一元一次方程知识点及经典例题
一元一次方程经典例题讲解解析
一元一次方程知识点梳理1.一元一次方程的有关概念(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0,这样的方程叫做一元一次方程. 2.等式的基本性质(1)等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式。
用字母表示若a=b ,则a+m=b+m ,a-m=b-m(2)等式的两边都乘以同一个数或都除以同一个数(除数不为0),所得的结果仍是等式. 用字母表示:若a=b,则am=bm,n a =nb(n 不为0) 3.解一元一次方程的基本步骤:例1、解方程(1)y-522-=例2、由两个方程的解相同求方程中子母的值已知方程104x x =-的解与方程522x m +=的解相同,求m 的值.例3 、解方程知识与绝对值知识综合题型 解方程:73|12|=-x一元一次方程应用题(找出等量关系) 一 、列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案. 1、数字问题要搞清楚数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9)则这个三位数表示为:100a+10b+c 。
例1、 若三个连续的偶数和为18,求这三个数。
例2、 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数等量关系:原两位数+36=对调后新两位数例3、有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
一元一次方程应用题公式大全
一元一次方程应用题公式大全一、行程问题。
1. 基本公式。
- 路程 = 速度×时间(s = vt)。
- 速度=s÷ t,时间=s÷ v。
2. 相遇问题。
- 公式:s_总=v_1t + v_2t=(v_1+v_2)t(s_总表示总路程,v_1、v_2分别表示两者的速度,t表示相遇时间)。
- 例题:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲的速度是3千米/小时,乙的速度是2千米/小时,几小时后两人相遇?- 解析:设t小时后两人相遇。
根据相遇问题公式s_总=(v_1+v_2)t,这里s_总 = 20千米,v_1=3千米/小时,v_2=2千米/小时。
则(3 + 2)t=20,5t = 20,解得t = 4小时。
3. 追及问题。
- 公式:s_追及=v_1t - v_2t=(v_1-v_2)t(s_追及表示追及路程,v_1表示快者速度,v_2表示慢者速度,t表示追及时间)。
- 例题:甲、乙两人相距5千米,甲以6千米/小时的速度追赶乙,乙以4千米/小时的速度逃跑,甲几小时能追上乙?- 解析:设甲t小时能追上乙。
根据追及问题公式s_追及=(v_1-v_2)t,这里s_追及=5千米,v_1=6千米/小时,v_2=4千米/小时。
则(6 - 4)t=5,2t = 5,解得t = 2.5小时。
二、工程问题。
- 工作总量 = 工作效率×工作时间(W = p× t)。
- 工作效率=W÷ t,工作时间=W÷ p。
通常把工作总量看成单位“1”。
2. 合作问题。
- 公式:1=(p_1+p_2)t(p_1、p_2分别表示两者的工作效率,t表示合作时间)。
- 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要几天完成?- 解析:设两人合作需要t天完成。
甲的工作效率p_1=(1)/(10),乙的工作效率p_2=(1)/(15)。
根据合作问题公式1 = ((1)/(10)+(1)/(15))t,(1)/(10)+(1)/(15)=(3 +2)/(30)=(1)/(6),则(1)/(6)t = 1,解得t = 6天。
清单03一元一次方程(五大考点梳理题型解读解决实际问题12种题型)(原卷版)
清单03 一元一次方程(五大考点梳理+题型解读+解决实际问题12种题型)【知识导图】【知识清单】考点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.【例1】(2022秋•颍州区期末)下列各式中,是方程的个数为()①x=0;②3x﹣5=2x+1;③2x+6;④x﹣y=0;⑤=5y+3;⑥a2+a﹣6=0.A.2个B.3个C.5个D.4个2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.细节剖析:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.【例2】(2022秋•汉台区期末)已知(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则()A.m=2B.m=﹣3C.m=±3D.m=13.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.【例3】(2023春•蒸湘区校级期末)若x=﹣1是方程2x+m﹣6=0的解,则m的值是()A.﹣4B.4C.﹣8D.8【变式】(2022秋•宁阳县期末)若一元一次方程ax+b=0的解是x=1,则a,b的关系为()A.相等B.互为相反数C.互为倒数D.互为负倒数4.解方程:求方程的解的过程叫做解方程.考点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.【例4】(2022秋•雅安期末)下列等式变形错误的是()A.若,则x﹣1=2xB.若x﹣1=3,则x=4C.若x﹣3=y﹣3,则x﹣y=0D.若3x+4=2x,则3x﹣2x=﹣42.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.考点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bxa(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.【例5】(2022秋•东宝区期末)解方程:(1)4﹣2x=﹣3(2﹣x);(2).考点四、列方程解应用题的步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x)③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)【例6】(2022秋•汇川区期末)如图,已知数轴上有A,B两点,它们分别表示数a,b,且(a+6)2+|b﹣12|=0.(1)填空:a=,b=;(2)点C以2个单位长度/秒的速度从点A向点B运动,到达点B后停止运动.若点D为AC中点,点E为BC中点,在点C运动过程中,线段DE的长度是否发生改变?若不变,求线段DE的长度,若变化,请说明原因;(3)在(2)的条件下,点P以1个单位长度/秒的速度同时从原点O向点B运动,P点到达B点后停止运动,问点P运动多少秒后,点P与点C相距2个单位长度?【例7】(2022秋•秦淮区期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(元/千瓦时)不超过150千瓦时的部分a 超过150千瓦时,但不超过300千瓦时的部分b 超过300千瓦时的部分a +0.32015年5月份,该市居民甲用电100千瓦时,交费60元;居民乙用电200千瓦时,交费125元. (1)求上表中a 、b 的值;(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费285元?【例8】.(2022秋•常州期末)列方程解决问题:小华和妈妈一起玩成语竞猜游戏,商定如下规则:小华猜中1个成语得2分,妈妈猜中1个成语得1分,结果两人一共猜中了30个成语,得分恰好相等.请问小华猜中了几个成语?考点五、用一元一次方程解决实际问题的常见类型 1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+ 7.数字问题;8.分配问题; 9.比赛积分问题;10.水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度水流速度).题型1.配套问题1.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?2.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?题型2.销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。
一元一次方程知识点总结
一元一次方程【知识点归纳】一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如果a=b ,那么a±c=b±c(2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=b a). 六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.2. 设:设未知数(可分直接设法,间接设法)3. 列:根据题意列方程.4. 解:解出所列方程.5. 检:检验所求的解是否符合题意.6. 答:写出答案(有单位要注明答案)七、有关常用应用类型题及各量之间的关系1. 和、差、倍、分问题:增长量=原有量×增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.(2 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S ·h = r2h②长方体的体积 V =长×宽×高=abc3. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题(1)要搞清楚数的表示方法:一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.5. 工程问题:工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=16.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.商品销售问题(1)商品利润率=商品利润商品成本价×100%(2)商品销售额=商品销售价×商品销售量(3)商品的销售利润=(销售价-成本价)×销售量(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.有关关系式:商品售价=商品标价×折扣率(5)商品利润=商品售价—商品进价=商品标价×折扣率—商品进价8. 储蓄问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)(3)利润=每个期数内的利息本金×100% 、【典型例题】一、一元一次方程的有关概念例1.一个一元一次方程的解为2,请写出这个一元一次方程 .二、一元一次方程的解例2.若关于x 的一元一次方程23132x kx k---=的解是1x =-,则k 的值是( )A . 27B .1C .1311- D .0三、一元一次方程的解法例3.如果2005200.520.05x -=-,那么x 等于( )(A)1814.55 (B)1824.55 (C)1774.45 (D)1784.45例4. 23{32[12(x-1)-3]-3}=四、一元一次方程的实际应用例5.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.例6.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?例7.(2006·益阳市)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?。
一元一次方程知识点及经典例题
一元一次方程知识点及经典例题一、知识要点梳理知识点一:方程和方程的解1.方程:含有未知数的等式叫方程。
注意:a.必须是等式b.必须含有未知数。
易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。
考法:判断是不是方程:例:下列式子:(1).8-7=1+0(2).1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:1)只含有一个未知数;2)未知数的次数是1次;3)整式方程。
2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等。
知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a+c=b+c;(c为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a=b,那么ac=bc;如果a=b(且c≠0),那么a/c=b/c。
要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6.方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤:1.变形步骤具体方法变形根据注意事项1.不能漏乘不含分母的项;去分母公倍数2.掉分母后,如果分子是多项式,则要加括号2.合并同类项1.分配律应满足分配到每一项去先去小括号,再乘法分配律、去括号2.注意符号,特别是去掉括号3.移项要变号;一般把含有未知数的项移动到方程左边,其余项移到右边4.合并同类项时,把同类项的同系数相加,字母与字母的指数不变5.未知数的系数a,成“ax=b”的形式6.方程两边同除以未知数的系数a,分子、分母不能颠倒。
初一一元一次方程所有知识点总结和常考题提高难题压轴题练习(含答案解析)
初一一元一次方程所有知识点总结和常考题【知识点归纳】一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次)的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等. 用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则 〔依据分配律:a (b+c )=ab+ac 〕1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a (或乘未知数的倒数),得到方程的解x=b a). 六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,找:明确各数量之间的关系;2. 设:设未知数(可分直接设法,间接设法), 表示出有关的含字母的式子;3. 列:根据题意列方程;4. 解:解出所列方程, 求出未知数的值;5. 检:检验所求的解是否是方程的解,是否符合题意;6. 答:写出答案(有单位要注明答案).七、有关常用应用题类型及各量之间的关系1. 和、差、倍、分问题(增长率问题): 增长量=原有量×增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,几分之几,增长率,减少,缩小……”来体现.(2)多少关系:通过关键词语“多、少、大、小、和、差、不足、剩余……”来体现.审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别.2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变(等积)为前提,是等量关系的所在.常用等量关系为:①形状面积变了,周长没变; ②原料体积=成品体积.(2)常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S ·h =πr 2h②长方体的体积 V =长×宽×高=abc3. 劳力调配问题:从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量.这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题: 要正确区分“数”与“数字”两个概念, 同一个数字在不同数位上,表示的数值不同,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系列方程.列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和.(1)要搞清楚数的表示方法:一般可设个位数字为a ,十位数字为b ,百位数字为c ,十位数可表示为10b+a ,百位数可表示为100c+10b+a (其中a 、b 、c 均为整数,且0≤a ≤9, 0≤b ≤9, 1≤c ≤9).(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n —2表示;奇数用2n+1或2n —1表示.5. 工程问题(生产、做工等类问题):工作量=工作效率×工作时间 工作时间工作量工作效率= 工作效率工作量工作时间=合做的效率=各单独做的效率的和. 一般情况下把总工作量设为1,完成某项任务的各工作量的和=总工作量=1.分析时可采用列表或画图来帮助理解题意。
2021-2022学年初一数学:一元一次方程知识点总结+典型例题
初一数学:一元一次方程知识点总结+典型例题+真题演练一、等式和方程的概念1.等式:用等号来表示相等关系的式子,叫做等式.【例】1+2=3,x +1=5,a b c mxy n ++=+,s ab =都是等式.2.等式的分类:(1)恒等式:无论用什么数值代替等式中的字母都能成立的等式; (2)条件等式:只能用某些数值代替等式中的字母才能成立的等式; (3)矛盾等式:无论用什么数值代替等式中的字母都不成立的等式. 【例】①x x x 2=3+,3=3都是恒等式;②x +5=6是条件等式;③3=2,1+2=5,x x +1=-1都是矛盾等式. 3.等式的性质:(1)若a b =,则a c b c ±=±.等式两边都加上(或减去)同一个数(或式子),所得结果仍是等式.(2)若a b =,则ac bc =;若a b =且0c ≠,则a bc c=.等式两边都乘以(或除以)同一个数(除数不为0),所得结果仍是等式. (3)对称性:若a b =,则b a =.(4)传递性:若a b =,b c =,则a c =. 4.方程:含有未知数的等式,叫做方程. 注意:①方程中必须含有未知数;②方程是等式,但等式不一定是方程,例如1+2=3是等式而不是方程.【例】①x 2+1=3、x 2=9、x1=6都是方程;②x +1>2、1+2=3、y ≠6不是方程. 5.方程的解:使方程左、右两边相等的未知数的值,叫做方程的解. 【例】x =4是x +1=5的解. 6.解方程:求方程的解的过程.【注】解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.二、一元一次方程的概念和解法1.一元一次方程:只含有一个未知数,并且未知数的最高次数是1的整式方程,叫做一元一次方程.2.一元一次方程的判断:Step1:不化简,看是否是整式方程;Step2:化简,看是否满足()ax b a +=0≠0.【例】x 2+3=5,x =3,x x 3+2=5-1,x x x 22+2+1=-6都是一元一次方程;x +1>2、x 2+1=9、x x1+=1、x x 2+1=2+2都不是一元一次方程.3.一元一次方程的两种形式:最简形式:方程()ax b a =≠0的形式叫一元一次方程的最简形式. 标准形式:方程()ax b a +=0≠0的形式叫一元一次方程的标准形式.【例】x 3=5,x 2=7是一元一次方程的最简形式;x 2+1=0,x -4=0是一元一次方程的标准形式.4.解一元一次方程的一般步骤: (1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系数化为1.【例】解方程()xx +1-=22解:去分母,得:()x x +21-=4去括号,得:x x +2-2=4 移项,得:x x -2=4-2 合并同类项,得:x -=2 系数化为1,得:x =-2.下列各式中,哪些是等式?是等式的请指出类型.①x 4-3; ②1+5+7=13; ③y 1-7=22; ④x x 2=3+1; ⑤.≈314π;⑥x y +=5; ⑦a b 2+>0; ⑧x x 7+1=7-1; ⑨y 6-4; ⑩x x 22=.(1)若ma mb =,那么下列等式不一定成立的是( ).A .ma mb -6=-6B .a b =C .ma mb 11-=-22D .ma mb +8=+8(2)下列判断错误的是( )A .若a b =,则ac bc -3=-3B .若a b =,则a bc c 22=+1+1C .若x =2,则x x 2=2D .若x x 2=2,则x =2(3)给出下列等式:①若a b =,则ac bc =;②若ac bc =,则a b =;③若a b =,则a b x x 22=+1+1,④如果a b 3=2+5,那么a b 25=+33.其中正确的有________.下列式子:①x x 3+2=5-1;②213⎛⎫-+=1 ⎪24⎝⎭;③x 2+35≤;④y y 2-1=2;⑤x y 2+7=365,其中是方程的是___________.(填序号)(1)下列等式:①x x +4=4+;②x1=2;③x x -4=4-;④()x x x x 2+=+2+3;⑤||x 2=3.其中是一元一次方程的有________.例题1例题2例题3例题4(2)若k kx k 3-2+2=3是关于x 的一元一次方程,则k =_______.(3)若方程||()a a x -1-2+3=0是关于x 的一元一次方程,则a =__________.(4)若方程()m x mx x 22-1-+8=是关于x 的一元一次方程,则代数式||m m 2006--1的值为( )A .1或-1B .1C .-1D .2(1)若x =2是方程x x a 3-4=-2的解,则a a201120111+的值是_________.(2)如果关于x 的一元一次方程()||m x m +2-4+8=0的解是x =0,则m 的值______.(3)如果方程||()m m x m n -1=+2是关于x 的一元一次方程,且x n =是它的解,则n m -=______.解方程:(1)()()x x x 3-2+1=-2-1(2)()()x x x 3-7-1=3-2+3(3)x x 2+15-1-=136(4)x x 1-4-1=-123(5)225353x x x ---=-(6)()()x x x 112⎡⎤+1-=+1⎢⎥233⎣⎦例题5例题6解方程:(1)..x x 4-15-2=305(2)......x x x 04+09003+002-5-=050032(3)....x x 2-03+04-=10503y ⎧⎫11⎡11⎤⎛⎫-3-3-3=1⎨⎬ ⎪⎢⎥2222⎝⎭⎣⎦⎩⎭例题7 例题8真题演练一.选择题(共16小题)1.(2021•株洲)方程﹣1=2的解是()A.x=2B.x=3C.x=5D.x=6 2.(2019•南充)关于x的一元一次方程2x a﹣2+m=4的解为x=1,则a+m的值为()A.9B.8C.5D.4 3.(2021•温州)解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x 4.(2020秋•海淀区校级期末)下列各式进行的变形中,不正确的是()A.若3a=2b,则3a+2=2b+2B.若3a=2b,则3a﹣5=2b﹣5C.若3a=2b,则D.若3a=2b,则9a=4b5.(2021春•射洪市期末)下列等式变形正确的是()A.由a=b,得4+a=4﹣b B.如果2x=3y,那么C.由mx=my,得x=y D.如果3a=6b﹣1,那么a=2b﹣16.(2021春•卧龙区期末)解方程时,小刚在去分母的过程中,右边的“﹣1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是()A.x=﹣3B.x=﹣2C.D.7.(2020秋•海淀区校级期末)下列等式变形正确的是()A.若4x=2,则x=2B.若4x﹣2=2﹣3x,则4x+3x=2﹣2C.若=1,则3(3x+1)﹣2(1﹣2x)=1D.若4(x+1)﹣3=2(x+1),则4(x+1)﹣2(x+1)=38.(2021•杭州)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x>0),则()A.60.5(1﹣x)=25B.25(1﹣x)=60.5C.60.5(1+x)=25D.25(1+x)=60.59.(2019•杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=7210.(2021•武汉)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是()A.8(x﹣3)=7(x+4)B.8x+3=7x﹣4C.=D.=11.(2021•南充)端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x元,则可列方程为()A.10x+5(x﹣1)=70B.10x+5(x+1)=70C.10(x﹣1)+5x=70D.10(x+1)+5x=7012.(2021•绵阳)近年来,网购的蓬勃发展方便了人们的生活.某快递分派站现有包裹若干件需快递员派送,若每个快递员派送10件,还剩6件;若每个快递员派送12件,还差6件,那么该分派站现有包裹()A.60件B.66件C.68件D.72件13.(2021•吉林)古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.若设这个数是x,则所列方程为()A.x+x+x=33B.x+x+x=33C.x+x+x+x=33D.x+x+x﹣x=33 14.(2021•牡丹江)已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店()A.不盈不亏B.盈利20元C.盈利10元D.亏损20元15.(2021春•新蔡县期末)已知k为整数,关于x的方程(k+2)x=3有正整数解,则满足条件的k的值有()A.1个B.2个C.3个D.无数多个16.(2021春•灌云县期末)如图,是由7块正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为()A.63B.72C.99D.110二.填空题(共10小题)17.(2021•重庆)若关于x的方程+a=4的解是x=2,则a的值为.18.(2019•济南)代数式与代数式3﹣2x的和为4,则x=.19.(2019•呼和浩特)关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,则其解为.20.(2021春•兴隆县期末)鸡和兔共有100只,鸡的脚比兔的脚多80只,则鸡有.21.(2021•大连)我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.”若设有牧童x人,根据题意,可列方程为.22.(2021•扬州)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马天追上慢马.23.(2021•烟台)幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为.24.(2021•陕西)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为.25.(2021春•盐池县期末)定义一种新的运算:a☆b=2a﹣b,例如:3☆(﹣1)=2×3﹣(﹣1)=7,那么若(﹣2)☆b=﹣16,那么b=.26.(2021春•宛城区期末)“从甲地到乙地,长途汽车原需行驶7个小时,开通高速公路后,路程缩短了30千米,车速平均每小时增加了30千米,结果只需4小时即可到达.”三位同学根据题意,分别获得如下数量关系:①设汽车原来的速度为x千米/小时,则7x﹣30=4(x+30);②设甲、乙两地之间的高速公路的路程为y千米,则﹣30=;③设甲、乙两地之间的普通公路的路程为s千米,则=﹣30.你认为其中正确的数量关系序号为.三.解答题(共14小题)27.(2021•广元)解方程:+=4.28.(2020•凉山州)解方程:x﹣=1+.29.(2021春•沐川县期末)解方程:.30.(2021春•淮阳区校级期末)解方程:﹣1=.31.(2020•杭州)以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.32.(2021春•曹县期末)某天,信美超市用360元钱按批发价从水果批发市场购买了苹果和香蕉共200kg,然后按零售价出售,苹果和香蕉当天的批发价和零售价如下表所示:品名苹果香蕉批发价(单位:元/kg) 2.0 1.5零售价(单位:元/kg) 2.4 1.8(1)这一天该超市购买苹果和香蕉各多少kg?(2)如果苹果和香蕉全部以零售价售出,该超市当天卖这些苹果和香蕉共赚了多少钱?33.(2021•台州)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.34.(2021•陕西)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.35.(2021春•闵行区期末)甲、乙两人从相距42千米的两地同时相向出发,3小时30分钟后相遇.如果乙先出发6小时,那么在甲出发1小时后与乙相遇,求甲、乙两人的速度.36.(2019•安徽)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?37.(2021•桂林)为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?38.(2021春•玉屏县期末)某中学组织一批学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆300元,60座客车租金为每辆400元,问:(1)这批学生的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位学生都有座位,应该怎样租用才合算?39.(2019•黄石)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?40.(2021春•香坊区校级期末)如图,在数轴上有A、B两点,点C是线段AB的中点,AB =12,OA=8.(1)求点C所表示的数;(2)动点P、Q分别从A、B同时出发,沿着数轴的正方向运动,点P、Q的运动速度分别是每秒3个单位和每秒2个单位(当P与Q相遇,运动停止),点M是线段PQ的中点,设运动时间为t秒,请用含t的式子表示CM的长;(3)在(2)的条件下,试问t为何值时,CM=PC.。
(完整版),一元一次方程知识点归纳及典型例题,推荐文档
2☆下列各数是方程 a2+a+3=5 的解的是( ) A.2 B. -2 C.1 D. 1 和-2
[1]由方程的定义可知,方程必须满足两个
条件:一要是等式,二要含有未知数〖见基础
练习 T1〗。
[2]方程的解的个数随方程的不同而有多有
少〖见基础练习 T2〗,但一个一元一次方程有
且只有一个解。
[3]
一元一次方程的一般形式 :
C.-3
D.-2
A. a≠b B.a>b C.a<b D.以上都对
二、【方程变形——解方程的重要依据】
1、▲等式的基本性质
·等式的性质 1:等式的两边同时加(或减)
(
),结果仍相等。
即:如果 a=b,那么 a±c=b 。
·等式的性质 2:等式的两边同时乘
,或除以
数,结果仍相等。即:如
果 a=b,那么 ac =bc 或 如果 a=b( ),那么 a/c =b/c
常见建立方程模型解实际问题的几种类型
类型 和、差、倍 、分问题
基本数量关系 ①较大量=较小量+多余量 ②总量=倍数×倍量
等量关系 抓住关键性词语
等积变 形问题
变形前后体积相等
相遇 问题
甲走的路程+乙走的路程=两地距离
行程 追及
路程=速度×时间
同地不同时出发:前者走的路程=追 者走的路程
问题 问题
同时不同地出发:前者走的路程+两
。
35
建立一元一次方程模型解实际问题的步骤:
审:分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.
设:设未知数,一般求什么就设什么为 x,但有时也可以间接设未知数.
建:把相等关系左右两边的量用含有未知数的代数式表示出来,建立方程模型.
一元一次方程知识点总结与典型例题(人教版初中数学)
一元一次方程知识点总结与典型例题一、一元一次方程 1、等式:用“=”表示相等关系的式子,叫做等式. 2、方程:含有未知数的等式叫做方程. 3、一元一次方程:只含有一个未知数,并且未知数的次数都是1,等号的两边都是整式,这样的方程叫做一元一次方程.4、判断一元一次方程的条件: ⑴首先必须是方程;⑵其次必须只含有一个未知数,且未知数的指数是1; ⑶分母中不含有未知数. 5、方程的解:使方程左右两边的值相等的未知数的值叫做方程的解.说明:方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论 6、一元一次方程都可以化为一般形式:)0(0≠=+a b ax ※典型例题知识点1:方程的概念1、下列各式中( )是方程.A .x-6B .3×6=18C .x-6=3D .20÷5=4 2、下列式子中( )是方程.A .2+3-xB .3+x >5C .3-y=1D .以上都不是 3、下列式子是方程的个数有( )A .1个B .2个C .3个D .4个 4、下列各式中,是方程的个数为( )A .1个B .2个C .3个D .4个 5、在下列各式中,方程的个数为( )A .1B .2C .3D .4 知识点2:列方程6、语句“x 的3倍比y 的21大7”用方程表示为:________________. 7、一根细铁丝用去32后还剩2m ,若设铁丝的原长为xm ,可列方程为:_________________. 8、x 的10%与y 的差比y 的2倍少3,列方程为:_____________________.9、一件衣服打八折后,售价为88元,设原价为x 元,可列方程为:__________________. 10、某校长方形的操场周长为210m ,长与宽之差为15m ,设宽为xm ,列方程为:___________________.11、若单项式是同类项,可以得到关于x 的方程为:_________________. 知识点3:方程的解12、下列方程中,2是其解的是( ) A.042=-x B.021=-x C.011=-+x x D.02=+x 13、x=1是下列哪个方程的解( )A.01=+xB.1112-=-x x x C.1=+y x D.0433=-+x x 知识点4:一元一次方程的概念14、下列方程中是一元一次方程的是( ) A.23+=+y x B.x x -=+33 C.11=xD.012=-x 15、已知下列方程:其中一元一次方程有( ) A .2个 B .3个 C .4个 D .5个16、已知是关于x 的一元一次方程,则( )A .m=2B .m=-3C .m=±3D .m=117、方程是关于x 的一元一次方程,则m ( )A .m=±1B .m=1C .m=-1D .m ≠-1 18、若方程是关于x 的一元一次方程,则a 的值为( )A.0B.21- C.1 D.2119、方程是一元一次方程,则a 和m 分别为( )A .2和4B .-2和4C .2和-4D .-2和-420、下列关于x 的方程一定是一元一次方程的是( ) A.11=-x xB.()b x a =+12 C.b ax = D.31=+x 21、若方程是关于x 的一元一次方程,则m 的值是( )二、等式的性质1、等式的性质:⑴等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质1:如果b a =,那么c b c a ±=±⑵等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.等式的性质2:如果b a =,那么bc ac =;如果()0≠=c b a ,那么cb c a = 2、解以x 为未知数的方程,就是把方程逐步转化为a x =(常数)的形式,等式的性质是转化的重要依据. ※典型例题知识点5:等式的性质1、运用等式性质进行的变形,不正确的是( )A .如果a=b ,那么a-c=b-cB .如果a=b ,那么a+c=b+cC .如果a=b ,那么cbc a = D .如果a=b ,那么ac=bc 2、下列结论错误的是( )A .若a=b ,则a-c=b-cB .若a=b ,则1122+=+c bc a C .若x=2,则x x 22= D .若ax=bx ,则a=b 3、下列说法正确的是( )A .如果ac=bc ,那么a=bB .如果cbc a =,那么a=b C .如果a=b ,那么22cb c a = D .如果y x63=-,那么x=-2y4、已知xy=mn ,则把它改写成比例式后,错误的是( ) A.y m n x = B.x n m y = C.nym x = D.y n m x =5、在公式中,以下变形正确的是( )A. B.C. D.6、根据下图所示,对a 、b 、c 三中物体的重量判断正确的是( )A .a <cB .a <bC .a >cD .b <c7、如图a 和图b 分别表示两架处于平衡状态的简易天平,对a ,b ,c 三种物体的质量判断正确的是( )A .a <c <bB .a <b <cC .c <b <aD .b <a <c 8、下列结论中不能由a+b=0得到的是( )A.ab a -=2 B .|a|=|b| C .a=0,b=0 D.22b a = 9、若2y-7x=0(xy ≠0),则x:y 等于( ) A .7:2 B .4:7 C .2:7 D .7:410、已知等式3a=2b+5,则下列等式中不一定成立的是( ) A .3a-5=2b B .3a+1=2b+6 C .3ac=2bc+5 D.11、下列说法:其中正确的结论是( )A .只有①②B .只有②④C .只有①③④D .只有①②④12、能不能由()13-=+b x a 得到等式,为什么?反之,能不能由得到()13-=+b x a ,为什么? 知识点6:利用等式的性质解方程 13、利用等式的性质解下列方程:14、已知:x=2是方程2x+m-4=0的解,则m 的值为( ) A .8 B .-8 C .0 D .215、要使关于x 方程mx=m 的解为x=1,则( ) A .m ≠0 B .m 可为任何有理数C .m >0D .m <016、若x=-3是方程k (x+4)-2k-x=5的解,则k 的值是( )A .2B .-3C .3D .-217、已知y=4是方程的解,则的值为( )A.B .8C .289D .22518、若关于x 的方程是一元一次方程,则这个方程的解是( )A .x=0B .x=3C .x=-3D .x=2 19、若方程是一元一次方程,则方程ax+b=1的解是( )A .x=6B .x=-6C .x=-8D .x=8 20、已知关于x 的方程的解满足|x|=1,则m 的值是( )A .-6B .-12C .-6或-12D .6或12 21、对|x-2|+3=4,下列说法正确的是( )A .不是方程B .是方程,其解为1C .是方程,其解为3D .是方程,其解为1,322、下列各判断句中,错误的是( ) A .方程是等式,但等式不一定是方程B .由ax=ay 这个条件不能得到x=y 一定成立的结论C .在整数范围内,方程6x=3无解D .5x =0不是方程23、若是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数24、已知关于x 的方程ax+b=c 的解是x=1,则|c-a-b-1|=_______. 25、若-2是关于x 的方程的解,则=-1001001a a________.26、已知等式(x-4)m=x-4且m ≠1,求的值.三、解一元一次方程——合并同类项与移项 1、合并同类项通过合并同类项可以把一元一次方程化为最简形式:b ax =,其中未知数的系数a 满足的条件是0≠a . 2、系数化为1:解方程系数化为1这一步的理论根据是等式的性质2. 3、移项:把等式一边的某项变号后移动到另一边,叫做移项. 4、移项的目的: 通过移项,含有未知数的项与常数项分别在等号的两边,使方程更接近b ax =的形式. 5、移项的理论根据是等式的性质1. ※典型例题知识点7:解一元一次方程——合并同类项与移项1、下列方程变形正确的是( )A .由3+x=5得x=5+3B .由7x=-4得x=47- C .由021=y 得y=2 D .由3=x-2得x=2+3 2、如果3x+2=8,那么6x+1=( ) A .11 B .26 C .13 D .-11 3、当x=3时,代数式的值为7,则a 等于( )A .2B .-2C .1D .-14、关于x 的方程2-3x=a (x-2)的解为x=-1,则a 的值为( ) A .5 B .-1 C .-5 D .35-5、如果代数式5x-7与4x+9的值互为相反数,则x 的值等于( ) A .29 B .29- C. 92 D. 92- 6、如果与是同类项,则n 是( )A .2B .1C .-1D .0 7、若与是同类项,则m 、n 的值分别为( ) A .2,-1 B .-2,1C .-1,2D .-2,-18、若“※”是新规定的某种运算符号,得x ※y=x 4+y ,则(-1)※k=6中k 的值为( ) A .-3 B .3 C .-5 D .59、已知:,则方程2m+x=n 的解为( )A .x=-4B .x=-3C .x=-2D .x=-110、解下列方程:⑴925=-x x ⑵163-=+x x ⑶x x 23273-=+ ⑷1453+=+x x⑸105.03=+-x x ⑹535.25.47-⨯=-x x ⑺1233+=-x x ⑻766531-=-x x 四、解一元一次方程——去括号与去分母1、去括号法则:括号前面是“+”号,去括号时符号不变,括号前面是“-”号,去括号时各项都变号. 2、去括号的理论根据是:乘法分配律. 3、去分母:去分母的理论根据是:等式的性质2. 4、去分母注意事项:⑴方程两边同乘的数是各分母的最小公倍数; ⑵不要漏乘不含分母的项;⑶当分子是多项式时分别乘以每一项.5、解一元一次方程的一般步骤:⑴去分母:方程两边同乘各分母的最小公倍数. ⑵去括号:按去括号法则和分配律. ⑶移项:把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号. ⑷合并同类项:把方程化成()0≠=a b ax 形式.⑸系数化为1:在方程两边都除以未知数的系数a ,得到方程的解ab x = 知识点8:解一元一次方程——去括号与去分母 1、解下列方程:⑴()0112=+-x ⑵()()72225+=+x x ⑶()()x x x 8723--=- ⑷16112131+=⎪⎭⎫ ⎝⎛--x x⑸5174732+=--x x ⑹32261+-=--x x x ⑺()()()[]6121223=+--++x x x⑻1.02.112.06.055.05.14x x x -=+--- ⑼0455.005.02.02.005.01.0=+--+x x ⑽32213415xx x --+=- 2、若方程的解与关于x 的方程的解相同,则k 的值为( )A.95 B.95- C.35 D.35- 3、如果的倒数是3,那么x 的值是( ) A .-3B .1C .3D .-14、已知关于x 的方程的解满足方程,则m 的值为( )A.21 B.2 C.23D.3 5、若单项式是同类项,则mn=( )A .28B .-14C .28或-14D .以上都不对6、对于实数a ,b ,c ,d 规定一种运算:x=( )A.413-B.427C.423-D.43-7、如果则x 的值为( )A.2-B.35 C.3 D.31 8、已知关于x 的方程2x=8与x+2=-k 的解相同,则代数式的值是( )A.49-B.94C.94-D.94±9、方程的解的个数是( )A .0B .1C .2D .3 10、如果3754123-+x x 与互为相反数,则代数式2964123++x 的值是( ) A.1 B.2 C.3 D.4 11、方程的解是( )A .2007B .2009C .4014D .4018五、实际问题与一元一次方程1、列方程解一元一次方程的步骤: ⑴审——审题:找出等量关系;⑵设——设未知数:根据提问,巧设未知数; ⑶列——列方程:利用已找出的等量关系列方程; ⑷解——解方程:解所列的方程,求出未知数的值; ⑸检——检验所求的未知数的值是否是方程的解,同时要注意该值是否符合实际情况; ⑹答——作答.参考答案:知识点1:方程的概念1、C2、C3、B4、C5、B 知识点2:列方程6、7、8、 9、10、11、知识点3:方程的解12、A 13、D知识点4:一元一次方程的概念14、B 15、B16、思路点拨:17、B 18、D 19、B 20、思路点拨:21、思路点拨:知识点5:等式的性质1、C2、D3、B4、C5、思路点拨:6、思路点拨:7、思路点拨:8、C9、思路点拨:10、C 11、D12、思路点拨:知识点6:利用等式的性质解方程14、C 15、A 16、D 17、D 18、A 19、A 20、C 21、思路点拨:22、D 23、A24、思路点拨:25、思路点拨:26、思路点拨:知识点7:解一元一次方程——合并同类项与移项1、D 2、C3、思路点拨:4、D5、D6、A7、思路点拨:8、思路点拨:9、思路点拨:知识点8:解一元一次方程——去括号与去分母2、思路点拨:3、C4、B5、思路点拨:6、D7、思路点拨:8、C9、思路点拨:10、C11、思路点拨:。
【精选】人教版七年级上册数学第三章《一元一次方程》知识点+典型例题
【精选】人教版七年级上册数学第三章《一元一次方程》知识点+典型例题知识点、概念总结1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。
6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。
7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。
一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.8.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。
9.方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
人教版初中数学一元一次方程知识点总结及典型例题解答
第三章一元一次方程
3.1从算式到方程
3.1.1一元一次方程
①方程:含有未知数的等式如:2X=6
②一元一次方程:只含有一个未知数,而且未知数的次数是1的方程。
如3X-4=2X
③方程的解:使方程中等号左右两边相等的未知数的值
④求方程解的过程叫做解方程。
⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
3.1.2等式的性质
①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a-c=b-c、a+c=b+c
②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a=b,那么ac=bc
如果a=b(c≠0),那么a÷c=b÷c
3.2解一元一次方程(—)合并同类项与移项
①把等式一边的某项变号后移到另一边,叫做移项。
3.3解一元一次方程(二)去括号与去分母
①一般步骤:
1.去分母
2.去括号
3.移项
4. 合并同类项
5.系数化为一
3.4实际问题与一元一次方程
①利用方程不仅能求具体数值,而且可以进行推理判断。
一元一次方程知识点总结和例题讲解
第六章 一元一次方程知识点汇总(一)、方程的有关概念1. 方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程. 例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程. (例1)3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. (例2)注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.(二)、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等. 等式的性质(1)用式子形式表示为:如果a=b ,那么a ±c=b ±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c ≠0),那么a c =bc(三)、移项法则:把等式一边的某项变号后移到另一边,叫做移项.(例3) (四)、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号相应各项的符号改变. (五)、解方程的一般步骤(例4)1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a ≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=ba ).一.列一元一次方程解应用题的一般步骤 (1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.第七章 二元一次方程组 一、知识点总结 1、二元一次方程:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程,它的一般形式是(0,0)ax by c a b +=≠≠.2、二元一次方程的解:一般地,能够使二元一次方程的左右两边相等的两个未知数的值,叫做二元一次方程的解. 【二元一次方程有无数组解】 3、二元一次方程组:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组.4、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解.【二元一次方程组解的情况:①无解,例如:16x y x y +=⎧⎨+=⎩,1226x y x y +=⎧⎨+=⎩;②有且只有一组解,例如:122x y x y +=⎧⎨+=⎩;③有无数组解,例如:1222x y x y +=⎧⎨+=⎩】5、二元一次方程组的解法:代入消元法和加减消元法。
(完整版)一元一次方程(知识点+典型试题)附答案
第五章 一元一次方程第1——2课时 一元一次方程相关概念及解法一、知识梳理1.等式及其性质⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 2.方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 3.解一元一次方程的步骤①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.4.易错知识辨析(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.二、课堂精讲例题(一)一元一次方程的定义 例题1若3223=+-k kxk是关于x 的一元一次方程,则k =_______.【难度分级】:A 类【选题意图】(对应知识点):本题主要考查学生对一元一次方程的定义的理解。
【解析】:该方程为一元一次方程,则必须满足⎩⎨⎧=-≠1230k k ,由3223=+-k kxk是关于x 的一元一次方11230==-≠k k k 解得且 【搭配课堂训练题】 (A )1.若()521||=--m x m 是一元一次方程,则m =(B )2.下列方程中,属于一元一次方程的是( )A 、x -3B .012=-xC 、2x -3=0D 、x -y =3 (二)方程的解例题2.已知关于x 的方程3x +2a =2的解是a -1,则a 的值是( ) A .1 B .53 C .51D .-1 【难度分类】:A 级【分析】:方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等 【答案】:根据题意得:3(a -1)+2a =2,解得a =1 故选A .【点评】:本题主要考查了方程解的定义,已知a -1是方程的解实际就是得到了一个关于a 的方程.【搭配课堂训练题】(A )1.方程2x +a -4=0的解是x =-2,则a 等于( ) A .-8 B .0 C .2 D .8(B )2.已知关于x 的方程4x -3m =2的解是x =m ,则m 的值是( ) A .2 B .-2 C .72 D .72- (三)解方程例题3若2005-200.5=x -20.05,那么x 等于( )A .1814.55B .1824.55C .1774.55D .1784.55 【难度分级】:A 类【选题意图】(对应知识点):本题主要考查学生解一元一次方程。
一元一次方程知识点及练习完整版
一元一次方程知识点及基础训练全章知识网络图:知识详解:一、等式的概念和性质1、等式的概念:用等号“=”来表示相等关系的式子,叫做等式。
2、等式的性质等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
若a b=,则a m b m±=±;等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若a b=,则am bm=,a bm m=(0)m≠注意:(1)在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边。
(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同。
(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果a b=,那么b a=;②等式具有传递性,即:如果a b=,b c=,那么a c=;判断题2)12S ah=是等式;(3)等式两边都除以同一个数,等式仍然成立;(4)若x y=,则44x m y m+-=+-;下列说法不正确的是()A.等式两边都加上一个数或一个等式,所得结果仍是等式;B.等式两边都乘以一个数,所得结果仍是等式;C.等式两边都除以一个数,所得结果仍是等式;D.一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式;回答下列问题,并说明理由.(1)由2323a b+=-能不能得到a b=?(2)由56ab b=能不能得到56a=?(3)由7xy=能不能得到7yx =?(4)由0x=能不能得到11xx x+=?下列结论中正确的是()A.在等式3635a b-=+的两边都除以3,可得等式25a b-=+;B.如果2x=-,那么2x=-;C.在等式50.1x=的两边都除以0.1,可得等式0.5x=;D.在等式753x x=+的两边都减去3x-,可得等式6346x x-=+;根据等式的性质填空(1)4a b=-,则a b=+;(2)359x-=,则39x=+;(3)683x y=+,则x=;(4)122x y=+,则x=.用适当数或等式填空,使所得结果仍是等式,并说明根据的是哪一条等式性质及怎样变形的(1)如果23x=+,那么x=;(2)如果6x y-=,那么6x=+;(3)如果324x y-=,那么2y-=-;(4)如果324x=,那么x=.二、方程的相关概念1、方程:含有未知数的等式叫作方程。
一元一次方程知识点总结与练习(教案)
一元一次方程知识点总结与练习本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程。
注意未知数的理解,n m x ,,等,都可以作为未知数。
题型:判断给出的代数式、等式是否为方程例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x练习:1、 已知下列各式:①2x -5=1;②8-7=1;③x +y ;④21x -y =x 2;⑤3x +y =6;⑥5x +3y +4z =0;⑦nm 11-=8; ⑧x =0。
其中方程的个数是( )A 、5B 、6C 、7D 、8【知识点二:一元一次方程的定义及解】 一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次);③这样的整式方程叫做一元一次方程。
方程的解:使方程左右两边的值相等的未知数的值叫做方程的解要点诠释:(1)一元一次方程必须满足的3个条件: 只含有一个未知数; 未知数的次数是1次; 整式方程. (2)判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.题型一:判断给出的代数式、等式是否为一元一次方程例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a练习.1、已知下列方程:①13x =2;②1x =3;③x 2=2x -1;④2x 2=1;⑤x =2;⑥2x +y =1.其中一元一次方程的个数 是( )A .2个B .3个C .4个D .5个2、判断下列方程是否是一元一次方程: (1)-2x 2+3=x (2)3x-1=2y (3)x+x1=2 (4)2x 2-1=1-2(2x-x 2)题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0。
初二数学一元一次方程组知识点及经典例题
初二数学一元一次方程组知识点及经典例题一、一元一次方程组基本概念一元一次方程组是由若干个含有同一组未知数的一元一次方程组成的集合,常用的写法是:$$\begin{cases} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{cases}$$其中$x$、$y$、$z$等为未知数,$a$、$b$、$c$为常数,$d$为已知数。
二、解一元一次方程组的方法1. 常规方法(1)代入法将一个方程的未知数用另一个方程的未知数表示出来,再代入另一个方程中求解。
(2)消元法通过加减、定比等方式将一个方程的未知数消去,进而求得另一个未知数。
2. 矩阵法将一元一次方程组表示成增广矩阵的形式,通过初等行变换,将增广矩阵转化为简化行阶梯矩阵,然后通过回带求解未知数。
三、经典例题例题1$$\begin{cases} x+2y=5 \\ 3x-4y=-1 \end{cases}$$解:(1)代入法将第一个方程的$x$用第二个方程里的未知数表示:$x=5-2y$将其代入第二个方程中得到:$3(5-2y)-4y=-1$化简后得到:$y=2$将$y=2$代入$x+2y=5$中得到:$x=1$因此,方程组的解为$(x,y)=(1,2)$。
(2)消元法将第一个方程乘以$3$,第二个方程乘以$2$,得到:$$\begin{cases} 3x+6y=15 \\ 6x-8y=-2 \end{cases}$$ 将两个方程相加,得到$9x=-9$因此$x=-1$。
将$x=-1$代入$x+2y=5$中得到:$y=2$因此,方程组的解为$(x,y)=(-1,2)$。
例题2$$\begin{cases} x-2y+z=7 \\ 2x+y+3z=12 \\ x+y-4z=-7\end{cases}$$解:使用矩阵法,将方程组表示成增广矩阵的形式:$$\begin{bmatrix} 1 & -2 & 1 & 7 \\ 2 & 1 & 3 & 12 \\ 1 & 1 & -4 & -7 \end{bmatrix}$$通过初等行变换,将增广矩阵转化为简化行阶梯矩阵:$$\begin{bmatrix} 1 & 0 & 0 & -9 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$因此,方程组的解为$(x,y,z)=(-9,2,1)$。
初一数学一元一次方程知识点总结与例题练习
第一讲: 一元一次方程一、牢记概念1. 方程的概念: 方程是指含有未知数的等式。
2. 方程的解使方程左右两边的值相等的未知数的值, 叫做方程的解。
反过来, 已知方程的解, 则代入后, 方程左右两边的值相等(可以用于验算)3. 一元一次方程当一个方程中值含有一个未知数(元), 并且未知数的次数都是1, 这样的方程叫做一元一次方程。
4.等式的性质:(1) 等式两边加(或减)同一个数字(或式子), 结果仍相等。
(2) 等式两边乘同一个数, 或除以同一个不为0的数, 结果仍相等。
5. 解一元一次方程的一般步骤(1) 去分母: 方程两边同时乘以各项分母的最小公倍数;(2) 去括号: 可先去小括号, 再去中括号, 最后去大括号(也可以按照自己擅长的方式去括号);(3) 移项: 把含有未知数的项都移到等号的一边(通常是左边), 其他的常数项移到右边;移项的时候, 把某一项移动到等号的另外一边, 需要将该项原先的符号改变, 即“+”变为“-”, “-”变为“+”;(4) 合并同类项: 将含未知数的项和常数项都合并起来, 使得方程化成一般式的形式:(5) 系数化为1: 方程两边都除以未知数的系数a, 得到方程的解二、例题分析例1判断下列哪些是一元一次方程?(1)3+1=4 (2)2+5>3(3)5-3(4)3X+1=4(5)2X+5>3(6)5X-3(7)4X+2Y=6(8)72x +6=13(9)x 35-3=2(10)78-23=21X-3X (11)2x -3X=7(12)xy+3y=8例2解下列一元一次方程(1)3(x-2)=2-5(x-2) (2) 2x -13 =x+22+1(3) 143321=---m m (4)52221+-=--y y y三、练习(1) 3(1)2(2)23x x x +-+=+ (2) 3(2)1(21)x x x -+=--(3) 2x -13 =x+22 +1 (4) 12131=--x(5) x x -=+38 (6) 12542.13-=-x x(7) 310.40.342x x -=+ (8) 3142125x x -+=-(9) 31257243y y +-=- (10) 576132x x -=-+四、作业一. 填空题1.下列方程中, 解为-2的方程是( )A.3x-2=2xB.4x-1=2x+3C.3x+1=2x-1D.2x-3=3x+22. 下列变形式中的移项正确的是( )A.从5+x=12得x=12+5 B 、从5x+8=4x 得5x —4x=8C.从10x—2=4—2x得10x+2x=4+2D.从2x=3x—5得2x=3x—5=3x—2x=5 3.如果x=0是关于x的方程3x—2m=4的根, 则m的值是()A.2B.—2C.1D.—1二. 填空题1. 已知方程3x2n+3+5=0是一元一次方程, 则n=__________2. 若, 则x+y=___________3、设k为整数, 方程kx=4-x的解x为自然数, 则k=__________三、解下列方程(21)124362x x x-+--=(22)xx23231423=⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛-(23) 112[(1)](1)223x x x--=-(24)27(3y+7)=2 -32y。
初一一元一次方程所有知识点总结和常考题提高难题压轴题练习(含答案解析)
初一一元一次方程所有知识点总结和常考题【知识点归纳】一、方程的有关概念1。
方程:含有未知数的等式就叫做方程。
2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次)的方程叫做一元一次方程。
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等. 用式子形式表示为:如果a=b,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么错误!=错误!三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则〔依据分配律:a(b+c)=ab+ac 〕1。
括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2。
去括号(按去括号法则和分配律)3。
移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a(或乘未知数的倒数),得到方程的解x=错误!)。
六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,找:明确各数量之间的关系;2。
设:设未知数(可分直接设法,间接设法),表示出有关的含字母的式子;3. 列:根据题意列方程;4. 解:解出所列方程,求出未知数的值;5. 检:检验所求的解是否是方程的解,是否符合题意;6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章一元一次方程单元复习与巩固
知识点一:一元一次方程及解的概念
1、一元一次方程:
一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:
一元一次方程须满足下列三个条件:
(1)只含有一个未知数;
(2)未知数的次数是1次;
(3)整式方程.
2、方程的解:
判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.
类型一:一元一次方程的相关概念
1、已知下列各式:
①2x-5=1;②8-7=1;③x+y;④x-y=x2;⑤3x+y=6;⑥5x+3y+4z=0;⑦=8;⑧x=0。
其中方程的个数是( )
A、5
B、6
C、7
D、8
[变式1]判断下列方程是否是一元一次方程:
-2x2+3=x (2)3x-1=2y (3)x+=2 (4)2x2-1=1-2(2x-x2)
[变式2]已知:(a-3)(2a+5)x+(a-3)y+6=0是一元一次方程,求a的值。
[变式3](2011重庆江津)已知3是关于x的方程2x-a=1的解,则a的值是( )
A.-5 B.5 C.7 D.2
知识点二:一元一次方程的解法
1、方程的同解原理(也叫等式的基本性质)
等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么
要点诠释:
分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)
特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,
如方程:-=1.6,将其化为:
-=1.6。
方程的右边没有变化,这要与“去分母”
区别开。
2、解一元一次方程的一般步骤:
解一元一次方程的一般步骤
常用步骤具体做法
依据注意事项
去分母在方程两边都乘以各分母的最
小公倍数
等式基本性
质2
防止漏乘(尤其整数项),注
意添括号;
去括号一般先去小括号,再去中括号,
最后去大括号
去括号法
则、分配律
注意变号,防止漏乘;
移项把含有未知数的项都移到方程
的一边,其他项都移到方程的另
一边(记住移项要变号)
等式基本性
质1
移项要变号,不移不变号;
合并同类项把方程化成ax=b(a≠0)的形式合并同类项
法则
计算要仔细,不要出差错;
系数化成1 在方程两边都除以未知数的系
数a,得到方程
的解x=
等式基本性
质2
计算要仔细,分子分母勿颠
倒
类型二:一元一次方程的解法
1.巧凑整数解方程:
[变式]解方程:=2x-5
2.巧用观察法解方程:
3.巧去括号解方程:
思路点拨:从外向内去括号可以使计算简单。
[变式]解方程:
4.运用拆项法解方程:
5.巧去分母解方程:
[变式](2011山东滨州)依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。
解:原方程可变形为 (__________________________)
去分母,得3(3x+5)=2(2x-1). (__________________________)
去括号,得9x+15=4x-2. (____________________________)
(____________________),得9x-4x=-15-2. (____________________________)
合并,得5x=-17. (合并同类项)
(____________________),得x=. (_________________________)
6.巧组合解方程:
7.巧解含有绝对值的方程:
|x-2|-3=0
8.利用整体思想解方程:
知识点三:列一元一次方程解应用题
1、列一元一次方程解应用题的一般步骤:
(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.
(2)设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.
(3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.
(4)解方程.
(5)检验,看方程的解是否符合题意.
(6)写出答案.
2、常见的一些等量关系
常见列方程解应用题的几种类型:
类型基本数量关系等量关系
(1)和、差、倍、分问题①较大量=较小量+多余量
②总量=倍数×倍量
抓住关键性词语
(2)等积变形问题变形前后体积相等
(3)行程问题相遇问题路程=速度×时间甲走的路程+乙走的路程=两地
距离
追及问题同地不同时出发:前者走的路程
=追者走的路程
同时不同地出发:前者走的路程
+两地距离=追者所走的路程顺逆流问题顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
顺流的距离=逆流的距离
(4)劳力调配问题
从调配后的数量关系中找相等关系,要抓住“相等”“几倍”“几分之
几”“多”“少”等关键词语
(5)工程问题工作总量=工作效率×工作时间各部分工作量之和=1
(6)利润率问题商品利润=商品售价-商品进价
商品利润率=×100%
售价=进价×(1+利润率) 抓住价格升降对利润率的影响来考虑
(7)数字问题设一个两位数的十位上的数字、个位上
的数字分别为a,b,则这个两位数可表
示为10a+b 抓住数字所在的位置或新数、原数之间的关系
(8)储蓄问题利息=本金×利率×期数本息和=本金+利息=本金+本
金×利率×期数×(1-利息税
率)
(9)按比例分配问题甲∶乙∶丙=a∶b∶c全部数量=各种成分的数量之和
(设一份为x)
(10)日历中的问题日历中每一行上相邻两数,右边的数比
左边的数大1;日历中每一列上相邻的
两数,下边的数比上边的数大7 日历中的数a的取值范围是1≤a≤31,且都是正整数
知识点四:方程与整式、等式的区别
(1)从概念来看:
整式:单项式和多项式统称整式。
等式:用等号来表示相等关系的式子叫做等式。
如,m=n=n+m等都叫做等式,而像-,m2n不含等号,所以它们不是等式,而是代数式。
方程:含有未知数的等式叫做方程。
如5x+3=11,等都是方程。
理解方程的概念必须明确两点:①是等式;②含有未知数。
两者缺一不可。
(2)从是否含有等号来看:方程首先是一个等式,它是用“=”将两个代数式连接起来的等式,而整式仅用运算符号连接起来,不含有等号。
(3)从是否含有未知量来看:等式必含有“=”,但不一定含有未知量;方程既含有“=”,又必须含有未知数。
但整式必不含有等号,不一定含有未知量,分为单项式和多项式。
解一元一次方程常用的技巧有:
(1)有多重括号,去括号与合并同类项可交替进行。
(2)当括号内含有分数时,常由外向内先去括号,再去分母。
(3)当分母中含有小数时,可用分数的基本性质化成整数。
(4)运用整体思想,即把含有未知数的代数式看做整体进行变形。
类型三、一元一次方程的常见应用题
1.优化方案问题
由于活动需要,78名师生需住宿一晚,,他们住了一些普通双人间和普通三人间,结果每间客房正好住满,且在宾馆给他们打五折优惠的基础上一天一共付住宿费2130元。
请你算一算,他们需要双人普通间和三人普通间各多少间?
类型普通
(元/间)
豪华(元/间)
双人房140 300
三人房150 400
2.行程中的追及相遇问题
甲、乙两人从A、B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1小时乙到达A地.问甲、乙行驶的速度分别是多少?
[变式]甲、乙两地相距240千米,汽车从甲地开往乙地,速度为36千米/时,摩托车从乙地开往甲地,速度是
汽车的。
摩托车从乙地出发2小时30分钟后,汽车才开始从甲地开往乙地,问汽车开出几小时后遇到摩托车?
3.日历中的方程
总结升华:
(1)日历中的数量关系
①在日历中,每一横排相邻两个数字之间差1。
②在日历中,每一竖排相邻两个数字之间差7。
③在日历中,左上到右下方向相邻两个数字之间差8。
④在日历中,右上到左下方向相邻两个数字之间差6。
(2)用一个正方形任意圈出9个数的规律
①中间一个数字是所有九个数字的平均值。
②每一横排、每一竖排、每一斜排,中间一个数字都是它们的平均值。
举一反三:
[变式]每人准备一份日历,在各自的日历上任意圈一个竖列上的相邻的四个数,两个分别把自己所圈4个数的和告诉同伴,由同伴求出这个数。
(1)4个数的和等于42。
(2)4个数的和等于60。