质从吸附剂表面解吸出来,重新溶解到溶液中。

实验材料与方法:
材料:酒精、活性炭、玻璃棒、烧杯、分液漏斗、滤纸、天平、计时器等。

方法:
1. 准备活性炭吸附剂:将一定量的活性炭粉末加入烧杯中,并用玻璃棒搅拌均匀;
2. 准备酒精溶液:取一定量的酒精加入烧杯中,并用玻璃棒搅拌均匀;
3. 实验组设置:将活性炭吸附剂放入分液漏斗中,并将酒精溶液倒入分液漏斗中;
4. 开始实验:打开分液漏斗的活塞,让酒精溶液缓慢通过活性炭吸附剂,记录
下吸收过程所需的时间;
5. 解吸实验:将吸附了酒精的活性炭取出,放入另一个烧杯中,加入一定量的水,用玻璃棒搅拌均匀,记录下解吸过程所需的时间;
6. 重复实验:重复以上步骤,改变吸附剂的用量、溶液浓度等条件,进行多次
实验,以获得更准确的结果。

实验结果与讨论:
根据实验数据统计,我们可以发现吸收与解吸的过程受到多种因素的影响。

首先,吸收过程所需的时间与吸附剂的用量有关。

当吸附剂的用量增加时,吸收
过程所需的时间相应增加,这是因为吸附剂表面积增大,吸附物质与吸附剂之
间的接触面积增加,从而需要更多的时间才能完成吸收过程。

其次,吸收过程所需的时间与溶液浓度有关。

当溶液浓度增加时,吸附剂表面
上的物质浓度也增加,吸附速度加快,吸收过程所需的时间相应减少。

这是因
为溶液浓度的增加提高了物质向吸附剂表面扩散的速度,加快了吸附过程。

解吸过程所需的时间与解吸剂的性质有关。

在实验中,我们使用水作为解吸剂,发现解吸过程所需的时间较长。

这是因为水与酒精之间的亲和力较小,解吸剂
的选择对解吸过程具有重要影响。

若使用亲和力较大的溶剂作为解吸剂,解吸
过程所需的时间会相应减少。

此外,实验还发现温度对吸收与解吸过程有一定影响。

在较高温度下,吸附剂
表面的分子运动加快,吸附和解吸的速度都会增加,从而缩短吸收与解吸过程
所需的时间。

综上所述,吸收与解吸是物质在溶液中的重要转移过程,受到吸附剂用量、溶
液浓度、解吸剂性质和温度等因素的影响。

通过实验可以深入了解这些影响因素,并为进一步研究物质的吸收与解吸过程提供基础数据。

相关文档
最新文档