上海高考数学基础知识点精简版
上海高中高考数学知识点总结(大全)
上海高中高考数学知识点总结(大全)一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或 补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝ 原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值 ①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定 ∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2)或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n naa1=- m n m na a = 2.对数式b N a =log N a b =⇔(a>0,a ≠1)N M MN a a a log log log +=N M NMa a alog log log -= M n M a n a log log =a b b m m a log log log =ablg lg =n a a b b n log log =ab log 1=注:性质01log =a 1log =a a N a N a =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数) 4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换 平移:“左加右减,上正下负”α>101<<αα<0)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方y=f(x)cb aoyxy=|f(x)|cb aoyx→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边y=f(x)cb aoyxy=f(|x|)cb aoyx3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断) 注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 6.特殊角的三角函数值α6π4π 3π 2π π23π sin α21 22 23 11-cos α123 22 21 01- 0tg α0 33 13/ 0 /7.基本公式 同角1cos sin22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =± ()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:Z k ∈ 9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sin CB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a sin :sin :sin ::= 余弦定理:a 2=b 2+c 2-2bc cos A (求边)cos A =bca cb 2222-+(求角)面积公式:S △=21ab sin C 注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则q p n m a a a a +=+2、等比数列定义:)0(1≠=+q q a ann通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 b a ⋅=θcos ⋅⋅b a =2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向: b a b a ⋅=⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底)平行:⇔b a //b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x模:a =22y x + =+=+22)(b a b a夹角:=θcos ||||b a ba ⋅注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -= 模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算 加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i r rk i i=+43.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程 5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角 倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:0022Ax By Cd A B++=+5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭ 半径2242D E Fr +-=6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长222AB r d =-十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0)顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +)位置关系 相切相交 相离几何特征d r =d r <d r >代数特征0=△0>△0<△2a 、2b:椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn 抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴)开口(向右) 范围x ≥0 离心率e=1 焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE ”语句 “IF —THEN ”语句 IF 条件 THEN IF 条件 THEN程序框 名称 功能起止框起始和结束输入、输出框输入和输出的信息处理框赋值、计算判断框判断某一条件是否成立循环框重复操作以及运算语句1 语句 ELSE END IF 语句2 END IF5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO循环体 循环体WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n +a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2 v 3=v 2x+a n -3 v n =v n -1x+a 0 注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a k a k a k a a a a n n n n n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法” 例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=248=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件: ①不共线的三点 ②一条直线和这直线外一点 ③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。
上海高中高考数学知识点总结
上海高中高考数学知识点总结数学是高中阶段的一门重要学科,也是高考的一科必考科目。
上海是我国教育事业发展最为先进的地区之一,其高中高考数学知识点体系较为完备。
下面将对上海高中高考数学知识点进行总结。
一、函数与方程1.一次函数:将函数的定义域与值域、函数图像的性质(斜率、截距、单调性、定义域、值域等)、函数的性质(奇偶性、周期性等)作为重点。
2.二次函数:将函数图像的性质(顶点、对称轴、单调性、定义域、值域等)、零点特征(判别式、根与系数的关系)以及函数与方程的应用问题作为重点。
3.三角函数:将基本函数的定义域与值域、函数图像的性质(周期、对称轴、单调性等)、反函数以及函数与方程的应用问题作为重点。
4.幂函数与指数函数:将函数图像的性质(单调性、定义域、值域等)、乘幂性质、对数函数与指数函数的关系以及函数与方程的应用问题作为重点。
5.对数函数与指数方程:将函数图像的性质(单调性、定义域、值域等)、对数性质、指数方程的解法以及函数与方程的应用问题作为重点。
6.三角方程:将三角函数的性质、解三角方程的方法以及函数与方程的应用问题作为重点。
7.不等式:将一次不等式、二次不等式、分式不等式的解法以及应用问题作为重点。
二、平面解析几何1.直线与圆:将直线的方程(一般式、斜截式、点斜式)、圆的方程(一般式、截距式、标准式)以及直线与圆的应用问题作为重点。
2.曲线的方程:将椭圆、双曲线、抛物线的方程、基本性质(焦点、准线等)以及曲线与方程的应用问题作为重点。
3.空间几何体:将点、线、面的位置关系、截距表示、距离性质以及平面与直线的交点、角度等问题作为重点。
三、立体几何1.空间几何体的计算:对长方体、正方体、圆柱体、圆锥体、球体的体积、表面积以及应用问题进行掌握。
2.空间向量:将向量的定义、线性运算、数量积、向量积、坐标表示以及应用问题作为重点。
四、概率与统计1.概率:将事件的概念、事件的运算、频率与概率的关系、条件概率、独立性、全概率公式、贝叶斯公式以及概率与统计的应用问题作为重点。
上海高考数学知识点总结内容精华版
高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:〔1〕理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.〔2〕理解逻辑联结词“或〞、“且〞、“非〞的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法〔集合化简〕、简易逻辑三局部:二、知识回忆:(一) 集合1. 根本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}〔√〕 Z ={全体整数} 〔×〕②集合S 中A 的补集是一个有限集,那么集合A 也是有限集.〔×〕〔例:S=N ; A=+N ,那么C s A= {0}〕 ③ 空集的补集是全集.④假设集合A =集合B ,那么C B A = ∅, C A B = ∅ C S 〔C A B 〕= D 〔 注 :C A B = ∅〕. 3. ①{〔x ,y 〕|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{〔x ,y 〕|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{〔x ,y 〕|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. 〔例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 那么A ∩B =∅〕 4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,那么它的逆否命题一定为真. 原命题⇔逆否命题. 例:①假设325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,那么a+b = 5,成立,所以此命题为真. ②且21≠≠y x 3≠+y . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:假设255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.根本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法〔零点分段法〕①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+〞;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点〔为什么?〕;④假设不等式〔x 的系数化“+〞后〕是“>0〞,那么找“线〞在x 轴上方的区间;假设不等式是“<0〞,那么找“线〞在x 轴下方的区间.+-+-x 1x 2x 3x m-3x m-2xm-1x mx〔自右向左正负相间〕那么不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;20>∆ 0=∆ 0<∆二次函数c bx ax y ++=2〔0>a 〕的图象原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互2.分式不等式的解法 〔1〕标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, 〔2〕转化为整式不等式〔组〕⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法〔1〕公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.〔2〕定义法:用“零点分区间法〞分类讨论.〔3〕几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0)〔1〕根的“零分布〞:根据判别式和韦达定理分析列式解之.〔2〕根的“非零分布〞:作二次函数图象,用数形结合思想分析列式解之. 〔三〕简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
(word版)上海高考数学知识点总结(大全),文档
上海高中高考数学知识点总结〔大全〕一、集合与常用逻辑1.集合概念元素:互异性、无序性2.集合运算全集U:如U=R交集:A B {xx A且x B}并集:A B {xx A或x B}补集:C U A {xx U且x A}3.集合关系空集 A子集A B:任意x A x BA B A A B A B B A B注:数形结合---文氏图、数轴4.四种命题原命题:假设p那么q 逆命题:假设q那么p否命题:假设p那么 q 逆否命题:假设q那么p原命题逆否命题否命题逆命题5.充分必要条件p是q的充分条件:P qp是q的必要条件:P qp是q的充要条件:p?q6.复合命题的真值q真〔假〕?“q〞假〔真〕②p、q同真?“p∧q〞真p、q都假?“p∨q〞假全称命题、存在性命题的否认M,p(x〕否认为: M, p(X)M,p(x〕否认为: M, p(X)二、不等式1.一元二次不等式解法假设a 0,ax2bx c0有两实根,(),那么ax2bx c 0解集(, )ax2bx c0解集(, )(,)注:假设a 0,转化为2.其它不等式解法—转化a0情况x a a x a x2a2x a x a或x a x2a2f(x)0f(x)g(x)0g(x)a f(x)a g(x)f(x)g(x)〔a1〕f(x)0log a f(x)log a g(x)f(x)〔0a1〕g(x)3.根本不等式①a2b22aba bab②假设a,bR,那么22ab、ab(a b)2注:用均值不等式a b2求最值条件是“一正二定三相等〞三、函数概念与性质1.奇偶性f(x)偶函数f(x)f(x)f(x)图象关于y轴对称f(x)奇函数f(x)f(x)f(x)图象关于原点对称注:①f(x)有奇偶性定义域关于原点对称②f(x)奇函数,在x=0有定义f(0)=0③“奇+奇=奇〞〔公共定义域内〕2.单调性f(x)增函数:或x1<x 2x 1>x 2f(x f(x1)<f(x2) 1) >f(x2)或f(x 1)f(x 2)x 1x 2f(x)减函数:?注:①判断单调性必须考虑定义域 f(x)单调性判断定义法、图象法、性质法“增+增=增〞③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反3.周期性T 是f(x)周期 f(xT)f(x)恒成立〔常数T0 〕4.二次函数解析式:f(x)=ax2+bx+c ,f(x)=a(x-h)2+kf(x)=a(x-x)(x-x )12对称轴:xb 顶点:(b ,4acb 2 )2a2a 4a单调性:a>0,(,b]递减,[b ,)递增2a2a当xb4acb 2,f(x)min4a2a2b=0奇偶性:f(x)=ax +bx+c 是偶函数闭区间上最值:配方法、图象法、讨论法---注意对称轴与区间的位置关系注:一次函数 f(x)=ax+b 奇函数 b=0四、根本初等函数1(a0)an1n1.指数式aa m m a na n2.对数式log a Nba b N 〔a>0,a ≠1〕log a MNlog a Mlog a Nlog a Mlog a M log a N Nlog a M n nlog a Mlog alog m b lgb blga log m alog a b log a n b n1log b a注:性质log a10log a a1a log a N N常用对数lgN log10N,lg2lg51自然对数lnN log e N,lne13.指数与对数函数y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x图象关于y=x对称〔互为反函数〕14.幂函数yx2,yx3,yx2,yx1x在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质〔奇偶、单调〕取1010特殊点如零点、最值点等2.图象变换平移:“左加右减,上正下负〞y f(x)y f(x h)伸缩:y f(x)每一点的横坐标变为原来的倍yf(1x)对称:“对称谁,谁不变,对称原点都要变〞y f(x)x轴y f(x)y f(x)y轴y f(x)y f(x)原点y f(x)注:yf(x)直线xay f(2a x)翻折:y f(x)y|f(x)|保存x轴上方局部,并将下方局部沿x轴翻折到上方yy=f(x)a obc x a yoy=|f(x)|b c xy f(x)y f(|x|)保存y轴右边局部,并将右边局部沿y轴翻折到左边yyy=f(x)a obc x a o3.零点定理假设f(a)f(b) 0,那么y f(x)在(a,b)内有零点y=f(|x|)b c x 〔条件:f(x)在[a,b]上图象连续不间断〕注:①f(x)零点:f(x)0的实根②在[a,b]上连续的单调函数f(x),f(a)f(b)0那么f(x)在(a,b)上有且仅有一个零点③二分法判断函数零点---f(a)f(b)0?六、三角函数1.概念第二象限角(2k,2k)(k Z)22.弧长lr 扇形面积S1lr23.定义siny x y cos tanrrx其中P(x,y)是终边上一点,POr4.符号 “一正全、二正弦、三正切、四余弦〞 5.诱导公式:“奇变偶不变,符号看象限〞 如Sin(2 ) sin ,cos( /2 ) sin6.特殊角的三角函数值6 4 3sin 012 322 2cos132 1222tg31337.根本公式同角sin 2cos 21sin tancos和差sinsin cos cos sincoscos cos sin sintan tan tan1 tantan倍角sin2 2sin coscos2 22 21 2cos sin2cos 12sin降幂cos 2α=1cos2sin2α=1cos222叠加sincos2sin()43sincos2sin()6a ) asinbcosa 2b 2sin()(tanb322110 1/ 0/2tan tan221tan8.三角函数的图象性质y=sinx y=cosx y=tanx图象单调性:(,)增(0,)减(,)增2222sinx cosx tanx 值域[-1,1][-1,1]无奇偶奇函数偶函数奇函数周期2π2ππ对称轴xk/2x k无中心k,0/2k,0k/2,0注:kZ9.解三角形根本关系:sin(A+B)=sinC cos(A+B)=-cosCtan(A+B)=-tanC sin AB cosC22正弦定理:a=b csinA=sinCsinBa2RsinA a:b:c sinA:sinB:sinC余弦定理:a2=b2+c2-2bccosA〔求边〕cosA=b2c2a2〔求角〕2bc12注:ABC中,A+B+C=? A B sinA s inBa2>b2+c2?∠A>2七、数列1、等差数列定义:a n1 a n d通项:a n a 1(n1)d求和:S nn(a 1a n )1n(n 1)dna 122a c中项:b 〔a,b,c 成等差〕2性质:假设mnpq ,那么a ma n a p a q2、等比数列定义:an1a n通项:a n求和:S n中项:b 2q(q 0) a 1q n1na 1 (q 1)a 1(1 q n )1)1 (qqac 〔a,b,c 成等比〕性质:假设m n pq那么a m a n a p a q3、数列通项与前n 项和的关系a ns 1 a 1(n 1)s n s n1(n2)4、数列求和常用方法 公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减三角形法那么,平行四边形法那么AB BCAC 首尾相接,OBOC =CB 共始点中点公式:ABAC2ADD 是BC 中点2.向量数量积a ab cosy 1y 2b ==x 1x 2注:①a,b 夹角:00≤θ≤1800②a,b 同向:ab a b3.根本定理 a 1e 12e 2〔e 1,e 2不共线--基底〕平行:a//b a b x1y2x2y1〔b0〕垂直:a b a b0x1x2y1y20模:a=x2y22(ab)2 ab角:cos ab |a||b|注:①0∥a②a b c abc〔合律〕不成立③a b ac b c〔消去律〕不成立九、复数与推理证明1.复数概念复数:z a bi(a,b R),部a、虚部b分:数〔b0〕,虚数〔b0〕,复数集C注:z是虚数a0,b0相等:、虚局部相等共:z a bi模:z a2b2zz2 z复平面:复数z的点(a,b) 2.复数运算加减:〔a+bi〕±(c+di)=?乘法:〔a+bi〕〔c+di〕=?除法:abi=(a bi)(c di)==⋯c di(c di)(c di)乘方:i21,i n i4kr i r 3.合情推理比:特殊推出特殊:特殊推出一般演:一般出特殊〔大前→小前→〕4.直接与接明合法:由因果比法:作差—形—判断—反法:反—推理—矛盾—缺一不可,假必使用分析法:果索因(1) 分析法写格式: (2) 要A 真,只要 B 真,即⋯⋯, (3) 只要 C 真,而 C 真,故 A 必真 (4) 注:常用分析法探索明途径,合法写明程 (5) 5.数学法: (6) 当n=1命成立,(2)假当n=k(kN*,k1)命成立明当n=k+1命也成立, 由(1)(2)知命所有正整数注:用数学法,两步 十、直线与圆1、斜角范0,斜率ky 2 y 1tanx 1x 2注:直向上方向与 x 正方向所成的最小正角斜角90,斜率不存在2、直方程点斜式yy 0 k(x x 0),斜截式y kx by y 1 x x 1,截距式x y 1 两点式y 1x 2x 1 a b y 2一般式Ax By C注意适用范:①不含直 x x 0②不含垂直 x 的直 ③不含垂直坐和原点的直 3、位置关系〔注意条件〕平行 k 1 k 2且b 1b 2垂直k 1k 21垂直A 1A 2B 1B 204、距离公式两点距离:|AB|=(x 1 x 2)2 (y 1 y 2)2点到直距离:dAx 0By 0CA 2B 2n 都成立5、圆标准方程:(xa)2(y b)2r2圆心(a,b),半径r圆一般方程:x2y2Dx Ey F0〔条件是?〕圆心D,E半径r D2E24F2226、直线与圆位置关系位置关系相切相交相离几何特征r dr drd代数特征△0△0△0注:点与圆位置关系(x0a)2(y0b)2r2点Px0,y0在圆外7、直线截圆所得弦长AB2r2d2十一、圆锥曲线一、定义椭圆:|PF1|+|PF|=2a(2a>|F F|)212双曲线:|PF1|-|PF2|=±2a(0<2a<|F1F2|)抛物线:与定点和定直线距离相等的点轨迹二、标准方程与几何性质〔如焦点在x轴〕椭圆x2y21(a>b>0)a2b2双曲线x2y21(a>0,b>0)a2b2中心原点对称轴?焦点F1(c,0)、F2(-c,0)顶点:椭圆(±a,0),(0,±b),双曲线(±a,0)范围:椭圆-axa,-byb双曲线|x|a,y R焦距:椭圆2c〔c=a2b2〕双曲线2c〔c=a2b2〕2a 、2b:椭圆长轴、短轴长, 双曲线实轴、虚轴长 离心率:e=c/a椭圆0<e<1,双曲线e>1注:双曲线x 2y 2 1渐近线yb x a 2b 2a方程mx 2 ny 2 1表示椭圆 m0,nn方程mx 2ny 2 1表示双曲线mn抛物线y 2=2px(p>0)顶点〔原点〕 对称轴〔x 轴〕开口〔向右〕 范围x0离心率e=1焦点F(p,0)准线xp 22十二、矩阵、行列式、算法初步十、算法初步一.程序框图程序框名称功能起止框起始和结束输入和输出的信息输入、输出框赋值、计算处理框判断某一条件是否成立判断框4 循环框重复操作以及运算5 67 二.根本算法语句及格式8 1输入语句:INPUT “提示内容〞;变量 9 2输出语句:PRINT “提示内容〞;表达式 10 3赋值语句:变量=表达式11条件语句“IF —THEN —ELSE 〞语句“IF —THEN 〞语句IF条件THENIF条件THEN语句1语句ELSEENDIF句 2 ENDIF5循句当型循句WHILE 条件DO直到型循句循体循体WENDLOOPUNTIL条件当型“先判断后循〞直到型“先循后判断〞三.算法案例1、求两个数的最大公数 相除法:到达余数 0更相减:到达减数和差相等2、多式f(x)=a n x n +a n-1x n-1+⋯.+a 1x+a 0的求秦九韶算法:v 1=a n x+a n -1v 2=v 1x+a n-2v=vx+an -3v=vx+a32nn -1注:推公式v 0=a n v k =v k -1X +a n -k (k=1,2,⋯n)求f(x),乘法、加法均最多 n 次3、位制的 制数十制数:a n a n1.....a 1a 0(k) a n k n a n1 k n1 ......... a 1 k a 0十制数成 k 制数:“除k 取余法〞 例1相除法求得123和48最大公数3例2f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27v 0=248=1×27+21 v1=2×5-5=5 27=1×21+6 v2=5×5-4=21 21=3×6+3v =21×5+3=1083 6=2×3+0v=108×5-6=5344v 5=534×5+7=2677十三、立体几何 1.三 正、、俯2.直:斜二画法 '''XOY =45平行X 的段,保平行和度平行Y 的段,保平行,度原来一半3.体与面V柱=S底hV锥=1S底h V球=4πR3 33S圆锥侧=rl S圆台侧=(R r)l S球表=4R24.公理与推论确定一个平面的条件:①不共线的三点②一条直线和这直线外一点③两相交直线④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。
上海高考数学知识点整理(全)
高考临近给你提个醒集合与简易逻辑1.例1.集合R x x y y M ∈==,2,R x x y y N ∈+-==,12,则=N M 例2.集合{}R x x y y x M ∈==,),(2,{}R x x y y x N ∈+-==,1),(2,=N M 例3.集合()(){}R a a M ∈+==λλ,4,32,1,集合()(){}R a a N ∈+==λλ,5,43,2,则=N M2.研究集合必须注意集合元素的特征,即集合元素的三性:确定性、互异性、无序性。
例4.已知集合{},,lg()A x xy xy =,集合{}y x B ,||,0=,且B A =,则=+y x3.集合的性质:① 任何一个集合P 都是它本身的子集,记为P P ⊆。
② 空集是任何集合P 的子集,记为P ⊆∅。
③ 空集是任何非空集合P 的真子集,记为P ≠⊂∅。
注意:若条件为B A ⊆,在讨论的时候不要遗忘了∅=A 的情况。
例5.集合}012|{2=--=x ax x A ,如果∅=+R A ,实数a 的取值范围集合的运算:④ ()()C B A C B A =、()()C B A C B A =; ()()()U U U C AB C A C B =、()()()U U U C A B C A C B =。
⑤ ∅=⇔⊆⇔⊆⇔=⇔=B C A A C B C B A B B A A B A U U U 。
⑥ 对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为:n2、12-n、12-n、22-n。
例6.满足条件{}{}5,4,3,2,12,1⊆⊂≠A 的集合A 共有 个。
4.研究集合之间的关系,当判断不清时,建议通过“具体化...”的思想进行研究。
例7.已知{}N k k x x M ∈+==,12,{}N k k x x N ∈±==,14,则N M _____。
上海高中高考数学知识点总结(大全)演示教学
4.幂函数
1
y x2, y x3, y x2 , y x 1
y x 在第一象限图象如下:
五、函数图像与方程
1.描点法
函数化简→定义域→讨论性质(奇偶、单调)
取
1
0
1
0
2.图
平
负”
只供学习与交流
特殊点如零点、最值点等 象变换 移:“左加右减,上正下
此文档仅供收集于网络,如有侵权请联系网站删除
y f ( x) y f ( x h)
2.单调性
只供学习与交流
此文档仅供收集于网络,如有侵权请联系网站删除
f(x) 增函数: x 1< x 2 或 x 1> x2
f(x 1) <f(x 2) f(x 1) > f(x 2)
或 f ( x1 ) f ( x2 ) 0 x1 x2
f(x) 减函数:?
注:①判断单调性必须考虑定义域 ② f(x) 单调性判断 定义法、图象法、性质法“增 +增 =增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反
空集
A
子集 A B : 任意 x A x B
AB A A B ABB A B
注:数形结合 --- 文氏图、数轴 4.四种命题
原命题:若 p 则 q
逆命题:若 q 则 p
否命题:若 p 则 q
原命题 5.充分必要条件
逆否命题
p 是 q 的充分条件: P q
逆否命题:若 q 则 p
否命题 逆命题
p 是 q 的必要条件: P q
ao
b
cx
(条件: f ( x) 在 [ a,b] 上图象连续不间断)
注:① f (x) 零点: f ( x) 0 的实根
(完整版)上海高中高考数学知识点总结(大全),推荐文档
上海高中高考数学知识点总结(大全)一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或 补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝ 原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定 ∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2)或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n naa1=- m n m na a = 2.对数式b N a =log N a b =⇔(a>0,a ≠1)N M MN a a a log log log +=N M NMa a alog log log -= M n M a n a log log =a b b m m a log log log =ablg lg =n a a b b n log log =ab log 1=注:性质01log =a 1log =a a N a N a =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数) 4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换 平移:“左加右减,上正下负”α>101<<αα<0)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断) 注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 67同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =± ()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:Z k ∈ 9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sin CB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边)cos A =bca cb 2222-+(求角)面积公式:S △=21ab sin C 注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则q p n m a a a a +=+2、等比数列定义:)0(1≠=+q q a ann通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 b a ⋅=θcos ⋅⋅=2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向:b a =⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底)平行:⇔b a //b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x模:a =22y x + =+=+2)(b a夹角:=θcos ||||b a ba 注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -= 模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=?除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=ni r rk i i =+43.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程 5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+-点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0)顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +)2a 、2b:椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn 抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴)开口(向右) 范围x ≥0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE ”语句 “IF —THEN ”语句 IF 条件 THEN IF 条件 THEN 语句1 语句ELSE END IF 语句2 END IF5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO循环体 循环体WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n +a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2 v 3=v 2x+a n -3 v n =v n -1x+a 0 注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a k a k a k a a a a n n n n n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法” 例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=248=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件: ①不共线的三点 ②一条直线和这直线外一点 ③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。
上海高考数学知识点
上海高考数学知识点高考数学对于每一位考生来说都是至关重要的,而上海高考数学又有着其独特的知识点体系。
以下就为大家详细梳理一下上海高考数学的主要知识点。
一、集合与常用逻辑用语集合是数学中最基本的概念之一。
考生需要理解集合的概念,包括集合的表示方法(列举法、描述法等)、集合之间的关系(子集、真子集、相等)以及集合的运算(交集、并集、补集)。
常用逻辑用语方面,要掌握命题及其关系(原命题、逆命题、否命题、逆否命题),充分条件、必要条件和充要条件的判断,以及逻辑联结词(且、或、非)的运用。
二、函数函数是高中数学的核心内容。
首先要理解函数的概念,包括定义域、值域和对应关系。
常见的函数类型有一次函数、二次函数、反比例函数、指数函数、对数函数和幂函数等。
考生需要掌握这些函数的图像和性质,如单调性、奇偶性、周期性等。
函数的应用也是重要考点,比如通过建立函数模型解决实际问题,如利润最大、成本最小等优化问题。
三、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
要熟练掌握三角函数的定义、诱导公式、图像和性质。
解三角形是三角函数的重要应用,需要运用正弦定理和余弦定理来求解三角形的边长、角度和面积等问题。
四、数列数列是按照一定顺序排列的数。
等差数列和等比数列是重点,要掌握它们的通项公式、前 n 项和公式,以及数列的性质和递推关系。
数列的综合应用也是常见考点,比如与不等式结合考查。
五、平面向量平面向量包括向量的概念、线性运算(加法、减法、数乘)、数量积等。
要理解向量的坐标表示以及向量在几何问题中的应用,如证明平行、垂直关系,计算夹角和距离等。
六、不等式不等式包括一元一次不等式、一元二次不等式、简单的线性规划和基本不等式。
掌握不等式的解法和应用,特别是基本不等式在求最值问题中的应用。
七、立体几何立体几何主要考查空间几何体的结构特征、表面积和体积的计算,以及空间点、线、面的位置关系。
要掌握直线与平面、平面与平面平行和垂直的判定和性质定理,并能够运用空间向量法解决立体几何问题。
上海市高中数学知识点总结
上海市高中数学知识点总结一、集合与函数概念1. 集合的含义、表示方法以及集合与集合之间的关系;2. 集合的运算,包括交集、并集、补集;3. 函数的概念、函数的性质、函数的运算;4. 函数的图像、函数的变换、反函数的概念;5. 常见函数类型,如一次函数、二次函数、指数函数、对数函数、三角函数等。
二、数列与数学归纳法1. 数列的概念、数列的通项公式;2. 等差数列与等比数列的性质、求和公式;3. 数列的极限概念及其计算;4. 数学归纳法的原理与应用。
三、排列组合与概率1. 排列组合的基本概念、公式及计算方法;2. 二项式定理及其应用;3. 事件的概率、条件概率、独立事件的概率;4. 随机事件的概率计算、期望值与方差。
四、三角函数与三角恒等变换1. 三角函数的定义、性质和图像;2. 三角函数的基本关系式、三角函数的和差公式;3. 三角函数的倍角公式、半角公式;4. 三角函数的积化和差公式、和差化积公式。
五、平面向量与解析几何1. 向量的基本概念、线性运算、数量积;2. 向量的几何意义、向量的坐标表示;3. 直线的方程、圆的方程;4. 圆锥曲线的方程及其性质。
六、立体几何1. 空间几何体的基本概念、性质;2. 空间直线与平面的位置关系;3. 立体图形的表面积与体积计算;4. 空间向量及其在立体几何中的应用。
七、微积分1. 导数的定义、性质、运算法则;2. 函数的极值与最值问题、导数的应用;3. 不定积分的概念、积分法则;4. 定积分的概念、性质、计算方法;5. 微积分在实际问题中的应用。
八、概率论与数理统计1. 随机变量的概念、分布律、期望与方差;2. 离散型随机变量与连续型随机变量;3. 多维随机变量及其分布;4. 大数定律与中心极限定理;5. 样本及其分布、参数估计、假设检验。
九、数学思维与方法1. 逻辑推理、数学归纳与演绎;2. 数学建模与问题解决策略;3. 创新思维在数学学习中的应用;4. 数学思想方法的历史发展与现代教育意义。
上海高中数学知识点全总结
上海高中数学知识点全总结一、代数与函数1. 集合与函数的概念集合的基本概念、表示法和运算;函数的定义、性质和运算;特殊函数(如一次函数、二次函数、幂函数、指数函数、对数函数、三角函数)的图像和性质。
2. 代数式的运算整式的加减乘除、因式分解;分式的约分和通分;多项式的根的求解;复数的基本概念和运算。
3. 不等式一元一次不等式和一元二次不等式的解法;不等式的证明;绝对值不等式的解集求解。
4. 函数的极限与连续性数列极限的概念和性质;函数极限的定义、性质和计算;无穷小量和无穷大量的概念;函数的连续性。
5. 导数与微分导数的定义、几何意义和物理意义;常见函数的导数;高阶导数;隐函数的求导;微分的概念和应用。
6. 函数的极值与最值问题极值存在的条件;最值的求解方法;实际问题中的最大值和最小值问题。
7. 函数的图像与性质函数的单调性、奇偶性、周期性;三角函数的图像和性质;指数函数和对数函数的图像;反函数的概念。
二、几何1. 平面几何点、线、面的基本性质;直线和圆的方程;圆锥曲线(椭圆、双曲线、抛物线)的方程和性质;多边形的面积和几何变换。
2. 空间几何空间直线和平面的方程;空间向量的基本概念和运算;立体几何图形(棱柱、棱锥、圆柱、圆锥、球)的体积和表面积计算;空间几何体的外接和内切问题。
3. 解析几何坐标系的建立和应用;曲线的参数方程;极坐标系和直角坐标系的转换;曲线的对称性。
三、概率与统计1. 概率论基础随机事件的概率;条件概率和独立事件;贝叶斯定理;随机变量及其分布;离散型和连续型随机变量的概率密度函数。
2. 统计学基础数据的收集和整理;平均数、中位数、众数、方差、标准差的概念和计算;数据的图形表示(如直方图、箱线图);线性回归分析。
四、数学分析1. 数列的极限数列极限的概念;数列极限的性质;无穷等比数列的极限;级数的概念和收敛性。
2. 函数的极限与连续性函数极限的ε-δ定义;连续函数的性质和分类;闭区间上连续函数的性质。
(word完整版)上海高中高考数学知识点总结(大全),推荐文档
上海高中高考数学知识点总结(大全)、集合与常用逻辑1 •集合概念 元素:互异性、无序性2 .集合运算全集U:如U=R交集:A B {xx A 且 x B} 并集:A B {xx A或 x BB补集:C U A {xx U 且x A}3 •集合关系空集A子集A B :任意x A x BABB注:数形结合---文氏图、数轴4.四种命题原命题:若p 贝y q否命题:若 p 则 q逆否命题:若5 .充分必要条件p 是q 的充分条件:P qp 是q 的必要条件:P q②p 、q 同真? “ p A q ”真 ③p 、q 都假?“p V q ”假7.全称命题、存在性命题的否定M, p(x )否定为: M, p(X) M, p(x )否定为: M, p(X)逆命题:若原命题逆否命题 否命题 逆命题 p 是q 的充要条件: 6 .复合命题的真值①q 真(假)?p? qq ”假(真)、不等式1•一元二次不等式解法若a0, 2axbx c0有两实根,(),则2ax bx c 0解集( ,)2ax bx c 0解集( ,)(,)注:若a 0,转化为a 0情况2 •其它不等式解法一转化2 2x a a x a x ax a x a 或 x a x 2 a 2三、函数概念与性质1.奇偶性f(x)偶函数 f( x) f (x)f(x)图象关于y 轴对称 f(x)奇函数 f( x)f(x)f(x)图象关于原点对称注:①f(x)有奇偶性定义域关于原点对称② f(x)奇函数,在x=0有定义 f(0)=0③“奇+奇=奇”(公共定义域内)2 .单调性f(x)g(x )f(x)g(x )0 f (x)a g(x) f (x) g(x)( a 1) f (x) log a f (x) log a g(x) f(x)3 .基本不等式 ① a 2 b 2 2ab② 若 a, b R ,贝U -一-: ab2注:用均值不等式a b 2 . ab 、 求最值条件是“一正二定三相等”(0 ag(x)aba b(〒)f(x)增函数:X i V X 2f(X i ) V f(X 2) 或 X l > X 2 f(x 1) > f(x 2)或空f(X 2)X i X 2f(X )减函数:?注:①判断单调性必须考虑定义域② f(X )单调性判断定义法、图象法、性质法“增 +增=增” ③ 奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反3 •周期性T 是f(x)周期 f(x T) f(X )恒成立(常数T 0)四、基本初等函数1.指数式a 01 (a 0)n二次函数 解析式:f(x)=axf(x)=a(x-x2+bx+c , f(x)=a(x-h)2)1)(x-x 2+k对称轴:2a顶点:2a4 ac b 2 )单调性:a>0,一]递减,[a2a)递增石,f(X)4 acb 2min奇偶性: 闭区间上最值:配方法、 f(x)=ax2+bx+c 是偶函数图象法、讨论法 注意对称轴与区间的位置关系 注:一次函数b=0f(x)=ax+b 奇函数 b=02.对数式log a N b a b N (a>0,a 工1)log a MN log a M log a NMlog a ——N log a M log a N log a M nn log a M常用对数 lg N log 10 N , lg 2 lg 5 1自然对数 ln N log e N , In e 1y x 在第一象限图象如下:五、函数图像与方程1.描点法 特殊点如零点、最值点等 象变换移:“左加右减,上正下lOg a blog m b log m alg b lg alog a b log a nb n1 log b a注:性质log a l 0log a a 1 a loga N N注:y=a x 与y=log a x 图象关于y=x 对称(互为反函数) 1 4 •幕函数 y x 2, y x 3, y x 2, y x 1y f(x) y f(x h)每一点的横坐标变为原来的倍 1 、伸缩:y f (x) y f ( x)对称:“对称谁,谁不变,对称原点都要变”y f(x)x轴y f(x)y f(x)y轴y f( x)y f(x)原点y f( x)直线x a注:y f (x) y f (2a x) 翻折:y f (x) y | f (x) |保留x轴上方部分,并将下方部分沿x轴翻折到上方y J.•一r 1y=f(x)\ /\ / 一y\ r\ /■ 1y=|f(x)|\ ra o~飞"x~^a o c y f (x) y f (| x |)保留y轴右边部分,并将右边部分沿y轴翻折到左边打y=f(x)y y=f(|x|)\ IT"\ /\a 0―b=c+x3 .零点定理若f(a)f(b) 0,则y f (x)在(a,b)内有零点(条件:f (x)在[a,b]上图象连续不间断)注:①f(x)零点:f(x) 0的实根②在[a, b]上连续的单调函数f(x) , f (a)f (b) 0则f (x)在(a,b)上有且仅有一个零点③二分法判断函数零点---f (a) f (b) 0 ?六、三角函数1 •概念第二象限角(2k —,2k ) ( k Z )21扇形面积S -lr23 •定义 sin—cos x tanyr rx其中P(x, y)是终边上一点,PO r4 .符号“一正全、二正弦、三正切、四余弦”5 •诱导公式:“奇变偶不变,符号看象限”如 Sin(2) sin , cos( /2 ) sin6 .7 .基本公式同角sin2cos 2 1sintancos和差sin sin cos cos sincos cos cossin sintantan tan1 tantan倍角si n22sin cosco2 2 ・2cos sin 2c°s 1 1 2sirftan 2降幕2cos a =1 cos2 ・ 2sina :=1 cos2222 •弧长 I3 s in cos 2sin( —)6 asin bcos 、a2b2sin( ) (tan叠力口sin cos 2sin(2 ta n 1 tan2单调性:(—)增(0,)减(—)增2 2 2 2注: k Z9 •解三角形基本关系: si n( A+B)=s inC cos(A+B)=-cosC.A B Ctan(A+B)--tanC sin cos正弦定理:a =b = csin A si nB si nCa 2Rsi nA a:b:c sin A:si nB:si nC余弦定理:a2=b2+c2—2bccosA (求边)b2 2 2cosA- (求角)2bc面积公式:「1S^= abs inC2注:ABC 中,A+B+C= AB si nA sin Ba2> b2+c2? / A > —2七、数列1、等差数列定义:a n 1a nd通项: a n a 1 (n 1)d求和:n(ai an) 1Sn- - na 1n(n 1)d 2 2中项:a cb( a,b,c 成等差)2性质: 若 m n p q ,贝V a m a n a p a q2、等比数列定义: a n 1q(q 0)a n通项:n 1a n dqg (q 1)求和:S-葺q n )(q 1)1 q中项:b 2 ac ( a, b,c 成等比)性质: 若 m n p q贝U a m a n a p a q3、数列通项与前n 项和的关系S ! a 1 (n 1)a nS n S n i ( n 2)4、数列求和常用方法公式法、裂项法、错位相减法、倒序相加法八、平面向量1 .向量加减三角形法则,平行四边形法则ABBCAC 首尾相接,O B OC =CB 共始点__ .. _ 4■中点公式: ABAC2ADD 是BC 中点—*―F b )COS 、,、, 、,、,2.向量数量积a b ==X 1X 2 y 1 目 2- f e- ―1-注:①a , b 夹角 :0°<0< 1800②a,b 同向:2e 2 ( 6i ,e 2不共线--基底)九、复数与推理证明1 .复数概念复数:z a bi (a,b R), 实部 a 、虚部b分类: 实数(b 0),虚数(b 0),复数集C注:z 是纯虚数 a0,b 0相等: 实、虚- 部分别相等共轭: z abi模::z Va 2b 2z z z 2复平面:复数z 对应的点(a,b )2 •复数运算加减:(a+bi )± (c+di )= ? 乘法:(a+bi ) (c+di)=?除法:a bi =(a bi)(c di) 除法: c di (c di)(c di)乘方:i 2 1・n ,i・4k ri・ri3 .合情推理类比: 特殊推出 特殊归纳: 特殊推出般演绎:一般导出特殊(大前题f 小前题f 结论) 4 .直接与间接证明综合法:由因导果比较法:作差一变形一判断一结论 反证法:反设一推理一矛盾一结论平行:a//bX”2 X 2y i (b 0)垂直:a b x 1 x 2模: (ab)2夹角: cos |a||b|注:①0// a (结合律)不成立(消去律) 不成立分析法:执果索因分析法书写格式:要证A为真,只要证B为真,即证……, 这只要证C为真,而已知C为真,故A必为真注:常用分析法探索证明途径,综合法写证明过程5 .数学归纳法:(1) 验证当n=1时命题成立,(2) 假设当n=k(k N* , k 1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角范围0,斜率k tanx2 x-i注:直线向上方向与x轴正方向所成的最小正角倾斜角为90时,斜率不存在2、直线方程点斜式y y o k(x X。
(完整word版)上海高中高考数学知识点总结(大全)(良心出品必属精品)
上海高中高考数学知识点总结(大全)一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且I 并集:}{B x A x x B A ∈∈=⋃或 补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ 子集B A ⊆:任意B x A x ∈⇒∈B A B B A B A A B A ⊆⇔=⊆⇔=Y I注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真)②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定 ∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα 02>++c bx ax 解集),(),(+∞-∞βαY注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T )4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0 闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n naa 1=- m n m na a = 2.对数式b N a =log N a b =⇔(a>0,a ≠1)N M MN a a a log log log +=N M NMa a alog log log -= M n M a n a log log =a b b m m a log log log =ablg lg = n a a b b nlog log =ab log 1=注:性质01log=a1log=aaNa N a=log常用对数NN10loglg=,15lg2lg=+自然对数NNelogln=,1ln=e3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x图象关于y=x对称(互为反函数)4.幂函数12132,,,-====xyxyxyxyαxy=在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调)取特殊点如零点、最值点等2.图象变换平移:“左加右减,上正下负”α>101<<αα<0)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方y=f(x)cb aoyxy=|f(x)|cb aoyx→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边y=f(x)cb aoyxy=f(|x|)cb aoyx3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断) 注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ? 六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21= 3.定义 ry =αsin r x =αcos xy =αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 6.特殊角的三角函数值α6π4π 3π 2π π23π sin α 0 21 22 23 1 0 1-cos α 1 23 22 21 0 1-0 tg α 033 13/0 /7.基本公式同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos μ=± ()βαβαβαtan tan 1tan tan tan μ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α-叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数偶函数奇函数 周期2π2ππ 对称轴 2/ππ+=k x πk x =无中心()0,πk()0,2/ππk + ()0,2/πk注:Z k ∈ 9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A asin =Bb sin =CcsinA R a sin 2= CB A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bccosA (求边)cosA=bca cb 2222-+(求角)面积公式:S △=21absinC注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则q p n m a a a a +=+ 2、等比数列 定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn 4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2.向量数量积 b a ⋅=θcos ⋅⋅b a =2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向: b a b a ⋅=⋅3.基本定理 2211e e a ρρρλλ+=(21,e e ρρ不共线--基底) 平行:⇔b a //b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x模:a ρ=22y x + Λ=+=+22)(b a b a夹角:=θcos ||||b a ba ⋅注:①0ρ∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -= 模:22b a z += 2z z z =⋅ 复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i r r k i i =+43.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……,这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程 5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==- 注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x 一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件)平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:0022Ax By Cd A B++=+5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r 圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭ 半径2242D E Fr +-=6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外 7、直线截圆所得弦长222AB r d =-位置关系 相切 相交 相离几何特征 d r =d r <d r >代数特征 0=△0>△0<△十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0) 顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +) 2a 、2b:椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴) 开口(向右) 范围x ≥0 离心率e=1 焦点)0,2(p F准线2p x -=十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式程序框 名称 功能起止框 起始和结束输入、输出框 输入和输出的信息 处理框 赋值、计算判断框 判断某一条件是否成立循环框重复操作以及运算1输入语句:INPUT “提示内容”;变量2输出语句:PRINT“提示内容”;表达式3赋值语句:变量=表达式4条件语句“IF—THEN—ELSE”语句“IF—THEN”语句IF 条件 THEN IF 条件 THEN 语句1 语句ELSE END IF语句2END IF5循环语句当型循环语句直到型循环语句WHILE 条件 DO循环体循环体WEND LOOP UNTIL 条件当型“先判断后循环”直到型“先循环后判断”三.算法案例1、求两个数的最大公约数辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n+a n-1x n-1+….+a1x+a0的求值秦九韶算法: v1=a n x+a n-1 v2=v1x+a n-2v3=v2x+a n-3 v n=v n-1x+a0注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a k a k a k a a a a n n n n n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法” 例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=2 48=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3 S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件: ①不共线的三点 ②一条直线和这直线外一点 ③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。
上海高考数学知识点重点详解
上海高考数学知识点重点详解近几年来,上海高考数学的难度水平逐渐提高,要想在上海高考取得好成绩,对数学知识点的掌握至关重要。
下面将详细介绍上海高考数学的一些重点知识点。
一、函数与方程函数与方程是上海高考数学的基础,也是数学的核心概念。
在这个知识点中,主要包括函数的定义与理解、函数的性质、函数与方程的关系等内容。
对于函数的定义要求学生理解函数的自变量、函数值和函数关系的概念,并能够正确运用这些概念进行问题解决。
此外,函数与方程的关系也是该知识点中的重点内容,要求学生能够通过方程推断函数的性质,并通过函数绘图找到方程的解。
二、数列与数列的极限数列与数列的极限是高中数学的经典知识点,也是上海高考数学中的重点内容。
在数列与数列的极限这一知识点中,要求学生熟练掌握数列的定义、数列的性质和数列的收敛性等内容。
学生需要能够判断数列的递增性或递减性,找到数列的通项公式,并能够根据数列的性质进行数列极限的证明。
此外,学生还需要掌握数列极限的计算方法,包括夹逼准则、数列极限的性质等。
三、平面几何与立体几何平面几何与立体几何是上海高考数学中的另一个重点知识点。
在这个知识点中,要求学生熟练掌握平面几何与立体几何的基本概念和理论,并能够灵活运用这些概念进行问题解决。
其中,平面几何主要包括平面图形的性质、平面几何的条件判断和平面图形的计算等内容;立体几何主要包括空间几何的基本概念、空间几何的判定条件和空间几何的计算等内容。
学生需要能够正确运用平面几何与立体几何的理论和方法,进行相关问题的解决。
四、概率与统计概率与统计是上海高考数学中的必考内容,也是数学中的重要组成部分。
在这个知识点中,学生需要掌握概率与统计的基本概念、概率与统计的计算方法以及概率与统计的应用等内容。
其中,概率主要包括事件的概率、事件的运算法则和概率的计算方法等内容;统计主要包括统计的基本概念、统计的参数估计和统计的假设检验等内容。
学生需要能够正确运用概率与统计的知识,解决实际问题。
上海高三数学各章节知识点
上海高三数学各章节知识点在上海高三数学课程中,学生将接触到许多重要的章节和知识点。
本文将针对这些章节和知识点进行详细介绍,帮助学生更好地理解和掌握数学知识。
一、函数与极限1. 函数的定义与性质:介绍函数的概念、定义和常见的函数类型,包括一次函数、二次函数、指数函数、对数函数等。
2. 极限与连续:讲解极限的概念与判断方法,以及函数的连续性与间断点的判定。
二、导数与微分1. 导数的定义与计算:介绍导数的概念、几何意义和计算方法,包括导数的四则运算、求导法则等。
2. 函数的单调性与极值:讲解函数的单调性、最大值和最小值的判定方法,以及应用题的解题思路。
三、数列与数学归纳法1. 等差数列和等比数列:介绍等差数列和等比数列的概念、通项公式、前n项和公式等。
2. 数列极限与无穷级数:讲解数列的极限概念与判定方法,以及无穷级数的收敛性与求和公式。
四、三角函数与向量1. 三角函数的定义与性质:介绍正弦函数、余弦函数、正切函数等的定义、周期性与图像。
2. 向量的基本概念与运算:讲解向量的定义、坐标表示、数量积、向量夹角等。
五、平面解析几何与立体几何1. 平面几何基础知识:介绍平面内的基本图形、相交关系、相似与全等等。
2. 空间几何基本知识:讲解空间内的基本图形、平行与垂直关系、投影等。
六、概率与统计1. 概率基本概念:介绍随机事件、样本空间、概率的定义与性质等。
2. 统计基本知识:讲解统计学中的样本调查、数据分析、频率分布等。
总结:上海高三数学课程中的各章节和知识点涵盖了函数与极限、导数与微分、数列与数学归纳法、三角函数与向量、平面解析几何与立体几何、概率与统计等方面。
通过学习这些内容,学生能够全面理解数学的基本概念与方法,提高数学解题能力,为高考和未来的学习打下坚实的数学基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学基础知识点——(备考精简版)(第二版)目录第一章集合与命题、充要条件 (01)一、集合 (01)二、命题 (03)三、充要条件 (04)第二章不等式 (05)一、不等式的基本性质 (05)二、不等式的解法 (05)三、基本不等式 (07)四、不等式的证明(理) (08)第三章函数的基本性质 (09)一、函数的有关概念 (09)二、函数的三要素 (10)三、反函数 (11)四、函数的基本性质 (12)第四章基本初等函数 (19)一、正比例函数、反比例函数及其变型 (19)二、二次函数的概念与性质 (20)三、幂函数、指数函数与对数函数 (24)四、抽象函数 (28)第五章三角比与解斜三角形 (30)一、任意角的有关概念 (30)二、同角三角比 (31)三、三角比恒等式及其应用 (33)四、解斜三角形 (34)第六章三角函数与反三角函数 (37)一、三角函数的图像与性质 (37)二、形如y A sin(x ) B 的函数... . (38)三、反三角函数的图像与性质 (40)四、三角方程的解法 (41)第七章数列与数学归纳法 (43)一、数列的有关概念 (43)二、等差数列的概念与性质 (43)三、等比数列的概念与性质... (45)四、数列通项的求法 (46)五、数列求和的方法 (47)六、数列的极限 (48)七、数学归纳法 (50)第八章算法初步 (51)一、算法的有关概念 (51)二、算法流程图 (51)第九章行列式与矩阵初步 (54)一、行列式初步 (54)二、矩阵初步 (55)第十章平面向量 (59)一、平面向量的概念与运算 (59)二、平面向量的数量积及其应用 (61)三、平面向量基本定理 (62)第十一章坐标平面上的直线 (64)一、直线的倾斜角与斜率 (64)二、直线的方程 (64)三、点与直线的位置关系 (65)四、直线与直线的位置关系 (66)五、简单线性规划(文) (67)第十二章圆锥曲线 (69)一、曲线与方程 (69)二、圆 (69)三、椭圆的性质与应用 (71)四、双曲线的性质与应用 (72)五、抛物线的性质与应用 (74)六、直线与圆锥曲线 (75)七、参数方程与极坐标初步(理) (77)第十三章复数初步 (80)一、复数的有关概念 (80)二、复数的运算 (80)三、复数的几何意义 (81)四、实系数一元二次方程的解法 (82)第十四章空间直线与平面 (84)一、平面及其基本性质 (84)二、空间两条直线 (84)三、空间直线与平面 (85)四、空间两个平面 (87)五、空间向量在立体几何中的应用(理) (88)第十五章多面体与旋转体 (91)一、多面体的概念与性质 (91)二、旋转体的概念与性质 (92)三、多面体与旋转体的体积 (94)第十六章排列组合与二项式定理 (97)一、计数原理 (97)二、排列与组合 (97)三、二项式定理 (98)第十七章概率与统计初步 (100)一、概率初步 (100)二、统计初步 (102)第一章集合与命题、充要条件一、集合1.集合的有关概念⑴集合的定义:具有某种共同的确定的属性的元素的全体。
用大写的英文字母表示:A , B , C ,,其中的元素用小写的英文字母表示:a , b , c⑵集合与元素的关系:x 属于A :x A ;x 不属于A :x A ; ⑶集合中元素的基本性质:确定性、互异性、无序性;⑷集合的分类:①按元素个数分:有限集、无限集;空集、一元集、多元集。
空集的特点:没有元素的集合称为空集,记作;0,0,,0, ; 空集是任意集合的子集,是任意非空集合的真子集。
②按元素性质分:数集、点集等。
A {x | y }表示函数的定义域;A {y | y }表示函数的值域;A {f (x )|f (x ) }表示一个函数组成的集合;A {x ,y|y} 表示曲线上的点组成的集合;⑸集合的表示方法: ①列举法:a 1,a 2,a 3;②描述法:{x |x 的属性};③字母法:N N Z Q R C ;其中:N *:正整数集,N :自然数集,I : 虚数集,C :复数集;2.子集的概念与性质 Z :整数集,Q :有理数集,C R Q :无理数集,R :实数集, ⑴子集的定义: A B : x A x B ;⑵集合与集合的关系:①A 是B 的子集:A B ;②A 是B 的真子集:A B ;B 中至少含有一个元素不属于A ;③*A 不是B的子集:A B;④A与B相等:AB A B且B A;⑶子集的性质:①A,A( A ), A A;②A B :A B, 且B A ;③A B, B C A C ;④A B C U B C U A A B A A B B A C U BCU A B U ;⑷子集个数公式:集合A 含有n 个元素,则:集合A 的子集个数为2n ,真子集个数为2n 1 ,非空子集个数为2n 1,非空真子集个数为2n 2 。
3.集合的运算⑴交集:A B {x | x A 且x B};交集的性质:A B B A; A A A;A ; AB A; AB B;⑵并集:A B {x | x A 或x B};并集的性质:A B B A; A A A;A A; AB A; AB B;⑶补集:C I A{x|x I且x A};其中I称为全集。
补集的性质:A I ;C I A I ; A C I A ; A C I A I ;C I (C I A ) A;注:补集思想在解题中有着很重要的作用;4.Ven 图⑴两个集合的Ven 图:①:A B ②:A C I B③:BC I A ④:C I A C I B⑵三个集合的Ven 图:①:A B C ②:A B C I C③:A C C I B④:B C C I A⑤:A C IBC I C ⑥:B C I C C I A⑦:C C I A C I B⑧:C I A C I BC I C5.集合运算律⑴交换律:A B B A,A B B A;⑵结合律:(A B)C A(B C),(A B)C A(B C);⑶分配律:(A B)C(A C)(B C),(A B)C(A C)(B C);⑷摩根定律:C I ( A B) C I A C I B,C I ( A B) C I A C I B;二、命题1.命题的定义:一个可以确定真假的判断语句叫作一个命题。
其形式均可改写为:“如果,那么。
”或“若,则。
”2.命题的分类⑴按正确与否分:真命题,假命题;真假命题的判断方法:判断真命题,需要证明;判断假命题,只需举一个反例即可。
⑵按命题形式分:简单命题,复合命题;3.复合命题的形式⑴逻辑与:P 且Q ,记作P Q ,一假必假;⑵逻辑或:P 或Q ,记作P Q ,一真必真;⑶逻辑非:非P ,记作P ,真假互换;4.命题的四种形式⑴四种形式:①原命题:p q; ②逆命题:q p; ③否命题:p q; ④逆否命题:q p;⑵四种形式的有关结论:①否命题是条件与结论均否,不同于命题的否定形式,即非命题;②原命题等价于逆否命题,逆命题与否命题等价;③原命题为真,则逆否命题为真,逆命题与否命题不一定为真;④对于以否定形式出现的问题,通常转化为其等价命题来判定;5.语句的否定形式其中:“”为全称变量,读作“对任意的”;“”为特称变量,读作“存在”。
6.反证法原理与运用⑴反证法的步骤:假设结论的否定形式正确,推导出矛盾,则原结论正确。
⑵矛盾的四种形式:①与生活常识矛盾;②与已知条件矛盾;③与公理矛盾;④与定理矛盾;⑤自相矛盾;等等注意:在证明有关命题时,多会用到②④⑤条。
三、充要条件1.定义:P Q :命题P 是命题Q 的充分条件,命题Q 是命题P 的必要条件。
2.条件的四种形式⑴P Q且Q P:命题P是命题Q的充分非必要条件;⑵Q P且P Q:命题P是命题Q的必要非充分条件;⑶P Q 且Q P :命题P 是命题Q 的充分必要条件;⑷P Q且Q P:命题P是命题Q的非充分非必要条件;3.条件的求法⑴求命题P 的充分条件:求能推出命题P 的命题;⑵求命题P 的必要条件:求命题P 能推出的命题;⑶求命题P 的充要条件:求与命题P 能相互推出的命题;4.条件的集合表示记满足命题P 的所有元素组成集合A ;满足命题Q 的所有元素组成集合B ;则:⑴当A B 时,P 是Q 的充分条件;若A B, 则P 是Q 的充分非必要条件;⑵当B A 时,P 是Q 的必要条件;若B A, 则P 是Q 的必要非充分条件;⑶当A B 时,P 是Q 的充要条件;这就意味着P 和Q 是可以相互推出的;⑷当A B 且B A 时,P 是Q 的非充分非必要条件;注:小范围能推出大范围,大范围不能推出小范围;第二章不等式一、不等式的基本性质1.对称性:a b b a ;2.传递性:a b ,b c a c ;3.可加性:a b a c b c ;4.可乘性:a b , c 0 ac bc ; a b , c 0 ac bc ;5.叠加性:a b , c d a c b d , a d b c ;6.叠乘性:a b 0, c d 0 ac bd ,a b;a b0, c d 0 ac bd , a b;d c d c1 1 1 1 1 17.可倒性:a b ,ab 0;a b 0 0 ,0a b 0;a b a b a b8.乘方开方性:a b 0a n b n ,n a n b ,(n N );9.分式放缩性:a b m 0b m b b m;a m a a m10.指数放缩性:0 a 1 a a 2 a n;a 1 aa 2 a n;二、不等式的解法 1.整式不等式的解法:⑴一元一次不等式的解法:ax b :当a 0 时,x b ;当a 0 时,x b;a a当a 0, b 0 时,x,当a 0, b 0 时,x R 。
⑵一元二次不等式的解法:f (x ) ax 2 bx c (a 0), x x ;1 2⑶一元高次不等式的解法:f (x ) a 0 (x x 1)(x x 2 )(xx n )(a0 0) ;序轴标根法:f (x)0:位于序轴上方的区间;f(x)0:位于序轴下方的区间;⎩⎩⎩注意:①各因式x 前的系数必须为正数; ②从最大根右侧的上方画起;③可取的根画实圈,不可取的根画空圈; ④奇重根直接穿过,偶重根反弹;俗称“奇穿偶不穿”。
2.分式不等式的解法:f (x) 0 f (x )g (x ) 0, f (x )0 f (x )g (x ) 0 ; g (x ) g (x )g (x) 0f(x ) f (x ) g (x )h (x )f (x )g (x )h (x )g (x) 0h (x ) 0;g (x ) g (x )g (x)分式不等式也可用序轴标根法解之,在前面的基础上我们还需注意: ①不能对角相乘,只能移项通分;②分母不能为零,分母为零处画空圈;注意:对于可以作出图像的分式不等式,也可用数形结合法解之,方便快捷;3.绝对值不等式的解法:定义法,平方法,公式法,零点分段讨论等。