高中数学选修2-3测试题

合集下载

高中数学选修2-3答案

高中数学选修2-3答案

高中数学选修2-3答案【篇一:高中数学选修2-3所有试卷含答案】每章分三个等级:[基础训练a组], [综合训练b组], [提高训练c 组] 建议分别适用于同步练习,单元自我检查和高考综合复习。

(数学选修2--3) 第一章计数原理[基础训练a组]一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有()a.81 b.64c.12d.142.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()a.140种 b.84种 c.70种 d.35种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有() a.a3 b.4a3 c.a5?a3a3 d.a2a3?a2a3a3 4.a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同的选法总数是()a.20 b.16 c.10 d.65.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是() a.男生2人,女生6人 b.男生3人,女生5人 c.男生5人,女生3人 d.男生6人,女生2人. ?x6.在??的展开式中的常数项是() ?283352323113a.7 b.?7 c.28 d.?287.(1?2x)(2?x)的展开式中x3的项的系数是() a.120 b.?120 c.100 d.?100 ?8.??2??2?展开式中只有第六项二项式系数最大,则展开式中的常数项是() x?n5a.180 b.90 c.45 d.360二、填空题1.从甲、乙,??,等6人中选出4名代表,那么(1)甲一定当选,共有种选法.(2)甲一定不入选,共有种选法.(3)甲、乙二人至少有一人当选,共有种选法.2.4名男生,4名女生排成一排,女生不排两端,则有. 3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数.4.在(x?的展开式中,x的系数是1062205.在(1?x)展开式中,如果第4r项和第r?2项的二项式系数相等,则r?,t4r?6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?7.用1,4,5,x四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x. 8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个?三、解答题1.判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?2.7个排成一排,在下列情况下,各有多少种不同排法?(1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起,(4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻,(6)甲在乙的左边(不一定相邻),(7)甲、乙、丙三人按从高到矮,自左向右的顺序,(8)甲不排头,乙不排当中。

(易错题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)(2)

(易错题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)(2)

一、选择题1.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( ) A .0.05 B .0.1C .0.15D .0.22.甲乙两人投篮,投中的概率分别为0.6,0.7.若两人各投2次,则两人投中次数相等的概率为( ) A .0.2484B .0.25C .0.90D .0.39243.西大附中为了增强学生对传统文化的继承和发扬,组织了一场类似《诗词大会》的PK 赛,A 、B 两队各由4名选手组成,每局两队各派一名选手PK ,除第三局胜者得2分外,其余各胜者均得1分,每局的负者得0分.假设每局比赛A 队选手获胜的概率均为23,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为( ) A .2027B .5281C .1627D .794.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭5.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.下列命题中真命题是( )(1)在18的二项式展开式中,共有4项有理项;(2)若事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =,则事件A 、B 是相互独立事件;(3)根据最近10天某医院新增疑似病例数据,“总体均值为2,总体方差为3”,可以推测“最近10天,该医院每天新增疑似病例不超过7人”. A .(1)(2) B .(1)(3)C .(2)(3)D .(1)(2)(3)7.设102x <<,随机变量ξ的分布列如下:ξ0 1 2P0.50.5x -x则当x 在10,2⎛⎫ ⎪⎝⎭内增大时( )A .()E ξ减小,()D ξ减小B .()E ξ增大,()D ξ增大C .()E ξ增大,()D ξ减小D .()E ξ减小,()D ξ增大8.先后抛掷三次一枚质地均匀的硬币,落在水平桌面上, 设事件A 为“第一次正面向上”,事件B 为“后两次均反面向上”,则概率(|)P B A =( ) A .12B .13C .14D .389.有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则P (X <2)等于 A .715B .815C .1415D .110.随机变量X 的分布列如下表,且E (X )=2,则D (2X -3)=( )A .2B .3C .4D .511.某工厂生产的零件外直径(单位:cm )服从正态分布()10,0.04N ,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.75cm 和9.35cm ,则可认为( )A .上午生产情况异常,下午生产情况正常B .上午生产情况正常,下午生产情况异常C .上、下午生产情况均正常D .上、下午生产情况均异常12.小明的妈妈为小明煮了 5 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件‘‘"A 取到的两个为同一种馅,事件‘‘"B =取到的两个都是豆沙馅,则()P B A =∣ ( )A .14B .34C .110D .310二、填空题13.随着电商的兴起,物流快递的工作越来越重要了,早在周代,我国便已出现快递制度,据《周礼·秋官》记载,周王朝的官职中设置了主管邮驿,物流的官员“行夫”,其职责要求是“虽道有难,而不时必达”.现某机构对国内排名前五的5家快递公司的某项指标进行了3轮测试(每轮测试的客观条件视为相同),每轮测试结束后都要根据该轮测试的成绩对这5家快递公司进行排名,那么跟测试之前的排名比较,这3轮测试中恰好有2轮测试结果都出现2家公司排名不变的概率为_________.14.3月5日为“学雷锋纪念日”,某校将举行“弘扬雷锋精神做全面发展一代新人”知识竞赛,某班现从6名女生和3名男生中选出5名学生参赛,要求每人回答一个问题,答对得2分,答错得0分,已知6名女生中有2人不会答所有题目,只能得0分,其余4人可得2分,3名男生每人得2分的概率均为12,现选择2名女生和3名男生,每人答一题,则该班所选队员得分之和为6分的概率__________.15.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有6个乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X表示这6位乘客在第20层下电梯的人数,则(4)P X==________.16.若随机变量3~34X B⎛⎫⎪⎝⎭,, 则方差()D x=____________.17.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机抽取1个小球,记抽取到红球的个数为X,则随机变量X的均值EX=_____.18.小李练习射击,每次击中目标的概率均为13,若用ξ表示小李射击5次击中目标的次数,则ξ的均值E(ξ)与方差D(ξ)的值分别是____.19.运动员参加射击比赛,每人射击4次(每次射一发),比赛规定:全不中得0分,只中一弹得15分,中两弹得40分,中三弹得65分,中四弹得100分.已知某一运动员每一次射击的命中率为35,则他的得分期望为_____.20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以利用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用,设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为13,若甲、乙两人分别向该出版社投稿1篇,两人的稿件是否被录用相互独立,则两人中恰有1人的稿件被录用的概率为__________.三、解答题21.《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,即“行让行人”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让行人”行为的统计数据:月份x1 2 3 4 5 6 不“礼让斑马线"驾驶员人数y120105100859080(1)请根据表中所给前5个月的数据,求不“礼让行人”的驾驶员人数y 与月份x 之间的回归直线方程ˆˆˆy bx a =+;(2)若该十字路口某月不“礼让行人”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让行人”情况达到“理想状态”.试判断6月份该十字路口“礼让行人”情况是否达到“理想状态”?(3)自罚单日起15天内需完成罚款缴纳,记录5月不“礼让行人”驾驶员缴纳罚款的情况,缴纳日距罚单日天数记为X ,若X 服从正态分布()~8,9X N ,求该月没能在 14天内缴纳人数. 参考公式:()()()112211ˆˆˆ,nni i i ii i nniii i x x y yx y nxybay bx x x xnx====---===---∑∑∑∑()()()0.6826,220.9544,330.9974P Z P Z P Z μσμσμσμσμσμσ-<<+=-<<+=-<<+=22.某运动会将在深圳举行,组委会招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm ),身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率;(2)若从身高180cm 以上(包括180cm )的志愿者中选出男、女各一人,设这2人身高相差cm ξ(0ξ≥),求ξ的分布列和数学期望(均值).23.某大型电器企业,为了解组装车间职工的生活情况,从中随机抽取了100名职工进行测试,得到频数分布表如下: 日组装个数 [)155,165[)165,175[)175,185[)185,195[)195,205[]205,215人数6123430108(1)现从参与测试的日组装个数少于175的职工中任意选取3人,求至少有1人日组装个数少于165的概率;(2)由频数分布表可以认为,此次测试得到的日组装个数Z 服从正态分布(),169N μ,μ近似为这100人得分的平均值(同一组数据用该组区间的中点值作为代表).(i )若组装车间有20000名职工,求日组装个数超过198的职工人数;(ii )为鼓励职工提高技能,企业决定对日组装个数超过185的职工日工资增加50元,若在组装车间所有职工中任意选取3人,求这三人增加的日工资总额的期望.附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=.24.某高三年级学生为了庆祝教师节,同学们为老师制作了一大批同一种规格的手工艺品,这种工艺品有A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响,若A 项技术指标达标的概率为3,4B 项技术指标达标的概率为89,按质量检验规定:两项技术指标都达标的工艺品为合格品.(1)求一个工艺品经过检测至少一项技术指标达标的概率;(2)任意依次抽取该工艺品4个,设ξ表示其中合格品的个数,求ξ的分布列. 25.近期,某超市针对一款饮料推出刷脸支付活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用刷脸支付.该超市统计了活动刚推出一周内每一天使用刷脸支付的人次,用x 表示活动推出的天数,y 表示每天使用刷脸支付的人次,统计数据如下表所示:(1)在推广期内,与y c d =⋅(均为大于零的常数)哪一个适宜作为刷脸支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由); (2)根据(1)的判断结果及表1中的数据,求y 关于x 的回归方程,并预测活动推出第8天使用刷脸支付的人次;(3)已知一瓶该饮料的售价为2元,顾客的支付方式有三种:现金支付、扫码支付和刷脸支付,其中有10%使用现金支付,使用现金支付的顾客无优惠;有40%使用扫码支付,使用扫码支付享受8折优惠;有50%使用刷脸支付,根据统计结果得知,使用刷脸支付的顾客,享受7折优惠的概率为16,享受8折优惠的概率为13,享受9折优惠的概率为12.根据所给数据估计购买一瓶该饮料的平均花费.参考数据:其中1i i v g y =,7117i i v v ==∑参考公式:对于一组数据1122,),,(,)n n x v x v ,其回归直线ˆˆˆv a bx=+的斜率和截距的最小二乘估计公式分别为:1221ˆ,ni i i nii x v nxvbxnx==-=-∑∑ˆˆa v bx=-. 26.2020年1月10日,引发新冠肺炎疫情的COVID -9病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为12,假设每次接种后当天是否出现抗体与上次接种无关. (1)求一个接种周期内出现抗体次数k 的分布列;(2)已知每天接种一次花费100元,现有以下两种试验方案:①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为X 元;②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为Y 元. 比较随机变量X 和Y 的数学期望的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】1(80120)(80)(120)0.12P X P X P X -<<≤=≥== ,选B.2.D解析:D 【分析】根据题意,两人投中次数相等:两人两次都未投中,两人各投中一次,和两人两次都投中,进而根据相互独立事件概率乘法公式和互斥事件概率加法公式,得到答案. 【详解】由题意,甲、乙两人投篮,投中的概率分别为0.6,0.7,则甲、乙两人各投2次: 两人两次都未投中的概率:()()22010.610.70.0144P =-⨯-=;两人各投中一次的概率:()()111220.610.60.710.70.2016P C C =⨯⨯-⨯⨯⨯-=;两人两次都投中的概率:2220.60.70.1764P =⨯=.所以,两人投中次数相等的概率为:0120.3924P P P P =++=. 故选:D. 【点睛】本题主要考查相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于基础题.3.A解析:A 【分析】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.利用独立重复试验的概率公式可求得所求事件的概率. 【详解】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.所以,比赛结束时A 队的得分高于B 队的得分的概率为43232432212122033333327P C C ⎛⎫⎛⎫⎛⎫=+⋅⋅+⋅⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查概率的求解,考查独立重复试验概率的求解,考查计算能力,属于中等题.4.C解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==. 故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.5.C解析:C【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件.故选:C 【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.6.D解析:D 【分析】对三个命题分别判断真假,即可得出结论. 【详解】对于(1),18的二项展开式的通项为1815163621818rrrr rC x x C x ---⎛⎫⎛⎫⋅⋅=⋅ ⎪ ⎪⎝⎭⎝⎭, 当0r =、6、12、18时,为有理项,共有4个有理项,故(1)正确; 对于(2),事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =, 所以()()()0.150.600.09P AB P A P B =⨯==,满足A 、B 为相互独立事件,故(2)正确;对于(3),当总体平均数是2,若有一个数据超过7,则方差就接近于3, 所以,总体均值为2,总体方差为3时,没有数据超过7,故(3)正确. 故选:D. 【点睛】本题考查命题真假的判断,考查分析法与基本运算能力,考查分析问题和解决问题的能力,属于中等题.7.B解析:B 【分析】分别计算()E ξ和()D ξ的表达式,再判断单调性. 【详解】()00.51(0.5)20.5E x x x ξ=⨯+⨯-+=+,当x 在10,2⎛⎫⎪⎝⎭内增大时, ()E ξ增大()222210.5(0.50)(0.5)(0.51)(0.52)24D x x x x x x x ξ=⨯+-+-⨯+-++-=-++ ()25(1)4D x ξ=--+,当x 在10,2⎛⎫⎪⎝⎭内增大时, ()D ξ增大 故答案选B 【点睛】本题考查了()E ξ和()D ξ的计算,函数的单调性,属于综合题型.8.C解析:C 【分析】由先后抛掷三次一枚质地均匀的硬币,得出事件A “第一次正面向上”,共有4种不同的结果,再由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果,即可求解. 【详解】由题意,先后抛掷三次一枚质地均匀的硬币,共有2228⨯⨯=种不同的结果, 其中事件A “第一次正面向上”,共有4种不同的结果,又由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果,所以()()1(|)4P AB P B A P A ==,故选C. 【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,准确得出事件A 和事件A B 所含基本事件的个数是解答的关键,着重考查了运算能力,属于基础题.9.C解析:C 【分析】根据超几何分布的概率公式计算各种可能的概率,得出结果 【详解】由题意,知X 取0,1,2,X 服从超几何分布, 它取每个值的概率都符合等可能事件的概率公式,即P(X =0)=27210715C C =,P(X =1)=1173210715C C C =⋅,P(X =2)=23210115C C =, 于是P(X<2)=P(X =0)+P(X =1)=7714151515+= 故选C 【点睛】本题主要考查了运用超几何分布求概率,分别求出满足题意的情况,然后相加,属于中档题.10.C解析:C 【解析】1111632p =--=,111()0223623E X a a =⨯+⨯+⨯=⇒=∴222111()(02)(22)(32)1623D X =-⨯+-⨯+-⨯=∴2(23)2()4D X D X -==点晴:本题考查的是离散型随机变量的期望,方差和分布列中各个概率之间的关系.先根据概率之和为1,求出p 的值,再根据数学期望公式,求出a 的值,再根据方差公式求出D (X ),继而求出D (2X-3).解决此类问题的关键是熟练掌握离散型随机变量的分布列与数学期望.11.B解析:B 【解析】分析:根据3σ原则判断.详解:因为服从正态分布()10,0.04N ,所以10,0.2(100.23,100.23)(9.4,10.6)x μσ==∴∈-⨯+⨯= 所以上午生产情况正常,下午生产情况异常, 选B.点睛:利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.12.B解析:B 【详解】由题意,P (A )=222310C C +=410,P (AB )=2310C =310, ∴P (B|A )=()AB A)P P (=34, 故选B .二、填空题13.【分析】根据题意求出家快递公司进行排名与测试之前的排名比较出现家公司排名不变的概率根据题意满足二项分布根据二项分布概率计算即可【详解】解:首先在一轮测试中家快递公司进行排名与测试之前的排名比较出现家解析:572【分析】根据题意求出5家快递公司进行排名与测试之前的排名比较出现2家公司排名不变的概率,根据题意满足二项分布,根据二项分布概率计算即可. 【详解】解:首先,在一轮测试中5家快递公司进行排名与测试之前的排名比较出现2家公司排名不变的概率为255522011206C A ⨯==, 其次,3轮测试每次发生上述情形的概率均为16P =, 故3轮测试中恰好有2轮测试结果都出现2家公司排名不变的概率为223155()6672C ⨯⨯=. 故答案为:572. 【点睛】独立重复试验与二项分布问题的常见类型及解题策略:(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率;(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.14.【分析】首先对事件进行分类分成女生0分男生6分或女生2分男生4分或女生4分男生2分女生的概率可以按照超几何概率求解男生按照独立重复求解概率【详解】依题意设该班所选队员得分之和为6分记为事件A 则可分为 解析:43120【分析】首先对事件进行分类,分成女生0分,男生6分,或女生2分,男生4分,或女生4分,男生2分,女生的概率可以按照超几何概率求解,男生按照独立重复求解概率. 【详解】依题意设该班所选队员得分之和为6分记为事件A ,则可分为下列三类:女生得0分男生得6分,设为事件1A ;女生得2分男生得4分,设为事件2A ;女生得4分男生得2分,设为事件3A ,则:()32321326112120C P A C C ⎛⎫=⨯= ⎪⎝⎭, ()211224232611241221205C C P A C C ⎛⎫⎛⎫=⨯== ⎪ ⎪⎝⎭⎝⎭,()22143326111832212020C P A C C ⎛⎫⎛⎫=⨯== ⎪⎪⎝⎭⎝⎭, ()()()()12343120P A P A P A P A =++=. 故答案为:43120【点睛】本题考查概率的应用问题,重点考查分类讨论,转化与化归的思想,熟练掌握概率类型,属于中档题型.本题的关键是对事件分类.15.【分析】根据次独立重复试验的概率公式进行求解即可【详解】解:考查一位乘客是否在第20层下电梯为一次试验这是次独立重复试验故即有123456故答案为:【点睛】本题主要考查次独立重复试验的概率的计算根据 解析:20243【分析】根据n 次独立重复试验的概率公式进行求解即可. 【详解】解:考查一位乘客是否在第20层下电梯为一次试验,这是6次独立重复试验, 故1~6,3X B ⎛⎫ ⎪⎝⎭.即有6612()()()33k kk P X k C -==⨯,0k =,1,2,3,4,5,6.42641220(4)()()33243P X C ∴==⨯=.故答案为:20243【点睛】本题主要考查n 次独立重复试验的概率的计算,根据题意确实是6次独立重复试验,是解决本题的关键,属于中档题.16.【分析】利用方差公式即可得出答案【详解】结合方差【点睛】本题考查了方差计算公式记住即可 解析:916【分析】利用方差公式()D x npq =,即可得出答案. 【详解】结合方差()31934416D x npq ==⋅⋅=. 【点睛】本题考查了方差计算公式,记住()D x npq =,即可.17.【分析】结合题意分别计算对应的概率计算期望即可【详解】列表:X 0 1 2 P 所以【点睛】本道题考查了数学期望计算方法结合题意即可属于中等难度的题解析:56【分析】结合题意,分别计算0,1,2x =对应的概率,计算期望,即可. 【详解】()112511665018C C P x C C ===,()111452116611118C C C P x C C +===,()11411166129C C P x C C === 列表:所以012181896EX =⨯+⨯+⨯= 【点睛】本道题考查了数学期望计算方法,结合题意,即可,属于中等难度的题.18.【解析】试题分析:的可能取值是012345 0 1 2 3 4 5 考点:期望方差的计算解析:510 , 39【解析】试题分析:ξ的可能取值是0,1,2,3,4,5,012345.考点:期望、方差的计算.19.552【解析】分析:由次独立重复试验的概率公式计算出射中01234次的概率得到得分的分布列再由期望公式得期望详解:设该运动员中弹数为ξ得分数为η则P(ξ=4)==01296P(ξ=3)==03456解析:552.【解析】分析:由n次独立重复试验的概率公式计算出射中0,1,2,3,4次的概率得到得分的分布列,再由期望公式得期望.详解:设该运动员中弹数为ξ,得分数为η,则P(ξ=4)=435⎛⎫⎪⎝⎭=0.129 6,P(ξ=3)=33432C?·55⎛⎫⎪⎝⎭=0.345 6,P(ξ=2)=222432C?·55⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=0.345 6,P(ξ=1)=31432C?·55⎛⎫⎪⎝⎭=0.153 6,P(ξ=0)=425⎛⎫⎪⎝⎭=0.025 6.由题意可知P (η)=P (ξ),所以E (η)=100×0.129 6+65×0.345 6+40×0.345 6+15×0.153 6+0×0.025 6=51.552.点睛:本题考查随机变量的分布列与期望.解题时关键是理解射击时命中n 次就是n 次独立重复试验,由此可由概率公式计算出概率,从而可得得分的分布列,由分布列的期望公式计算出期望.20.【分析】计算出每人的稿件能被录用的概率然后利用独立重复试验的概率公式可求得结果【详解】记事件甲的稿件被录用则因此甲乙两人分别向该出版社投稿篇则两人中恰有人的稿件被录用的概率为故答案为:【点睛】思路点 解析:3572【分析】计算出每人的稿件能被录用的概率,然后利用独立重复试验的概率公式可求得结果. 【详解】记事件:A 甲的稿件被录用,则()2212111522312P A C ⎛⎫⎛⎫=+⋅⋅= ⎪ ⎪⎝⎭⎝⎭,因此,甲、乙两人分别向该出版社投稿1篇,则两人中恰有1人的稿件被录用的概率为125735121272P C =⋅⋅=. 故答案为:3572. 【点睛】思路点睛:独立重复试验概率求法的三个步骤:(1)判断:依据n 次独立重复试验的特征,判断所给试验是否为独立重复试验; (2)分拆:判断所求事件是否需要分拆;(3)计算:就每个事件依据n 次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算.三、解答题21.(1)ˆ8124yx =-+;(2)达到“理想状态”;(3)2. 【分析】(1)请根据表中数据计算x 、y ,求出回归系数,写出回归直线方程;(2)利用回归方程计算6x =时ˆy的值,比较即可得出结论; (3)根据正态分布的性质,结合()2140.9544P X <<=即可得答案. 【详解】(1)请根据表中所给前5个月的数据,计算1(12345)35x =⨯++++=, 1(1201051008590)1005y =⨯++++=;12222221()()(2)20(1)5001(15)2(10)ˆ8(2)(1)012()nii i nii xx y y bxx ==---⨯+-⨯+⨯+⨯-+⨯-===--+-+++-∑∑,ˆˆ100(8)3124ay bx =-=--⨯=; y ∴与x 之间的回归直线方程ˆ8124y x =-+;(2)由(1)知ˆ8124yx =-+,当6x =时,ˆ8612476y =-⨯+=; 且807645-=<,6∴月份该十字路口“礼让斑马线”情况达到“理想状态”;(3)因为X 服从正态分布()~8,9X N , 所以()2140.9544P X <<=, 该月没能在14天内缴纳人数为10.95449022-⨯=, 【点睛】方法点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,nnii ii i x y x x y ==∑∑的值;③计算回归系数,a b ;④写出回归直线方程为ˆy bx a=+. 22.(1)710p =;(2)分布列见解析,()116E ξ= 【分析】(1)根据分层抽样的比例关系得到人数,再计算概率得到答案.(2)ξ的可能取值为0,1,2,3,4,计算概率得到分布列,再计算数列期望得到答案. 【详解】(1)根据茎叶图:“高个子”有12个,“非高个子”有18个, 故抽取的“高个子”为125230⨯=个,抽取的“非高个子”有3个. 至少有一人是“高个子”的概率为232537111010C p C =-=-=. (2)身高180cm 以上(包括180cm )的志愿者中选出男,女各有3人和2人, 故ξ的可能取值为0,1,2,3,4, 故()1113206p ξ==⨯=,()11111321323p ξ=⨯+⨯==, ()1113226p ξ==⨯=, ()1113236p ξ==⨯=,()1113246p ξ==⨯=.故分布列为:故()01234636666E ξ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查了分层抽样,概率的计算,分布列,数学期望,意在考查学生的计算能力和综合应用能力. 23.(1)149204(2)(i )3173人(ii )75 【分析】(1)利用对立事件公式结合古典概型求解(2)(i )先求平均数185μ=,结合σ公式求得()10.68271980.158652P X ->==,再求人数;(ii )先由正态分布得日组装个数为185以上的概率为0.5.设三人中日组装个数超过185个的人数为ξ,增加的日工资总额为η,得到ξ服从二项分布,由50ηξ=求得期望【详解】(1)设至少有1人日组装个数少于165为事件A ,则()3123181491204C P A C =-=,(2)1606170121803419030200102108185100X ⨯+⨯+⨯+⨯+⨯+⨯==(个)又2169σ=,所以13σ=,所以185μ=,13σ=, 所以198μσ+=.(i )()10.68271980.158652P X ->==, 所以日组装个数超过198个的人数为0.15865200003173⨯=(人)(ii )由正态分布得,日组装个数为185以上的概率为0.5.设这三人中日组装个数超过185个的人数为ξ,这三人增加的日工资总额为η,则50ηξ=,且()~3,0.5B ξ,所以()30.5 1.5E ξ=⨯=,所以()()5075E E ηξ==. 【点睛】本题考查古典概型,考查正态分布的概率,考查二项分布,考查转化化归能力,其中确定人数与工资总额的函数关系是关键,是中档题 24.(1)3536;(2)见解析 【分析】(1)结合对立事件的概率关系可求出至少一项技术指标达标的概率; (2)由题意知,2~4,3B ξ⎛⎫⎪⎝⎭,从而可求出()0P ξ=,(1)P ξ=,()2P ξ=,()3P ξ=,()4P ξ=的值,从而可求出分布列.【详解】(1)设:M 一个工艺品经过检测至少一项技术指标达标,则38()1-11493635P M ⎛⎫⎛⎫=-⨯-= ⎪ ⎪⎝⎭⎝⎭;(2)依题意知2~4,3B ξ⎛⎫ ⎪⎝⎭,则411(0)381P ξ⎛⎫=== ⎪⎝⎭,1314218(1)3381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()222421823327P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()334213233381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()42164381P ξ⎛⎫=== ⎪⎝⎭分布列为:本题考查了独立事件的概率,考查了离散型随机变量的分布列求解.本题关键是求出ξ每种可能取值下的概率.求离散型随机变量的分布列时,第一步写出变量的可能取值,第二步求出每种取值下的概率,第三步写出分布列.25.(1)x y c d =⋅适宜(2)23.210320y =⨯=,活动推出第8天使用刷脸支付的人次为320(3)平均花费为251150(元) 【分析】(1)直接根据统计数据表判断,x y c d =⋅适宜;(2)把x y c d =⋅,两边同时取常用对数,1gy 11gc gd x =+⋅,则lg y 与x 两者线性相关,根据已知条件求出lg y 关与x 的线性回归方程,进而转化为y 关与x 的线性回归方程;(3)记购买一瓶该饮料的花费为Z (元),则Z 的取值可能为:2,1.8,1.6,1.4,求出Z 的分布,进而求出Z 的期望. 【详解】(1)直接根据统计数据表判断,x y c d =⋅适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型;。

高中数学选修2-3《2.2二项分布及其应用》测试卷解析版

高中数学选修2-3《2.2二项分布及其应用》测试卷解析版

高中数学选修2-3《2.2二项分布及其应用》测试卷解析版一.选择题(共6小题)1.三个元件T1,T2,T3正常工作的概率分别为且是互相独立的,按图种方式接入电路,电路正常工作的概率是()A.B.C.D.【分析】电路正常工作的条件是T1必须正常工作,T2,T3至少有一个正常工作,由此利用相互独立事件乘法公式和对立事件概率公式能求出电路正常工作的概率.【解答】解:∵三个元件T1,T2,T3正常工作的概率分别为且是互相独立的,图种方式接入电路,∴电路正常工作的条件是T1必须正常工作,T2,T3至少有一个正常工作,∴电路正常工作的概率:P=(1﹣)=.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件乘法公式和对立事件概率计算公式的合理运用.2.抛掷3枚质地均匀的硬币,A={既有正面向上又有反面向上},B={至多有一个反面向上},则A与B关系是()A.互斥事件B.对立事件C.相互独立事件D.不相互独立事件【分析】由于A中的事件发生与否对于B中的事件是否发生不产生影响,故A与B是相互独立的,从而得出结论.【解答】解:由于A中的事件发生与否对于B中的事件是否发生不产生影响,故A与B 是相互独立的,故选:C.【点评】本题主要考查相互独立事件的定义,属于基础题.3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.【点评】本题考查独立重复试验概率的求法,基本知识的考查.5.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选:C.【点评】本题考查相互独立事件的概率计算,解题的关键在于正确理解P(ε=3)的意义.6.已知P(B|A)=,P(A)=,则P(AB)=()A.B.C.D.【分析】根据条件概率的公式,整理出求事件AB同时发生的概率的表示式,代入所给的条件概率和事件A的概率求出结果.【解答】解:∵P(B/A)=,P(A)=,∴P(AB)=P(B/A)•P(A)==,故选:D.【点评】本题考查条件概率与独立事件,本题解题的关键是记住并且会利用条件概率的公式,要正确运算数据,本题是一个基础题.二.填空题(共1小题)7.为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为10.【分析】本题可运用平均数公式求出平均数,再运用方差的公式列出方差表达式,再讨论样本数据中的最大值的情况,即可解决问题.【解答】解:设样本数据为:x1,x2,x3,x4,x5,平均数=(x1+x2+x3+x4+x5)÷5=7;方差s2=[(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2+(x5﹣7)2]÷5=4.从而有x1+x2+x3+x4+x5=35,①(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2+(x5﹣7)2=20.②若样本数据中的最大值为11,不妨设x5=11,则②式变为:(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2=4,由于样本数据互不相同,这是不可能成立的;若样本数据为4,6,7,8,10,代入验证知①②式均成立,此时样本数据中的最大值为10.故答案为:10.【点评】本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.三.解答题(共9小题)8.某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望.【分析】(I)根据题意知每位乘客在第2层下电梯的概率都是,至少有一名乘客在第2层下电梯的对立事件是没有人在第二层下电梯,根据对立事件和相互独立事件的概率公式得到结果.(II)由题意知X的可能取值为0,1,2,3,4,由题意可得每个人在第4层下电梯的概率均为,且每个人下电梯互不影响,得到变量符合二项分布,根据二项分布的公式写出分布列和期望.【解答】解:(Ⅰ)设4位乘客中至少有一名乘客在第2层下电梯的事件为A,…(1分)由题意可得每位乘客在第2层下电梯的概率都是,…(3分)则.…(6分)(Ⅱ)X的可能取值为0,1,2,3,4,…(7分)由题意可得每个人在第4层下电梯的概率均为,且每个人下电梯互不影响,所以,.…(9分)X01234P…(11分).…(13分)【点评】本题看出离散型随机变量的分布列和期望,本题解题的关键是看出变量符合二项分布的特点,后面用公式就使得运算更加简单9.为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8.(Ⅰ)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;(Ⅱ)求调查中随机抽取了多少个学生的百米成绩;(Ⅲ)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.【分析】(1)根据频率分步直方图中小正方形的面积是这组数据的频率,用长乘以宽得到面积,即为频率.(II)根据所有的频率之和是1,列出关于x的方程,解出x的值做出样本容量的值,即调查中随机抽取了50个学生的百米成绩.(III)本题是一个古典概型,试验发生所包含的事件是从第一、五组中随机取出两个成绩,满足条件的事件是成绩的差的绝对值大于1秒,列举出事件数,根据古典概型概率公式得到结果.【解答】解:(Ⅰ)百米成绩在[16,17)内的频率为0.32×1=0.32,则共有1000×0.32=320人;(Ⅱ)设图中从左到右前3个组的频率分别为3x,8x,19x依题意,得3x+8x+19x+0.32+0.08=1,∴x=0.02设调查中随机抽取了n个学生的百米成绩,∴n=50∴调查中随机抽取了50个学生的百米成绩.(Ⅲ)百米成绩在第一组的学生数有3×0.02×1×50=3,记他们的成绩为a,b,c 百米成绩在第五组的学生数有0.08×1×50=4,记他们的成绩为m,n,p,q.则从第一、五组中随机取出两个成绩包含的基本事件有{a,b},{a,c},{a,m},{a,n},{a,p},{a,q},{b,c},{b,m},{b,n},{b,p},{b,q},{c,m},{c,n},{c,p},{c,q},{m,n},{m,p},{m,q},{n,p},{n,q},{p,q},共21个其中满足成绩的差的绝对值大于1秒所包含的基本事件有{a,m},{a,n},{a,p},{a,q},{b,m},{b,n},{b,p},{b,q},{c,m},{c,n},{c,p},{c,q},共12个,∴P=【点评】本题考查样本估计总体,考查古典概型的概率公式,考查频率分布直方图等知识,考查数据处理能力和分析问题、解决问题的能力.10.某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数,(1)请列出X的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率.【分析】(1)本题是一个超几何分步,用X表示其中男生的人数,X可能取的值为0,1,2,3,4.结合变量对应的事件和超几何分布的概率公式,写出变量的分布列和数学期望.(2)选出的4人中至少有3名男生,表示男生有3个人,或者男生有4人,根据第一问做出的概率值,根据互斥事件的概率公式得到结果.【解答】解:(1)依题意得,随机变量X服从超几何分布,随机变量X表示其中男生的人数,X可能取的值为0,1,2,3,4..∴所以X的分布列为:X01234P(2)由分布列可知至少选3名男生,即P(X≥3)=P(X=3)+P(X=4)=+=.【点评】本小题考查离散型随机变量分布列和数学期望,考查超几何分步,考查互斥事件的概率,考查运用概率知识解决实际问题的能力.11.某批产品共10件,已知从该批产品中任取1件,则取到的是次品的概率为P=0.2.若从该批产品中任意抽取3件,(1)求取出的3件产品中恰好有一件次品的概率;(2)求取出的3件产品中次品的件数X的概率分布列与期望.【分析】设该批产品中次品有x件,由已知,可求次品的件数(1)设取出的3件产品中次品的件数为X,3件产品中恰好有一件次品的概率为;(2)取出的3件产品中次品的件数X可能为0,1,2,求出相应的概率,从而可得概率分布列与期望.【解答】解:设该批产品中次品有x件,由已知,∴x=2…(2分)(1)设取出的3件产品中次品的件数为X,3件产品中恰好有一件次品的概率为…(4分)(2)∵X可能为0,1,2∴…(10分)∴X的分布为:X012P则…(13分)【点评】本题以实际问题为载体,考查等可能事件的概率,考查随机变量的期望与分布列,难度不大.12.某班组织知识竞赛,已知题目共有10道,随机抽取3道让某人回答,规定至少要答对其中2道才能通过初试,他只能答对其中6道,试求:(1)抽到他能答对题目数的分布列;(2)他能通过初试的概率.【分析】(1)设随机抽出的三道题目某人能答对的道数为X,且X=0、1、2、3,X服从超几何分布,根据超几何分步的概率公式写出概率和分布列.(2)要答对其中2道才能通过初试,则可以通过初试包括两种情况,即答对两道和答对三道,这两种情况是互斥的,根据上一问的计算可以得到.【解答】解:(1)设随机抽出的三道题目某人能答对的道数为X,且X=0、1、2、3,X 服从超几何分布,分布列如下:X0123P即X0123P(2)要答对其中2道才能通过初试,则可以通过初试包括两种情况,这两种情况是互斥的,根据上一问的计算可以得到【点评】本题考查超几何分布,本题解题的关键是看出变量符合超几何分布,这样可以利用公式直接写出结果.13.甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子任取2个球,乙从箱子里再取1个球,若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色的个数,才能使自己获胜的概率最大?(2)在(1)的条件下,求取出的3个球中红球个数的数学期望.【分析】(1)根据甲从箱子任取2个球,乙从箱子里在取1个球,若取出的3个球颜色全不相同,则甲获胜,可得甲获胜的概率,再利用基本不等式,可得x,y的值;(2)由题意知取出的3个球中红球个数ξ的取值为1,2,3,4,分别求出其发生的概率,进而求出次数ξ的数学期望【解答】解:(1)由题意,;∴,当且仅当x=y=2时“=”成立所以当红球与白球各2个时甲获胜的概率最大(2)取出的3个球中红球个数ξ=0,1,2,3,所以【点评】本题以摸球为素材,考查等可能事件的概率,考查离散型随机变量的期望,考查基本不等式的运用,解题的关键是理解题意,搞清变量的所有取值.14.甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,,,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分.(Ⅰ)求随机变量ξ的分布列及其数学期望E(ξ);(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.【分析】(Ⅰ)由题设知ξ的可能取值为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P (ξ=2),P(ξ=3),由此能求出随机变量ξ的分布列和数学期望E(ξ).(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,分别求出P(A),P(AB),再由P(B/A)=,能求出结果.【解答】解:(Ⅰ)由题设知ξ的可能取值为0,1,2,3,P(ξ=0)=(1﹣)(1﹣)(1﹣)=,P(ξ=1)=(1﹣)(1﹣)+(1﹣)××(1﹣)+(1﹣)(1﹣)×=,P(ξ=2)=++=,P(ξ=3)==,∴随机变量ξ的分布列为:ξ01 2 3P数学期望E(ξ)=0×+1×+2×+3×=.(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,则P(A)=++=,P(AB)==,P(B|A)===.【点评】本题考查离散型随机变量的期分布列和数学期望,考查条件概率的求法,是历年高考的必考题型之一,解题时要注意排列组合知识的合理运用.15.如图,李先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1、L2两条路线,L1路线上有A1、A2、A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1、B2两个路口,各路口遇到红灯的概率依次为,.(1)若走L1路线,求最多遇到1次红灯的概率;(2)若走L2路线,求遇到红灯次数X的数学期望;(3)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.【分析】(1)利用二项分布即可得出;(2)利用相互独立事件的概率计算公式及离散型随机变量的期望计算公式即可得出;(3)由于走路线L1时服从二项分布即可得出期望,比较走两条路的数学期望的大小即可得出要选择的路线.【解答】解:(1)设“走L1路线最多遇到1次红灯”为事件A,包括没有遇到红灯和只遇到红灯一次两种情况.则,所以走L1路线,最多遇到1次红灯的概率为.(2)依题意,X的可能取值为0,1,2.,,.随机变量X的分布列为:X012P所以.(3)设选择L1路线遇到红灯次数为Y,随机变量Y服从二项分布Y~,所以.因为EX<EY,所以选择L2路线上班最好.【点评】熟练掌握二项分布列、相互独立事件的概率计算公式及离散型随机变量的期望计算公式及其意义是解题的关键.16.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛中获胜的事件是独立的,并且获胜的概率均为.(1)求这支篮球队首次获胜前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好获胜3场的概率;(3)求这支篮球队在6场比赛中获胜场数的期望.【分析】(1)首次获胜前已经负了两场说明已经比赛三场,前两场输,第三场嬴,用乘法公式即可求得概率;(2)6场比赛中恰好获胜3场的情况有C63,比赛六场胜三场,故用乘法公式即可.(3)由于X服从二项分布,即X~B(6,),由公式即可得出篮球队在6场比赛中获胜场数的期望.【解答】解:(1)这支篮球队首次获胜前已经负了两场的概率为P==(2)6场比赛中恰好获胜3场的情况有C63,故概率为C63×=20××=(3)由于X服从二项分布,即X~B(6,),∴EX=6×=2【点评】本题考查二项分布与n次独立重复试验的模型,考查根据所给的事件类型选择概率模型的方法,以及用概率模型求概率与期望的能力。

高中数学选修2-3计数原理测试题(含答案)

高中数学选修2-3计数原理测试题(含答案)

高中数学选修2-3计数原理测试题(本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分)第Ⅰ卷(选择题,共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若m 为正整数,则乘积()()()=+++2021m m m m ( )A .20m AB .21m AC .2020+m AD .2120+m A2.若直线0=+By Ax 的系数B A ,同时从0,1,2,3,5,7六个数字中取不同的值,则这些方程表示不同的直线条数 ( ) A . 22 B . 30 C . 12 D . 153.四个编号为1,2,3,4的球放入三个不同的盒子里,每个盒子只能放一个球,编号为1的球必须放入,则不同的方法有 ( ) A .12种 B .18种 C .24种 D .96种4.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第几个数 ( ) A .6 B .9 C .10 D .8 5.把一个圆周24等分,过其中任意三个分点可以连成圆的内接三角形,其中直角三角形的个数是 ( ) A .2024 B .264 C .132 D .1226. 在(a-b)99的展开式中,系数最小的项为( )A.T 49B.T 50C.T 51D.T 52 7. 数11100-1的末尾连续为零的个数是( )A.0B.3C.5D.78. 若425225+=x x C C ,则x 的值为 ( )A .4B .7C .4或7D .不存在9.以正方体的顶点为顶点,能作出的三棱锥的个数是 ( ) A .34CB .3718C CC .3718C C -6D . 1248-C10.从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n 种.在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m ,则nm等于( ) A .101B .51 C .103 D .52第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分)11.设含有8个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则TS 的值为___________.12.有4个不同的小球,全部放入4个不同的盒子内,恰好有两个盒子不放球的不同放法的总数为 .13.在(x-1)11的展开式中,x 的偶次幂的所有项的系数的和为 .14. 六位身高全不相同的同学在“一滩”拍照留念,老师要求他们前后两排各三人,则后排每个人的身高均比前排同学高的概率是 . 15. 用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x .三、解答题(共计75分) 16.(12分)平面上有9个点,其中4个点在同一条直线上,此外任三点不共线.(1)过每两点连线,可得几条直线? (2)以每三点为顶点作三角形可作几个?(3)以一点为端点作过另一点的射线,这样的射线可作出几条? (4)分别以其中两点为起点和终点,最多可作出几个向量? 17.(12分)在二次项12)(n mbx ax (a >0,b >0,m,n ≠0)中有2m+n =0,如果它的展开式中系数最大的项恰是常数项,求它是第几项?18.(12分)由1,2,3,4,5,6,7的七个数字,试问:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中三个偶数排在一起的有几个?(3)(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个?(4)(1)中任意两偶然都不相邻的七位数有几个?19.(12分)2006年6月9日世界杯足球赛将在德国举行,参赛球队共32支,(1)先平均分成8个小组,在每组内进行单循环赛(即每队之间轮流比赛一次),决出16强(即取各组前2名)。

高中数学选修2-3试题

高中数学选修2-3试题

(选修2-3)训练题一、选择题(本大题共8小题,每小题5分,共40分.)(1)在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有2件次品的取法种数为A 23397C CB 2332397397C C +C C C 514100397C -C CD 5510097C -C (2)5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为 A 72 B 48 C 24 D 60(3)101x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为A 第5项B 第6项C 第5项或第6项D 不存在(4)将骰子(骰子为正方体,六个面分别标有数字1,2,…,6)先后抛掷2次,则向上的点数之和为5的概率是 A415 B 29 C 19 D 118(5)一个工人看管三台机床,在一小时内,这三台机床需要工人照管的概率分别0.9、0.8、0.7,则没有一台机床需要工人照管的概率为A 0.018B 0.016C 0.014D 0.006(6)袋中有5个红球,3个白球,不放回地抽取2次,每次抽1个.已知第一次抽出的是红球,则第2次抽出的是白球的概率为A37 B 38 C 47 D 12(7)设随机变量ξ服从B (6,12),则P (ξ=3)的值是( )A 516B 316C 58D 38(8)某班主任对全班则认为喜欢玩电脑游戏与认为作业多少有关系的把握大约为A 99%B 97.5%C 95%D 无充分依据二、填空题(本大题共6小题,每小题4分,共24分)(9)已知3-21010C =C x x ,则x = __________.(10)以正方体的顶点为顶点,能作出的三棱锥的个数是__________.(11)从1,2,3,…,9九个数字中选出三个不同的数字a ,b ,c ,且a <b <c ,作抛物线y =ax 2+bx +c ,则不同的抛物线共有 条(用数字作答).(12)有4台设备,每台正常工作的概率均为0.9,则4台中至少有3台能正常工作的概率为 .(用小数作答)(13)已知ξ~N 2(4,)σ,且(26)0.6826P ξ<<=,则σ= ,(24)P ξ-<= . (14)若p则E ξ的最大值为 ,D ξ的最大值为 .三.解答题(本大题共4小题,共36分.解答应写出文字说明、演算步骤或推证过程)(15)(本小题满分9分)已知57A 56C n n =,且(1-2x )n =a 0+a 1x +a 2x 2+a 3x 3+……+a n x n .(Ⅰ)求n 的值;(Ⅱ)求a 1+a 2+a 3+……+a n 的值.16(9分)男运动员6名,女运动员4名,其中男女队长各1人,从中 选5人外出比赛,下列情形各有多少种选派方法⑴男3名,女2名 ⑵队长至少有1人参加 ⑶至少1名女运动员 ⑷既要有队长,又要有女运动员 (17)(本小题满分9分)已知某类型的高射炮在它们控制的区域内击中具有某种速度敌机的概率为15. (Ⅰ)假定有5门这种高射炮控制某个区域,求敌机进入这个区域后被击中的概率;(Ⅱ)要使敌机一旦进入这个区域内有90%以上的概率被击中,至少需要布置几门这类高射炮?(参考数据lg 20.301=,lg30.4771=)(18)(本小题满分9分)今有甲、乙两个篮球队进行比赛,比赛采用7局4胜制.假设甲、乙两队在每场比赛中获胜的概率都是21.并记需要比赛的场数为ξ. (Ⅰ)求ξ大于5的概率;(Ⅱ)求ξ的分布列与数学期望.2006-2007学年高二数学(选修2-3)训练题参考答案一、选择题二、填空题(9)1或3 (10)58 (11)84(12)0.9477 (13)2;0.8390 (14)32;1 三、解答题(17)(Ⅰ)由57A 56C n n =得:n (n -1)(n -2)(n -3)(n -4)=56 ·1234567)6)(5)(4)(3)(2)(1(⋅⋅⋅⋅⋅⋅------n n n n n n n即(n -5)(n -6)=90解之得:n =15或n =-4(舍去). ∴ n =15.(Ⅱ)当n =15时,由已知有:(1-2x )15=a 0+a 1x +a 2x 2+a 3x 3+……+a 15x 15, 令x =1得:a 0+a 1+a 2+a 3+……+a 15=-1, 令x =0得:a 0=1,∴a 1+a 2+a 3+……+a 15=-2.(16)解: ⑴从10名运动员中选5人参加比赛,其中男3人,女2人的选法有C 36C 24=120 (种)⑵从10名运动员中选5人参加比赛,其中队长至少有1人参加的选法有C 12C 48+C 22C 38=140+56=196 (种)⑶从10名运动员中选5人参加比赛,其中至少有1名女运动员参加的选法有C 510-C 56=2461 (种)⑷从10名运动员中选5人参加比赛,既要有队长又要有女运动员的选法有C 510-C 58-C 45=191 (种)(17)(Ⅰ)设敌机被各炮击中的事件分别记为A 1、A 2、A 3、A 4、A 5,那么5门炮都未击中敌机的事件为54321A A A A A C ⋅⋅⋅⋅=,因各炮射击的结果是相互独立的,所以55551234514()()()()()()[()][1()]155P C P A P A P A P A P A P A P A ⎛⎫⎛⎫=⋅⋅⋅⋅==-=-= ⎪ ⎪⎝⎭⎝⎭因此敌机被击中的概率为542101()1()153125P C P C ⎛⎫=-=-= ⎪⎝⎭.(Ⅱ)设至少需要置n 门高射炮才能有90%以上的概率击中敌机,由①可知491510n⎛⎫-> ⎪⎝⎭ ,即 41510n⎛⎫< ⎪⎝⎭, 两边取常用对数,得3.103010.03112lg 311≈⨯-≈->n , ∴n ≥11.即至少需要布置11门高射炮才能有90%以上的概率击中敌机.(18)(Ⅰ)依题意可知,ξ的可能取值最小为4.当ξ=4时,整个比赛只需比赛4场即结束,这意味着甲连胜4场,或乙连胜4场,于是,由互斥事件的概率计算公式,可得P(ξ=4)=240441122C⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=18.当ξ=5时,需要比赛5场整个比赛结束,意味着甲在第5场获胜,前4场中有3场获胜,或者乙在第5场获胜,前4场中有3场获胜.显然这两种情况是互斥的,于是,P(ξ=5)=234334111222C-⎡⎤⎛⎫⎛⎫⋅⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=14,∴P(ξ>5)=1-[P(ξ=4)+P(ξ=5)]=1-[18+14]=58.即ξ>5的概率为58.(Ⅱ)∵ξ的可能取值为4,5,6,7,仿照(Ⅰ),可得P(ξ=6)=235335111222C-⎡⎤⎛⎫⎛⎫⋅⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=516,P(ξ=7)=236336111222C-⎡⎤⎛⎫⎛⎫⋅⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=516,∴ξ的分布列为:ξ的数学期望为:Eξ=4·18+5·14+6·516+7·516=9316.。

高中数学选修2-3习题及答案

高中数学选修2-3习题及答案

[基础训练A 组] 一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有( ) A .81 B .64 C .12 D .142.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机 各1台,则不同的取法共有( )A .140种 B.84种 C.70种 D.35种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( )A .33AB .334AC .523533A A A -D .2311323233A A A A A +4.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长, 不同的选法总数是( )A.20 B .16 C .10 D .65.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、 物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( ) A .男生2人,女生6人 B .男生3人,女生5人 C .男生5人,女生3人 D .男生6人,女生2人.6.在82x ⎛ ⎝的展开式中的常数项是( )A.7 B .7- C .28 D .28-7.5(12)(2)x x -+的展开式中3x 的项的系数是( ) A.120 B .120- C .100 D .100-8.22nx ⎫⎪⎭展开式中只有第六项二项式系数最大,则展开式中的常数项是( )A .180B .90C .45D .360二、填空题1.从甲、乙,……,等6人中选出4名代表,那么(1)甲一定当选,共有 种选法.(2)甲一定不入选,共有 种选法.(3)甲、乙二人至少有一人当选,共有 种选法.2.4名男生,4名女生排成一排,女生不排两端,则有 种不同排法. 3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数.4.在10(x 的展开式中,6x 的系数是 .5.在220(1)x -展开式中,如果第4r 项和第2r +项的二项式系数相等,则r = ,4r T = .6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?7.用145,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x . 8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个? 三、解答题1.判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? 2.7个排成一排,在下列情况下,各有多少种不同排法? (1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起, (4)甲、乙之间有且只有两人, (5)甲、乙、丙三人两两不相邻, (6)甲在乙的左边(不一定相邻),(7)甲、乙、丙三人按从高到矮,自左向右的顺序, (8)甲不排头,乙不排当中。

(必考题)高中数学高中数学选修2-3第三章《统计案例》检测(含答案解析)

(必考题)高中数学高中数学选修2-3第三章《统计案例》检测(含答案解析)

一、选择题1.以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,其变换后得到线性回归方程0.53z x =+,则c =( ) A .3B .3eC .0.5D .0.5e2.已知两个统计案例如下:①为了探究患肺炎与吸烟的关系,调查了339名50岁以上的人,调查结果如下表:②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:则对这些数据的处理所应用的统计方法是( ) A .①回归分析,②取平均值 B .①独立性检验,②回归分析 C .①回归分析,②独立性检验D .①独立性检验,②取平均值3.假设有两个分类变量X 和Y 的22⨯列联表为:对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .5,35b d ==B .15,25b d ==C .20,20b d ==D .30,10b d ==4.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:2()P K k≥0.0500.0250.0100.0050.001k 3.841 5.024 6.6357.87910.828由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是() A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关5.某中学共有5000人,其中男生3500人,女生1500人,为了了解该校学生每周平均体育锻炼时间的情况以及该校学生每周平均体育锻炼时间是否与性别有关,现在用分层抽样的方法从中收集300位学生每周平均体育锻炼时间的样本数据(单位:小时),其频率分布直方图如下:附:22()=()()()()n ad bcKa cb d a d b c-++++,其中n a b c d=+++.2()P K k≥0.100.050.010.005k 2.706 3.841 6.6357.879已知在样本数据中,有60位女生的每周平均体育锻炼时间超过4小时,根据独立性检验原理,我们()A.没有理由认为“该校学生每周平均体育锻炼时间与性别有关”B.有95%的把握认为“该校学生每周平均体育锻炼时间与性别有关”C.有95%的把握认为“该校学生每周平均体育锻炼时间与性别无关”D .有99.5%的把握认为“该校学生每周平均体育锻炼时间与性别有关”6.通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:做不到“光盘” 能做到“光盘” 男 45 10 女3015则有( )以上的把握认为“该市民能否做到‘光盘’与性别有关”,附表及公式()20P K k ≥0.100 0.050 0.010 0.001 0k 2.7063.8416.63510.828()()()()()22n ad bc K a b c d a c b d -=++++A .90%B .95%C .99%D .99.9%7.为了普及环保知识,增强环保意识,随机抽取某大学30名学生参加环保知识测试,得分如图所示,若得分的中位数为m e ,众数为m 0,平均数为x -,则( )A .m e =m 0=x -B .m 0<x -<m e C .m e <m 0<x -D .m 0<m e <x -8.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据见下表:心脏病 无心脏病 秃发 20 300 不秃发5450根据表中数据得到()277520450530015.96820750320455k ⨯⨯-⨯=≈⨯⨯⨯,因为K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为( ) A .0.1B .0.05C .0.01D .0.0019.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②在刻画回归模型的拟合效果时,R2的值越大,说明拟合的效果越好;③设随机变量ξ服从正态分布N(4,22),则P(ξ>4)=12;④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则判断“X与Y有关系”的犯错误的概率越小.其中正确的说法是()A.①④B.②③C.①③D.②④10.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.平均数与方差 B.回归分析C.独立性检验 D.概率11.某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由()()()()()22n ad bcka b c d a c b d-=++++并参照附表,得到的正确结论是A.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C.有99.9%的把握认为“爱好游泳运动与性别有关”D.有99.9%的把握认为“爱好游泳运动与性别无关”12.通过随机询问2016名性别不同的大学生是否爱好某项运动,得到2 6.023K=,则根据这一数据查阅表,则有把握认为“爱好该项运动与性别有关”的可信程度是()2()P K k≥…0.250.150.100.0250.0100.005…k… 1.323 2.072 2.706 5.024 6.6357.879…A.90%B.95%C.97.5%D.99.5%二、填空题13.给出下列结论:①在回归分析中,可用相关指数2R的值判断模型的拟合效果,2R越大,模型的拟合效果越好;②某工厂加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;③随机变量的方差和标准差都反映了随机变量的取值偏离均值的平均程度,它们越小,则随机变量偏离均值的平均程度越小;④甲、乙两人向同一目标同时射击一次,事件A:“甲、乙中至少一人击中目标”与事件B:“甲、乙都没有击中目标”是相互独立事件.其中结论正确的是______.14.新闻媒体为了了解观众对央视某节目的喜爱与性别是否有关,随机调查了观看该节目的观众110名,得到如下的2×2列联表:试根据样本估计总体的思想,估计约有________的把握认为“喜爱该节目与否和性别有关”.参考附表:(参考公式:K2=()()()()()2n ad bca b c d a c b d-++++,其中n=a+b+c+d)15.某市电信宽带私人用户月收费标准如下表:假定每月初可以和电信部门约定上网方案.若某用户每月上网时间为66小时,应选择__________方案最合算.16.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量y与月份x 之间有较好的线性相关关系,其线性回归方程是=﹣0.7x+,则= . 月 份x 1 2 3 4 用水量y4.5432.517.为了判断高中二年级学生是否喜欢足球运动与性别的关系,现随机抽取50名学生,得到22⨯列联表:喜欢 不喜欢 总计 男 15 10 25 女520 25 总计 203050(参考公式22()()()()()n ad bc k a b c d a c b d -=++++,()n a b c d =+++)20()P K k ≥ 0.010 0.005 0.0010k 6.635 7.879 10.828则有___________以上的把握认为“喜欢足球与性别有关”.18.为了判断高中三年级学生选修文理科是否与性别有关,现随机抽取50名学生,得到2×2列联表:理科 文科 总计 男 13 10 23 女 7 20 27 总计203050已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到≈4.844,则认为选修文理科与性别有关系出错的可能性约为________. 19.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,1,1,3b x y ===则1a =.正确的序号是________________.20.已知下列命题:①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;②两个变量的线性相关程度越强,则相关系数的值越接近于1;③两个分类变量X 与Y 的观测值2k ,若2k 越小,则说明“X 与Y 有关系”的把握程度越大;④随机变量X ~(0,1)N ,则(1)2(1)1P X P X <=<-. 其中为真命题的是__________.三、解答题21.为研究男、女生的身高差异,现随机从高三某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米): 男:173 178 174 185 170 169 167 164 161 170 女:165 166 156 170 163 162 158 153 169 172(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值;(2)请根据测量结果得到20名学生身高的中位数h (单位:厘米),将男、女生身高不低于h 和低于h 的人数填入下表中,并判断是否有90%的把握认为男、女生身高有差异? 人数 男生 女生身高h ≥ 身高h <参照公式:()()()()()22n ad bc k a b c d a c b d -=++++()20P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828175厘米为偏高.采用分层抽样的方法从以上男生中抽取5人作为样本.若从样本中任取2人,试求恰有1人身高属于正常的概率.22.某实验学校为提高学习效率,开展学习方式创新活动,提出了完成某项学习任务的两种新的学习方式.为比较两种学习方式的效率,选取40名学生,将他们随机分成两组,每组20人,第一组学生用第一种学习方式,第二组学生用第二种学习方式.40名学生完成学习任务所需时间的中位数40min m =,并将完成学习任务所需时间超过min m 和不超过min m 的学生人数得到下面的列联表:(Ⅰ)估计第一种学习方式且不超过m 的概率、第二种学习方式且不超过m 的概率; (Ⅱ)能否有99%的把握认为两种学习方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,23.某科研小组为了验证一种治疗新冠肺炎的新药的效果,选60名患者服药一段时间后,记录了这些患者的生理指标x 和y 的数据,并统计得到如下的22⨯列联表(不完整):在生理指标 1.8x >的人中,设A 组为生理指标65y ≤的人,B 组为生理指标65y >的人,将他们服用这种药物后的康复时间(单位:天)记录如下: A 组:10,11,12,13,14,15,16,17,19. B 组:12,13,14,15,16,17,20,21,25.(1)填写上表,并判断是否有95%95%的把握认为患者的两项生理指标x 和y 有关系; (2)从A ,B 两组人中随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙,求乙的康复时间比甲的康复时间长的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.)20k0.2524.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人,在这些居民中,经常阅读的城镇居民100人,农村居民24人.(1)完成上面2×2列联表,并判断是否有95%的把握认为经常阅读与居民居住地有关?(2)从该地区居民城镇的居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为X,若用样本的频率作为概率,求随机变量X的分布列和期望.附:K2=2()()()()()n ad bca b c d a c b d-++++,其中n=a+b+c+d.25.某足球运动员进行射门训练,若打进球门算成功,否则算失败.已知某天该球员射门成功次数与射门距离的统计数据如下:(1)请问是否有90%的把握认为该球员射门成功与射门距离是否超过30米有关?参考公式及数据:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++.(2)当该球员距离球门30米射门时,设射门角(射门点与球场底线中点的连线和底线所成的锐角或直角)为([0,])2πθθ∈,其射门成功率为2+3()cos sin 4f θθθθθ=+⋅-,求该球员射门成功率最高时射门角θ的值.26.已知某种新型病毒的传染能力很强,给人们生产和生活带来很大的影响,所以创新研发疫苗成了当务之急.为此,某药企加大了研发投入,市场上这种新型冠状病毒的疫苗A 的研发费用x (百万元)和销量y (万盒)的统计数据如下:(1)根据上表中的数据,建立y 关于x 的线性回归方程y bx a =+(用分数表示); (2)根据所求的回归方程,估计当研发费用为1600万元时,销售量为多少?参考公式:()()()1122211nniii i i i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据指对数互化求解即可. 【详解】解:因为0.53z x =+,ln z y =,所以0.53ln x y +=,所以0.5330.5x x y e e e +==⨯,故3c e=.故选:B.【点睛】本题考查非线性回归问题的转化,是基础题.2.B解析:B【分析】根据独立性检验和回归分析的概念,即可作出判定,得到答案.【详解】由题意,独立性检验通常是研究两个分类变量之间是否有关系,所以①采用独立性检验,回归分析通常是研究两个具有相关关系的变量的相关程度,②采用回归分析,综上可知①是独立性检验,②是回归分析,故选B.【点睛】本题主要考查了独立性检验和回归分析的概念及其判定,其中解答中熟记独立性检验和回归分析的概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3.D解析:D【解析】【分析】根据公式()()()()()22n ad bcKa b c d a c b d-=++++,分别利用4个选项中所给数据求出2K的值,比较所求值的大小即可得结果.【详解】选项A:22160(535155)3204010502K⨯⨯-⨯==⨯⨯⨯,选项B:22260(5251515)152040204016K⨯⨯-⨯==⨯⨯⨯,选项C:22360(5201520)24204025357K⨯⨯-⨯==⨯⨯⨯,选项D:22 460(5101530)96 204035257K⨯⨯-⨯==⨯⨯⨯,可得222431K K K>>22K>,所以由选项D中的数据得到的2K值最大,说明X与Y有关系的可能性最大,故选D.【点睛】本题主考查独立性检验的基本性质,意在考查对基本概念的理解与应用,属于基础题.解答独立性检验问题时,要注意应用2K越大两个变量有关的可能性越大这一性质.4.D解析:D【解析】【分析】由题意结合独立性检验的结论和临界值表给出结论即可.【详解】根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.本题选择D选项.【点睛】本题主要考查独立性检验的思想及其应用等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B【解析】分析:根据题设收集的数据,得到男生学生的人数,进而得出22⨯的列联表,利用计算公式,求解2K的值,即可作出判断.详解:由题意得,从5000人中,其中男生3500人,女生1500人,抽取一个容量为300人的样本,其中男女各抽取的人数为35003002105000⨯=人,1500300905000⨯=人,又由频率分布直方图可知,每周体育锻炼时间超过4小时的人数的频率为0.75,所以在300人中每周体育锻炼时间超过4小时的人数为3000.75225⨯=人,又在每周体育锻炼时间超过4小时的人数中,女生有60人,所以男生有22560165-=人,可得如下的22⨯的列联表:结合列联表可算得22300(456016530)4.762 3.8412109075225K⨯⨯-⨯=≈>⨯⨯⨯,所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”,故选B.点睛:本题主要考查了独立性检验的基础知识的应用,其中根据题设条件得到男女生的人数,得出22⨯的列联表,利用公式准确计算是解答的关键,着重考查了分析问题和解答问题的能力.6.A解析:A【解析】分析:根据列联表中数据代入公式计算k 的值,和临界值表比对后即可得到答案. 详解:将列联表中数据代入公式可得()210045153010 3.030 2.70675255545k ⨯⨯-⨯=≈>⨯⨯⨯,所以有0090的把握认为“该市居民能否做到‘光盘’”与性别有关.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)7.D解析:D 【解析】由条形图知,30名学生的得分情况依次为2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分,中位数为第15,16个数(分别为5,6)的平均数,即m e =5.5,5出现的次数最多,故众数为m 0=5,平均数为x =130(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97,故m 0<m e <x . 故答案为D.点睛:这个题目考查的是条型分布直方表的应用,以及基本量:均值,平均数的考查;一般在这类图中平均数就是将数据加到一起除以数据的个数即可,在频率分布直方表中是取每个长方条的中点乘以相应的频率并相加即可.8.D解析:D 【解析】010.828,10.0010.99999.90k ≥∴-==,则有0099.9以上的把握认为秃发与患心脏病有关,故这种判断出错的可能性为10.9990.001-=,故选D.【方法点睛】本题主要考查独立性检验的实际应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)9.B解析:B 【解析】①中各小长方形的面积等于相应各组的频率;②正确,相关指数R 2越大,拟合效果越好,R 2越小,拟合效果越差;③随机变量ξ服从正态分布N (4,22),正态曲线对称轴为x =4,所以P (ξ>4)=;④对分类变量X 与Y ,若它们的随机变量K 2的观测值k 越小,则说明“X 与Y 有关系”的犯错误的概率越大.故选B.10.C解析:C【解析】判断两个分类变量是否有关的最有效方法是进行独立性检验,故选C. 考点:独立性检验的意义.11.A解析:A 【解析】()22110403020207.8 6.63560506050k ⨯-⨯=≈>⨯⨯⨯,所以有99%的把握认为“爱好游泳运动与性别有关”,所以在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”12.C解析:C 【解析】因为2 6.023K =,且5.024 6.023 6.635≤≤,所以有把握认为“爱好该项运动与性别有关”的可信度P 满足10.02510.010P -≤≤-,即0.9750.99P ≤≤,应选答案C 。

高二数学选修2-3第一章测试题(含答案)

高二数学选修2-3第一章测试题(含答案)

高中数学选修2-3第一章测试题一.选择题(每题5分,满分60分)1.四个同学,争夺三项冠军,冠军获得者可能有的种类是( ) A .4 B .24 C .43D .34[答案] C[解析] 依分步乘法计数原理,冠军获得者可能有的种数是4×4×4=43.故选C.2.210所有正约数的个数共有( ) A .12个 B .14个 C .16个 D .20个[答案] C[解析] 由210=2·3·5·7知正约数的个数为2·2·2·2=16.∴选C. 3.设m ∈N *,且m <15,则(15-m )(16-m )…(20-m )等于( ) A .A 615-m B .A 15-m20-mC .A 620-mD .A 520-m[答案] C[解析] 解法1:(15-m )(16-m )…(20-m )=(20-m )(19-m )……[(20-m )-6+1]=A 620-m .解法2:特值法.令m =14得1×2×3×4×5×6=A 66.∴选C.4.A 、B 、C 、D 、E 五人站成一排,如果A 必须站在B 的左边(A 、B 可以不相邻),则不同排法有( )A .24种B .60种C .90种D .120种[答案] B[解析] 5个人全排列有5!=120种、A 在B 左边和A 在B 右边的情形一样多,∴不同排法有12×120=60种.5.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610B .27C 410 C .-9C 610D .9C 410[答案] D[解析] ∵T r +1=C r 10x 10-r(-3)r .令10-r =6, 解得r =4.∴系数为(-3)4C 410=9C 410.6.用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中奇数的个数为( )A .36B .30C .40D .60[答案] A[解析] 奇数的个位数字为1、3或5,偶数的个位数字为2、4.故奇数有35A 35=36个.7.6人站成一排,甲、乙、丙3人必须站在一起的所有排列的总数为( ) A .A 66B .3A 33C .A 33·A 33D .4!·3! [答案] D[解析] 甲、乙、丙三人站在一起有A 33种站法,把3人作为一个元素与其他3人排列有A 44种,∴共有A 33·A 44种.故选D. 8.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为( ) A .720 B .144 C .576D .684[答案] C[解析] “不能都站在一起”与“都站在一起”是对立事件,由间接法可得A 66-A 33A 44=576.[点评] 不能都站在一起,与都不相邻应区分.9.C 9798+2C 9698+C 9598等于( )A .C 9799B .C 97100C .C 9899D .C 98100[答案] B[解析] 原式=C 9798+C 9698+C 9698+C 9598=C 9799+C 9699=C 97100,故选B.10.已知集合A ={1,2,3,4,5,6},B ={1,2},若集合M 满足B M A ,则不同集合M的个数为( )A .12B .13C .14D .15[答案] C[解析] ∵B M ,∴M 中必含有1、2且至少含有3、4、5、6中的一个元素,又M A ,∴M ≠A ,∴M 的个数为C 14+C 24+C 34=14个.11.某年级有6个班,分别派3名语文教师任教,每个教师教2个班,则不同的任课方法种数为( )A .C 26·C 24·C 22 B .A 26·A 24·A 22 C .C 26·C 24·C 22·C 33 D.A 26·C 24·C 22A 33[答案] A12.1+(1+x )+(1+x )2+…+(1+x )n 的展开式的各项系数之和为( ) A .2n -1B .2n -1C .2n +1-1 D .2n [答案] C[解析] 解法一:令x =1得,1+2+22+…+2n =1×(2n +1-1)2-1=2n +1-1.解法二:令n =1,知各项系数和为3,排除A 、B 、D ,选C.二.填空题(每小题5分,满分20分)13.三个人坐在一排八个座位上,若每人的两边都要有空位,则不同的坐法种数为________.[答案] 24[解析] “每人两边都有空位”是说三个人不相邻,且不能坐两头,可视作5个空位和3个人满足上述两要求的一个排列,只要将3个人插入5个空位形成的4个空档中即可.∴有A 34=24种不同坐法.14.方程C x 17-C x 16=C 2x +216的解集是________.[答案] {5}[解析] 因为C x 17=C x 16+C x -116,所以C x -116=C 2x +216,由组合数公式的性质,得x -1=2x +2或x -1+2x +2=16,得x 1=-3(舍去),x 2=5.15.方程组⎩⎪⎨⎪⎧x 2+y 2=3,y 2+z 2=4,z 2+x 2=5.有________组解.[答案] 8[解析] 由方程组⎩⎪⎨⎪⎧x 2+y 2=3,y 2+z 2=4,z 2+x 2=5.可得⎩⎪⎨⎪⎧x 2=2,y 2=1,z 2=3.因此在{2,-2},{1,-1},{3,-3}中各取一个即可构成方程组的一组解,由分步乘法计数原理共有2×2×2=8组解.16.(2010·湖北文,11)在(1-x 2)10的展开式中,x 4的系数为________. [答案] 45[解析] 本题主要考查二项式定理.(1-x 2)10的展开式中,只有两个括号含x 2的项,则x 4的系数为C 210(-1)2=45三、解答题17.(满分12分)求和:12!+23!+34!+…+n(n +1)!.[解析] ∵k (k +1)!=k +1-1(k +1)!=k +1(k +1)!-1(k +1)!=1k !-1(k +1)!,∴原式=⎝⎛⎭⎫11-12!+⎝⎛⎭⎫12!-13!+⎝⎛⎭⎫13!-14!+…+⎝⎛⎭⎫1n !-1(n +1)!=1-1(n +1)!.18.(满分10分)用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数. (1)这些四位数中偶数有多少个?能被5整除的有多少个? (2)这些四位数中大于6500的有多少个?[解析] (1)偶数的个位数只能是2、4、6有A 13种排法,其它位上有A 36种排法,由分步乘法计数原理知共有四位偶数A 13·A 36=360个;能被5整除的数个位必须是5,故有A 36=120个.(2)最高位上是7时大于6500,有A 36种,最高位上是6时,百位上只能是7或5,故有2×A 25种.∴由分类加法计数原理知,这些四位数中大于6500的共有A 36+2A 25=160个.19.(满分12分)一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单. (1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前四个节目要有舞蹈节目,有多少种排法?(以上两个题只列出算式)[解析](1)先从5个演唱节目中选两个排在首尾两个位置有A25种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A66种排法,故共有A25A66种排法.(2)先不考虑排列要求,有A88种排列,其中前四个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有A45A44种排法,所以前四个节目要有舞蹈节目的排法有(A88-A45A44)种.20.(满分12分)六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站右端,也不站左端;(2)甲、乙站在两端;(3)甲不站左端,乙不站右端.[解析](1)解法一:因甲不站左右两端,故第一步先从甲以外的5个人中任选二人站在左右两端,有A25种不同的站法;第二步再让剩下的4个人站在中间的四个位置上,有A44种不同的站法,由分步乘法计数原理共有A25·A44=480种不同的站法.解法二:因甲不站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A14种不同的站法;第二步再让余下的5个人站在其他5个位置上,有A55种不同的站法,故共有A14·A55=480种不同的站法.解法三:我们对6个人,不考虑甲站位的要求,做全排列,有A66种不同的站法;但其中包含甲在左端或右端的情况,因此减去甲站左端或右端的排列数2A55,于是共有A66-2A55=480种不同的站法.(2)解法一:首先考虑特殊元素,让甲、乙先站两端,有A22种不同的站法;再让其他4个人在中间4个位置做全排列,有A44种不同的站法,根据分步乘法计数原理,共有A22·A44=48种不同的站法.解法二:“位置分析法”,首先考虑两端2个位置,由甲、乙去站,有A22种站法,再考虑中间4个位置,由剩下的4个人去站,有A44种站法,根据分步乘法计数原理,共有A22·A44=48种不同的站法.(3)解法一:“间接法”,甲在左端的站法有A55种,乙在右端的站法有A55种,而甲在左端且乙在右端的站法有A44种,故共有A66-2A55+A44=504种不同的站法.解法二:“直接法”,以元素甲的位置进行考虑,可分两类:a.甲站右端有A55种不同的站法;b.甲在中间4个位置之一,而乙不在右端,可先排甲后排乙,再排其余4个,有A14·A14·A44种不同的站法,故共有A55+A14·A14·A44=504种不同的站法.21.(满分12分)有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?(1)甲得4本,乙得3本,丙得2本; (2)一人得4本,一人得3本,一人得2本; (3)甲、乙、丙各得3本.[分析] 由题目可获取以下主要信息: ①9本不同的课外书分给甲、乙丙三名同学; ②题目中的3个问题的条件不同.解答本题先判断是否与顺序有关,然后利用相关的知识去解答. [解析] (1)分三步完成:第一步:从9本不同的书中,任取4本分给甲,有C 49种方法; 第二步:从余下的5本书中,任取3本给乙,有C 35种方法; 第三步:把剩下的书给丙有C 22种方法,∴共有不同的分法有C 49·C 35·C 22=1260(种).(2)分两步完成:第一步:将4本、3本、2本分成三组有C 49·C 35·C 22种方法;第二步:将分成的三组书分给甲、乙、丙三个人,有A 33种方法,∴共有C 49·C 35·C 22·A 33=7560(种).(3)用与(1)相同的方法求解,得C 39·C 36·C 33=1680(种).22.(满分12分)已知在(3x -123x )n 的展开式中,第6项为常数项.(1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项. [解析] (1)T r +1=C r n ·(3x )n -r ·(-123x )r =C r n ·(x 13)n -r ·(-12·x -13)r =(-12)r ·C r n ·x n -2r 3. ∵第6项为常数项,∴r =5时有n -2r3=0,∴n =10.(2)令n -2r 3=2,得r =12(n -6)=2,∴所求的系数为C 210(-12)2=454. (3)根据通项公式,由题意得:⎩⎪⎨⎪⎧10-2r3∈Z0≤r ≤10r ∈Z令10-2r3=k (k ∈Z ),则10-2r =3k , 即r =10-3k 2=5-32k .∵r ∈Z ,∴k 应为偶数,∴k 可取2,0,-2, ∴r =2,5,8,∴第3项、第6项与第9项为有理项. 它们分别为C 210·(-12)2·x 2,C 510(-12)5, C 810·(-12)8·x -2.。

新课标高中数学选修23(统计与概率)测试题

新课标高中数学选修23(统计与概率)测试题

新课标高中数学选修2—3(统计与概率)测试题命题:广东省汕头市潮阳林百欣中学 许吟裕(2006-4-8)一、选择题(本题共10小题,每小题5分,共50分,在每小题给出的4个选项中,只有1项是符合题目要求的。

) 1.从总体中抽得的样本数据为3.8,6.8,7.4则样本平均数x 为:( )A. 6.5B. 6C. 5D. 5.52.高三年级有12个班,每班50人按1—50排学号,为了交流学习经验,要求每班学号为 18的同学留下进行交流,这里运用的是( )抽样法:A.抽签法B.系统抽样C.分层抽样D.随机数表法3.如果数据x 1,x 2,x 3,…,x n 的平均数为 ,方差为62,则数据3x 1+5,3x 2+5,…,3x n +5的平均数和方差分别是 ( ) A . B . C . D . 4.甲、乙两个水文站同时作水文预报,如果甲站、乙站各自预报的准确率为0.8和0.7,那么,在一次预报中两站都准确预报的概率为 ( ) A .0.7 B .0.56 C .0.7 D .0.85.从分别写有A 、B 、C 、D 、E 的5张卡片中,任取两张,这两张卡片上的字母恰好是按字母顺序相邻的概率为 ( )A .B .C .D .6.已知盒子中有散落的围棋棋子15粒,其中6粒黑子,9粒白子,从中任意取出2粒恰好是同一色的概率 ( )A .B .C .D .7)A .B .C .D .8.甲、乙两人独立解答某道题,解不出来的概率分别为a 和b ,那么甲、乙两人都解出这道题的概率是 ( ) A .1-ab B .(1-a )(1-b ) C .1-(1-a )(1-b ) D .a (1-b )+b (1-a ) 9.有3个相识的人某天各自乘火车外出,假设火车有10节车厢,那么至少有两人在车厢内相遇的概率为 ( )A .B .C .D .26和x 2653和+x 29653和+x 2363和x 51521031073517711051635342014121107200292571442918710.一患者服用某种药品后被治愈的概率是95%,则患有相同症状的四位病人中至少有3人被治愈的概率为 ( ) A .0.86 B .0.90 C .0.95 D .0.99二,填空题(本题共4小题,每小题5分,共20分)11.甲投篮的命中率为0.7,乙投篮的命中率为0.8,每人各投3次,每人恰好都投中2次的概率为___________。

(典型题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)

(典型题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)

一、选择题1.甲、乙、丙三台机床是否需要维修相互之间没有影响.在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,则一小时内恰有一台机床需要维修的概率是( ) A .0.444B .0.008C .0.7D .0.2332.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( ) A .0.05B .0.1C .0.15D .0.23.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭4.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知离散型随机变量X 的分布列如图:则均值E (X )与方差D (X )分别为( )A .1.4,0.2B .0.44,1.4C .1.4,0.44D .0.44,0.26.设离散型随机变量X 可能的取值为1,2,3,4,()P X k ak b ==+,又X 的数学期望为()3E X =,则a b += A .110B .0C .110-D .157.设一随机试验的结果只有A 和A ,且A 发生的概率为m ,令随机变量11A X A 发生发生⎧=⎨-⎩,则()D X =( )A .1B .(1)m m -C .4(1)m m -D .4(1)(21)m m m --8.三个元件123,,T T T 正常工作的概率分别为123,,234,且是相互独立的.如图,将23,T T 两个元件并联后再与1T 元件串联接入电路,则电路不发生故障的概率是( )A .1124B .2324C .14D .17329.已知在5件产品中混有2件次品,现需要通过逐一检测直至查出2件次品为止,每检测一件产品的费用是10元,则所需检测费的均值为( ) A .32元B .34元C .35元D .36元10.将一枚质地均匀的硬币抛掷四次,设X 为正面向上的次数,则()03P X <<等于( )A .18B .38C .58D .7811.若随机变量ξ满足(1)4E ξ-=,(1)4D ξ-=,则下列说法正确的是A .4,4E D ξξ=-=B .3,3E D ξξ=-=C .4,4ED ξξ=-=-D .3,4E D ξξ=-=12.设随机变量ξ的概率分布列为1()()3kP k a ξ==,其中0,1,2k =,那么a 的值为( ) A .35B .2713C .919D .913二、填空题13.对某个数学题,甲解出的概率为23,乙解出的概率为34,两人独立解题.记X 为解出该题的人数,则E (X )=________.14.退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在[20,80]内的600人进行调查,并按年龄层次绘制频率分布直方图,如图所示.若规定年龄分布在[60,80]内的人为“老年人”,将上述人口分布的频率视为该城市年龄段在[20,80]的人口分布的概率.从该城市年龄段在[20,80]内的市民中随机抽取3人,记抽到“老年人”的人数为X 则随机变量X 的数学期望为______.15.《史记·卷六十五·孙子吴起列传第五》中记载了“田忌赛马”的故事.齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现规定每场比赛从双方的马匹中随机各选取一匹进行比试,若有优势的马一定获胜,且每场比赛相互独立,则采取三局两胜制齐王获胜的概率为________. 16.2017年5月某校高三年级1600名学生参加了教育局组织的期末统考,已知数学考试成绩X ~ N ()2100,σ.(试卷满分为150分)统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的34,则此次统考中成绩不低于120分的学生人数约为__________.17.设离散型随机变量ξ可能取的值为1,2,3,()P k ak b ξ==+(1,2,3k =),若ξ的数学期望7()3E ξ=,则a b +=_____. 18.甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3:1的比分获胜的概率为______. 19.若随机变量2~5,3X B ⎛⎫⎪⎝⎭,则()3D X =_______. 20.一个病人服用某种新药后被治愈的概率为0.9.则服用这种新药的4个病人中至少3人被治愈的概率为_______(用数字作答).三、解答题21.某款游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次,若出现一次音乐获得1分,若出现两次音乐获得2分,若出现三次音乐获得5分,若没有出现音乐则扣15分(即获得15-分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X ,求X 的分布列. (2)玩三盘此游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的人发现,若干盘游戏后,与最初的得分相比,得分没有增加反而减少了.请你分析得分减少的原因.22.甲、乙两人各射击一次,击中目标的概率分别是12和25,假设两人射击是否击中目标,相互之间没有影响,每次射击是否击中目标,相互之间没有影响. (1)求甲射击5次,至少1次未击中目标的概率; (2)求两人各射击3次,甲恰好比乙多击中目标2次的概率23.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s . ①利用该正态分布,求()187.8212.2P Z <<;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.已知X 服从二项分布(),B n p ,利用①的结果,求()E X .15012.2≈若()2,Z N μσ~则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=.24.甲、乙两名篮球运动员,甲投篮一次命中的概率为23,乙投篮一次命中的概率为12,若甲、乙各投篮三次,设X 为甲、乙投篮命中的次数的差的绝对值,其中甲、乙两人投篮是否命中相互没有影响.(1)若甲、乙第一次投篮都命中,求甲获胜(甲投篮命中数比乙多)的概率; (2)求X 的分布列及数学期望.25.湖北省从2021年开始将全面推行新高考制度,新高考“3+1+2”中的“2”要求考生从政治、化学、生物、地理四门中选两科,按照等级赋分计入高考成绩,等级赋分规则如下:高考政治、化学、生物、地理四门等级考试科目的考生原始成绩从高到低划分为A ,B ,C ,D ,E 五个等级,确定各等级人数所占比例分别为15%,35%,35%,13%,2%,等级考试科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法......分别转换到[]86,100、[]71,85、[]56,70、[]41,55、[]30,40五个分数区间,得到考生的等级分,等级转换分满分为100分.具体转换分数区间如下表:而等比例转换法......是通过公式计算:2211Y Y T TY Y T T --=--,其中1Y 、2Y 分别表示原始分区间的最低分和最高分,1T 、2T 分别表示等级分区间的最低分和最高分,Y 表示原始分,T 表示转换分,当原始分为1Y 、2Y 时,等级分分别为1T 、2T ,假设小明同学的生物考试成绩信息如下表: 设小明转换后的等级成绩为T ,根据公式得:847585756971TT --=--,所以76.677T =≈(四舍五入取整),小明最终生物等级成绩为77分.已知某学校学生有60人选了政治,以期中考试成绩为原始成绩转换该学校选政治的学生的政治等级成绩,其中政治成绩获得A 等级的学生原始成绩统计如下表: (1)从政治成绩获得A 等级的学生中任取3名,求至少有2名同学的等级成绩不小于93分的概率;(2)从政治成绩获得A 等级的学生中任取4名,设4名学生中等级成绩不小于93分人数为ξ,求ξ的分布列和期望.26.某选修课的考试按A 级、B 级依次进行,只有当A 级成绩合格时,才可继续参加B 级的考试.已知每级考试允许有一次补考机会,两个级别的成绩均合格方可获得该选修课的合格证书.现某人参加这个选修课的考试,他A 级考试成绩合格的概率为23,B 级考试合格的概率为12.假设各级考试成绩合格与否均互不影响. (1)求他不需要补考就可获得该选修课的合格证书的概率;(2)在这个考试过程中,假设他不放弃所有的考试机会,求他一共参加3次考试的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】直接利用对立事件和独立事件的概率求解. 【详解】因为在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4, 所以一小时内恰有一台机床需要维修的概率是:()()()()0.110.210.40.210.110.4p =⨯-⨯-+⨯-⨯- ,()()0.410.210.10.444+⨯-⨯-=.故选:A 【点睛】本题主要考查独立事件和对立事件的概率,属于中档题.2.B解析:B 【解析】1(80120)(80)(120)0.12P X P X P X -<<≤=≥== ,选B.3.C解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==.故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.4.C解析:C 【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件.故选:C 【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.5.C解析:C 【解析】 【分析】根据离散型随机变量的分布列的性质,求得,再利用随机变量的均值和方差的公式,即可求解,得到答案. 【详解】由离散型随机变量的分布列的性质可得,解得,所以随机变量的均值为,方差为, 故选C . 【点睛】本题主要考查了离散型随机变量的分布列的性质,以及均值与方程的计算,其中解答中根据离散型随机变量的分布列的性质,求得的值,再利用均值和方差的公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.6.A解析:A 【分析】将1,2,3,4X =代入()P X k =的表达式,利用概率之和为1列方程,利用期望值列出第二个方程,联立方程组,可求解得+a b 的值. 【详解】依题意可的X 的分布列为X1 2 3 4P+a b 2a b + 3a b + 4a b +()()()()23412233443a b a b a b a b a b a b a b a b +++++++=⎧⎨+++++++=⎩,解得1,010a b ==,故110a b +=.所以选A. 【点睛】本小题主要考查离散型随机变量分布列,考查概率之和为1,考查离散型随机变量的数学期望,还考查了方程的思想.属于基础题.7.C解析:C 【分析】根据随机试验的结果只有A 和A ,P (A )=m ,使得随机变量11A X A ⎧=⎨-⎩发生发生,得到随机变量符合两点分布,根据两点分布的方差公式得到结果. 【详解】∵由题意知一随机试验的结果只有A 和A , 且P (A )=m ,随机变量11A X A ⎧=⎨-⎩发生发生∴X 服从两点分布,∴EX=1(1)(1)21m m m ⨯+-⨯-=-, ∴DX=4m (1-m ). 故选C . 【点睛】解决离散型随机变量分布列问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.8.A解析:A 【分析】若电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 【详解】记1T 正常工作为事件A 记2T 正常工作为事件B 记3T 正常工作为事件C 则()12P A =,()23P B =,()34P C = 电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 则23T T ,至少有一个正常工作,概率为()1231111113412P P BC ⎛⎫⎛⎫=-=--⨯-=⎪ ⎪⎝⎭⎝⎭则电路不发生故障的概率1111121224P =⨯= 故选A 【点睛】本题主要考查了概率知识及实际应用能力,考查了相互独立事件同时发生的概率的计算,关键是确定不发生故障时满足的条件.9.C解析:C【解析】 【分析】随机变量X 的可能取值为20,30,40,结合组合知识,利用古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得X 的数学期望. 【详解】X 的可能取值为20,30,40,()222521202010A P X A ====;()311232323562323306010A C C A P X A +⋅⋅+⨯⨯====; ()()()1334012030110105P X P X P X ==-=-==--=,数学期望2030403510105EX =⨯+⨯+⨯=, 即需检测费的均值为35,故选C. 【点睛】本题主要考查组合的应用、古典概型概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先正确要理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.10.C解析:C 【解析】分析:先确定随机变量得取法12X =,,再根据独立重复试验求概率. 详解:因为14244411(1)(),(2)(),22P x C P x C ==== 所以142444411105(03)(1)(2)()(),2228P x P x P x C C <<==+==+== 选C.点睛:n 次独立重复试验事件A 恰好发生k 次得概率为(1)k k n k n C p p --.其中p 为1次试验种A 发生得概率.11.D解析:D 【解析】分析:由题意结合随机变量的性质整理计算即可求得最终结果. 详解:随机变量ξ满足()14E ξ-=,()14D ξ-=, 则:()214,14E D ξξ-=-=, 据此可得:3,4E D ξξ=-=. 本题选择D 选项.点睛:本题主要考查期望的数学性质,方差的数学性质等知识,意在考查学生的转化能力和计算求解能力.12.D解析:D 【解析】分析:根据离散型随机变量分布列的性质,变量取各个量对应的概率和等于1,建立关于a 的等量关系式,最后求得结果.详解:根据分布列的性质可得,()()()0121110121333P P P a a a ξξξ⎛⎫⎛⎫⎛⎫=+=+==++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得913a =,故选D. 点睛:解决该题的关键是明确离散型随机变量的分布列的性质,从而找到关于参数a 所满足的等量关系式,最后求得结果.二、填空题13.【解析】所以【点睛】解答离散型随机变量的分布列及相关问题的一般思路:(1)明确随机变量可能取哪些值(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值(3)根据分布列和期望方差公式求解注意: 解析:1712【解析】()11103412P X ==⨯=,()211351343412P X ==⨯+⨯=,()23623412P X ==⨯=,所以()1526171212E X ⨯+⨯==. 【点睛】解答离散型随机变量的分布列及相关问题的一般思路:(1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值.(3)根据分布列和期望、方差公式求解.注意:解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.14.6【分析】通过频率分布直方图求出年龄段在的频率即概率通过二项分布求出数学期望即可【详解】通过频率分布直方图得年龄段在的频率为即概率为抽到老年人的人数为服从二项分布即所以期望为故答案为:06【点睛】本解析:6 【分析】通过频率分布直方图求出年龄段在[]60,80的频率即概率,通过二项分布求出数学期望即可. 【详解】通过频率分布直方图得年龄段在[]60,80的频率为20.01100.2⨯⨯=,即概率为0.2, 抽到“老年人”的人数为X 服从二项分布,即()3,0.2X B ,所以期望为()30.20.6E X np ==⨯=, 故答案为:0.6. 【点睛】本题主要考查了频率分布直方图的应用,二项分布期望的求法,属于中档题.15.【分析】列出所有情况统计满足条件的情况得到齐王每次胜利的概率再根据独立事件计算得到答案【详解】设齐王的上中下等马为田忌的上中下等马为则共有9种情况其中齐王获胜的有6种情况故故答案为:【点睛】本题考查 解析:2027【分析】列出所有情况,统计满足条件的情况得到齐王每次胜利的概率123p =,再根据独立事件计算得到答案. 【详解】设齐王的上中下等马为ABC ,田忌的上中下等马为abc , 则共有,,,,,,,,Aa Ab Ac Ba Bb Bc Ca Cb Cc 9种情况, 其中齐王获胜的有,,,,,Aa Ab Ac Bb Bc Cc 6种情况,故16293p ==, 32232212033327p C ⎛⎫⎛⎫=+⋅⋅=⎪ ⎪⎝⎭⎝⎭.故答案为:2027. 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.16.【分析】根据正态分布对称性知计算得到答案【详解】根据正态分布对称性知:故此次统考中成绩不低于120分的学生人数约为故答案为:【点睛】本题考查了正态分布意在考查学生对于正态分布性质的应用 解析:200根据正态分布对称性知()11208p X >=,计算得到答案. 【详解】根据正态分布对称性知:()()131120801248p X p X ⎛⎫>=<=⋅-= ⎪⎝⎭. 故此次统考中成绩不低于120分的学生人数约为116002008⨯=. 故答案为:200. 【点睛】本题考查了正态分布,意在考查学生对于正态分布性质的应用.17.【分析】要求的值就是要将与求出两个未知数建立出两个方程即可由概率之和为1得到一个方程由得到第二个方程建立方程组从而得到结果【详解】解:离散随机变量可能取的值为123()故的数学期望①而且②①②联立方解析:16【分析】要求+a b 的值,就是要将a 与b 求出。

高中数学选修2-3综合期末试题

高中数学选修2-3综合期末试题

选修2—3期末考试试题(二)时间:120分钟 总分:150分 第一卷(选择题,共60分)1.如以下图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是( )2.袋中有大小一样的5只钢球,分别标有1,2,3,4,5五个,有放回地依次取出2个球,设两个球之和为随机变量*,则*所有可能值的个数是( )A .25B .10C .9D .53.A ,B ,C ,D ,E 五人并排站成一排,如果B 必须站在A 的右边(A ,B 可以不相邻),则不同的排法有( )A .24种B .60种C .90种D .120种4.(1+2*2)⎝⎛⎭⎪⎫*-1*8的展开式中常数项为( )A .42B .-42C .24D .-245.在秋季运动会的开幕式上,鲜花队方阵从左到右共有9列纵队,要求同一列纵队的鲜花颜色要一样,相邻纵队的鲜花颜色不能一样,而且左右各纵队的鲜花颜色要求关于正中间一列呈对称分布.现有4种不同颜色的鲜花可供选择,则鲜花队方阵所有可能的编排方案共有( )A .4×34种B .49种C .4×38种D .45种6.为了解高中生作文成绩与课外阅读量之间的关系,*研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:说法正确的选项是( )A .没有充足的理由认为课外阅读量大与作文成绩优秀有关B .有0.5%的把握认为课外阅读量大与作文成绩优秀有关C .有99.9%的把握认为课外阅读量大与作文成绩优秀有关D .有99.5%的把握认为课外阅读量大与作文成绩优秀有关 7.一个口袋中装有除颜色外完全一样的2个白球和3个黑球,第一次摸出1个白球后放回,则再摸出1个白球的概率是( )A.23B.14C.25D.158.将二项式⎝⎛⎭⎪⎫*+124*8的展开式中所有项重新排成一列,有理式不相邻的排法有( )种A .A 37B .A 66A 36C .A 66A 37D .A 77A 379.正态分布N 1(μ1,σ21),N 2(μ2,σ22),N 3(μ3,σ23)(其中σ1,σ2,σ3均大于0)所对应的密度函数图象如以下图所示,则以下说法正确的选项是( )①N 1(μ1,σ21) ②N 2(μ2,σ22) ③N 3(μ3,σ23)A .μ1最大,σ1最大B .μ3最大,σ3最大C .μ1最大,σ3最大D .μ3最大,σ1最大10.甲、乙两人进展乒乓球比赛,比赛规则为"3局2胜〞,即以先赢2局者为胜.根据经历,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是( )A .0.216B .0.36C .0.432D .0.64811.随机变量ξ~B ⎝⎛⎭⎪⎫9,15,则使P (ξ=k )取得最大值的k 值为( )A .2B .3C .4D .512.为了研究男子的年龄与吸烟的关系,抽查了100个男人,按年龄超过和不超过40岁,吸烟量每天多于和不多于20支进展分组,如下表:则有A .90% B .99%C .95% D .没有理由第二卷(非选择题,共90分)二、填空题(每题5分,共20分)13.从5名学生中任选4名分别参加数学、物理、化学、生物四科竞赛,且每科竞赛只有1人参加,假设甲参加,但不参加生物竞赛,则不同的选择方案共有________种.14.如下图的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.15.100件产品中有10件次品,从中任取3件,则任意取出的3件产品中次品数的数学期望为________.16.许多因素都会影响贫富状况,教育也许是其中之一.在研究这两个因素的关系时收集了*个国家50个州的成年人受过9年或更少教育的百分比(*)和收入低于官方规定的贫困线的人数占本州人数的百分比(y )的数据,建立的回归直线方程为y ^=0.8*+4.6,斜率的估计等于0.8说明________________,成年人受过9年或更少教育的百分比(*)和收入低于官方的贫困线的人数占本州人数的百分比(y )之间的相关系数________(填"大于0〞或"小于0〞).三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)⎝⎛⎭⎪⎫*+13*2n展开式的二项式系数之和比(*+y )n展开式的所有项系数之和大240.(1)求n 的值;(2)判断⎝⎛⎭⎪⎫*+13*2n展开式中是否存在常数项?并说明理由.18.(12分)带有编号1,2,3,4,5的五个球. (1)全部投入4个不同的盒子里; (2)放进4个不同的盒子里,每盒一个;(3)将其中的4个球投入4个盒子里的一个(另一个球不投入); (4)全部投入4个不同的盒子里,没有空盒.各有多少种不同的放法?19.(12分)*大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不一样的七个学院.现从这10名同学中随机选取3名同学,到希望小学进展支教活动(每位同学被选到的可能性一样).(1)求选出的3名同学是来自互不一样学院的概率;(2)设*为选出的3名同学中女同学的人数,求随机变量*的分布列和数学期望.20.(12分)在对人们休闲方式的一次调查中,共调查了56人,其中女性28人,男性28人,女性中有16人主要的休闲方式是看电视,另外12人主要的休闲方式是运动,男性中有8人主要的休闲方式是看电视,另外20人的主要休闲方式是运动.(1)根据以上数据建立一个2×2列联表; (2)判断性别与休闲方式是否有关系. 参考数据:球和白球,从A 中摸出一个红球的概率是13,从B 中摸出一个红球的概率为p (0<p <1).(1)从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停顿.①求恰好摸5次停顿的概率;②记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E (ξ).(2)假设A ,B 两个袋子中的球的个数之比为1∶2,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值.22.(12分)2011年3月,日本发生了9.0级地震,地震引发了海啸及核泄漏.*国际组织方案派出12名心理专家和18名核专家赴日本工作,临行前对这30名专家进展了总分为1 000分的综合素质测评,测评成绩用茎叶图进展了记录,如图(单位:分).规定测评成绩在976分以上(包括976分)为"尖端专家〞,测评成绩在976分以下为"高级专家〞,且只有核专家中的"尖端专家〞才可以独立开展工作.这些专家先飞抵日本的城市E ,再分乘三辆汽车到达工作地点福岛县.从城市E 到福岛县有三条公路,因地震破坏了道路,汽车可能受阻.据了解:汽车走公路Ⅰ或Ⅱ顺利到达的概率都为910;走公路Ⅲ顺利到达的概率为25,甲、乙、丙三辆车分别走公路Ⅰ、Ⅱ、Ⅲ,且三辆汽车是否顺利到达相互之间没有影响.(1)如果用分层抽样的方法从"尖端专家〞和"高级专家〞中选取6人,再从这6人中选2人,则至少有一人是"尖端专家〞的概率是多少?(2)求至少有两辆汽车顺利到达福岛县的概率;(3)假设从所有"尖端专家〞中选3名志愿者,用ξ表示所选志愿者中能独立开展工作的人数,试写出ξ的分布列,并求ξ的数学期望.答案1.A 题图A中的点不成线性排列,故两个变量不适合线性回归模型.2.C 由题意,由于是有放回地取,故可有如下情况:假设两次取球为一样,则有1+1=2,2+2=4,3+3=6,4+4=8,5+5=10,5个不同的和;假设两次取球为不同,则只有1+2=3,1+4=5,2+5=7,4+5=9这四个和,故共有9个.3.B 只需从5个位置中选出3个位置安排好C,D,E即可,不同的排法有A35=60种.4.B 展开式的常数项为C48+2C58(-1)5=-42.5.A 由题意知,只需安排1,2,3,4,5列纵队即可,对称的一侧按5,4,3,2,1的顺序安排,不同的编排方案共有4×3×3×3×3=4×34(种).6.D 根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.7.C 由于是有放回摸球,所以第二次摸出1个白球,与第一次摸出白球无关,即相互独立,所以第二次摸出白球的概率为25 .8.C⎝⎛⎭⎪⎫*+124*8展开式的通项公式T r+1=C r 8·(*)8-r ·⎝ ⎛⎭⎪⎫124*r=C r 82r ·*16-3r 4,r =0,1,2,…,8.当16-3r 4为整数时,r =0,4,8.所以展开式共有9项,其中有有理项3项,先排其余6项有A 66种排法,再将有理项插入形成的7个空当中,有A 37种方法.所以共有A 66A 37种排法.9.D 在正态分布N (μ,σ2)中,*=μ为正态曲线的对称轴,结合图象可知,μ3最大;又参数σ确定了曲线的形状:σ越大,曲线越"矮胖〞,σ越小,曲线越"高瘦〞.故由图象知σ1最大.10.D 甲获胜有两种情况,一是甲以20获胜,此时p 1=0.62=0.36,二是甲以21获胜,此时p 2=C 12·0.6×0.4×0.6=0.288, 故甲获胜的概率p =p 1+p 2=0.648.11.A P (ξ=k )=C k 9⎝ ⎛⎭⎪⎫15k⎝⎛⎭⎪⎫1-159-k =C k9·49-k59,验证知C 29·49-2=9×48,C 39·49-3=21×47,C 49·49-4=63×211,C 59·49-5=63×29,故当k =2时,P (ξ=k )取得最大值.12.B χ2=100×50×25-10×15265×35×60×40≈22.16>6.635.故有99%的把握认为吸烟量与年龄有关. 13.96解析:因为特殊元素优先安排,先排甲有3种,则其余的从剩下的4人中选3名,进展全排列得到A 34,另一种情况就是没有甲参加,则有A 44,根据分类加法计数原理,得不同的选择方案共有:3×A 34+A 44=96种.14.18解析:理解事件之间的关系,设"a 闭合〞为事件A ,"b 闭合〞为事件B ,"c 闭合〞为事件C ,则灯亮应为事件AC ,且A ,C ,之间彼此独立,且P (A )=P ()=P (C )=12.所以P (AC )=P (A )P ()P (C )=18.15.0.3解析:次品件数服从参数为N =100,M =10,n =3的超几何分布,由超几何分布的数学期望公式得E (ξ)=3×10100=0.3.16.如果受过9年或更少教育的人数每增加1个百分比,则低于官方规定的贫困线的人数占本州人数的比例将增加0.8个百分比 大于0解析:回归方程y ^=0.8*+4.6是反映这50个州的成年人受过9年或更少教育的百分比(*)和收入低于官方规定的贫困线的人数占本州人数的百分比(y )这两个变量的,而0.8是回归直线的斜率,又0.8>0,即b >0,又根据b 与r 同号的关系知r >0.17.解:(1)⎝⎛⎭⎪⎫*+13*2n展开式的二项式系数之和等于22n. (*+y )n 展开式的所有项系数之和为2n . 所以22n -2n =240,所以n =4.(2)⎝⎛⎭⎪⎫*+13*2n =⎝ ⎛⎭⎪⎫*+13*8,展开式的通项为T r +1=C r8·(*)8-r ·⎝ ⎛⎭⎪⎫13*r =C r8·*24-5r 6.令24-5r =0,r =245,不是自然数,所以⎝⎛⎭⎪⎫*+13*2n展开式中无常数项.18.解:(1)由分步乘法计数原理知,五个球全部投入4个不同的盒子里共有45种放法.(2)由排列数公式知,五个不同的球放进4个不同的盒子里(每盒一个)共有A 45种放法.(3)将其中的4个球投入一个盒子里共有C 45C 14种放法.(4)全部投入4个不同的盒子里(没有空盒)共有C 25A 44种不同的放法.19.解:(1)设"选出的3名同学是来自互不一样的学院〞为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以选出的3名同学是来自互不一样学院的概率为4960.(2)随机变量*的所有可能值为0,1,2,3.P (*=k )=C k 4·C 3-k6C 310(k =0,1,2,3).所以,随机变量*的分布列为随机变量*的数学期望E (*)=0×16+1×12+2×310+3×130=65.20.解:(1)依题意得2×2列联表看电视 运动 合计 男性 8 20 28 女性 16 12 28 合计243256(2)由2×2列联表中的数据,知 χ2=56×12×8-20×16228×28×24×32≈4.667,从而χ2>3.841,故有95%的把握认为性别与休闲方式有关. 21.解:(1)①恰好摸5次停顿,即第5次摸到的一定为红球,且前4次中有2次摸到红球,其概率为P =C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232×13=881;②随机变量ξ的可能取值为0,1,2,3.则P (ξ=0)=C 05⎝⎛⎭⎪⎫1-135=32243;P (ξ=1)=C 15×13×⎝⎛⎭⎪⎫1-134=80243;P (ξ=2)=C 25⎝ ⎛⎭⎪⎫132⎝⎛⎭⎪⎫1-133=80243;P (ξ=3)=1-32+80+80243=1781.所以,随机变量ξ的分布列为ξ0 1 2 3E (ξ)=80243×1+243+81=13181.(2)设袋子A 中有m 个球,则袋子B 中有2m 个球,由13m +2mp 3m =25,可得p =1330.22.解:(1)根据茎叶图,有"尖端专家〞10人,"高级专家〞20人,每个人被抽中的概率是630=15,所以用分层抽样的方法,选出的"尖端专家〞有10×15=2(人),"高级专家〞有20×15=4(人).用事件A 表示"至少有一名‘尖端专家’被选中〞,则它的对立事件表示"没有一名‘尖端专家’被选中〞,则P (A )=1-C 24C 26=1-615=35.因此,至少有一人是"尖端专家〞的概率是35.(2)记A ="汽车甲走公路Ⅰ顺利到达〞,B ="汽车乙走公路Ⅱ顺利到达〞,C ="汽车丙走公路Ⅲ顺利到达〞,则至少有两辆汽车顺利到达福岛县的概率为P (A ∩B ∩)+P (A ∩∩C )+P (∩B ∩C )+P (A ∩B ∩C )=910×910×35+910×110×25+110×910×25+910×910×25=441500. (3)由茎叶图知,心理专家中的"尖端专家〞为7人,核专家中的"尖端专家〞为3人,依题意,ξ的取值为0,1,2,3.P (ξ=0)=C 37C 310=724,P (ξ=1)=C 13C 27C 310=2140,P (ξ=2)=C 23C 17C 310=740,P (ξ=3)=C 33C 310=1120.因此ξ的分布列为E (ξ)=0×724+1×40+2×40+3×120=10.。

(完整版)高中数学选修(2-3)综合测试题(3)附答案

(完整版)高中数学选修(2-3)综合测试题(3)附答案

高中数学选修(2-3)综合测试题(3)一、选择题1.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角的蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻的右方蜂房中去,若从最初位置爬到4号蜂房中,则不同的爬法有( ) A.4种 B.6种 C.8种 D.10种2.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( )A.225()A B.225()C C.22254()C A · D.22252()C A · 3.已知集合{}123456M =,,,,,,{}6789N =,,,,从M 中选3个元素,N 中选2个元素,组成一个含有5个元素的集合T ,则这样的集合T 共有( )A.126个 B.120个 C.90个 D.26个 4.342(1)(1)(1)n x x x +++++++L 的展开式中2x 的系数是( )A.33n C +B.32n C +C.321n C +- D.331n C +-5.200620052008+被2006除,所得余数是( )A.2009 B.3 C.2 D.16.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是( ) A.0.665 B .0.56 C.0.24 D.0.285 7.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于4”;事件B :“甲、乙两骰子的点数之和等于7”,则(|)P B A 的值等于( )A.13 B.118 C.16 D.198.在一次智力竞赛的“风险选答”环节中,一共为选手准备了A ,B ,C 三类不同的题目,选手每答对一个A 类、B 类、C 类的题目,将分别得到300分、200分、100分,但如果答错,则要扣去300分、200分、100分,而选手答对一个A 类、B 类、C 类题目的概率分别为0.6,0.7,0.8,则就每一次答题而言,选手选择( )题目得分的期望值更大一些( ) A.A 类 B.B 类 C.C 类 D.都一样 9.已知ξ的分布列如下:ξ 1 2 3 4P1413 16 14并且23ηξ=+,则方差D η=( )A.17936 B.14336 C.29972 D.2277210.若2~(16)N ξ-,且(31)P ξ--≤≤0.4=,则(1)P ξ≥等于( ) A.0.1 B.0.2 C.0.3 D.0.4 11.已知x ,y 之间的一组数据:x 0 1 2 3 y1 3 5 7则y 与x 的回归方程必经过( ) A.(2,2) B.(1,3) C.(1.5,4) D.(2,5) 12.对于2()P K k ≥,当 2.706k >时,就约有的把握认为“x 与y 有关系”( ) A.99% B.99.5% C.95% D.90% 二、填空题13.912x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为 (用数字作答). 14.某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 (结果用分数表示).15.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分的概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大的是 .16.空间有6个点,其中任何三点不共线,任何四点不共面,以其中的四点为顶点共可作出个四面体,经过其中每两点的直线中,有 对异面直线. 三、解答题17.某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,他有5次出牌机会,每次只能出一种点数的牌,但张数不限,则有多少种不同的出牌方法?18.已知数列{}n a 的通项n a 是二项式(1)n x +与2(1)n x +的展开式中所有x 的次数相同的各项的系数之和,求数列的通项及前n 项和n S .19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元的消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6的6只均匀小球的抽奖箱中,有放回的抽两次球,抽得的两球标号之和为12,则获一等奖价值a 元的礼品,标号之和为11或10,获二等奖价值100元的礼品,标号之和小于10不得奖. (1)求各会员获奖的概率;(2)设场馆收益为ξ元,求ξ的分布列;假如场馆打算不赔钱,a 最多可设为多少元? 20.在研究某种新药对猪白痢的防治效果时到如下数据:存活数 死亡数 合计 未用新药 101 38 139 用新药 129 20 149 合计23058288试分析新药对防治猪白痢是否有效?21.甲有一个箱子,里面放有x 个红球,y 个白球(x ,y ≥0,且x +y =4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大? (2)在(1)的条件下,求取出的3个球中红球个数的期望.高中数学选修(2-3)综合测试题(3)CDCDB ACBAA CD 13.672 14.11919015.乙 16. 15,45 17.解:由于张数不限,2张2,3张A 可以一起出,亦可分几次出,故考虑按此分类.出牌的方法可分为以下几类:(1)5张牌全部分开出,有55A 种方法;(2)2张2一起出,3张A 一起出,有25A 种方法; (3)2张2一起出,3张A 分开出,有45A 种方法;(4)2张2一起出,3张A 分两次出,有2335C A 种方法; (5)2张2分开出,3张A 一起出,有35A 种方法;(6)2张2分开出,3张A 分两次出,有2435C A 种方法; 因此共有不同的出牌方法5242332455535535860A A A C A A C A +++++=种. 18.解:按(1)nx +及2(1)n x +两个展开式的升幂表示形式,写出的各整数次幂,可知只有当2(1)nx +中出现x 的偶数次幂时,才能与(1)n x +的x 的次数相比较.由0122(1)n n nnn n n x C C x C x C x +=++++L , 132120242213212222222222(1)()()n nn nn n n nnnnnx C C x C x C x C x C x Cx--+=++++++++L L可得0122422222()()()()nnn n n n n n n n n a C C C C C C C C =++++++++L01202422222()()n n n n n n n n n n C C C C C C C C =+++++++++L L 2122n n -=+, 2122nn n a -=+∵,∴222462112(222)(22222(21)(41)223nn nn n S =++++++++=-+⨯-L L122112122(21)(2328)33n n n n +++=-+-=+-·, 2111(2328)3n n n S ++=-∴·.19.解:(1)抽两次得标号之和为12的概率为11116636P =+=;抽两次得标号之和为11或10的概率为2536P =,故各会员获奖的概率为1215136366P P P =+=+=. (2)ξ 30a -30100-30P1365363036由1530(30)(70)300363636E a ξ=-⨯+-⨯+⨯≥, 得580a ≤元.所以a 最多可设为580元. 20.解:由公式计算得2288(1012038129)8.65813914923058k ⨯⨯-⨯=≈⨯⨯⨯,由于8.658 6.635>,故可以有99%的把握认为新药对防治猪白痢是有效的.21.解:(1)要想使取出的3个球颜色全不相同,则乙必须取出黄球,甲取出的两个球为一个红球一个白球,乙取出黄球的概率是14,甲取出的两个球为一个红球一个白球的概率是11246x y C C xy C =·,所以取出的3个球颜色全不相同的概率是14624xy xy P ==·,即甲获胜的概率为24xyP =,由0x y ,≥,且4x y +=,所以12424xy P =≤2126x y +⎛⎫= ⎪⎝⎭·,当2x y ==时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜的概率最大. (2)设取出的3个球中红球的个数为ξ,则ξ的取值为0,1,2,3.212221441(0)12C C P C C ξ===·,1112122222212144445(1)12C C C C C P C C C C ξ==+=··,2111122222212144445(2)12C C C C C P C C C C ξ==+=··,212221441(3)12C C P C C ξ===·,所以取出的3个球中红球个数的期望:15510123 1.512121212E ξ=⨯+⨯+⨯+⨯=。

高中数学选修2-3离散型随机变量的均值与方差精选题目(附答案)

高中数学选修2-3离散型随机变量的均值与方差精选题目(附答案)

高中数学选修2-3离散型随机变量的均值与方差精选题目(附答案)(1)离散型随机变量的均值的概念及性质 ①一般地,若离散型随机变量X 的分布列为则称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望.它反映了离散型随机变量取值的平均水平.②若Y =aX +b ,其中a ,b 为常数,则E (Y )=E (aX +b )=aE (X )+b . (2)两点分布与二项分布的均值①若随机变量X 服从两点分布,则E (X )=p . ②若X ~B (n ,p ),则E (X )=np . (2)离散型随机变量的方差、标准差 随机变量X 的分布列为则把D (X )=∑i =1n(x i -E (X ))2p i 叫做随机变量X 的方差,D (X )的算术平方根D (X )叫做随机变量X 的标准差,随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.(2)服从两点分布与二项分布的随机变量的方差 ①若X 服从两点分布,则D (X )=p (1-p );②若X 服从二项分布,即X ~B (n ,p ),则D (X )=np (1-p ). (3)离散型随机变量方差的性质 ①D (aX +b )=a 2D (X ); ②D (C )=0(C 是常数).一、离散型随机变量的均值1.袋中有4只红球,3只黑球,今从袋中随机取出4只球,设取到一只红球记2分,取到一只黑球记1分,试求得分X 的均值.解:取出4只球,颜色分布情况是:4红得8分,3红1黑得7分,2红2黑得6分,1红3黑得5分,相应的概率为P(X=5)=C14C33C47=435.P(X=6)=C24C23C47=1835.P(X=7)=C34C13C47=1235.P(X=8)=C44C03C47=135.随机变量X的分布列为所以E(X)=5×435+6×1835+7×1235+8×135=447.注:求离散型随机变量的均值的一般步骤:(1)理解随机变量的意义,写出随机变量的所有可能的取值;(2)求随机变量取每一个值的概率;(3)列出随机变量的分布列;(4)根据均值的计算公式求出E(X).2.在10件产品中,有3件一等品、4件二等品、3件三等品.从这10件产品中任取3件,求取出的3件产品中一等品件数X的分布列和均值.解:由题意知X的所有可能取值为0,1,2,3.P(X=0)=C03C37C310=35120=724,P(X=1)=C13C27C310=63120=2140,P(X=2)=C23C17C310=21120=740,P(X=3)=C33C07C310=1120.∴X的分布列为∴E(X)=0×724+1×2140+2×740+3×1120=910.3.篮球运动员在比赛中每次罚球命中得1分,没命中得0分,已知某篮球运动员命中的概率为0.8,则罚球一次得分ξ的均值是()A.0.2 B.0.8 C.1 D.0解析:选B因为P(ξ=1)=0.8,P(ξ=0)=0.2,所以E(ξ)=1×0.8+0×0.2=0.8.故选B.4.一个口袋中有5个球,编号为1,2,3,4,5,从中任取2个球,用X表示取出球的较大号码,则E(X)等于()A.4 B.5 C.3 D.4.5解析:选A P(X=2)=1C25=110,P(X=3)=C12C25=210=15,P(X=4)=C13C25=310,P(X=5)=C14C25=410=25,故E(X)=2×110+3×15+4×310+5×25=4.5.某中学选派40名学生参加北京市高中生技术设计创意大赛的培训,他们参加培训的次数统计如下表所示:(1)从这402名学生参加培训次数恰好相等的概率;(2)从这40名学生中任选2名,用X表示这2人参加培训次数之差的绝对值,求随机变量X的分布列及均值E(X).解:(1)这3名学生中至少有2名学生参加培训次数恰好相等的概率P=1-C15C115C120C340=419 494.(2)由题意知X=0,1,2,P(X=0)=C25+C215+C220C240=61156,P(X=1)=C15C115+C115C120C240=2552,P (X =2)=C 15C 120C 240=539,则随机变量X 的分布列为所以X 的均值E (X )=0×61156+1×2552+2×539=115156.二、离散型随机变量均值的性质 1.已知随机变量X 的分布列如下:(1)求m 的值; (2)求E (X );(3)若Y =2X -3,求E (Y ).解: (1)由随机变量分布列的性质,得14+13+15+m +120=1,解得m =16.(2)E (X )=(-2)×14+(-1)×13+0×15+1×16+2×120=-1730.(3)法一:由公式E (aX +b )=aE (X )+b ,得E (Y )=E (2X -3)=2E (X )-3=2×⎝ ⎛⎭⎪⎫-1730-3=-6215. 法二:由于Y =2X -3, 所以Y 的分布列如下:所以E (Y )=(-7)×14+(-5)×13+(-3)×15+(-1)×16+1×120=-6215. 注:若给出的随机变量Y 与X 的关系为Y =aX +b (其中a ,b 为常数),一般思路是先求出E (X ),再利用公式E (aX +b )=aE (X )+b 求E (Y ).2.掷骰子游戏:规定掷出1点,甲盒中放一球,掷出2点或3点,乙盒中放一球,掷出4点、5点或6点,丙盒中放一球,共掷6次,用x ,y ,z 分别表示掷完6次后甲、乙、丙盒中球的个数.令X =x +y ,则E (X )=( )A .2B .3C .4D .5解析:选B 将每一次掷骰子看作一次实验,实验的结果分丙盒中投入球(成功)或丙盒中不投入球(失败)两种,且丙盒中投入球(成功)的概率为12,z 表示6次实验中成功的次数,则z ~B ⎝ ⎛⎭⎪⎫6,12,∴E (z )=3,又x +y +z =6,∴X =x +y =6-z , ∴E (X )=E (6-z )=6-E (z )=6-3=3.3.随机变量X 的分布列如下表,则E (5X +4)等于( )A.16 B .11 C .2.2 解析:选A 由已知得E (X )=0×0.3+2×0.2+4×0.5=2.4,故E (5X +4)=5E (X )+4=5×2.4+4=16.故选A.5.已知η=2ξ+3,且E (ξ)=35,则E (η)=( ) A.35 B.65 C.215 D.125解析:选C E (η)=E (2ξ+3)=2E (ξ)+3=2×35+3=215.三、两点分布、二项分布的均值1.甲、乙两队参加奥运知识竞赛,每队三人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中三人答对的概率分别为23,23,12,且各人回答得正确与否相互之间没有影响.(1)若用ξ表示甲队的总得分,求随机变量ξ的分布列和均值;(2)用A 表示事件“甲、乙两队总得分之和为3”,用B 表示事件“甲队总得分大于乙队总得分”,求P (AB ).解: (1)由题意知,ξ的所有可能取值为0,1,2,3,且ξ~B ⎝ ⎛⎭⎪⎫3,23,则有 P (ξ=0)=C 03×⎝ ⎛⎭⎪⎫1-233=127,P (ξ=1)=C 13×23×⎝ ⎛⎭⎪⎫1-232=29,P (ξ=2)=C 23×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-23=49,P (ξ=3)=C 33×⎝ ⎛⎭⎪⎫233=827,所以ξ的分布列为由于随机变量ξ~B ⎝⎛⎭⎪⎫3,23,则有E (ξ)=3×23=2. (2)用C 表示“甲得2分乙得1分”这一事件,用D 表示“甲得3分乙得0分”这一事件,AB =C ∪D ,C ,D 互斥.P (C )=C 23×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-23×23×13×12+13×23×12+13×13×12=1034, P (D )=C 33×⎝⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12=435, P (AB )=P (C )+P (D )=1034+435=3435=34243. 注:此类题的解法一般分两步:一是先判断随机变量服从两点分布还是二项分布;二是代入两点分布或二项分布的均值公式计算均值.2.一次单元测验由20个选择题组成,每个选择题有4个选项,其中仅有1个选项正确,每题选对得5分,不选或选错不得分.一学生选对任意一题的概率为0.9,则该学生在这次测验中成绩的均值为________.解析:设该学生在这次测验中选对的题数为X ,该学生在这次测试中成绩为Y ,则X ~B (20,0.9),Y =5X .由二项分布的均值公式得E (X )=20×0.9=18.由随机变量均值的线性性质得E (Y )=E (5X )=5×18=90. 答案:903.某一供电网络,有n 个用电单位,每个单位在一天中使用电的机会是p ,供电网络中一天平均用电的单位个数是( )A .np (1-p )B .npC .nD .p (1-p )解析:选B 供电网络中一天用电的单位个数服从二项分布,故所求为np .故选B.4.某班有50名学生,其中男生30名,女生20名,现随机选取1名学生背诵课文,若抽到女生的人数记为X ,则E (X )=________.解析:易知X 服从两点分布,且P (X =0)=35,P (X =1)=25,故E (X )=25. 答案:255.某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是23,出现绿灯的概率都是13.记这4盏灯中出现红灯的数量为X ,当这4盏装饰灯闪烁一次时:(1)求X =2时的概率; (2)求X 的均值.解:(1)依题意知{X =2}表示“4盏装饰灯闪烁一次时,恰好有2盏灯出现红灯”,而每盏灯出现红灯的概率都是23,故X =2时的概率为C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=827. (2)∵X 服从二项分布,即X ~B ⎝ ⎛⎭⎪⎫4,23,∴E (X )=4×23=83.四、均值的实际应用1.随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:万元)为X.(1)求X的分布列;(2)求1件产品的平均利润(即X的均值);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?解:(1)利润X可以取6,2,1,-2;(2)利用均值的定义求值;(3)根据平均利润不小于4.73万元建立不等式求解.(1)X的所有可能取值有6,2,1,-2,P(X=6)=126200=0.63,P(X=2)=50200=0.25,P(X=1)=20200=0.1,P(X=-2)=4200=0.02.故X的分布列为(2)E(X)=6×0.63万元).(3)设技术革新后的三等品率为x,则此时1件产品的平均利润为E(X)=6×0.7+2×(1-0.7-0.01-x)+1×x+(-2)×0.01=4.76-x(0≤x≤0.29),依题意,E(X)≥4.73,即4.76-x≥4.73,解得x≤0.03,所以三等品率最多为3%.2.某公司拟资助三位大学生自主创业,现聘请两位专家独立地对每位学生的创业方案进行评审.假设评审结果为“支持”和“不支持”的概率都是12,若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助.令ξ表示该公司的资助总额,求E(ξ).解:法一:ξ的所有取值为0,5,10,15,20,25,30.P (ξ=0)=164,P (ξ=5)=332,P (ξ=10)=1564,P (ξ=15)=516,P (ξ=20)=1564,P (ξ=25)=332,P (ξ=30)=164.故ξ的分布列为因此E (ξ)=0×164+5×332+10×1564+15×516+20×1564+25×332+30×164=15.法二:设X i 为第i 名学生获得的“支持”数(i =1,2,3),ξi 为第i 名学生获得的“资助”额(i =1,2,3),则X i ~B ⎝ ⎛⎭⎪⎫2,12,且ξi =5X i (i =1,2,3),ξ=ξ1+ξ2+ξ3.因此E (ξ)=E (ξ1)+E (ξ2)+E (ξ3)=5E (X 1)+5E (X 2)+5E (X 3)=3×5×2×12=15. 3.某商场为刺激消费,拟按以下方案进行促销:顾客消费每满500元便得到抽奖券1张,每张抽奖券的中奖概率为12,若中奖,则商场返回顾客现金100元.某顾客现购买价格为2 300元的台式电脑一台,得到奖券4张.每次抽奖互不影响.(1)设该顾客抽奖后中奖的抽奖券张数为ξ,求ξ的分布列;(2)设该顾客购买台式电脑的实际支出为η(单位:元),用ξ表示η,并求η的数学期望.解:(1)∵每张奖券是否中奖是相互独立的,∴ξ~B (4,12). ∴P (ξ=0)=C 04(12)4=116,P (ξ=1)=C 14(12)4=14, P (ξ=2)=C 24(12)4=38,P (ξ=3)=C 34(12)4=14, P (ξ=4)=C 44(12)4=116. ∴ξ的分布列为(2)∵ξ~B(4,12),∴E(ξ)=4×12=2.又由题意可知η=2 300-100ξ,∴E(η)=E(2 300-100ξ)=2 300-100E(ξ)=2 300-100×2=2 100.即实际支出的数学期望为2 100元.4.端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与均值.解:(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)=C12C13C15C310=14.(2)X的所有可能值为0,1,2,且P(X=0)=C38C310=715,P(X=1)=C12C28C310=715,P(X=2)=C22C18C310=115.综上知,X的分布列为故E(X)=0×715+1×715+2×115=35.五、求离散型随机变量的方差1.袋中有20个大小相同的球,其中标记0的有10个,标记n的有n个(n =1,2,3,4).现从袋中任取一球,X表示所取球的标号.(1)求X的分布列、均值和方差;(2)若Y=aX+b,E(Y)=1,D(Y)=11,试求a,b的值.解:(1)X的分布列为则E (X )=0×12+1×120+2×110+3×320+4×15=1.5.D (X )=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (Y )=a 2D (X ),得a 2×2.75=11,得a =±2. 又E (Y )=aE (X )+b ,所以,当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4. 所以⎩⎨⎧ a =2,b =-2或⎩⎨⎧a =-2,b =4.注求离散型随机变量ξ的方差的步骤: (1)理解ξ的意义,明确其可能取值;(2)判定ξ是否服从特殊分布(如两点分布、二项分布等),若服从特殊分布,则可利用公式直接求解;若不服从特殊分布则继续下面步骤;(3)求ξ取每个值的概率;(4)写出ξ的分布列,并利用分布列性质检验;(5)根据方差定义求D (ξ).2.了激发学生了解数学史的热情,在班内进行数学家和其国籍的连线游戏,参加连线的同学每连对一个得1分.假定一个学生对这些数学家没有了解,只是随机地连线,试求该学生得分X 的分布列及其数学期望、方差.解:该学生连线的情况:连对0个,连对1个,连对2个,连对4个,故其得分可能为0分,1分,2分,4分.P (X =0)=3×3A 44=38,P (X =1)=C 14×2A 44=13,P (X =2)=C 24×1A 44=14,P (X =4)=1A 44=124.故X 的分布列为∴E (X )=0×38+1×13+2×14+4×124=1,D (X )=(0-1)2×38+(1-1)2×13+(2-1)2×14+(4-1)2×124=1. 3.已知随机变量X 的分布列如下:若E (X )=13,则D (X )的值是( ) A.13 B.23 C.59 D.79解析:选C 由分布列的性质可知a +b +12=1,∴a +b =12.又E (X )=-a +12=13,解得a =16,b =13,∴D (X )=⎝ ⎛⎭⎪⎫-1-132×16+⎝ ⎛⎭⎪⎫0-132×13+⎝ ⎛⎭⎪⎫1-132×12=59. 4.有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设3张卡片上的数字之和为X ,求D (X ).解:由题知X =6,9,12.P (X =6)=C 38C 310=715,P (X =9)=C 28C 12C 310=715,P (X =12)=C 18C 22C 310=115.∴X 的分布列为∴E (X )=6×715+9×715+12×115=7.8.D (X )=(6-7.8)2×715+(9-7.8)2×715+(12-7.8)2×115=3.36.六、常见分布的方差1.(1)抛掷一枚硬币1次,正面向上得1分,反面向上得0分.用ξ表示抛掷一枚硬币的得分数,求E (ξ),D (ξ);(2)某人每次投篮时投中的概率都是12.若投篮10次,求他投中的次数ξ的均值和方差;(3)5件产品中含有2件次品,从产品中选出3件,所含的次品数设为X ,求X 的分布列及其均值、方差.解: (1)ξ服从两点分布,抛掷一枚硬币1次,正面向上的概率为12,所以E (ξ)=12,D (ξ)=14.(2)ξ~B ⎝ ⎛⎭⎪⎫10,12,所以E (ξ)=10×12=5.D (ξ)=10×12×12=52. (3)X 可能取的值是0,1,2.P (X =0)=C 02C 33C 35=110,P (X =1)=C 12C 23C 35=35,P (X =2)=C 22C 13C 35=310,所以X 的分布列为E (X )=0×110+1×35+2×310=1.2.D (X )=(0-1.2)2×110+(1-1.2)2×35+(2-1.2)2×310=0.36.2.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳的成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,均值E (ξ)为3,标准差D (ξ)为62.(1)求n 和p 的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.解:由题意知,ξ~B (n ,p ),P (ξ=k )=C k n p k (1-p )n -k,k =0.1,…,n . (1)由E (ξ)=np =3,D (ξ)=np (1-p )=32, 得1-p =12,从而n =6,p =12. ξ的分布列为(2)记“得P (A )=164+332+1564+516=2132, 所以需要补种沙柳的概率为2132.3.从装有3个白球和7个红球的口袋中任取1个球,用X 表示是否取到白球,即X =⎩⎨⎧1(当取到白球时),0(当取到红球时),则X 的方差D (X )=( )A.21100B.750C.110D.310解析:选A 显然X 服从两点分布,P (X =0)=710,P (X =1)=310.故X 的分布列为所以E (X )=310,故D (X )=710×310=21100.4.已知一批产品中有12件正品,4件次品,有放回地任取4件,若X 表示取到次品的件数,则D (X )=( )A.34B.89C.38D.25解析:选B 由题意,可知每次取得次品的概率都为13,X ~B ⎝ ⎛⎭⎪⎫4,13,则D (X )=4×13×23=89.5.设随机变量X 的分布列为P (X =k )=C k n ⎝ ⎛⎭⎪⎫23k ·⎝ ⎛⎭⎪⎫13n -k,k =0,1,2,…,n ,且E (X )=24,则D (X )的值为( )A .8B .12 C.29 D .16解析:选A 由题意可知X ~B ⎝ ⎛⎭⎪⎫n ,23,∴E (X )=23n =24. ∴n =36.∴D (X )=36×23×⎝ ⎛⎭⎪⎫1-23=8.6.某出租车司机从某饭店到火车站途中需经过六个交通岗,假设他在各个交通岗遇到红灯这一事件是相互独立的,并且概率是13.(1)求这位司机遇到红灯次数X 的均值与方差;(2)若遇上红灯,则需等待30秒,求司机总共等待时间Y 的均值与方差. 解:(1)易知司机遇上红灯次数X 服从二项分布,且X ~B ⎝ ⎛⎭⎪⎫6,13,∴E (X )=6×13=2,D (X )=6×13×⎝ ⎛⎭⎪⎫1-13=43.(2)由已知得Y=30X,∴E(Y)=30E(X)=60,D(Y)=900D(X)=1 200.七、离散型随机变量的均值与方差的应用1.A,B两台机床同时加工零件,每生产一批数量较大的产品时,出现次品的概率如下表所示.A机床B机床问哪一台机床加工的质量较好?解:由表中数据可知,E(X1)=0×0.7+1×0.2+2×0.06+3×0.04=0.44,E(X2)=0×0.8+1×0.06+2×0.04+3×0.10=0.44.所以它们的期望相同,再比较它们的方差.D(X1)=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2×0.06+(3-0.44)2×0.04=0.606 4,D(X2)=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2×0.04+(3-0.44)2×0.10=0.926 4.因为0.606 4<0.926 4,所以A机床加工的质量较好.2.已知海关大楼顶端镶有A,B两面大钟,它们的日走时误差分别为X1,X2(单位:s),其分布列如下:解:∵由题意得E(X1)=0,E(X2)=0,∴E(X1)=E(X2).∵D(X1)=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5,D(X2)=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-0)2×0.1=1.2,∴D(X1)<D(X2).综上可知,A大钟的质量较好.3.由以往的统计资料表明,甲、乙两名运动员在比赛中的得分情况为:A.甲B.乙C.甲、乙均可D.无法确定解析:选A E(X1)=E(X2)=1.1,D(X1)=1.12×0.2+0.12×0.5+0.92×0.3=0.49,D(X2)=1.12×0.3+0.12×0.3+0.92×0.4=0.69,∴D(X1)<D(X2),即甲比乙得分稳定,甲运动员参加较好.4.根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:为0.3,0.7,0.9,求:(1)工期延误天数Y的均值与方差;(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.解:(1)由已知条件和概率的加法公式有P (X <300)=0.3,P (300≤X <700)=P (X <700)-P (X <300)=0.7-0.3=0.4, P (700≤X <900)=P (X <900)-P (X <700)=0.9-0.7=0.2. P (X ≥900)=1-P (X <900)=1-0.9=0.1. 所以Y 的分布列为于是,E (Y )=0×D (Y )=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8. 故工期延误天数Y 的均值为3,方差为9.8.(2)由概率的加法公式,P (X ≥300)=1-P (X <300)=0.7, 又P (300≤X <900)=P (X <900)-P (X <300)=0.9-0.3=0.6. 由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P (300≤X <900)P (X ≥300)=0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.巩固练习:1.已知随机变量X 和Y ,其中Y =12X +7,且E (Y )=34,若X 的分布列如表,则m 的值为( )A.13B.14C.16D.18解析:选A 由Y =12X +7得E (Y )=12E (X )+7=34,从而E (X )=94,所以E (X )=1×14+2×m +3×n +4×112=94,又m +n +112+14=1,联立解得m =13.故选A.2.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a ,b ,c ∈(0,1)),已知他投篮一次得分的均值为2,则2a +13b 的最小值为()A.323 B.283 C.143 D.163解析:选D由已知得3a+2b+0×c=2,即3a+2b=2,其中0<a<23,0<b<1.2 a+13b=3a+2b2⎝⎛⎭⎪⎫2a+13b=3+13+2ba+a2b≥103+22ba·a2b=16 3,当且仅当2ba=a2b,即a=2b时取“等号”,故2a+13b的最小值为163.故选D.3.设l为平面上过点(0,1)的直线,l的斜率k等可能地取-22,-3,-52,0,52,3,22,用ξ表示坐标原点到l的距离d,则随机变量ξ的数学期望E(ξ)为()A.37 B.47 C.27 D.17解析:选B当k=±22时,直线l的方程为±22x-y+1=0,此时d=1 3;当k=±3时,d=12;当k=±52时,d=23;当k为0时,d=1.由等可能事件的概率公式可得ξ的分布列为所以E(ξ)=13×27+12×27+23×27+1×17=47.4.某学校要从5名男生和2名女生中选出2人作为社区志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则随机变量ξ的数学期望E(ξ)=________(结果用分数表示).解析:随机变量ξ的所有可能取值为0,1,2,因为P (ξ=0)=C 25C 27=1021,P (ξ=1)=C 15C 12C 27=1021,P (ξ=2)=C 22C 27=121,所以E (ξ)=0×1021+1×1021+2×121=47.答案:475.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的均值E (X )=________.解析:由P (X =0)=⎝ ⎛⎭⎪⎫1-23(1-p )(1-p )=112可得p =12⎝ ⎛⎭⎪⎫p =32舍去, 从而P (X =1)=23·⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫1-23·C 12·⎝ ⎛⎭⎪⎫122=13, P (X =2)=23·C 12⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫1-23·⎝ ⎛⎭⎪⎫122=512, P (X =3)=23·⎝ ⎛⎭⎪⎫122=16. 所以E (X )=0×112+1×13+2×512+3×16=53. 答案:536.“键盘侠”是指部分在现实生活中不爱说话,却在网上习惯性地、集中性地发表各种言论的人群,人们对这种现象有着不同的看法.某调查组织在某广场上邀请了10名男士和10名女士请他们分别谈一下对“键盘侠”这种社会现象的认识,其中有4名男士和5名女士认为它的出现是“社会进步的表现”,其他人认为它的出现是“社会冷漠的表现”.(1)从这些男士和女士中各抽取1人,求至少有1人认为“键盘侠”这种社会现象是“社会进步的表现”的概率;(2)从男士中抽取2人,女士中抽取1人,3人中认为“键盘侠”这种社会现象是“社会进步的表现”的人数记为X ,求X 的分布列和数学期望.解:(1)由题意可知10名男士中有4人认为“键盘侠”的出现是“社会进步的表现”,10名女士中有5人也这样认为.记事件A={从这些男士和女士中各抽取1人,至少有1人认为“键盘侠”的出现是“社会进步的表现”},则P(A)=1-C16C15C110C110=1-30100=710.(2)X的所有可能取值为0,1,2,3.P(X=0)=C26C210×C15C110=16,P(X=1)=C14C16C210×C15C110+C26C210×C15C110=1330,P(X=2)=C24C210×C15C110+C14C16C210×C15C110=13,P(X=3)=C24C210×C15C110=115,所以X的分布列为数学期望E(X)=0×16+1×1330+2×13+3×115=1310.7.设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T(2)刘教授驾车从老校区出发,前往新校区作一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.解:(1)由统计结果可得T的频率分布为从而E (T )=25×0.2+30×0.3+35×0.4+40×0.1=32.(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.法一:P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.法二:P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09.故P (A )=1-P (A )=0.91.8.若ξ~B (n ,p ),且E (ξ)=6,D (ξ)=3,则P (ξ=1)=( ) A .3×2-2 B .3×2-10 C .2-4 D .2-8解析:选B 由E (ξ)=np =6,D (ξ)=np (1-p )=3,得p =12,n =12,所以p (ξ=1)=C 112⎝ ⎛⎭⎪⎫1212=3210=3×2-10.故选B. 9.设X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,现已知E (X )=43,D (X )=29,则x 1+x 2的值为( )A.53B.73 C .3 D.113解析:选C 由题意得P (X =x 1)+P (X =x 2)=1,所以随机变量X 只有x 1,x 2两个取值,所以⎩⎪⎨⎪⎧x 1·23+x 2·13=43,⎝ ⎛⎭⎪⎫x 1-432·23+⎝ ⎛⎭⎪⎫x 2-432·13=29.解得x 1=1,x 2=2x 1=53,x 2=23舍去,所以x 1+x 2=3,故选C.10.若p 为非负实数,随机变量X 的分布列为则E (X )的最大值是.解析:由分布列的性质可知p ∈⎣⎢⎡⎦⎥⎤0,12,则E (X )=p +1∈⎣⎢⎡⎦⎥⎤1,32,故E (X )的最大值为32.∵D (X )=⎝ ⎛⎭⎪⎫12-p (p +1)2+p (p +1-1)2+12(p +1-2)2=-p 2-p +1=-⎝ ⎛⎭⎪⎫p +122+54,又p ∈⎣⎢⎡⎦⎥⎤0,12,∴当p =0时,D (X )取得最大值1. 答案:32 111.已知随机变量X 的分布列为①E (X )=-13;②E (X +4)=-13;③D (X )=2327; ④D (3X +1)=5;⑤P (X >0)=13.解析:E (X )=(-1)×12+0×13+1×16=-13,E (X +4)=113,故①正确,②错误.D (X )=(-1+13)2×12+(0+13)2×13+(1+13)2×16=59,D (3X +1)=9D (X )=5,故③错误,④正确.P (X >0)=P (X =1)=16,故⑤错误.答案:212.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为(1)在A ,B 两个项目上各投资100万元,Y 1(万元)和Y 2(万元)分别表示投资项目A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.解:(1)由题设可知Y 1和Y 2的分布列分别为E (Y 1)=5×0.8+10×0.2=6,D (Y 1)=(5-6)2×0.8+(10-6)2×0.2=4;E (Y 2)=2×0.2+8×0.5+12×0.3=8,D (Y 2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3=12. (2)f (x )=D ⎝ ⎛⎭⎪⎫x 100·Y 1+D ⎝ ⎛⎭⎪⎫100-x 100·Y 2 =⎝ ⎛⎭⎪⎫x 1002D (Y 1)+⎝⎛⎭⎪⎫100-x 1002D (Y 2) =41002[x 2+3(100-x )2] =41002(4x 2-600x +3×1002). 所以当x =6002×4=75时,f (x )取最小值3.。

(易错题)高中数学高中数学选修2-3第一章《计数原理》检测题(答案解析)(1)

(易错题)高中数学高中数学选修2-3第一章《计数原理》检测题(答案解析)(1)

一、选择题1.2019年10月20日,第六届世界互联网大会发布了15项“世界互联网领先科技成果”,其中有5项成果均属于芯片领域.现有3名学生从这15项“世界互联网领先科技成果”中分别任选1项进行了解,且学生之间的选择互不影响,则恰好有1名学生选择“芯片领域”的概率为( ) A .49B .427C .1927D .481252.甲、乙、丙三台机床是否需要维修相互之间没有影响.在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,则一小时内恰有一台机床需要维修的概率是( ) A .0.444B .0.008C .0.7D .0.2333.先后投掷骰子(骰子的六个面分别标有1、2、3、4、5、6个点)两次落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为“x y +为偶数”,事件B 为“x y 、中有偶数,且x y ≠”,则概率()P B A =( ) A .13B .12C .14D .254.设随机变量X 服从正态分布()0,9N ,则()36P X <<=( )(附:若()2~,X N μσ,则()0.6826P X μσμσ-<<+≈,(2)0.9544P X μσμσ+<<+=)A .0.0456B .0.1359C .0.2718D .0.31745.随机变量X 的分布列如表所示,若1()3E X =,则(32)D X -=( )A .59B .53C .5D .76.某闯关游戏规则如下:在主办方预设的6个问题中,选手若能连续正确回答出两个问题,即停止答题,闯关成功,假设某选手正确回答每个问题的概率都是0.6,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就闯关成功的概率等于( ) A .0.064B .0.144C .0.216D .0.4327.已知19,3X B ⎛⎫~ ⎪⎝⎭,则()E X 、()D X 的值依次为( ).A .3,2B .2,3C .6,2D .2,68.已知随机变量X 服从正态分布()100,4N ,若()1040.1359P m X <<=,则m 等于 ( )[附:()()0.6826,220.9544P X P X μσμσμσμσ-<<+=-<<+=] A .100B .101C .102D .D .1039.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率是( ) A .0.72B .0.8C .89D .0.910.某学校高三模拟考试中数学成绩X 服从正态分布()75,121N ,考生共有1000人,估计数学成绩在75分到86分之间的人数约为( )人.参考数据:()0.6826P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=) A .261 B .341C .477D .68311.在10个排球中有6个正品,4个次品.从中抽取4个,则正品数比次品数少的概率为( ) A .542B .435C .1942D .82112.将3颗骰子各掷一次,记事件A 为“三个点数都不同”,事件B 为“至少出现一个1点”,则条件概率(A |B)P 和(|)P B A 分别为( ) A .160,291B .560,1891C .601,912D .911,2162二、填空题13.若有一个不透明的袋子内装有大小、质量相同的6个小球,其中红球有2个,白球有4个,每次取两个,取后放回,连续取三次,设随机变量ξ表示取出后都是白球的次数,则()E ξ=______ .14.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者贏得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立,甲在4局以内(含4局)赢得比赛的概率______.15.设在15个相同类型的产品中有2个是次品,每次任取1个,共取3次,并且每次取出后不放回,若以ξ表示取出次品的个数,则()E ξ=________. 16.已知某人每次投篮投中的概率均为13,计划投中3次则结束投篮,则此人恰好在第5次结束投篮的概率是__________. 17.小王做某个试验,成功的概率为23,失败的概率为13,成功一次得2分,失败一次得-1分,求100次独立重复试验的总得分的期望______.18.下列四个结论中,错误的序号是___________.①以直角坐标系中x 轴的正半轴为极轴的极坐标系中,曲线C 的方程为22sin()2804a πρρθ-++-=,若曲线C 上总存在a 的取值范围是()()3,11,3--⋃;②在残差图中,残差点比较均匀地落在水平带状区域中,说明选用的模型比较合适,这样的带状区域宽度越宽,说明模型拟合精度越高;③设随机变量~(2,),~(3,)B p B p ξη,若5(1)9P ξ≥=,则6(2)27P η≥=;④已知n 为满足1232727272727(3)S a C C C C a =++++⋅⋅⋅⋅⋅⋅+≥能被9整除的正数a 的最小值,则1()nx x-的展开式中,系数最大的项为第6项.19.在一个均匀小正方体的六个面中,三个面上标以数字0,两个面上标以数字1,一个面上标以数字2,将这个小正方体抛掷2次,则向上一面上的数字之积的均值是____. 20.已知随机变量2~(1,)N ξσ,且(1)0.1P ξ≤-=,(23)0.15P ξ≤≤=,则(02)P ξ≤≤=_______.三、解答题21.为加快推进我区城乡绿化步伐,植树节之际,决定组织开展职工义务植树活动,某单位一办公室现安排4个人去参加植树活动,该活动有甲、乙两个地点可供选择.约定:每个人通过掷一枚质地均匀的骰子决定自己去哪个地点植树,掷出点数为1或2的人去甲地,掷出点数大于2的人去乙地.(1)求这4个人中恰有2人去甲地的概率;(2)求这4个人中去甲地的人数大于去乙地的人数的概率;(3)用,X Y 分别表示这4个人中去甲、乙两地的人数,记||X Y ξ=-,求随机变量ξ的分布列与数学期望()E ξ.22.因新冠疫情的影响,2020年春季开学延迟,老师采用线上教学.某校高中二年级年级组规定:学生每天线上学习时间3小时及以上为合格,3小时以下为不合格.现从1班,2班,3班随机抽取一些学生进行网上学习时间调查,3个班的人数分别为40人,32人,32人,再采用分层抽样的方法从这104人中抽取13人. (1)应从这3个班中分别抽取多少人?(2)若抽出的13人中有10人学习时间合格,3人学习时间不合格,现从这13人中随机抽取3人.(i )设X 表示事件“抽取的3人中既有学习时间合格的学生,又有学习时间不合格的学生”,求事件X 发生的概率.(ii )设Y 表示抽取的3人中学习时间合格的人数,求随机变量Y 的分布列和数学期望. 23.某射手每次射击击中目标的概率均为23,且各次射击的结果互不影响. (1)假设这名射手射击3次,求至少2次击中目标的概率;(2)假设这名射手射击3次,每次击中目标得10分,未击中目标得0分.在3次射击中,若有2次连续击中目标,而另外1次未击中目标,则额外加5分;若3次全部击中,则额外加10分.用随机变量ζ表示射手射击3次后的总得分,求ζ的分布列和数学期望. 24.某公司招聘员工,先由两位专家面试,若两位专家都同意通过,则视作通过初审予以录用;若这两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率均为12,复审能通过的概率为310,各专家评审的结果相互独立.(1)求某应聘人员被录用的概率;(2)若4人应聘,设X 为被录用的人数,试求随机变量X 的分布列.25.越野汽车轮胎的质量是根据其正常使用的时间来衡量,使用时间越长,表明质量越好,且使用时间大于或等于6千小时的为优质品.现用A ,B 两种不同型号的汽车轮胎做试验,各随机抽取部分产品作为样本,得到试验结果的频率分布直方图如图所示,以上述试验结果中各组的频率作为相应的概率.(1)现从大量的A ,B 两种型号的轮胎中各随机抽取2件产品,求其中至少有3件是优质品的概率;(2)通过多年统计发现,A 型轮胎每件产品的利润y (单位:元)与其使用时间t (单位:千小时)的关系如下表: 使用时间t (单位:千小时) 5t < 56t ≤<6t ≥每件产品的利润y (单位:元)200-200400若从大量的A 型轮胎中随机抽取两件,其利润之和记为X (单位:元),求X 的分布列及数学期望.26.甲、乙两名篮球运动员,甲投篮一次命中的概率为23,乙投篮一次命中的概率为12,若甲、乙各投篮三次,设X 为甲、乙投篮命中的次数的差的绝对值,其中甲、乙两人投篮是否命中相互没有影响.(1)若甲、乙第一次投篮都命中,求甲获胜(甲投篮命中数比乙多)的概率; (2)求X 的分布列及数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题设分析知:芯片领域被选、不被选的概率分别为13、23,而3名学生选择互不影响,则选择芯片领域的学生数{0,1,2,3}X =,即X 服从二项分布,则有3321()()()33n n n P X n C -==即可求恰好有1名学生选择“芯片领域”的概率.【详解】由题意知,有3名学生且每位学生选择互不影响,从这15项“世界互联网领先科技成果”中分别任选1项,5项成果均属于芯片领域,则: 芯片领域被选的概率为:51153=;不被选的概率为:12133-=;而选择芯片领域的人数{0,1,2,3}X =,∴X 服从二项分布1~3(,3)X B ,3321()()()33nnn P X n C -==,那么恰好有1名学生选择“芯片领域”的概率为123214(1)()()339P X C ===. 故选:A. 【点睛】本题考查了二项分布,需要理解题设条件独立重复试验的含义,并明确哪个随机变量服从二项分布,结合二项分布公式求概率.2.A解析:A 【分析】直接利用对立事件和独立事件的概率求解. 【详解】因为在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4, 所以一小时内恰有一台机床需要维修的概率是:()()()()0.110.210.40.210.110.4p =⨯-⨯-+⨯-⨯- ,()()0.410.210.10.444+⨯-⨯-=.故选:A【点睛】本题主要考查独立事件和对立事件的概率,属于中档题.3.A解析:A 【分析】根据题意有()))|(=(n AB P n A A B ,所以只须分析事件A 和事件AB 所包含的基本事件,即可根据公式求出结果. 【详解】解:事件A 中“x y +为偶数”,所以,x y 同奇同偶,共包含22318⨯=种基本事件;事件AB 同时发生,则,x y 都为偶数,且x y ≠,则包含236A =个基本事件;()()61=)13|=(8n AB n A P B A =. 故选:A. 【点睛】本题考查条件概率的应用,考查基本事件的求法,解题的关键是辨析条件概率,属于基础题.4.B解析:B 【分析】由随机变量X 符合正态分布()0,9N ,得0μ=,3σ=,则所求(36)P X <<,即为(2)P X μσμσ+<<+,根据3σ原则,以及正态曲线的对称性即可求值.【详解】因为随机变量X 符合正态分布()0,9N ,则0μ=,3σ=, 所以(36)(2)P X P X μσμσ<<=+<<+, 由()0.6826P X μσμσ-<<+≈,()220.9544P X μσμσ-<<+=,以及正态曲线的对称性,可知()00.3413P X μσ<<+≈,(02)0.4772P X μσ<<+=,则(36)0.47720.34130.1359P X <<=-=. 故选:B. 【点睛】本题考查了正态分布曲线的对称性,两个变量μ和σ的应用,3σ原则,属于中档题.5.C解析:C 【分析】由1()3E X =,利用随机变量X 的分布列列出方程组,求出13a =,12b =,由此能求出()D X ,再由(32)9()D X D X -=,能求出结果.【详解】 1()3E X =∴由随机变量X 的分布列得:1161163a b b ⎧++=⎪⎪⎨⎪-+=⎪⎩,解得1312a b ⎧=⎪⎪⎨⎪=⎪⎩, 2221111115()(1)(0)(1)3633329D X ∴=--⨯+-⨯+-⨯=,5(32)9()959D X D X ∴-==⨯=故选:C . 【点睛】本题考查方差的求法,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6.B解析:B 【分析】根据题意得到第2个问题不正确,第3、4个问题正确,计算概率得到答案. 【详解】选手恰好回答了4个问题就闯关成功,则第2个问题不正确,第3、4 个问题正确. 故0.60.40.60.60.40.40.60.60.144p =⨯⨯⨯+⨯⨯⨯=. 故选:B . 【点睛】本题考查了概率的计算,意在考查学生的应用能力.7.A解析:A 【分析】直接利用二项分布公式计算得到答案. 【详解】19,3X B ⎛⎫~ ⎪⎝⎭,则()=⨯=1933E X ,()1191233D X ⎛⎫=⨯⨯-= ⎪⎝⎭故选:A 【点睛】本题考查了二项分布,意在考查学生对于二项分布的理解.8.C解析:C 【分析】 由()()0.1322259P X P X μσμσμσμσ-<<+--<<+=,再根据正态分布的对称性,即可求解. 【详解】由题意,知()()0.6826,220.9544P X P X μσμσμσμσ-<<+=-<<+=, 则()()220.95440.682620.13592P X P X μσμσμσμσ-<<+--<<+-==,所以要使得()1040.1359P m X <<=,则102m =,故选C. 【点睛】本题主要考查了正态分布的应用,其中解答中熟记正态分布的对称性,以及概率的计算方法是解答的关键,着重考查了运算与求解能力,属于基础题.9.A解析:A 【分析】设一批种子的发芽率为事件A ,则()0.9P A =,出芽后的幼苗成活率为事件B ,则()|0.8P B A =,根据条件概率公式计算即可,【详解】设一批种子的发芽率为事件A ,则()0.9P A =, 出芽后的幼苗成活率为事件B ,则()|0.8P B A =,∴这粒种子能成长为幼苗的概率()()()|0.90.80.72P P AB P A P B A ===⨯=. 故选:A . 【点睛】本题主要考查了条件概率的问题,关键是分清是在什么条件下发生的,属于基础题.10.B解析:B 【解析】分析:正态总体的取值关于75x =对称,位于6486(,)之间的概率是0.6826,根据概率求出位于6486(,)这个范围中的个数,根据对称性除以2 得到要求的结果. 详解:正态总体的取值关于75x =对称,位于6486(,)之间的概率是(75117511)0.682?6P X -+=<<,则估计数学成绩在75分到86分之间的人数约为110000.682?63412⨯⨯≈人. 故选B .点睛:题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩X 关75X =于对称,利用对称写出要用的一段分数的频数,题目得解.11.A解析:A 【解析】分析:根据超几何分布,可知共有410C 种选择方法,符合正品数比次品数少的情况有两种,分别为0个正品4个次品,1个正品3个次品,分别求其概率即可. 详解:正品数比次品数少,有两种情况:0个正品4个次品,1个正品3个次品,由超几何分布的概率可知,当0个正品4个次品时444101210C P C ==当1个正品3个次品时136441024421035C C P C === 所以正品数比次品数少的概率为1452103542+= 所以选A点睛:本题考查了超几何分布在分布列中的应用,主要区分二项分布和超几何分布的不同.根据不同的情况求出各自的概率,属于简单题.12.C解析:C 【解析】根据条件概率的含义,()|P A B 其含义为在B 发生的情况下,A 发生的概率,即在“至少出现一个3点” 的情况下,“三个点数都不相同”的概率,因为“至少出现一个3 点”的情况数目为66655591⨯⨯-⨯⨯=,“三个点数都不相同”,则只有一个3点,共135460C ⨯⨯=种,()60|91P A B ∴=;()|P B A 其含义为在A 发生的情况下,B 发生的概率,即在“三个点数都不相同”的情况下,“至少出现一个3点”的概率,()601|=1202P B A ∴=,故选C. 二、填空题13.【分析】计算出从袋中随机抽取两个球都是白球的概率可知然后利用二项分布的期望公式可计算出的值【详解】从袋中随机抽取两个球都是白球的概率为由题意可知由二项分布的期望公式得故答案为:【点睛】本题考查二项分解析:65【分析】计算出从袋中随机抽取两个球都是白球的概率p ,可知()3,B p ξ,然后利用二项分布的期望公式可计算出()E ξ的值. 【详解】从袋中随机抽取两个球都是白球的概率为242625C p C ==,由题意可知,23,5B ξ⎛⎫⎪⎝⎭,由二项分布的期望公式得()26355E ξ=⨯=.故答案为:65. 【点睛】本题考查二项分布期望的计算,解题时要弄清随机变量满足的分布列类型,考查计算能力,属于中等题.14.【分析】设表示第k 局甲获胜表示第k 局乙获胜甲在4局以内(含4局)赢得比赛结果有:求出每种结果的概率相加即可求出结论;【详解】用A 表示甲在4局以内(含4局)赢得比赛表示第k 局甲获胜表示第k 局乙获胜则故解析:5681【分析】设k A 表示“第k 局甲获胜”, k B 表示“第k 局乙获胜”, 甲在4局以内(含4局)赢得比赛结果有:12A A ,123B A A ,1234A B A A ,求出每种结果的概率相加,即可求出结论; 【详解】用A 表示“甲在4局以内(含4局)赢得比赛”,k A 表示“第k 局甲获胜”, k B 表示“第k 局乙获胜”,则2()3k P A =,1()3k P B =,1,2,3,4,5k =. 121231234()()()()P A P A A P B A A P A B A A =++121231234()()()()()()()()()()=++P A P A P A P B P A P A P A P B P A P A22221.221256()33333381⎛⎫⎛⎫⎛⎫=+⨯+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭P A .故答案为:5681【点睛】本题考查事件的独立性的概念,审清题意,细心计算,属于中档题.15.【分析】根据题意可知取出次品的个数可能的值为012利用排列组合知识求出对应的概率从而得到分布列代入数学期望公式求解即可【详解】由题意知取出次品的个数可能的值为012所以可得的分布列为: 0 1 2解析:25. 【分析】根据题意可知,取出次品的个数ξ可能的值为0、1、2,利用排列组合知识求出对应的概率,从而得到分布列,代入数学期望公式求解即可. 【详解】由题意知,取出次品的个数ξ可能的值为0、1、2,∴()0321331522035C C P C ξ===,()1221331512135C C P C ξ===, ()212133151235C C P C ξ===, 所以可得ξ的分布列为:则()0123535355E ξ=⨯+⨯+⨯=. 故答案为:25【点睛】本题考查离散型随机变量的分布列和数学期望;考查运算求解能力;正确列出随机变量的分布列是求解本题的关键;属于中档题.16.【分析】第五次结束投篮则前四次有两次投中且第五次投中根据独立重复试验的知识处理即可【详解】解:依题意恰好在第五次结束投篮则前四次有两次投中且第五次投中所以概率为:故答案为:【点睛】本题考查独立重复试 解析:881【分析】第五次结束投篮,则前四次有两次投中,且第五次投中,根据独立重复试验的知识处理即可. 【详解】解:依题意,恰好在第五次结束投篮, 则前四次有两次投中,且第五次投中, 所以概率为:22241118()(1)33381p C =⨯⨯-⨯=.故答案为:881.【点睛】本题考查独立重复试验的知识,利用了二项分布求概率的公式.17.100【分析】计算得到答案【详解】设一次实验得分为根据题意:故100次独立重复试验的总得分的期望为故答案为:【点睛】本题考查了数学期望意在考查学生的计算能力和应用能力解析:100 【分析】 计算()2121133E X =⨯-⨯=,得到答案. 【详解】设一次实验得分为X ,根据题意:()2121133E X =⨯-⨯=, 故100次独立重复试验的总得分的期望为()100100E X =. 故答案为:100. 【点睛】本题考查了数学期望,意在考查学生的计算能力和应用能力.18.234【分析】对于①把极坐标方程化为直角坐标方程结合圆心与原点的距离关系可求;对于②带状区域宽度越宽说明模型拟合误差越大;对于③先利用求出然后再求;对于④先求出再利用二项式定理的通项公式求解系数最大解析:234 【分析】对于①,把极坐标方程化为直角坐标方程,结合圆心与原点的距离关系可求; 对于②,带状区域宽度越宽,说明模型拟合误差越大; 对于③,先利用5(1)9P ξ≥=求出p ,然后再求(2)P η≥; 对于④,先求出n ,再利用二项式定理的通项公式求解系数最大的项. 【详解】对于①,22sin()2804a πρρθ-++-=化为直角坐标方程为22()()8x a y a -+-=,半径为因为曲线C <,解得()()3,11,3a ∈--⋃,故①正确;对于②,带状区域宽度越宽,说明模型拟合误差越大,故②错误;对于③,122225(1)(1)9P C p p C p ξ≥=-+=,解得13p =;223333(2)(1)277P C p p C p η≥=-+=,故③错误;对于④,12327279272727272181S a C C C C a a =++++⋅⋅⋅⋅⋅⋅+=+-=+-, 而9909188999998(91)999C C C C =-=-++-,所以11n =,所以111()x x-的系数最大项为第7项,故④错误;综上可知②③④错误.【点睛】本题主要考查命题真假的判定,涉及知识点较多,知识跨度较大,属于知识拼盘,处理方法是逐一验证是否正确即可.19.【分析】结合题意分别计算出x=0124对应的概率列表计算期望即可【详解】列表x 0 1 2 4 P 所以【点睛】本道题考查了数学期望计算方法列表计算概率计算期望属于中等难度的题目解析:49【分析】结合题意,分别计算出x=0,1,2,4对应的概率,列表,计算期望,即可. 【详解】()332321322703636P x ⨯+⨯⨯+⨯⨯===,()2211369P x ⨯=== ()2212369P x ⨯===,()1436P x ==,列表所以01243699369EX =⨯+⨯+⨯+⨯= 【点睛】本道题考查了数学期望计算方法,列表,计算概率,计算期望,属于中等难度的题目.20.【解析】【分析】利用随机变量关于对称结合已知求出结果【详解】随机变量满足图象关于对称则故答案为【点睛】本题考查了正态分布由正态分布的对称性即可计算出结果 解析:0.5【解析】 【分析】利用随机变量()2~1N ξσ,,关于1x =对称,结合已知求出结果【详解】随机变量满足()2~1N ξσ,,∴图象关于1x =对称()10.1P ξ≤-=,()30.1P ξ∴≥=则()()()120.5?23?30.50.150.10.25P P P ξξξ≤≤=-≤≤-≥=--= ()020.5P ξ∴≤≤=故答案为0.5 【点睛】本题考查了正态分布,由正态分布的对称性即可计算出结果三、解答题21.(1)827;(2)19;(3)分布列答案见解析,数学期望:14881. 【分析】(1)参加甲游戏的概率P=13,设"这4个人中恰有k 人去参加甲游戏"为事件A k (k =0,1,2,3,4),可求这4个人中恰有2个人去参加甲游戏的概率()2P A ,计算即可得出结果; (2)由(1)可知求()()34P A P A +;(3)ξ的所有可能取值为0,2,4,写出其对应的概率和分布列. 【详解】依题意知,这4个人中每个人去甲地的概率为13,去乙地的概率为23.设“这4个人中恰有i 人去甲地”为事件0,1,2,3,4i A i =(),则4-412()()()33iiii P A C =.(1)这4个人中恰有2人去甲地的概率为22224128()()()3327P A C ==(2)设“这4个人中去甲地的人数大于去乙地的人数”为事件B ,则34B A A =⋃,由于3A 与4A 互斥,故3144443341211()()()3339PB P A PC C A =++==()()(). 所以这4个人中去甲地的人数大于去乙地的人数的概率为19. (3)ξ的所有可能的取值为0,2,4,由于1A 与3A 互斥,0A 与4A 互斥,故28270PP A ξ===()(),1340812P P A P A ξ==+=()()(), 0417814P P A P A ξ==+=()()(). 所以ξ的分布列为:故1714827801818124Eξ=⨯+⨯+⨯=(). 【点睛】本小题主要考查古典概型及其概率计算公式、互斥事件、事件的相互独立性、离散型随机变量的分布列与数学期望等基础知识,考查运用概率知识解决简单实际问题的能力.应用性问题是高考命题的一个重要考点,近年来都通过概率问题来考查,且常考常新,对于此类考题,要注意认真审题,对二项分布的正确判读是解题的关键,属于一般难度题型. 22.(1)3个班中分别抽取5人,4人,4人;(2)(i )165286,(ii )分布列见解析,数学期望为330143【分析】(1)利用分层抽样的定义按比例进行抽取即可;(2)(i )“抽取的3人中既有学习时间合格的学生,又有学习时间不合格的学生”,包括“1人学习时间合格,2人学习时间不合格”“2人学习时间合格,1人学习时间不合格”,且这两个事件间是互斥的,从而可求出所求概率(ii )Y 的可能取值为0,1,2,3,分别求出相应的概率,从而可得随机变量Y 的分布列和数学期望 【详解】解:(1)由题意可知,3个班抽取的人数分别为:403232135,134,134104104104⨯=⨯=⨯=, 所以应从这3个班中分别抽取5人,4人,4人;(2)(i )“抽取的3人中既有学习时间合格的学生,又有学习时间不合格的学生”,包括“1人学习时间合格,2人学习时间不合格”“2人学习时间合格,1人学习时间不合格”,且这两个事件间是互斥的,所以1221103103331313165()286C C C C P X C C ⋅⋅=+= (ii )由题意可知,Y 的可能取值为0,1,2,3,则333131(0)286C P Y C ===,1210331330(1)286C C P Y C ===, 21103313135(2)286C C P Y C ===,310313120(3)286C P Y C ===,所以随机变量Y 的分布列为所以()0123286286286286143E Y =⨯+⨯+⨯+⨯= 【点睛】此题考查分层抽样,考查互斥事件的概率,考查离散型随机变量的分布列,考查计算能力,属于中档题 23.(1)2027;(2)分布列见解析,2209E ζ=. 【分析】(1)利用独立重复试验的概率公式可求得所求事件的概率;(2)由题意可知,随机变量ζ的可能取值有0、10、20、25、40,计算出随机变量ζ在不同取值下的概率,可得出随机变量ζ的分布列,由此可求得随机变量ζ的数学期望值. 【详解】(1)设X 为射手3次射击击中目标的总次数,则23,3XB ⎛⎫⎪⎝⎭. 故()()()23233322220223133327P X P X P X C C ⎛⎫⎛⎫⎛⎫≥==+==⋅⋅-+⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以,所求概率为2027;(2)由题意可知,ζ的所有可能取值为0、10、20、25、40,用()1,2,3i A i =表示事件“第i 次击中目标”,则()()31100327P P X ζ⎛⎫===== ⎪⎝⎭,()()2132221011339P P X C ζ⎛⎫====⋅⋅-= ⎪⎝⎭, ()()12321242033327P P A A A ζ===⨯⨯=,()()()82522027P P X P ζζ===-==, ()()328403=327P P X ζ⎛⎫==== ⎪⎝⎭.故ζ的分布列如下表所示:因此,随机变量的数学期望为1648822001020254027272727279E ζ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查利用独立重复试验的概率公式计算事件的概率,同时也考查了随机变量分布列与数学期望的求解,考查计算能力,属于中等题. 24.(1)25;(2)分布列见解析. 【分析】(1)通过分析知所求的应聘人员被录用的情况包括两位专家都同意通过的情况和只有一位专家同意通过并通过复审的情况,所以分别求概率,利用独立事件的概率求解;(2)先求出每个人被录用的概率,再利用二项分布求出每种情况的概率,列出分布列,利用二项分布的期望公式计算数学期望. 【详解】设“两位专家都同意通过”为事件A ,“只有一位专家同意通过”为事件B ,“通过复审”为事件C .(1)设“某应聘人员被录用”为事件D ,则D A BC =+, ∵()111224P A =⨯=,()11121222P B ⎛⎫=⨯⨯-= ⎪⎝⎭,()310P C =,∴()()()()()25P D P A BC P A P B P C =+=+=. (2)根据题意,0,1,2,3,4X =,i A 表示“应聘的4人中恰有i 人被录用”.∵()0404238155625P A C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()31142321655625P A C ⎛⎫=⨯⨯= ⎪⎝⎭, ()222242321655625P A C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()3334239655625P A C ⎛⎫=⨯⨯=⎪⎝⎭, ()4444231655625P A C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭,∴X 的分布列为本题主要考查独立事件的概率,考查了离散型随机变量的分布列,考查学生的分析问题解决问题的能力、计算能力. 25.(1)625;(2)分布列见解析,360 【分析】(1)先根据直方图得到抽取一件A 和一件B 型轮胎为优质品的概率,再根据互斥事件的加法公式和独立事件的乘法公式可得结果;(2)据题意知,X 的可能取值为400-,0,200,400,600,800.根据概率公式求出X 的各个取值的概率,再写出分布列,根据数学期望公式求出数学期望即可. 【详解】(1)由直方图可知,从A 型号轮胎中随机抽取一件产品为优质品的概率()10.40.12P A =+=, 从B 型轮胎中随机抽取一件产品为优质品的概率()20.30.15P B =+=, 所以从A ,B 两种型号轮胎中各随机抽取2件产品,其中至少有3件是优质品的概率22222112222222221231121262552252525P C C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅⨯⨯+⨯⨯⋅+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. (2)据题意知,X 的可能取值为400-,0,200,400,600,800.所以()2223940010100P X C ⎛⎫=-=⋅= ⎪⎝⎭,()12313010525P X C ==⨯⨯=, ()1231320010210P X C ==⨯⨯=,()22211400525P X C ⎛⎫==⋅= ⎪⎝⎭, ()12111600525P X C ==⨯⨯=,()2221180024P X C ⎛⎫==⋅= ⎪⎝⎭, 那么X 的分布列为则数学期望()11400020040060080036010025102554E X =-⨯+⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查了根据直方图求概率,考查了互斥事件的加法公式和独立事件的乘法公式,考查了求离散型随机变量的分布列和数学期望,属于中档题. 26.(1)49;(2)分布列见解析,1(1)甲获胜的情况为3:1,3:2,2:1分别计算概率即可得解;(2)X 的所有可能取值是0,1,2,3,分别计算概率,写出分布列,计算数学期望. 【详解】(1)甲以3:1获胜的概率221211329P ⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭, 甲以3:2获胜的概率22122212C 329P ⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭, 甲以2:1获胜的概率213221113329P C ⎛⎫=⨯⨯⨯= ⎪⎝⎭, 则甲获胜的概率1231214.9999P P P P =++=++= (2)由题意可得X 的所有可能取值是0,1,2,3.3323232112233333333112112112(0)C C C C C C 323323323P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭311111722161262724⎛⎫⨯=+++=⎪⎝⎭; 33232333212133331121121121(2)C C C C 3233233232P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11115723618924=+++=; 33331121111(3)32322162724P X ⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯=+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; 75111(1)124242424P X ==---=. X 的分布列为故()0123 1.24242424E X =⨯+⨯+⨯+⨯= 【点睛】此题考查求解概率和分布列,根据分布列求解期望,关键在于准确求解概率.。

数学:《综合测试题》(新人教A版选修2-3)

数学:《综合测试题》(新人教A版选修2-3)

高中新课标数学选修(2-3)综合测试题(1)一、选择题1.已知{}{}{}123013412a b R ∈-∈∈,,,,,,,,,则方程222()()x a y b R -++=所表示的不同的圆的个数有( )A.3×4×2=24 B.3×4+2=14 C.(3+4)×2=14 D.3+4+2=9答案:A2.神六航天员由翟志刚、聂海胜等六人组成,每两人为一组,若指定翟志刚、聂海胜两人一定同在一个小组,则这六人的不同分组方法有( )A.48种 B.36种 C.6种 D.3种答案:D3.41nx ⎛⎫ ⎪⎝⎭的展开式中,第3项的二项式系数比第2项的二项式系数大44,则展开式中的常数项是( )A.第3项 B.第4项 C.第7项 D.第8项答案:B4.从标有1,2,3,…,9的9张纸片中任取2张,数字之积为偶数的概率为( ) A.12 B.718 C.1318 D.1118答案:C5.在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第2次也摸到红球的概率为( ) A.35 B.25 C.110 D.59答案:D6.正态总体的概率密度函数为2()8()x x f x -∈=R ,则总体的平均数和标准差分别为( )A.0,8 B .0,4 C.0,2 D.0,2答案:D7.在一次试验中,测得()x y ,的四组值分别是(12)(23)(34)(45)A B C D ,,,,,,,,则y 与x 之间的回归直线方程为( )A.1y x=+B.2y x=+C.21y x=+D.1y x=-答案:A8.用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间的五位数的个数是()A.48 B.36 C.28 D.20答案:C9.若随机变量η的分布列如下:0 1 2 30 .1.2.2.3.1.1则当()0.8P xη<=时,实数x的取值范围是()A.x≤2 B.1≤x≤2 C.1<x≤2 D.1<x<2答案:C10.春节期间,国人发短信拜年已成为一种时尚,若小李的40名同事中,给其发短信拜年的概率为1,0.8,0.5,0的人数分别为8,15,14,3(人),则通常情况下,小李应收到同事的拜年短信数为()A.27 B.37 C.38 D.8答案:A11.在4次独立重复试验中事件A出现的概率相同,若事件A至少发生1次的概率为6581,则事件A在1次试验中出现的概率为()A.13B.25C.56D.23答案:A12.已知随机变量1~95Bξ⎛⎫⎪⎝⎭,则使()P kξ=取得最大值的k值为()A.2 B.3 C.4 D.5答案:A二、填空题13.某仪表显示屏上一排有7个小孔,每个小孔可显示出0或1,若每次显示其中三个孔,但相邻的两孔不能同时显示,则这显示屏可以显示的不同信号的种数有种.答案:8014.已知平面上有20个不同的点,除去七个点在一条直线上以外,没有三个点共线,过这20个点中的每两个点可以连 条直线.答案:17015.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1; ③他至少击中目标1次的概率是41(0.1)-.其中正确结论的序号是 (写出所有正确结论的序号).答案:①③16.口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是 (以数值作答). 答案:1363三、解答题17.有4个不同的球,四个不同的盒子,把球全部放入盒内. (1)共有多少种放法?(2)恰有一个盒子不放球,有多少种放法? (3)恰有一个盒内放2个球,有多少种放法? (4)恰有两个盒不放球,有多少种放法? 解:(1)一个球一个球地放到盒子里去,每只球都可有4种独立的放法,由分步乘法计数原理,放法共有:44256=种.(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1的三组,有24C 种分法;然后再从三个盒子中选一个放两个球,其余两个球,两个盒子,全排列即可.由分步乘法计数原理,共有放法:12124432144C C C A =···种. (3)“恰有一个盒内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒内放2球”与“恰有一个盒子不放球”是一回事.故也有144种放法.(4)先从四个盒子中任意拿走两个有24C 种,问题转化为:“4个球,两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然后放入指定的一个盒子中即可,有3142C C ·种放法;第二类:有24C 种放法.因此共有31342414C C C +=·种.由分步乘法计数原理得“恰有两个盒子不放球”的放法有:241484C =·种.18.求25(1)(1)x x +-的展开式中3x 的系数.解:解法一:先变形,再部分展开,确定系数.252232423(1)(1)(1)(1)(12)(133)x x x x x x x x x +-=--=-+-+-.所以3x 是由第一个括号内的1与第二括号内的3x -的相乘和第一个括号内的22x -与第二个括号内的3x -相乘后再相加而得到,故3x 的系数为1(1)(2)(3)5⨯-+-⨯-=.解法二:利用通项公式,因2(1)x +的通项公式为12rr r T C x +=·, 5(1)x -的通项公式为15(1)k k k k T C x +=-·, 其中{}{}012012345r k ∈∈,,,,,,,,,令3k r +=, 则12k r =⎧⎨=⎩,,或21k r =⎧⎨=⎩,,或30k r =⎧⎨=⎩,.故3x 的系数为112352555C C C C -+-=·.19.为了调查胃病是否与生活规律有关,某地540名40岁以上的人的调查结果如下:患胃病 未患胃病 合计 生活不规律 60 260 320 生活有规律 20 200 220 合计80460540根据以上数据比较这两种情况,40岁以上的人患胃病与生活规律有关吗?解:由公式得2540(6020026020)32022080460k ⨯⨯-⨯=⨯⨯⨯ 2540(120005200)24969609.6382590720000259072⨯-==≈.9.6387.879>∵,∴我们有99.5%的把握认为40岁以上的人患胃病与生活是否有规律有关,即生活不规律的人易患胃病.20.一个医生已知某种病患者的痊愈率为25%,为实验一种新药是否有效,把它给10个病人服用,且规定(1)虽新药有效,且把痊愈率提高到35%,但通过实验被否认的概率; (2)新药完全无效,但通过实验被认为有效的概率.解:记一个病人服用该药痊愈率为事件A ,且其概率为p ,那么10个病人服用该药相当于10次独立重复实验.(1) 因新药有效且p =0.35,故由n 次独立重复试验中事件A 发生k 次的概率公式知,实验被否定(即新药无效)的概率为:0010119223371010101010101010(0)(1)(2)(3)(1)(1)(1)(1)0.514x P P P P C p p C p p C p p C p p +++=-+-+-+-≈.(2)因新药无效,故p =0.25,实验被认为有效的概率为: 10101010101010(4)(5)(10)1((0)(1)(2)(3))0.224P P P P P P P +++=-+++≈.即新药有效,但被否定的概率约为0.514; 新药无效,但被认为有效的概率约为0.224.21.A B ,两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是123A A A ,,,B 队队员是123B B B ,,,现按表中对阵方式出场,每场胜队得1分,负队得0分,设A 队,B 队最后所得总分分别为ξη,. (1)求ξη,的概率分布列; (2)求E ξ,E η.解:(1)ξη,的可能取值分别为3,2,1,0.2228(3)35575P ξ==⨯⨯=;22312223228(2)35535535575P ξ==⨯⨯+⨯⨯+⨯⨯=; 2331231322(1)3553553555P ξ==⨯⨯+⨯⨯+⨯⨯=;1333(0)35525P ξ==⨯⨯=.由题意知3ξη+=, 所以8(0)(3)75P P ηξ====; 28(1)(2)75P P ηξ====; 2(2)(1)5P P ηξ====; 3(3)(0)P P ηξ====.ξ的分布列为3218752875325η的分布列为1238752875325(2)82823223210757552515E ξ=⨯+⨯+⨯+⨯=, 因为3ξη+=,所以23315E E ηξ=-=.22.某工业部门进行一项研究,分析该部门的产量与生产费用之间的关系,从这个工业部门内随机抽选了个企业作样本,有如下资料:产量(千件)x 生产费用 (千元)y79 162 88 185 100 165 120 190 140185完成下列要求:(1)计算x 与y 的相关系数;(2)对这两个变量之间是否线性相关进行相关性检验; (3)设回归直线方程为y bx a =+,求系数a ,b .解:利用回归分析检验的步骤,先求相关系数,再确定0.05r . (1)制表ii y 2i x 2i y i i x y1 40 150 1600 22500 60002 42 140 1764 19600 5880 3481602304256007680产量(千件)x 生产费用 (千元)y40 150 42 140 48 160 55 170 651504 55 170 3025 28900 9350 5 65 150 4225 22500 97506 79 162 6241 26244 127987 88 185774434225 16280 8 100165 10000 27225 16500 9 120190 14400 36100 22800 10140185 1960034225 25900 合计 777 1657 7090327711913293877777.710x ==,1657165.710y == 270903ix =∑,2277119i y =∑,132938iix y=∑220.808(709031077.7)(2771910165.7)r =≈-⨯-⨯.即x 与Y 的相关关系0.808r ≈. (2)因为0.75r >.所以x 与Y 之间具有很强的线性相关关系. (3)1329381077.7165.70.398709031077.7b -⨯⨯=≈-⨯,165.70.39877.7134.9a =-⨯=.高中新课标数学选修(2-3)综合测试题(2)一、选择题1.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角的蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻的右方蜂房中去,若从最初位置爬到4号蜂房中,则不同的爬法有( ) A.4种 B.6种 C.8种 D.10种答案:C2.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( ) A.225()AB.225()CC.22254()C A · D.22252()C A ·答案:D3.已知集合{}123456M =,,,,,,{}6789N =,,,,从M 中选3个元素,N 中选2个元素,组成一个含有5个元素的集合T ,则这样的集合T 共有( )A.126个 B.120个 C.90个 D.26个答案:C4.342(1)(1)(1)n x x x +++++++的展开式中2x 的系数是( )A.33n C +B.32n C +C.321n C +- D.331n C +-答案:D5.200620052008+被2006除,所得余数是( ) A.2009 B.3 C.2 D.1答案:B6.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是( ) A.0.665 B .0.56 C.0.24 D.0.285答案:A7.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于4”;事件B :“甲、乙两骰子的点数之和等于7”,则(|)P B A 的值等于( )A.13 B.118 C.16 D.19答案:C8.在一次智力竞赛的“风险选答”环节中,一共为选手准备了A ,B ,C 三类不同的题目,选手每答对一个A 类、B 类、C 类的题目,将分别得到300分、200分、100分,但如果答错,则要扣去300分、200分、100分,而选手答对一个A 类、B 类、C 类题目的概率分别为0.6,0.7,0.8,则就每一次答题而言,选手选择( )题目得分的期望值更大一些( ) A.A 类 B.B 类 C.C 类 D.都一样答案:B9.已知ξ的分布列如下:4并且23ηξ=+,则方差D η=( ) A.17936B.14336C.29972D.22772答案:A10.若2~(16)N ξ-,且(31)P ξ--≤≤0.4=,则(1)P ξ≥等于( ) A.0.1 B.0.2 C.0.3D.0.4答案:A11.已知x ,y 之间的一组数据:则y 与x 的回归方程必经过( ) A.(2,2) B.(1,3) C.(1.5,4) D.(2,5)答案:C12.对于2()P K k ≥,当 2.706k >时,就约有的把握认为“x 与y 有关系”( ) A.99% B.99.5% C.95% D.90%答案:D二、填空题13.912xx⎛⎫-⎪⎝⎭的展开式中,常数项为(用数字作答).答案:67214.某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为(结果用分数表示).答案:119 19015.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分的概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大的是.答案:乙16.空间有6个点,其中任何三点不共线,任何四点不共面,以其中的四点为顶点共可作出个四面体,经过其中每两点的直线中,有对异面直线.答案:15,45三、解答题17.某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,他有5次出牌机会,每次只能出一种点数的牌,但张数不限,则有多少种不同的出牌方法?解:由于张数不限,2张2,3张A可以一起出,亦可分几次出,故考虑按此分类.出牌的方法可分为以下几类:(1)5张牌全部分开出,有55A种方法;(2)2张2一起出,3张A一起出,有25A种方法;(3)2张2一起出,3张A分开出,有45A种方法;(4)2张2一起出,3张A分两次出,有2335C A种方法;(5)2张2分开出,3张A一起出,有35A种方法;(6)2张2分开出,3张A分两次出,有2435C A种方法;因此共有不同的出牌方法5242332455535535860A A A C A A C A+++++=种.18.已知数列{}n a 的通项n a 是二项式(1)n x +与2(1)n x +的展开式中所有x 的次数相同的各项的系数之和,求数列的通项及前n 项和n S .解:按(1)n x +及2(1)n x +两个展开式的升幂表示形式,写出的各整数次幂,可知只有当2(1)n x +中出现x 的偶数次幂时,才能与(1)n x +的x 的次数相比较.由0122(1)n n nnn n n x C C x C x C x +=++++,132120242213212222222222(1)()()n nn nn nnnnnnnx C C x C x C x C x C x Cx--+=++++++++可得00122422222()()()()n nn n n n n n n n n a C C C C C C C C =++++++++01202422222()()n nn n n n n n n n C C C C C C C C =+++++++++2122n n -=+, 2122n n n a -=+∵,∴222462112(222)(22222(21)(41)223n nnnn S =++++++++=-+⨯-122112122(21)(2328)33n n n n +++=-+-=+-·,2111(2328)3n n n S ++=-∴·.19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元的消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6的6只均匀小球的抽奖箱中,有放回的抽两次球,抽得的两球标号之和为12,则获一等奖价值a 元的礼品,标号之和为11或10,获二等奖价值100元的礼品,标号之和小于10不得奖.(1)求各会员获奖的概率;(2)设场馆收益为ξ元,求ξ的分布列;假如场馆打算不赔钱,a 最多可设为多少元?解:(1)抽两次得标号之和为12的概率为11116636P =+=; 抽两次得标号之和为11或10的概率为2536P =, 故各会员获奖的概率为1215136366P P P =+=+=. (2)30a-30100-31365363036由1530(30)(70)300363636E a ξ=-⨯+-⨯+⨯≥, 得580a ≤元.所以a 最多可设为580元.20.在研究某种新药对猪白痢的防治效果时到如下数据:存活数死亡数 合计未用新药 101 38 139用新药 129 20 149合计23058288试分析新药对防治猪白痢是否有效?解:由公式计算得2288(1012038129)8.65813914923058k ⨯⨯-⨯=≈⨯⨯⨯,由于8.658 6.635>,故可以有99%的把握认为新药对防治猪白痢是有效的.21.甲有一个箱子,里面放有x 个红球,y 个白球(x ,y ≥0,且x +y =4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大? (2)在(1)的条件下,求取出的3个球中红球个数的期望.解:(1)要想使取出的3个球颜色全不相同,则乙必须取出黄球,甲取出的两个球为一个红球一个白球,乙取出黄球的概率是14,甲取出的两个球为一个红球一个白球的概率是 11246x yC C xy C =·,所以取出的3个球颜色全不相同的概率是14624xy xy P ==·,即甲获胜的概率为24xy P =,由0x y ,≥,且4x y +=,所以12424xy P =≤2126x y +⎛⎫= ⎪⎝⎭·,当2x y ==时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜的概率最大.(2)设取出的3个球中红球的个数为ξ,则ξ的取值为0,1,2,3.212221441(0)12C C P C C ξ===·,1112122222212144445(1)12C C C C C P C C C C ξ==+=··,2111122222212144445(2)12C C C C C P C C C C ξ==+=··,212221441(3)12C C P C C ξ===·,所以取出的3个球中红球个数的期望:15510123 1.512121212E ξ=⨯+⨯+⨯+⨯=.22.规定(1)(1)mxA x x x m =--+,其中x ∈R ,m 为正整数,且01x A =,这是排列数m n A (n ,m 是正整数,且m ≤n )的一种推广.(1)求315A -的值;(2)排列数的两个性质:①11m m n n A nA --=,②11m m mn n n A mA A -++= (其中m ,n 是正整数).是否都能推广到m x A (x ∈R ,m 是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;(3)确定函数3x A 的单调区间.解:(1)315(15)(16)(17)4080A -=-⨯-⨯-=-;(2)性质①、②均可推广,推广的形式分别是①11m m x x A xA --=,②11()m m m x x x A mA A x m -*++=∈∈R N ,.事实上,在①中,当1m =时,左边1x A x ==,右边01x xA x -==,等式成立;在②中,当1m =时,左边10111x x x A A x A +=+=+==右边,等式成立;当2m ≥时,左边(1)(2)(1)(1)(2)(2)x x x x m mx x x x m =---++---+=(1)(2)(2)[(1)]x x x x m x m m ---+-++1(1)(1)(2)[(1)1]mx x x x x x m A +=+--+-+==右边,因此②11()m m m x x x A mA A x m -*++=∈∈R N ,成立.(3)先求导数,得32()362xA x x '=-+.令23620x x -+>,解得x <x >因此,当x ⎛∈- ⎝⎭∞时,函数为增函数,当x ⎫∈+⎪⎪⎝⎭∞时,函数也为增函数,令23620x x -+≤x ,因此,当x ∈⎣⎦时,函数为减函数,∴函数3x A 的增区间为⎛- ⎝⎭∞,⎫+⎪⎪⎝⎭∞;减区间为⎣⎦.。

高中数学选修2-3综合测试题

高中数学选修2-3综合测试题

高中数学选修2-3综合检测题(满分150分)一.单选题(共8小题)1.n ∈N *,则(20-n )(21-n)……(100-n)等于 ( )A .80100n A -B .nn A --20100C .81100n A - D .8120n A -2.、随机变量ξ服从二项分布ξ~()p n B ,,且,200,300==ξξD E 则p 等于( )A.32B. 31C. 1D. 03.已知 (1+x )6=a 0+a 1x +a 2x 2+…+a 6x 6,在a 0,a 1,a 2,…,a 6这7个数中,从中任取两数,则所取的两数之和为偶数的概率为( ) A .B .C .D .4.现有5人站成一排照相,其中甲、乙相邻,且丙、丁不相邻,这样的排法有( ) A .12种B .24种C .36种D .48种5.某工厂周一到周六轮流由甲、乙、丙3人值班,每人值两天,3人通过抽签决定每个人在哪两天值班,若乙恰好本周六需要出差,则乙需要与他人换班的概率为( ) A .B .C .D .6.奥运会乒乓球单打的淘汰赛采用七局四胜制,猜先后由一方先发球,双方轮流先发球,当一方赢得四局胜利时,该方获胜,比赛结束,现有甲、乙两人比赛,根据前期比赛成绩,单局甲先发球并取胜的概率为0.8,乙先发球并取胜的概率为0.4,且各局比赛的结果相互独立;如果第一局由乙先发球,则甲以4:0获胜的概率是( ) A .0.1024B .0.2304C .0.2048D .0.46087.已知随机变量X 的分布列为,k =1,2,…10,则P (3≤X ≤4)=( )A .B .C .D .8.PM 2.5是空气质量的一个重要指标,我国PM 2.5标准采用世卫组织设定的最宽限值,即PM 2.5日均值在35μg /m 3以下空气质量为一级,在35μg /m 3~75μg /m 3之间空气质量为二级,在75μg /m 3以上空气质量为超标.如图是某市2019年12月1日到10日PM 2.5日均值(单位:μg /m 3)的统计数据.若从这10天中随机抽取3天进行进一步的空气质量数据分析,则空气质量为一级的恰好抽取了2天的概率为( )A .B .C .D .二.多选题(共4小题)9.设命题1p :42()x x +的展开式共有4项;命题2p :42()x x+展开式中的常数项为24 命题3p :42()x x +的展开式中各项的二项式系数之和为16 ; 命题p4:42()x x+的展开式 各项的系数之和为81 .那么,下列命题中为真命题的是( ) A. 1p B 2p C 3p D p410.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是( ) A .B .C .事件B 与事件A 1相互独立D .A 1,A 2,A 3是两两互斥的事件11.关于(a ﹣b )11的说法,正确的是( ) A .展开式中的二项式系数之和为2048B .展开式中只有第6项的二项式系数最大C .展开式中第6项和第7项的二项式系数最大D .展开式中第6项的系数最小12.已知由样本数据点集合{(x i ,y i )|i =1,2,…,n },求得的回归直线方程为=1.5x +0.5,且=3,现发现两个数据点(1.2,2.2)和(4.8,7.8)误差较大,去除后重新求得的回归直线l 的斜率为1.2,则( ) A .变量x 与y 具有正相关关系 B .去除后的回归方程为=1.2x +1.4 C .去除后y 的估计值增加速度变快D .去除后相应于样本点(2,3.75)的残差为0.05三.填空题(共4小题)13.若⎝⎛⎭⎫ax 2+bx 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________ 14.若(ax ﹣1)(+x )6的展开式中含x 3的系数为30,则a 的值为 .15.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,“赵爽弦图”如图所示,由四个全等的直角三角形和一个正方形构成,现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有 种(用数字作答).16.根据公共卫生传染病分析中心的研究,传染病爆发疫情期间,如果不采取任何措施,则会出现感染者基数猛增,重症挤兑,医疗资源负荷不堪承受的后果.如果采取公共卫生强制措施,则会导致峰值下降,峰期后移.如图,设不采取措施、采取措施情况下分别服从正态分布N (35,2),N (70,8),则峰期后移了 天,峰值下降了 %(注:正态分布的峰值计算公式为)四.解答题(共6小题)17.(10分) 设⎝ ⎛⎭⎪⎪⎫32+133n 的展开式的第7项与倒数第7项的比是1∶6,求展开式中的第7项.18.(12分)已知二项式(ax+)n的第三项和第八项的二项式系数相等.(1)求n的值.(2)若展开式的常数项为84,求a.19.(12分)近年来,国家相关政策大力鼓励创新创业种植业户小李便是受益者之一,自从2017年毕业以来,其通过自主创业而种植的某种农产品广受市场青睐,他的种植基地也相应地新增加了一个平时小李便带着部分员工往返于新旧基地之间进行科学管理和经验交流,新旧基地之间开车单程所需时间为i,由于不同时间段车流量的影响,现对50名员工往返新旧基地之间的用时情况进行统计,结果如表:t(分钟)3035404550频数(人)10201055(1)若有50名员工参与调查,现从单程时间在35分钟,40分钟,45分钟的人员中按分层抽样的方法抽取7人,再从这7人中随机抽取3人进行座谈,用X表示抽取的3人中时间在40分钟的人数,求X的分布列和数学期望;(2)某天,小李需要从旧基地驾车赶往新基地召开一个20分钟的紧急会议,结束后立即返回旧基地.(以50名员工往返新旧基地之间的用时的频率作为用时发生的概率)①求小李从离开旧基地到返回旧基地共用时间不超过110分钟的概率;②若用随机抽样的方法从旧基地抽取8名骨干员工陪同小李前往新基地参加此次会议,其中有Y名员工从离开旧基地到返回旧基地共用时间不超过110分钟,求随机变量Y的方差.20.(12分)为响应“坚定文化自信,建设文化强国”,提升全民文化修养,引领学生“读经典,用经典”,某广播电视台计划推出一档“阅读经典”节目.工作人员在前期的数据采集中,在某高中学校随机抽取了120名学生做调查,统计结果显示:样本中男女比例为3:2,而男生中喜欢阅读中国古典文学和不喜欢的比例是7:5,女生中喜欢阅读中国古典文学和不喜欢的比例是5:3.(1)填写下面列联表,并根据联表判断是否有95%的把握认为喜欢阅读中国古典文学与性别有关系?男生女生总计喜欢阅读中国古典文学不喜欢阅读中国古典文学总计(2)为做好文化建设引领,实验组把该校作为试点,和该校的的学生进行中国古典文学阅读交流.实验人员已经从所调查的120人中筛选出4名男生和3名女生共7人作为代表,这7个代表中有2名男生代表和2名女生代表喜欢中国古典文学.现从这7名代表中任选3名男生代表和2名女生代表参加座谈会,记ξ为参加会议的5人中喜欢古典文学的人数,求ξ的分布列及数学期望E(ξ).附表及公式:.P(K2>k0)0.050.0250.0100.0050.001 k0 3.841 5.024 6.6357.87910.82821.(12分)某果园种植“糖心苹果”已有十余年,根据其种植规模与以往的种植经验,产自该果园的单个“糖心苹果”的果径(最大横切面直径,单位:mm)在正常环境下服从正态分布N(68,36).(1)一顾客购买了20个该果园的“糖心苹果”,求会买到果径小于56mm的概率;(2)为了提高利润,该果园每年投入﹣定的资金,对种植、采摘、包装、宜传等环节进行改进.如图是2009年至2018年,该果园每年的投资金额x(单位:万元)与年利润增量y(单位:万元)的散点图:该果园为了预测2019年投资金额为20万元时的年利润增量,建立了y关于x的两个回归模型;模型①:由最小二乘公式可求得y与x的线性回归方程:=2.50x﹣2.50;模型②:由图中样本点的分布,可以认为样本点集中在曲线:y=blnx+a的附近,对投资金额x做交换,令t=lnx,则y=b•t+a,且有,(I)根据所给的统计量,求模型②中y关于x的回归方程;(II)根据下列表格中的数据,比较两种模型的相关指数R2,并选择拟合精度更高、更可靠的模型,预测投资金额为20万元时的年利润增量(结果保留两位小数).回归模型模型①模型②回归方程=2.50x﹣2.50=blnx+a102.2836.19附:若随机变量X~N(μ,σ2),则P(μ﹣2σ≤X≤μ+2σ)=0.9544,P(μ﹣3σ≤X≤μ+3σ)=0.9974;样本(t i,y i)(i=1,2,…,n)的最小乘估计公式为=,=﹣;相关指数R2=1﹣.参考数据:0.977220≈0.6305,0.998720≈0.9743,ln2≈0.6931,ln5≈1.6094.22.(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.(1)估计这100人体重数据的平均值μ和样本方差σ2(结果取整数,同一组中的数据用该组区间的中点值作代表)(2)从全校学生中随机抽取3名学生,记X为体重在[55,65)的人数,求X的分布列和数学期望;(3)由频率分布直方图可以认为,该校学生的体重Y近似服从正态分布N(μ,σ2).若P(μ﹣2σ≤Y<μ+2σ)>0.9544,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.。

高中新课标数学选修(2-3)综合测试题

高中新课标数学选修(2-3)综合测试题

选修(2-3)综合测试题一、选择题1.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点的坐标,能够确定不在x 轴上的点的个数是( ) A .100 B .90 C .81 D .72 2.A ,B ,C ,D ,E 五人并排站成一排,如果B 必须站在A 的右边,(A ,B 可以不相邻)那么不同的排法有( ) A .24种 B .60种 C .90种 D .120种3.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( ) A .2人或3人 B .3人或4人 C .3人 D .4人4.工人工资(元)依劳动生产率(千元)变化的回归方程为y =50+80x ,下列判断中正确的是( )A .劳动生产率为1000元时,工资为130元B .劳动生产率平均提高1000元时,工资平均提高80元C .劳动生产率平均提高1000元时,工资平均提高130元D .当工资为250元时,劳动生产率为2000元 5.设313nx x ⎛⎫+ ⎪⎝⎭的展开式的各项系数的和为P ,所有二项式系数的和为S ,若P +S =272,则n 为( )A .4B .5C .6D .86.已知随机变量X 的分布列为1()122kP X k k n === ,,,,,则(24)P X <≤为( ) A .3/16 B .1/4 C .1/16 D .5/167.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是1/70”.根据这位负责人的话可以推断出参加面试的人数为 A .21 B .35 C .42 D .70 8.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A 、3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A 的球,则在第二号盒子中任取一个球;若第一次取得标有字母B 的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为( ) A .0.59 B .0.54 C .0.8 D .0.15 9.设一随机试验的结果只有A 和A ,()P A p =,令随机变量10A X A =⎧⎨⎩,出现,,不出现,,则X 的方差为( )A .pB .2(1)p p -C .(1)p p --D .(1)p p -10.310(1)(1)x x -+的展开式中,5x 的系数是( ) A.297-B.252-C.297D.20711.某厂生产的零件外直径ξ~N (10,0.04),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.9cm 和9.3cm ,则可认为( )A .上午生产情况正常,下午生产情况异常B .上午生产情况异常,下午生产情况正常C .上、下午生产情况均正常D .上、下午生产情况均异常12.甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是2/3,没有平局.若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于( ) A.2027B.49C.827 D.1627二、填空题13.有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌也会跳舞.现从中选出2名会唱歌的,1名会跳舞的去参加文艺演出,则共有选法 种. 14.设随机变量ξ的概率分布列为()1cP k k ξ==+,0123k =,,,,则(2)P ξ== . 15.已知随机变量X 服从正态分布2(0)N σ,且(20)P X -≤≤0.4=则(2)P X >= .16.已知100件产品中有10件次品,从中任取3件,则任意取出的3件产品中次品数的数学期望为 ,方差为 .三、解答题17.在调查学生数学成绩与物理成绩之间的关系时,得到如下数据(人数):物理成绩好 物理成绩不好 合计数学成绩好 62 23 85 数学成绩不好28 22 50 合计9045135试判断数学成绩与物理成绩之间是否线性相关,判断出错的概率有多大?18.假设关于某设备使用年限x (年)和所支出的维修费用y (万元)有如下统计资料:x 2 3 4 5 6 y 2.2 3.8 5.5 6.5 7.0 若由资料知,y 对x 呈线性相关关系,试求:(1)回归直线方程; (2)估计使用年限为10年时,维修费用约是多少?19.用0,1,2,3,4,5这六个数字: (1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数? (3)能组成多少个无重复数字且比1325大的四位数?20.已知()(1)(1)()m n f x x x m n *=+++∈N ,的展开式中x 的系数为19,求()f x 的展开式中2x 的系数的最小值.21.某厂工人在2006年里有1个季度完成生产任务,则得奖金300元;如果有2个季度完成生产任务,则可得奖金750元;如果有3个季度完成生产任务,则可得奖金1260元;如果有4个季度完成生产任务,可得奖金1800元;如果工人四个季度都未完成任务,则没有奖金,假设某工人每季度完成任务与否是等可能的,求他在2006年一年里所得奖金的分布列.22.在某社区举办的《有奖知识问答比赛》中,甲、乙、丙三人同时回答某一道题,已知甲回答对这道题的概率是3/4,甲、丙二人都回答错的概率是1/12,乙、丙二人都回答对的概率是1/4. (1)求乙、丙二人各自回答对这道题的概率;(2)设乙、丙二人中回答对该题的人数为X ,求X 的分布列和数学期望.参考答案CBABAA AADDAA 13.15 14.42515:0.1 16:0.3,0.2645 17 4.066k ≈.有95%的把握,认为数学成绩与物理成绩有关,判断出错的概率只有5%. 18:(1) 1.230.08y x =+.(2)10x =时,12.38万元.19 (1) 156个(2)216个.(3)270个.20. 81. 2122(1)P(B)=3/8, P(C)=2/3, (2)随机变量的分布列为.X 0 300 750 1260 1800P116 14 38 14 116X 0 1 2 P5/2413/241/421解404111(0)2216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,1314111(300)224P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,2224113(750)228P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,3134111(1260)224P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 4044111(1800)2216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.∴其分布列为X 0 300 750 1260 1800P116 14 38 14 11622解:(1)当3m =时,一个小组有3个人,经过一次检验就能确定化验结果是指经过一次检验,结果为阴性,所以概率为3(10.1)0.729p =-=;(2)当4m =时,一个小组有4个人,这时每个人需要检验的次数是一个随机变量1η,其分布列为1η14 54P 40.9 410.9-所以441150.9(10.9)0.5944E η=⨯+⨯-=;当6m =时,一个小组有6个人,这时需要检验的次数是一个随机变量2η,其分布列为2η16 76P 60.9 610.9-所以662170.9(10.9)0.6466E η=⨯+⨯-=,由于21E E ηη>,因此当每4个人一组时所需要的化验次数更少一些.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模块学习评价(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={a,b,c,d,e},B⊆A,已知a∈B,且B中含有3个元素,则集合B有()A.A26个B.C24个C.A33个D.C35个【解析】∵A={a,b,c,d,e},B⊆A,a∈B,且B中含有3个元素,则B中另外两个元素是从b,c,d,e四个元素中选出的,故满足题意的集合B有C24个.【答案】 B2.(2014·四川高考)在x(1+x)6的展开式中,含x3项的系数为()A.30 B.20C.15 D.10【解析】根据二项式定理先写出其展开式的通项公式,然后求出相应的系数.因为(1+x)6的展开式的第(r+1)项为T r+1=C r6x r,x(1+x)6的展开式中含x3的项为C26x3=15x3,所以系数为15.【答案】 C3.从5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为() A.24 B.48C.72 D.120【解析】A参加时有C34·A12·A33=48种,A不参加时有A44=24种,共72种.【答案】 C4.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,下列说法中正确的是() A.100个吸烟者中至少有99人患有肺癌B.1个人吸烟,那么这个人有99%的概率患有肺癌C.在100个吸烟者中一定有患肺癌的人D.在100个吸烟者中可能一个患肺癌的人也没有【答案】 D5.李老师乘车到学校,途中有3个交通岗,假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.5,则他上班途中遇见红灯次数的数学期望是()A.0.4 B.1.5C.0.43D.0.6【解析】遇到红灯的次数服从二项分布X~B(3,0.5).∴E(X)=3×0.5=1.5.【答案】 B6.甲、乙两人从4门课程中各选修2门.则甲、乙所选的课程中至少有1门不相同的选法共有()A.6种B.12种C.30种D.36种【解析】分两类:仅有一门相同时,可先选出相同的课程有A14种,再让甲选,有3种,最后乙选有2种,即共有A14×3×2=24种;当两门都不相同时,共有C24种选法,故共有24+C24=30种.【答案】 C7.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4,0.5,则恰有一人击中敌机的概率为()A.0.9 B.0.2C.0.7 D.0.5【解析】设事件A,B分别表示甲、乙飞行员击中敌机,则P(A)=0.4,P(B)=0.5,事件“恰有一人击中敌机”的概率为P(A B+A B)=P(A)·(1-P(B))+(1-P(A))·P(B)=0.5.【答案】 D8.已知随机变量Z服从正态分布N(0,σ2),若P(Z>2)=0.023,则P(-2≤Z≤2)=()A.0.477 B.0.625C.0.954 D.0.977【解析】∵Z服从正态分布N(0,σ2),且P(Z>2)=0.023,∴P(-2≤Z≤2)=1-0.023×2=0.954.【答案】 C9.(2013·课标全国卷Ⅰ)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=()A.5 B.6C .7D .8【解析】 (x +y )2m 展开式中二项式系数的最大值为C m 2m ,∴a =C m 2m .同理,b =C m +12m +1.∵13a =7b ,∴13·C m 2m =7·C m +12m +1.∴13·(2m )!m !m !=7·(2m +1)!(m +1)!m !. ∴m =6.【答案】 B10.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件,在第一次摸出正品的条件下,第二次也摸到正品的概率是( )A.35B.25C.59D.110【解析】 记“第一次摸出正品”为事件A ,“第二次摸到正品”为事件B ,则P (A )=C 16C 110=35,P (AB )=C 16C 15C 110C 19=13.故P (B |A )=P (AB )P (A )=59.【答案】 C11.某中学拟从4个重点研究性课题和6个一般研究性课题中各选2个课题作为本年度该校启动的课题项目,若重点课题A 和一般课题B 至少有一个被选中的不同选法种数是k ,那么二项式(1+kx 2)6的展开式中x 4的系数为( )A .50 000B .52 000C .54 000D .56 000【解析】 A 、B 均未被选中的种数有C 23C 25=30,∴k =C 24C 26-30=60.在(1+60x 2)6展开式中,T r +1=C r 6(60x 2)r ,令r =2,得T 3=C 26602x4=54 000x 4.故选C.【答案】 C图212.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图2所示.假设现在青蛙在A 叶上,则跳三次之后停在A 叶上的概率是( )A.13B.29C.49D.827【解析】 青蛙跳三次要回到A 只有两条途径:第一条:按A →B →C →A ,P 1=23×23×23=827;第二条,按A →C →B →A ,P 2=13×13×13=127.所以跳三次之后停在A 叶上的概率为P =P 1+P 2=827+127=13.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.若x ~B (n ,p )且Ex =6,Dx =3,则P (x =1)的值为________.【解析】 Ex =np =6,Dx =np (1-p )=3∴n =12,P =12 ∴P (x =1)=C 112·12·(12)11=3×2-10 【答案】 3×2-1014.(2013·课标全国卷Ⅱ)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________.【解析】 由题意知n >4,取出的两数之和等于5的有两种情况:1,4和2,3,所以P =2C 2n=114,即n 2-n -56=0,解得n =-7(舍去)或n =8.【答案】 815.某校1 000名学生的某次数学考试成绩X 服从正态分布,其密度函数曲线如图,则成绩X 位于区间(52,68]的人数大约是________.图3【解析】 由题图知X ~N (μ,σ2),其中μ=60,σ=8,∴P (μ-σ<X ≤μ+σ)=P (52<X ≤68)=0.682 6.∴人数为0.682 6×1 000≈682.【答案】 68216.(2012·陕西高考)(a +x )5展开式中x 2的系数为10,则实数a 的值为________.【解析】 (a +x )5的展开式的通项公式为T r +1=C r 5a5-r x r . 当r =2时,由题意知C 25a 3=10,∴a 3=1,∴a =1.【答案】 1三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)某班从6名班干部中(其中男生4人,女生2人),任选3人参加学校的义务劳动.(1)设所选3人中女生人数为ξ,求ξ的分布列;(2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (B |A ).【解】 (1)ξ的所有可能取值为0,1,2,依题意,得P (ξ=0)=C 34C 36=15, P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15. ∴ξ的分布列为ξ0 1 2 P 15 35 15(2)设“甲、乙都不被选中”为事件C ,则P (C )=C 34C 36=420=15, ∴所求概率为P (C )=1-P (C )=1-15=45.(3)P (B )=C 25C 36=1020=12, P (B |A )=C 14C 25=410=25. 18.(本小题满分12分)(2013·广东高考)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.图4(1)根据茎叶图计算样本均值.(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.【解】 (1)由茎叶图可知,样本数据为17,19,20,21,25,30,则x=16(17+19+20+21+25+30)=22,故样本均值为22.(2)日加工零件个数大于样本均值的工人有2名,故优秀工人的频率为26=13,该车间12名工人中优秀工人大约有12×13=4(名),故该车间约有4名优秀工人.(3)记“恰有1名优秀工人”为事件A ,其包含的基本事件总数为C 14C 18=32,所有基本事件的总数为C 212=66,由古典概型概率公式,得P (A )=3266=1633.所以恰有1名优秀工人的概率为1633.19.(本小题满分12分)对于表中的数据x 1 2 3 4y 1.9 4.1 6.1 7.9(1)作散点图,你能直观上得到什么结论?(2)求线性回归方程.【解】 (1)如图,x ,y 具有很好的线性相关性.(2)因为x =2.5,y =5,∑4i =1x i y i =60,∑4 i =1x 2i =30,∑4i =1y 2i =120.04.故b ∧=60-4×2.5×530-4×2.52=2, a ∧=y -b ∧x =5-2×2.5=0,故所求的回归直线方程为y ∧=2x .20.(本小题满分12分)已知(x -2x )n 的展开式中,第4项和第9项的二项式系数相等,(1)求n ;(2)求展开式中x 的一次项的系数.【解】 (1)由第4项和第9项的二项式系数相等可得C 3n =C 8n ,解得n =11.(2)由(1)知,展开式的第k +1项为T k +1=C k 11(x )11-k (-2x )k =(-2)k C k 11x 11-3k 2.令11-3k 2=1得k =3.此时T 3+1=(-2)3C 311x =-1 320x ,所以展开式中x 的一次项的系数为-1 320.21.(本小题满分12分)(2014·天津高考)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.【解】 (1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以,选出的3名同学是来自互不相同学院的概率为4960. (2)随机变量X 的所有可能值为0,1,2,3.P (X =k )=C k 4·C 3-k 6C 310(k =0,1,2,3).所以,随机变量X 的分布列是随机变量X 的数学期望E (X )=0×16+1×12+2×310+3×130=65. 22.(本小题满分12分)我校随机抽取100名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:作的学生的概率是0.6.(1)请将上表补充完整(不用写计算过程)(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.(3)从学习积极性高的同学中抽取2人继续调查,设积极参加班级工作的人数为X ,求X 的分布列和期望.【解】 (1)(2)假设学生的学习积极性与对待班级工作的态度无关,由上表 K 2=100×(40×30-10×20)250×50×60×40=100×1 000250×50×60×40 ≈16.667>10.828.故假设不成立,在犯错误概率不超过0.001条件下认为学生的学习积极性与对待班级工作的态度有关.(3)X 的所有可能取值为0,1,2,P (X =0)=C 210C 250,P (X =1)=C 110·C 140C 250,P (X =2)=C 240C 250.X 的分布列为E (X )=0×C 210C 250+1×1040C 250+2×40C 250=1.6.。

相关文档
最新文档