月考试卷答案
2024-2025学年九年级语文上学期10月第一次月考试卷附答案解析
2024-2025学年九年级语文上学期10月第一次月考试卷(满分120分,考试用时120分钟)测试范围:九年级上册第1-3单元一、基础知识综合。
(23分)1.(3分)阅读下面的文字,按要求作答。
近年来,中国传统文化受到越来越多的关注。
从国潮文化备受追捧到《只此青绿》红遍大江南北,从故宫文创热销全国到汉服风靡.海外,从对中华民族灿烂文明发自内心地chóng拜到精神深处的认同。
人们纷纷把目光转向中国传统文化,并自觉参与到传统文化的传播与创新中,推动全社会形成浓厚的文化自信氛.围。
这不仅意味着中国创新力量的jué起,还彰显着中国文化自信的觉醒。
(1)(1分)依次给语段中加点的字注音,全都正确....的一项是()A.mífēn B.mǐfēn C.mífèn D.mǐfèn(2)(2分)根据语境,写出下面词语中拼音所对应的汉字。
chóng()拜jué()起2.(3分)为了记录九年级精彩的学习生活,班长小文提议制作一本班级纪念册。
为便于向同学们解释清楚编写流程,请你根据下图,撰写一份解释流程的文字稿。
要求:语言简洁流畅,条理清楚,不超过80字。
3.(2分)同学们邀请班主任王老师为班级纪念册写一篇序言,下面是王老师写的序言中的一部分,但句子顺序被打乱了,请你选出排序最合理...的一项()①从古到今,多少名人心向未来,或记史或写诗,其事迹令人鼓舞。
②司马迁隐忍苟活,心怀泰山之志,铸就史家绝唱。
③误落尘网心向未来,毅然折身归隐田园;④我们也要拥有无尽的勇气,不被风浪所阻,去闯出一个灿烂的未来。
⑤遭受宫刑心向未来,忍辱谱史巨著终成;⑥陶渊明远离世俗,独享悠然采菊,终得无悔自由。
A.⑤②③⑥①④B.①⑤②③⑥④C.①③⑥⑤②④D.③⑥⑤②①④4.(8分)为了让大家更好地感受到文化传承的魅力,酷爱古诗文的小博以幻灯片的形式呈现了一些古诗文名句,请帮他补写。
2024-2025学年上海华二附中高三上学期数学月考试卷及答案(2024.09)
1华二附中2024学年第一学期高三年级数学月考2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知i 为虚数单位,复数12iz i+=,则z 的实部为________. 2.若函数()133x xf x a =⋅+为偶函数,则实a =________. 3.若事件A 、B 发生的概率分别为1()2P A =,2()3P B =,且相互独立,则()P A B =________.4.已知集合(){}2|log 1A y y x ==−,{}3|27B x x =≤,则A B =________.5.设{}n a 是等比数列,且13a =,2318a a +=,则n a =________.6.现有一球形气球,在吹气球时,气球的体积V 与直径d 的关系式为36d V π=,当2d =时,气球体积的瞬时变化率为________. 7.已知随机变量X 的分布为123111236⎛⎫⎪ ⎪ ⎪⎝⎭,且3Y aX =+,若[]2E Y =−,则实数a =________. 8.记函数()()()cos 0,0f x x =ω+ϕω><ϕ<π的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为________.9.若6(0)b ⎛> ⎝的展开式中含x 项的系数为60,则2a b +的最小值为________.10.顶点为S 的圆锥的母线长为60cm ,底面半径为25cm ,A ,B 是底面圆周上的两点,O 为底面中心,且35AOB π∠=,则在圆锥侧面上由点A 到点B 的最短路线长为____cm .(精确到0.1cm )11.已知△ABC 中,22AB BC ==,AB 边上的高与AC 边上的中线相等,则tan B =2________.12.给定公差为d 的无穷等差数列{}n a ,若存在无穷数列{}n b 满足: ①对任意正整数n ,都有1n n b a −≤②在21b b −,32b b −,…,20252024b b −中至少有1012个为正数,则d 的取值范围是________. 二、单选题(本大题共4小题,共18.0分.在每小题列出的选项中,选出符合题目的一项) 13.“1a b +>”是“33a b >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件14.如果两种证券在一段时间内收益数据的相关系数为正数,那么表明( ) A .两种证券的收益之间存在完全同向的联动关系,即同时涨或同时跌 B .两种证券的收益之间存在完全反向的联动关系,即涨或跌是相反的 C .两种证券的收益有同向变动的倾向 D .两种证券的收益有反向变动的倾向15.设0k >,若向量a 、b 、c 满足::1::3a b c k =,且2()b a c b −=−,则满足条件的k 的取值可以是( )A .1B .2C .3D .416.设1A ,1B ,1C ,1D 分别是四棱锥P ABCD −侧棱PA ,PB ,PC ,PD 上的点.给出以下两个命题,①若ABCD 是平行四边形,但不是菱形,则1111A B C D 可能是菱形;②若ABCD 不是平行四边形,则1111A B C D 可能是平行四边形.( ) A .①真②真 B .①真②假 C .①假②真 D .①假②假三、解答题(本大题共5小题,共78.0分.)17.(本小题14.0分)如图,在圆柱中,底面直径AB等于母线AD,点E在底面的圆周⊥,F是垂足.(1)求证:AF DB⊥;(2)若圆柱与三棱锥D ABE−的体积的比等于3π,求直线DE与平面ABD所成角的大小.3418.(本小题14.0分)李先生是一名上班旋,为了比较上下班的通勤时间,记录了20天个工作日内,家里到单位的上班时间以及同路线返程的下班时间(单位:分钟),如下茎叶图显示两类时间的共40个记录:(1)求出这40个通勤记录的中们数M ,并完成下列22⨯列联表:(2)根据列联表中的数据,请问上下班的通勤时间是否有显著差异?并说明理由. 附:()()()()()22n ad bc a b c d a c b d −χ=++++,()2 3.8410.05P χ≥≈.519.(本小题14.0分)如图,某城市小区有一个矩形休闲广场,20AB =米,广场的一角是半径为16米的扇形BCE 绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅MN (宽度不计),点M 在线段AD 上,并且与曲线CE 相切;另一排为单人弧形椅沿曲线CN (宽度不计)摆放,已知双人靠背直排椅的造价每米为2a 元,单人弧形椅的造价每米为a 元,记锐角NBE ∠=θ,总造价为W 元。
湖南省长沙市2025届高三上学期第二次月考数学试卷含答案
湖南2025届高三月考试卷(二)数学(答案在最后)命题人、审题人:高三数学备课组时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11i z =+的虚部是()A.1 B.12 C.12- D.1-【答案】C【解析】【分析】先化简给定复数,再利用虚部的定义求解即可.【详解】因为()()11i 1i 1i 1i 1i 1i 222z --====-++-,所以其虚部为12-,故C 正确.故选:C.2.已知a 是单位向量,向量b 满足3a b -= ,则b 的最大值为()A.2B.4C.3D.1【答案】B【解析】【分析】设,OA a OB b == ,由3a b -= ,可得点B 在以A 为圆心,3为半径的圆上,利用向量的模的几何意义,可得 b 的最大值.【详解】设,OA a OB b == ,因为3a b -= ,即3OA OB BA -== ,即3AB = ,所以点B 在以A 为圆心,3为半径的圆上,又a 是单位向量,则1OA = ,故OB 最大值为134OA AB +=+= ,即 b 的最大值为4.故选:B.3.已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为()A.23- B.13- C.23 D.13【答案】D【解析】【分析】由角θ的终边,得tan 2θ=,由同角三角函数的关系得cos 1sin cos 1tan θθθθ=++,代入求值即可.【详解】因为角θ的终边在直线2y x =上,所以tan 2θ=.所以cos 111sin cos 1tan 123θθθθ===+++.故选:D.4.已知函数()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x ->-,则实数a 的取值范围为()A.34a ≤ B.34a ≥ C.1a ≤ D.1a ≥【答案】D【解析】【分析】由条件判定函数的单调性,再利用指数函数、二次函数的性质计算即可.【详解】()()()12120f x f x f x x x ->⇒- 在上单调递增,又()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩,当0x <时,()e 33xf x a =+-单调递增,当0x ≥时,()f x 单调递增,只需1330a a +-≤+,解得1a ≥.故选:D.5.如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD -的体积为83,则圆柱的表面积为()A.10πB.9π2C.4πD.8π【答案】A【解析】【分析】取AB 的中点O ,由13A BCD OCD V S AB -=⋅△,可求解底面半径,即可求解.【详解】设底面圆半径为r ,由AB CD ⊥,易得BC AC BD AD ===,取AB 的中点O ,连接,OC OD ,则,AB OC AB OD ⊥⊥,又OC OD O,OC,OD =⊂ 平面OCD ,所以AB ⊥平面OCD ,所以,11182423323A BCD OCD V S AB r r -=⋅=⨯⨯⨯⨯= ,解得=1,所以圆柱表面积为22π42π10πr r +⨯=.故选:A.6.已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为()A.52+ B.5 C.10 D.11【答案】B【解析】【分析】(方法一)首先求出抛物线C 的方程为24y x =,设直线l 的方程为:1x ty =+,与抛物线C 的方程联立,利用根与系数的关系求出21x x 的值,再根据抛物线的定义知11AF x =+,21BF x =+,从而求出23AF BF +的最小值即可.(方法二)首先求出111AF BF+=,再利用基本不等式即可求解即可.【详解】(方法一)因为抛物线C 的焦点到准线的距离为2,故2p =,所以抛物线C 的方程为24y x =,焦点坐标为1,0,设直线l 的方程为:()()11221,,,,x ty A x y B x y =+,不妨设120y y >>,联立方程241y x x ty ⎧=⎨=+⎩,整理得2440y ty --=,则12124,4y y t y y +==-,故221212144y y x x =⋅=,又B =1+2=1+1,2212p BF x x =+=+,则()()12122321312352525AF BF x x x x +=+++=++≥=,当且仅当12,23x x ==时等号成立,故23AF BF +的最小值为5.故选:B.(方法二)由方法一可得121x x =,则11AF BF +211111x x =+++121212211x x x x x x ++==+++,因此23AF BF +()1123AF BF AF BF ⎛⎫=++ ⎪ ⎪⎝⎭235AF BF BF AF =++55≥+=+,当且仅当661,123AF BF =+=+时等号成立,故23AF BF +的最小值为5.故选:B.7.设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()y f x =的图象与直线114y x =-的交点个数为()A.1B.2C.3D.4【答案】C【解析】【分析】利用给定条件求出()πcos 4f x x ⎛⎫=- ⎪⎝⎭,再作出图像求解交点个数即可.【详解】对R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以π4x =是=的一条对称轴,所以()ππZ 4k k ϕ+=∈,又π2ϕ<,所以π4ϕ=-.所以()πcos 4f x x ⎛⎫=- ⎪⎝⎭,在平面直角坐标系中画出()πcos 4f x x ⎛⎫=-⎪⎝⎭与114y x=-的图象,当3π4=-x 时,3π14f ⎛⎫-=- ⎪⎝⎭,11113π3π4164y --=⨯(-=-<-,当5π4x =时,5π14f ⎛⎫=- ⎪⎝⎭,5π5π14111461y =⨯-=->-,当9π4x =时,9π14f ⎛⎫= ⎪⎝⎭,11119π9π4416y =⨯-=-<,当17π4x =时,17π14f ⎛⎫= ⎪⎝⎭,111117π17π4416y =⨯-=->所以如图所示,可知=的图象与直线114y x =-的交点个数为3,故C 正确.故选:C.8.已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠-⋅=-,且()()()()()g x g y f x f y g x y -=-,则下列说法正确的是()A.()01f =B.()f x 是偶函数C.若()()1112f g +=,则()()2024202420242f g -=-D.若()()111g f -=,则()()202420242f g +=【答案】C【解析】【分析】对A ,利用赋值法令0,0x y ==即可求解;对B ,根据题中条件求出()f y x -,再利用偶函数定义即可求解;对C ,先根据题意求出()()001f g -=-,再找出()()11f x g x ---与()()f x g x ⎡⎤-⎣⎦的关系,根据等比数列的定义即可求解;对D ,找出()()11f x g x -+-与()()f x g x ⎡⎤+⎣⎦的关系,再根据常数列的定义即可求解.【详解】对A ,()()()()()f x g y f y g x f x y -⋅=- ,令0,0x y ==,即()()()()()00000f g f g f -⋅=,解得()00f =,故A 错;对B ,根据()()()()()f x g y f y g x f x y -=-,得()()()()()f y g x f x g y f y x -=-,即()()f y x f x y -=--,故()f x 为奇函数,故B 错;对C ,()()()()()g x g y f x f y g x y -=- 令0x y ==,即()()()()()00000g g f f g -=,()00f = ,()()200g g ∴=,又()00g ≠,()01g ∴=,()()001f g ∴-=-,由题知:()()f x yg x y ---()()()()()()()()f x g y f y g x g x g y f x f y ⎡⎤=-⋅--⎣⎦()()()()f y g y f x g x ⎡⎤⎡⎤=+-⎣⎦⎣⎦,令1y =,即()()()()()()1111f x g x f g f x g x ⎡⎤⎡⎤---=+-⎣⎦⎣⎦,()()1112f g += ,()()()()1112f xg x f x g x ⎡⎤∴---=-⎣⎦,即()(){}f xg x -是以()()001f g -=-为首项2为公比的等比数列;故()()()2024202420242024122f g -=-⨯=-,故C 正确;对D ,由题意知:()()f x yg x y -+-()()()()()()()()f xg y f y g x g x g y f x f y =-⋅+-()()()()g y f y f x g x ⎡⎤⎡⎤=-+⎣⎦⎣⎦,令1y =,得()()()()()()1111f x g x g f f x g x ⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦,又()()111g f -=,即()()()()11f x g x f x g x -+-=+,即数列()(){}f xg x +为常数列,由上知()()001f g +=,故()()202420241f g +=,故D 错.故选:C.【点睛】关键点点睛:本题的关键是对抽象函数进行赋值,难点是C ,D 选项通过赋值再结合数列的性质进行求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中正确的是()A.一个样本的方差()()()22221220133320s x x x ⎡⎤=-+-++-⎣⎦L ,则这组样本数据的总和等于60B.若样本数据1210,,,x x x 的标准差为8,则数据1221,21,x x -- ,1021x -的标准差为16C.数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D.若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小【答案】ABD【解析】【分析】对于A ,由题意可得样本容量为20,平均数是3,从而可得样本数据的总和,即可判断;对于B ,根据标准差为8,可得方差为64,从而可得新数据的方差及标准差,即可判断;对于C ,根据百分位数的定义,求出第70百分位数,即可判断;对于D ,由题意可求得新数据的平均数及方差,即可判断.【详解】解:对于A ,因为样本的方差()()()222212201333,20s x x x ⎡⎤=-+-++-⎣⎦ 所以这个样本有20个数据,平均数是3,这组样本数据的总和为32060,⨯=A 正确;对于B ,已知样本数据1210,,,x x x 的标准差为8s =,则264s =,数据121021,21,,21x x x --- 的方差为2222264s =⨯2816=⨯=,故B 正确;对于C ,数据13,27,24,12,14,30,15,17,19,23共10个数,从小到大排列为12,13,14,15,17,19,23,24,27,30,由于100.77⨯=,故选择第7和第8个数的平均数作为第70百分位数,即232423.52+=,所以第70百分位数是23.5,故C 错误;对于D ,某8个数的平均数为5,方差为2,现又加入一个新数据5,设此时这9个数的平均数为x ,方差为2S ,则2285582(55)165,2999x S ⨯+⨯+-====<,故D 正确.故选:ABD.10.已知函数()32f x ax bx =-+,则()A.()f x 的值域为RB.()f x 图象的对称中心为()0,2C.当30b a ->时,()f x 在区间()1,1-内单调递减D.当0ab >时,()f x 有两个极值点【答案】BD【解析】【分析】利用一次函数、三次函数的性质结合分类讨论思想可判定A ,利用函数的奇偶性判定B ,利用导数研究函数的单调性结合特殊值法排除C ,利用极值点的定义可判定D.【详解】对于A :当,a b 至少一个不为0,则()f x 为三次或者一次函数,值域均为;当,a b 均为0时,值域为{}2,错误;对于B :函数()()32g x f x ax bx =-=-满足()()3g x ax bx g x -=-+=-,可知()g x 为奇函数,其图象关于()0,0中心对称,所以()f x 的图象为()g x 的图象向上移动两个单位后得到的,即关于0,2中心对称,正确;对于C :()23f x ax b '=-,当30b a ->时,取1,1a b =-=-,当33,33x ⎛⎫∈- ⎪ ⎪⎝⎭时,()()2310,f x x f x =-+>'在区间33,33⎛⎫- ⎪ ⎪⎝⎭上单调递增,错误;对于D :()23f x ax b '=-,当0ab >时,()230f x ax b '=-=有两个不相等的实数根,所以函数()f x 有两个极值点,正确.故选:BD.11.我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是()A.函数()sin 1f x x =+是圆22:(1)1O x y +-=的一个太极函数B.对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C.对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D.若函数()()3f x kx kx k =-∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈-【答案】AD【解析】【分析】根据题意,对于A ,D 利用新定义逐个判断函数是否满足新定义即可,对于B ,C 举反例说明.【详解】对于A ,圆22:(1)1O x y +-=,圆心为0,1,()sin 1f x x =+的图象也过0,1,且0,1是其对称中心,所以()sin 1f x x =+的图象能将圆一分为二,所以A 正确;对于B,C ,根据题意圆22:1O x y +=,如图()331,332313,03231332331,332x x x f x x x x ⎧--<-⎪⎪+-≤≤=⎨⎪+<≤⎪->⎩,与圆交于点()1,0-,1,0,且在x 轴上方三角形面积与x 轴下方个三角形面积之和相等,()f x 为圆O 的太极函数,且()f x 是偶函数,所以B ,C 错误;对于D ,因为()()()()()33()f x k x k x kx kx f x k -=---=--=-∈R ,所以()f x 为奇函数,由()30f x kx kx =-=,得0x =或1x =±,所以()f x 的图象与圆22:1O x y +=的交点为()()1,0,1,0-,且过圆心()0,0,由3221y kx kx x y ⎧=-⎨+=⎩,得()2624222110k x k x k x -++-=,令2t x =,则()232222110k t k t kt -++-=,即()()222110t k t k t --+=,得1t =或22210k t k t -+=,当1t =时,1x =±,当22210k t k t -+=时,若0k =,则方程无解,合题意;若0k ≠,则()4222Δ44k k k k=-=-,若Δ0<,即204k <<时,方程无解,合题意;所以()2,2k ∈-时,两曲线共有两个交点,函数能将圆一分为二,如图,若Δ0=,即2k =±时,函数与圆有4个交点,将圆分成四部分,若Δ0>,即24k >时,函数与圆有6个交点,且均不能把圆一分为二,如图,所以()2,2k ∈-,所以D 正确.故选:AD.【点睛】关键点点睛:本题解题的关键是理解新定义,即如果一个函数过圆心,并且函数图象关于圆心中心对称,且函数将圆分成2部分,不能超过2部分必然合题.如果函数不是中心对称图形,则考虑与圆有2个交点,交点连起来过圆心,再考虑如何让面积相等.三、填空题:本题共3小题,每小题5分,共15分.12.曲线2ln y x x =-在点()1,2处的切线与抛物线22y ax ax =-+相切,则a =__________.【答案】1【解析】【分析】求出曲线2ln y x x =-在点()1,2处的切线方程,由该切线与抛物线22y ax ax =-+相切,联立消元,得到一元二次方程,其Δ0=,即可求得a .【详解】由2ln y x x =-,则12y x'=-,则11x y ='=,曲线2ln y x x =-在点()1,2处的切线方程为21y x -=-,即1y x =+,当0a ≠时,则212y x y ax ax =+⎧⎨=-+⎩,得()2110ax a x -++=,由2Δ(1)40a a =+-=,得1a =.故答案为:1.13.已知椭圆G22+22=1>>0的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c,则椭圆C 的离心率为______.【答案】23【解析】【分析】由内切圆半径的计算公式,利用等面积法表示焦点三角形12PF F 的面积,得到,a c 方程,即可得到离心率e 的方程,计算得到结果.【详解】由题意,可知1PF 为椭圆通径的一半,故21b PF a =,12PF F 的面积为21122b cc PF a⋅⋅=,又由于12PF F 的内切圆的半径为3c,则12PF F 的面积也可表示为()12223c a c +⋅,所以()111222223c c PF a c ⋅⋅=+⋅,即()212223b c ca c a =+⋅,整理得:22230a ac c --=,两边同除以2a ,得2320e e +-=,所以23e =或1-,又椭圆的离心率()0,1e ∈,所以椭圆C 的离心率为23.故答案为:23.14.设函数()()44xf x ax x x =+>-,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________.【答案】58##0.625【解析】【分析】根据题意,利用基本不等式,求得2min ()1)f x =+,转化为21)b +>恒成立,结合a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,得到基本事件总数有24个,再利用列举法,求得()f x b >成立的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】因为0,4a x >>,可得40x ->,则()()441441444x f x ax ax a x a x x x =+=++=-+++---2411)a ≥++=,当且仅当4x =时,等号成立,故2min ()1)f x =+,由不等式()f x b >恒成立转化为21)b >恒成立,因为a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则构成(),a b 的所有基本事件总数有24个,又由()221)1)912,16==+,()221)1319,201)25+=+=,设事件A =“不等式()f x b >恒成立”,则事件A 包含事件:()()1,4,1,8,()()()2,4,2,8,2,12,()()()()3,4,3,8,3,12,3,16,()()()()()()4,4,4,8,4,12,4,16,4,20,4,25共15个,因此不等式()f x b >恒成立的概率为155248=.故答案为:58.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC 的面积为334,且2AD DC = ,求BD 的最小值.【答案】(1)π3B =(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由.112333BD BC CA BA BC =+=+,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V 的面积为33π,43B =,所以133sin 24ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当6,2a c ==时取等号,所以BD .16.已知双曲线E 的焦点在x 轴上,离心率为233,点(在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直的直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.【答案】(1)2213x y -=(2)6【解析】【分析】(1)由222c a b =+和3e =,及点(在双曲线E 上,求出22,a b ,即可求出E 的方程;(2)设直线()()121:2,:2l y k x l y x k =-=--,其中0k ≠,根据题中条件确定2133k <<,再将1l 的方程与2213x y -=联立,利用根与系数的关系,用k 表示AC ,BD 的长,再利用12ABCDS AC BD =,即可求出四边形ABCD 面积的最小值.【小问1详解】因为222c a b =+,又由题意得22243c e a ==,则有223a b =,又点(在双曲线E 上,故229213-=b b,解得221,3b a ==,故E 的方程为2213xy -=.【小问2详解】根据题意,直线12,l l 的斜率都存在且不为0,设直线()()121:2,:2l y k x l y x k=-=--,其中0k ≠,因为12,l l 均与E 的右支有两个交点,所以313,33k k >->,所以2133k <<,将1l 的方程与2213x y -=联立,可得()222213121230k x k x k -+--=.设()()1122,,,A x y C x y ,则2212122212123,1313k k x x x x k k---+==--,所以()222121212114AC k x k x x x x =+-=++-)22222222222311212323114113133113k k k kkk k k k k +⎛⎫---+=+-⨯+ ⎪----⎝⎭,同理)22313k BD k +=-,所以))()()()2222222223131111622313313ABCD kkk S AC BD k kkk+++==⋅⋅=⋅----.令21t k =+,所以241,,43k t t ⎛⎫=-∈⎪⎝⎭,则2222166661616316161131612ABCDt S t t t t t =⋅=⋅=≥-+-⎛⎫-+---+ ⎪⎝⎭,当112t =,即1k =±时,等号成立.故四边形ABCD 面积的最小值为6.17.如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==,2,P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C 的夹角的余弦值为53333?若存在,求出点P ;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,点P 为11A B 中点【解析】【分析】(1)延长三条侧棱交于一点O ,由勾股定理证明OA OB ⊥,OA OC ⊥,根据线面垂直的判定定理得证;(2)建立空间直角坐标系,求出平面111A B C 和平面APC 的法向量,利用向量夹角公式求解.【小问1详解】延长三条侧棱交于一点O ,如图所示,由于11124,2AB A B BB ===22OB OA ==所以22216OA OB AB +==,所以OA OB ⊥,同理OA OC ⊥.又OB OC O = ,,OB OC ⊂平面OBC ,所以OA ⊥平面OBC ,即1AA ⊥平面11BCC B .【小问2详解】由(1)知,,OA OB OA OC OB OC ⊥⊥⊥,如图建立空间直角坐标系,则(()0,0,,0,A C,()()111,,0,A B C ,所以((1110,0,,0,,AA AC A B ==-=,()110,B C =.设)111,0,A P A B λλ===,则1AP AA =+)[]1,0,,0,1A P λ=∈,设平面111A B C 和平面APC 的法向量分别为(),,,m x y z n ==(),,r s t ,所以)01000r t λ⎧=+=⎪⎨+==⎪⎪⎩⎩,取()()1,1,1,1,,m n λλλ==+,则cos ,33m n m n m n ⋅===.整理得212870λλ+-=,即()()21670λλ-+=,所以12λ=或76λ=-(舍),故存在点P (点P 为11A B 中点时),满足题意.18.若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3nn n a n b ⎛⎫=-= ⎪⎝⎭,(i )判断数列{}{},n n a b 是否具有性质P ,并说明理由;(ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由;(2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .【答案】(1)(i )数列{}n a 不具有性质P ,数列{}n b 具有性质P ,理由见解析;(ii )数列{}n S 具有性质P ,理由见解析(2)证明见解析【解析】【分析】(1)判断数列是否满足条件①②,可得(i )的结果;利用错位相减法求数列{}n n a b 的前n 项和,再判断是否满足条件①②.(2)先求数列{}n c 的通项公式,再判断是否满足条件①②.【小问1详解】(i )因为21n a n =-单调递增,但无上限,即不存在M ,使得n a M <恒成立,所以数列不具有性质P .因为113nn b ⎛⎫=< ⎪⎝⎭,又数列为单调递减数列,所以数列具有性质P .(ii )数列{}n S 具有性质P .2112113333n n n S -=⋅+⋅++ ,23111121133333n n n S +-=⋅+⋅++ ,两式作差得23121111211222333333n n n n S +-=⋅+⋅+⋅++⋅- ,即1121121212223313333313n n n n n n S ++⎛⎫- ⎪-+⎝⎭=-+-=--,所以111,3n n n S +=-<∴数列{}n S 满足条件①.(){}11210,,3nn n n n n a b n S S S +⎛⎫=->∴<∴ ⎪⎝⎭为单调递增数列,满足条件②.综上,数列{}n S 具有性质P .【小问2详解】因为*0,1,,,X n n =∈N ,若X 为奇数的概率为,n c X 为偶数的概率为n d ,()1[1]nn n c d p p +==-+001112220C (1)C (1)C (1)C (1)n n n n nn n n n p p p p p p p p --=-+-+-++- ①()001112220[1]C ()(1)C ()(1)C ()(1)C ()(1)n n n n n n n n n n p p p p p p p p p p ----=--+--+--++-- ②,2n c -=①②,即1(12)2nn p c --=.所以当102p <<时,0121p <-<,故n c 随着n 的增大而增大,且12n c <.故数列{}n c 具有性质P .19.已知函数()24e 2x f x x x-=-,()2233g x x ax a a =-+--(a ∈R 且2a <).(1)令()()()(),x f x g x h x ϕ=-是()x ϕ的导函数,判断()h x 的单调性;(2)若()()f x g x ≥对任意的()1,x ∈+∞恒成立,求a 的取值范围.【答案】(1)ℎ在(),0∞-和0,+∞上单调递增;(2)(],1-∞.【解析】【分析】(1)需要二次求导,利用导函数的符号分析函数的单调性.(2)法一先利用()()22f g ≥这一特殊情况,探索a 的取值范围,再证明对()1,x ∈+∞时,()()f x g x ≥恒成立;法二利用导数工具求出函数()x ϕ的最小值()0x ϕ,同法一求证(]0,1a ∈时()00x ϕ≥,接着求证()1,2a ∈时()20ϕ<不符合题意即可得解.【小问1详解】()()()2224e 233x x f x g x x x ax a a xϕ-=-=-+-++,定义域为{}0xx ≠∣,所以()()()224e 1223x x h x x x a xϕ--==-+-',所以()()2234e 2220x x x h x x --+=+>'.所以()h x 在(),0-∞和()0,∞+上单调递增.【小问2详解】法一:由题知()()22f g ≥即()()()2232120a a a a ϕ=-+=--≥,即1a ≤或2a ≥,所以1a ≤.下证当1a ≤时,()()f x g x ≥对任意的()1,x ∈+∞恒成立.令()()24e x F x f x x x x -=+=-,则()()()()()222234e 224e 11,0x x x x x F x t x t x x x---+-'=-==>',所以()()224e 11x x F x x --=-'在()1,+∞单调递增,又()20F '=,所以当()1,2x ∈时,()()0,F x F x '<单调递减,当()2,x ∈+∞时,()()0,F F x x '>递单调增,所以()()20F x F ≥=,故()f x x ≥-,要证()()f x g x ≥,只需证()x g x -≥,即证()223130x a x a a -+++≥,令()()22313G x x a x a a =-+++,则()()()222Δ(31)43561151a a a a a a a =+-+=-+=--,若115a ≤≤,则0∆≤,所以()()223130G x x a x a a =-+++≥.若15a <,则对称轴31425a x +=<,所以()G x 在()1,+∞递增,故()()210G x G a >=≥,综上所述,a 的取值范围为(],1-∞.法二:由题知2224e 233x x x ax a a x--≥-+--对任意的()1,x ∈+∞恒成立,即()2224e 2330x x x x ax a a xϕ-=-+-++≥对任意的()1,x ∈+∞恒成立.由(1)知()()224e 1223x x x x a x ϕ--=-+-'在()1,+∞递增,又()13a ϕ'=-.①若0a ≤,则()()()10,x x ϕϕϕ'>≥'在()1,+∞递增,所以()()24110e x a ϕϕ>=-+>,符合;②若0a >,则()130a ϕ=-<',又()112224e 14e (1)(1)(1)a a a a a a a a a ϕ--⎡⎤+=-=-+⎣⎦++',令()124e(1)a m a a -=-+,则()()()14e 21a m a a h a -=-+=',则()14e 2a h a -'=-为单调递增函数,令()0h a '=得1ln2a =-,当()0,1ln2a ∈-时()()0,h a m a ''<单调递减,当()1ln2,a ∞∈-+时()()0,h a m a ''>单调递增,又()()10,00m m ='<',所以当()0,1a ∈时,()()0,m a m a '<单调递减,当()1,a ∈+∞时,()()0,m a m a '>单调递增,所以()()10m a m ≥=,则()12214e (1)0(1)a a a a a ϕ-⎡⎤+'=-+≥⎣⎦+,所以(]01,1x a ∃∈+,使得()00x ϕ'=,即()0200204e 12230x x x a x ---+-=,且当()01,x x ∈时,()()0,x x ϕϕ'<单调递减,当()0,x x ∈+∞时,()()0,x x ϕϕ'>单调递增,所以()()0222min 000004e 233x x x x x ax a a x ϕϕ-==-+-++.若(]0,1a ∈,同法一可证()0222000004e 2330x x x x ax a a x ϕ-=-+-++≥,符合题意.若()1,2a ∈,因为()()()2232120a a a a ϕ=-+=--<,所以不符合题意.综上所述,a 的取值范围为(],1-∞.【点睛】方法点睛:导数问题经常会遇到恒成立的问题.常见的解决思路有:(1)根据参变分离,转化为不含参数的函数最值问题.(2)若()0f x >恒成立,就可以讨论参数不同取值下的函数的单调性和极值与最值,最终转化为()min 0f x >;若()0f x <⇔()max 0f x <.(3)若()()f x g x ≥恒成立,可转化为()()min max f x g x ≥(需在同一处取得最值).。
辽宁省大连市滨城高中联盟2024-2025学年高二上学期10月月考数学试卷(含答案)
滨城高中联盟2024-2025学年度上学期高二10月份考试数学试题(时间:120分钟,满分:150分)第I 卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在四面体中,已知点是的中点,记,则等于( )A. B.C. D.2.若平面的法向量为,直线的方向向量为,直线与平面的夹角为,则下列关系式成立的是( )A. B.C. D.3.若直线的一个法向量是,则该直线的倾斜角为( )A. B. C. D.4.已知空间向量,则向量在向量上的投影向量是( )A. B. C. D.5.设是的二面角内一点,是垂足,,则的长度为( )A.B.56.对于空间一点和不共线三点,且有,则( )A.四点共面B.四点共面ABCD E CD ,,AB a AC b AD c === BE 1122a b c -++ 1122a b c -+ 1122a b c -+ 1122a b c -++ αμ l vl αθcos v v μθμ⋅= cos v v μθμ⋅=sin v v μθμ⋅= sin v vμθμ⋅= AB )1a =- 30 60 120 150()()1,1,2,1,2,1a b =-=- a b ()1,1,1-555,,663⎛⎫- ⎪⎝⎭555,,636⎛⎫- ⎪⎝⎭111,,424⎛⎫- ⎪⎝⎭P 120 l αβ--,,,PA PB A B αβ⊥⊥4,3PA PB ==AB O ,,A B C 2OP PA OB OC =-+ ,,,O A B C ,,,P A B CC.四点共面D.五点共面7.将正方形沿对角线折成直二面角,下列结论不正确的是()A.B.,所成角为C.为等边三角形D.与平面所成角为8.正方形的边长为12,其内有两点,点到边的距离分别为3,2,点到边的距离也分别是3和2.如图,现将正方形卷成一个圆柱,使得和重合.则此时两点间的距离为( )二、多项选择题:体题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的按部分得分,有选错的得0分.9.下列说法中,正确的有( )A.直线必过定点B.方程是直线的一般式方程C.直线的斜率为D.点到直线的距离为110.已知空间单位向量两两垂直,则下列结论正确的是( )A.向量与共线B.问量C.可以构成空间的一个基底,,,O P B C ,,,,O P A B C ABCD BD AC BD⊥AB CD 60︒ADC V AB BCD 60︒11ABB A ,P Q P 111,AA A B Q 1,BB AB AB 11A B ,P Q ()32y ax a a =-+∈R ()3,20Ax By C ++=10x ++=()5,3-20y +=,,i j k i j + k j - i j k ++ {},,i j i j k +-D.向量和11.如图,已知正六棱柱的底面边长为2,所有顶点均在球的球面上,则下列说法错误的是( )A.直线与直线异面B.若是侧棱上的动点,则C.直线与平面D.球的表面积为第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知点关于直线对称的点是,则直线在轴上的截距是__________.13.若三条直线相交于同一点,则点到原点的距离的最小值为__________.14.已知正三棱柱的底面边长为是其表面上的动点,该棱柱内切球的一条直径是,则的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知直线与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线的方程:(1)过定点;(2)斜率为.16.(本小题满分15分)如图,在四面体中,面是的中点,是i j k ++ k ABCDEF A B C D E F ''''-''O DE 'AF 'M CC 'AM MD +'AF 'DFE 'O 18π()1,2A -y kx b =+()1,6B --y kx b =+x 2,3,100y x x y mx ny =+=++=(),m n ABC A B C '-''P MN PM PN ⋅ l l ()3,4A -16ABCD AD ⊥,2,BCD AD M =AD P的中点,点在棱上,且.请建立适当的空间直角坐标系,证明:面.17.(本小题满分15分)如图所示,平行六面体中.(1)用向量表示向量,并求;(2)求18.(本小题满分17分)如图,在五棱锥中,平面是等腰三角形.(1)求证:平面平面;(2)求直线与平面所成角的大小.19.(本小题满分17分)如图,在三棱柱中,棱的中点分别为在平面内的射影为是边长为2的等边三角形,且,点在棱上运动(包括端点).请建立适当的空间直角坐标系,解答下列问题:BM Q AC3AQ QC=PQ∥BCD1111ABCD A B C D-111ππ1,2,,23AB AD AA BAD BAA DAA∠∠∠======1,,AB AD AA1BD1BD1cos,BD ACP ABCDE-PA⊥,ABCDE AB∥,CD AC∥,ED AE∥,45,24,BC ABC AB BC AE PAB∠====VPCD⊥PACPB PCD111ABC A B C-1,AC CC1,,D E CABC,D ABCV12AA=F11B C(1)若点为棱的中点,求点到平面的距离;(2)求锐二面角的余弦值的取值范围.F 11B C F BDE F BD E --滨城高中联盟2024-2025学年度上学期高二10月份考试数学试题参考答案一、单选题1.A2.D3.B4.C5.D6.B7.D8.【答案】B【详解】解法一:如图建系设圆柱底面半径为,则,所以,则所以.解法二:如图,设过点且平行底面的截面圆心为,过点且平行底面的截面圆心为,设圆柱底面半径为,则,所以,则,.r 2π12r =6πr =33,3,,9ππQ P ⎫⎛⎫--⎪ ⎪⎪ ⎪⎭⎝⎭PQ =P 1O Q 2O r 2π12r =6πr =121122222π,,63πO P O Q PQ PO O O O Q +===++222211221212||22PQ PO O O O Q r O O PO O Q∴=++=++⋅ 222266π36262cos 336,ππ3πPQ ⎛⎫⎛⎫=⋅++⋅⋅=⋅+∴= ⎪ ⎪⎝⎭⎝⎭9.AD 10.BCD.11.【答案】AC【详解】对于A ,如图①,连接,则,所以,所以直线与直线共面,故A 错误;对于B ,将平面沿着翻折到与平面共面的位置,得到矩形,如图②所示.因为底面边长为,所以则的最小值为,故B 正确;对于C ,以为坐标原点,所在直线分别为轴、轴、轴,建立如图①所示的空间直角坐标系,则,所以.设平面的法向量为,则,即,令,得,所以平面的一个法向量为.设直线与平面所成角为,则,故C 错误;对于D ,如图③,设球的半径为,根据对称性可知,正六棱柱的外接球的球心在上下底面的中心的连线的中点处.,则,所以球的表面积,故D 正确.,AD A D ''AD ∥,A D A D ''''∥E F ''AD ∥E F ''DE 'AF 'ACC A ''CC 'CDD C ''ADD A ''2π2,3ABC ∠=AC =AM MD +'AD =='F ,,FA FD FF 'x y z ()(()()(2,0,0,,0,0,0,0,,A F F D E '-'(()(,0,,AF FD FE =''=-=- DFE '(),,m x y z = 00FD m FE m ⎧⋅=⎪⎨⋅=⎪'⎩ 00y x =⎧⎪⎨-++=⎪⎩1z =x =DFE ')m = AF 'DFE 'θ1sin 3θO R 12O O 1122,O C O O ==22222211922R OC O C O O ==+=+=O 294π4π18π2S R ==⨯=12.13.【答案】【详解】由解得把代入可得,所以,所以点到原点的距离当时等号成立,此时.所以点到原点的距离的最小值为14.【答案】【详解】由题意知内切球的半径为1,设球心为,则.因为.四、解答题15.【答案】(1)或.(2)或.【详解】(1)由题意知直线的斜率存在,设为则直线的方程为,它在轴,轴上的截距分别是,由已知,得,解得或.故直线的方程为或.(2)设直线在轴上的截距为,则直线的方程是,它在轴上的截距是,8-2,3,y x x y =⎧⎨+=⎩1,2.x y =⎧⎨=⎩()1,240mx ny ++=2100m n ++=102m n =--(),m n d ==4n =-2m =-(),m n []0,4O ()()PM PN PO OM PO ON ⋅=+⋅+ ()2OP PO OM ON OM ON =+⋅++⋅ 2||1PO =- []0,4PM PN ⋅∈ 2360x y +-=83120x y ++=660x y -+=660x y --=l kl ()34y k x =++x y 43,34k k--+()43436k k ⎛⎫+⨯+=± ⎪⎝⎭123k =-283k =-l 2360x y +-=83120x y ++=l y b l 16y x b =+x 6b -由已知,得,所以.所以直线的方程为或.16.解法一:以为坐标原点,所在直线为z 轴,线段的延长线为y 轴,建立如图所示空间直角坐标系,设,由题意得,因为,所以即即所以,所以又因为面BCD 的一个法向量为所以所以又因为面所以面.解法二:66b b -⋅=1b =±l 660x y -+=660x y --=D DA BD 2BD a =()()()10,2,0,0,0,2,0,0,1,0,,2B a A M P a ⎛⎫-- ⎪⎝⎭3AQ QC =34AQ AC = ()()3,,2,,24Q Q Q x y z x y -=-331,,442Q Q Q x x y y z ===331,,442Q x y ⎛⎫ ⎪⎝⎭33,,044PQ x y a ⎛⎫=+ ⎪⎝⎭()0,0,1n =0PQ n ⋅= PQ n⊥ PQ ⊄BCDPQ ∥BCD取的中点,连接,因为为BM 的中点,所以,所以平面,过作,交BC 于以为坐标原点,的方向分别为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系.因为为中点,设则设点的坐标为.因为,所以.因为为的中点,故,又为的中点,故,所以又平面BCD 的一个法向量为,故,所以又平面BCD ,所以平面BC D.17.【答案】(1)2【详解】(1),BD O OP P OP ∥MD OP ⊥BCD O OE BD ⊥,E O ,,OE OD OP2,AD M =AD 2BD a=()()0,,2,0,,0A a B a -C ()00,,0x y 3AQ QC = 003131,,4442Q x a y ⎛⎫+ ⎪⎝⎭M AD ()0,,1M a P BM 10,0,2P ⎛⎫ ⎪⎝⎭00313,,0444PQ x a y ⎛⎫=+ ⎪⎝⎭()0,0,1n =0PQ n ⋅= PQ n⊥ PQ ⊄PQ ∥111,BD AD AA AB BD =+-= 111BD AD AB AD AA AB =-=+-则,所以.(2)由空间向量的运算法则,可得,因为且,因为是正方形,所以,则.18.【答案】(1)见详解(2)【详解】(1)证明:在中,因为,所以,因此故,所以,即又平面,所以.又平面,且,所以平面.又平面,所以平面平面.(或者建系求法向量,证明法向量垂直,略)(2)由(1)知两两相互垂直,分别以的方向为轴、轴、轴正方向,建立()2222211111222BD AD AA AB AD AA AB AD AA AD AB AB AA =+-=+++⋅-⋅-⋅ 111412*********=+++⨯⨯⨯--⨯⨯⨯=1BD = AC AB AD =+ 11,2AB AD AA ===11ππ,23BAD BAA DAA ∠∠∠===ABCD AC = ()()221111BD AC AD AA AB AB AD AD AB AD AA AB AA AD AB AD AB ⋅=+-⋅+=⋅++⋅+⋅--⋅ 22ππππ11cos121cos 21cos 111cos 22332=⨯⨯++⨯⨯+⨯⨯--⨯⨯=111cos ,BD AC BD AC BD AC ⋅===⋅ π6ABC V 45,4,ABC BC AB ∠=== 2222cos458AC AB BC AB BC =+-⋅⋅= AC =222BC AC AB =+90BAC ∠= AB AC⊥PA ⊥,ABCDE AB ∥CD ,CD PA CD AC ⊥⊥,PA AC ⊂PAC PA AC A ⋂=CD ⊥PAC CDC PCD PCD ⊥PAC ,,AB AC AP ,,AB AC AP x y z如图所示的空间直角坐标系,由于是等腰三角形,所以.又,因此,.因为,所以四边形是直角梯形.因为,所以,因此,故,所以.因此.设是面的一个法向量,则,解得.取,得.又,设表示向量与平面的法向量所成的角,则,又因为,所以,因此直线与平面所成的角为.PAB V PA AB ==AC =()()0,0,0,A B ()(0,,0,0,C P AC ∥,ED CD AC ⊥ACDE 2,45,AE ABC AE ∠== ∥BC 135BAE ∠= 45CAE ∠= sin452CD AE =⋅== ()D (()0,,CP CD =-= (),,m x y z =PCD 0,0m CP m CD ⋅=⋅= 0,x y z ==1y =()0,1,1m =(BP =- θBP PCD m1cos 2m BP m BP θ⋅==⋅ π0,2θ⎡⎤∈⎢⎥⎣⎦π3θ=PB PCD π619.【答案】(1(2)解法一:连接,因为在平面内的射影为,所以平面,由于平面,所以,由于三角形是等边三角形,所以,以为原点,分别以的方向为轴、轴、轴正方向,建立如图所示空间直角坐标系,则,因为所以又因为为中点,所以所以设面的一个法向量为则令,则所以所以点到平面的距离为(2)因为在棱上(包括端点)设12⎡⎢⎣1DC 1C ABC D 1DC ⊥ABC ,AC BD ⊂ABC 11,DC AC DC BD ⊥⊥ABC BD AC ⊥BD ==1DC ==D 1,,DB DA DC x y z (())11,0,1,0,,0,2C C B E ⎛-- ⎝)11C B CB == 1B F 11B C 12F 12BF ⎛= ⎝ BDE ()111,,m x y z =1(0,,2BD ED ⎛== ⎝ 111000x BD m y ED m ⎧=⎧⋅=⎪⎪⇒⎨⎨=⋅=⎪⎪⎩⎩ 11z =1y =()m = F BDE BF m m ⋅== F 11B C ()111,01C F C B λλ= ……因为,所以设平面的法向量为,令所以,设锐二面角为,则令,所以,设则二次函数的开口向上,对称轴为,所以当时,该二次函数单调递增,所以当时,该二次函数有最小值,当时,该二次函数有最大值,,即.所以锐二面角的余弦值的取值范围.解法二:(1)连接,因为在平面内的射影为,所以平面,由于平面,所以,)11C B = )1,,0C F λ=BDF ()222,,n x y z = 11,,0),DF DC C F λλ=+=+= 22220000DF n x y x DB n λ⎧⋅=++=⎪⇒⎨=⋅=⎪⎪⎩⎩ 2y =2z λ=-()m λ=- F BD E --θ1cos 2θ=[]()32,3t t λ-=∈cos θ==111,,32s s t ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭cos θ=221112611244y s s s ⎛⎫=-+=-+ ⎪⎝⎭14s =11,32s ⎡⎤∈⎢⎥⎣⎦13s =21111261333⎛⎫⨯-⨯+= ⎪⎝⎭12s =2111261122⎛⎫⨯-⨯+= ⎪⎝⎭⎡⎣1cos 2θ⎡∈⎢⎣F BD E --12⎡⎢⎣1DC 1C ABC D 1DC ⊥ABC ,AC BD ⊂ABC 11,DC AC DC BD ⊥⊥由于三角形是等边三角形,所以,又以为原点,分别以的方向为轴、轴、轴正方向,建立如图所示空间直角坐标系,则,又,故,则设平面的法向量为,则,故可设,又,所以点到平面的距离为.(2)设,则,设平面的法向量为,则令,所以,所以,设锐二面角为,ABC ,BD AC BD ⊥==1DC ==D 1,,DCDB DCx yz (()()11,1,0,0,,2C C E B ⎛ ⎝()11C B CB ==-(11,2B F ⎛-- ⎝()1,,2DE DB ⎛== ⎝ BDE ()111,,m x y z =1111020m DE x z m DB ⎧⋅=+=⎪⎨⎪⋅==⎩ ()m = 1,2BF ⎛=- ⎝ F BDE BF m m ⋅== ()()1111101,C F C B C B λλ=≤≤=- (()(11111DF DC C F DC C B λλλ=+=+=+-=- BDF ()222,,n x y z =22220000DF n x y y DB n λ⎧⎧⋅=-++=⎪⎪⇒⎨⎨=⋅=⎪⎪⎩⎩ 2x =2z λ=)n λ=F BD E --θ则令,所以,设则二次函数的开口向上,对称轴为,所以当时,该二次函数单调递增,所以当时,该二次函数有最小值,当时,该二次函数有最大值,,即.所以锐二面角的余弦值的取值范围.1cos 2θ=[]()32,3t t λ-=∈cos θ==111,,32s s t ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭cos θ=221112611244y s s s ⎛⎫=-+=-+ ⎪⎝⎭14s =11,32s ⎡⎤∈⎢⎥⎣⎦13s =21111261333⎛⎫⨯-⨯+= ⎪⎝⎭12s =2111261122⎛⎫⨯-⨯+= ⎪⎝⎭⎡⎣1cos 2θ⎡∈⎢⎣F BD E --12⎡⎢⎣。
湖南省长沙市雅礼中学2025届高三上学期月考(一)语文试卷(含答案)
炎德·英才大联考雅礼中学2025届高三月考试卷(一)语文本试卷共四道大题,23道小题,满分150分。
时量150分钟。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:积极情绪(Positive Emotion)可以定义为正面的情绪或者具有正面向上价值的情绪。
情绪的认知理论认为,“积极情绪就是在目标实现过程中取得进步或得到他人积极评价时所产生的感受。
”由此可见,积极情绪就是经历了内在、外在的刺激,正确地解决了问题,达到某种成功与满意度,满足了个体的需求,感觉到个体的存在价值伴有随之而来的愉悦的心情与感受。
积极情绪并不是消极接受、坦然享受、乐不思蜀的感觉。
这些只是浅薄的感受,即时地享乐。
积极情绪拓展到更深的层面——从欣赏到热爱。
它并不是简单的迷恋,而是一种真心喜欢、经过努力而获得的欢愉、欣喜。
“积极情绪”这个词,指向了重要的人性瞬间。
那些轻微而短暂的愉悦状态,其实要比你想象的强大得多。
作为人类,生来就能够体验到微弱短促却愉悦舒畅的积极情绪。
它有着不同的形态和滋味。
回想一下,当感到与他人或与所爱的人心灵相通时;当感到有趣、有创意或忍俊不禁时;当感到自己的灵魂被蕴含在生命中的纯粹的美所打动时;或者当因一个新颖的主意或爱好而感到活力无限、兴致勃勃时,你都会不由自主地产生爱、喜悦、感激、宁静、兴趣和激励这样的积极情绪,它们会打开你的心扉。
然而,无论是迷恋、欢笑还是爱,你由衷的积极情绪总是无法持续很长的时间。
良好的感觉来了又去,就如同好天气一样,这是人类的本性。
积极情绪会逐渐消退,如果它长盛不衰,人们会很难适应变化,无法觉察到好消息和坏消息之间的差异,或是邀请与冒犯之间的差异。
如果你想重塑生活,让它变得更美好,秘诀就是不要把积极情绪抓得太紧,也不要抗拒它稍纵即逝的本性,而是将它更多地植入生活——久而久之,你就会提高积极情绪的分量。
我们发现,在这一秘诀中最重要的是积极率,这是用来描述积极情绪与消极情绪的数量关系的一种方法。
语文月考试卷及答案
一、选择题(每题2分,共20分)1. 下列词语中,字形、字音完全正确的是()A. 质疑、耸人听闻、情不自禁B. 谨慎、驰骋、熏陶C. 奔跑、激动、喧哗D. 畅快、堵塞、恳求2. 下列句子中,成语使用不恰当的是()A. 这篇文章语言生动,富有感染力。
B. 她的演技真是出神入化,让人叹为观止。
C. 他勤奋好学,成绩一直名列前茅。
D. 这场雨下得真是倾盆大雨。
3. 下列句子中,语病最多的是()A. 他的成绩提高了,得益于老师的辛勤教导。
B. 通过这次比赛,我明白了团结就是力量。
C. 我非常喜欢阅读,尤其是科幻小说。
D. 为了实现中国梦,我们要努力学习,不断提高自己。
4. 下列词语中,不属于近义词的是()A. 高兴、愉快、喜悦B. 美丽、漂亮、秀丽C. 快乐、欢快、欢乐D. 努力学习、勤奋、刻苦5. 下列句子中,句式转换错误的是()A. 原句:这所学校的学生都很优秀。
改写后:这所学校的学生优秀。
B. 原句:他每天都很努力学习。
改写后:他每天都很勤奋。
C. 原句:我们要爱护环境,保护地球。
改写后:爱护环境,保护地球,我们要。
D. 原句:他认真学习,成绩不断提高。
改写后:他成绩不断提高,认真学习。
二、填空题(每题2分,共20分)6. 《庐山谣》中,“飞流直下三千尺,疑是银河落九天”一句,描绘了庐山的壮丽景色。
7. 《出塞》中,“秦时明月汉时关,万里长征人未还”一句,表达了诗人对边疆将士的敬意。
8. 《离骚》中,“路漫漫其修远兮,吾将上下而求索”一句,展现了诗人对理想的执着追求。
9. 《将进酒》中,“君不见黄河之水天上来,奔流到海不复回”一句,描绘了黄河的壮阔景象。
10. 《滕王阁序》中,“落霞与孤鹜齐飞,秋水共长天一色”一句,展现了滕王阁的壮丽景色。
三、阅读题(每题10分,共30分)11. 阅读下面这首诗,回答问题。
《江雪》千山鸟飞绝,万径人踪灭。
孤舟蓑笠翁,独钓寒江雪。
(1)这首诗描绘了一幅怎样的画面?(5分)(2)这首诗表达了诗人怎样的情感?(5分)12. 阅读下面这篇文章,回答问题。
2023-2024学年七年级语文下学期第一次月考试卷附答案解析
2023-2024学年七年级语文下学期第一次月考试卷(考试时间150分钟满分150分)2024.04第Ⅰ卷:选择题(共36分)一、语言积累与运用。
(每题3分,共18分)1.下列加点字注音有错的一项是()A.秩序(zhì)选聘(pìn)鞠躬尽瘁(cuì)B.独裁(cái)迭起(dié)气冲斗牛(dǒu)C.殷红(yān)气魄(pò)深恶痛绝(wù)D.污秽(suì)呜咽(yè)鲜为人知(xiǎn)2.下列词语中,有错别字的一项是()A.锋芒必露迥乎不同妇儒皆知沥尽心血B.气势磅礴坚韧不拔马革裹尸苛捐杂税C.重峦叠嶂不可捉摸至死不懈群蚁排衙D.浩浩荡荡斑斓豁亮力挽狂澜3.下列各句中,划线词语使用不恰当的-项是()A.河北柏乡汉牡丹园裁培的牡丹,种类繁多,品质优良。
每至花期,园内的牡丹竞相绽放,五彩缤纷的景象美不胜收。
B.她性格温和,待人诚恳,举止文雅,言语动听。
虽然是初次接触,但我对她的好感油然而生。
C.六月的天,娃娃的脸,说变就变。
刚才还是晴空万里,不一会儿,阴云密布,竟然下起了冰雹,天气的变化真是扑朔迷离啊!D.今天的荧屏和银幕,并不缺少令人眼花缭乱的离奇情节,缺少的恰是能够观照自我的活生生的生命个体。
4.下列句子中,没有语病的一句是()A.教师要善于引导学生质疑问题,解决问题并深入研究。
B.只要科学的训练与自身潜力的不断发掘,才能更好地诠释体育精神。
C.在阅读文学名著过程中,常常能够使我们明白许多做人的道理,悟出世间人生的真谛。
D.真正地亲近自然,融入自然,这样,我们的情感就会更加丰富,我们的生活就会更加美好。
5.下列有关作家作品的表述,不正确的一项是()A.《黄河颂》选自组诗《黄河大合唱》,《黄河大合唱》是一部大型合唱音乐作品,光未然作词,冼星海谱曲。
B.《木兰诗》是南北朝时期北方的一首民歌,选自宋代郭茂倩写的《乐府诗集》。
湖南省长沙市2024-2025学年高三上学期月考(三)化学试卷含答案
2025届高三月考试卷(三)化学(答案在最后)命题人:得分:______本试题卷分选择题和非选择题两部分,共8页。
时量75分钟,满分100分。
可能用到的相对原子质量:H~1C~12N~14O~16Na~23S~32Cl~35.5Zr~91第Ⅰ卷(选择题共42分)一、选择题(本题共14小题,每小题3分,共42分,每小题只有一个选项符合题意。
)1.化学和我们的生活有十分密切的联系,下列表述不正确的是()A.在碳素钢中加入Cr 和Ni 制得不锈钢可以增强钢的强度以及抗腐蚀能力B.改变铝制品表面氧化膜的厚度可以影响染料着色从而产生美丽的颜色C.焰色试验选择Fe 作为载体是因为铁元素受热不发生电子跃迁、不产生发射光谱D.半导体材料氮化镓是一种新型无机非金属材料2.下列化学用语表示不正确的是()A.2,2-二甲基丁烷的结构简式:B.三氟化硼分子的空间填充模型:C.次氯酸分子的电子式: H O Cl:::D.基态溴原子的简化电子排布式:[]25Ar 4s 4p3.2024年诺贝尔化学奖表彰了三位科学家在蛋白质设计和结构预测领域作出的贡献,中国科学家颜宁在这方面也做了大量的工作,以下相关说法不正确的是()A.蛋白质分散在水中形成的分散系可以产生丁达尔效应B.要使蛋白质晶化得到较大的蛋白质晶体需要快速结晶C.通过X 射线衍射可以得到高分辨率的蛋白质结构D.蛋白质复杂结构的形成与极性键、非极性键、氢键、范德华力等有关4.以下实验方案正确且能达到实验目的的是()选项实验目的实验方案A 制备少量硝酸边加强热边向饱和硝酸钠溶液中滴加浓硫酸B 验证晶体的自范性将形状不规则的蔗糖块放入饱和蔗糖溶液中静置一段时间后取出C验证C 和Si 的非金属性强弱将焦炭和石英砂混合加强热(1800~2000℃),检验气体产物以证明反应发生D 测定中和热将稍过量的NaOH 固体投入装有一定量稀盐酸的烧杯中并测量其温度变化A.AB.BC.CD.D5.某化学小组在实验室尝试用氨气制备硝酸,过程如下:32NH NO NO →→→3HNO 。
长郡中学2025月考试卷 语文试卷(答案+解析)
大联考长郡中学2025届高三月考试卷(一)语文本试卷共四道大题,23道小题。
时量150分钟,满分150分。
得分:一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成下面小题。
不管是要找出第二次世界大战的原因,还是查明天花板上水印的来由,我们通常都要考察可能的解释。
比如说天花板上的水印,是屋顶漏水了?还是管子漏水了?我们可能会这样推理:“这个水印在厨房天花板上,正好是在浴室的下面,所以很可能是管子漏水。
”现在到楼上去检查一下,如果发现了漏水的管子,那么就可以合理地得出结论,对于水印的最佳解释是管子漏水,当然,也可能屋顶和管子同时漏水。
这个简单而实际的例子展示了科学研究的推理过程:提出各种假说,一个一个地排除,直到得出最佳解释。
地质学的历史为科学研究如何运用这样的推理过程提供了一个清楚的例子。
地球已经有上亿年的历史、大陆在漂移,这些都是非常惊人的发现。
它们被接受的过程是漫长而复杂的,要求仔细的观察、改良的技术、大量的集体努力以及在很多学科中共享知识。
地质学最近的发展历史就展现了这样的过程。
1912年,德国科学家阿尔弗雷德·魏格纳提出了板块漂移理论来解释这个明显的事实——非洲大陆和南美洲大陆看上去好像很吻合。
但是在他之前的理论家,通过观察过去的地图,也推测这些大陆原本是连在一起的。
魏格纳对这一理论的补充是,在两个大陆相对应的边缘,岩石的形成和动植物化石都非常相似。
因为他不能提出一个解释或者模型来说明像板块这样巨大的东西是如何“漂移”的,他的理论遭到了普遍的拒绝,甚至被嘲笑。
虽然他的理论解释了一些观察到的现象,但是并没有被采信,因为它与当时人们所相信的关于大洋和大陆的物理结构方面的观点不一致。
拥有可接受的解释模型是科学断言能被接受的重要标准。
魏格纳的理论在20世纪60年代被美国地质学家哈雷·赫斯复兴。
赫斯提出,最近发现洋中脊在延伸,而大陆居于板块之上,因此板块应是由底层的地幔缓慢运动的“环流”所推动的。
七年级第一学期语文第一次月考试卷(附答案)
七年级第一学期语文第一次月考试卷(附答案)考生注意:1. 本试卷共四个大题,满分120 分,考试时间120 分钟。
2. 请将答案写在答题卡上。
一、积累与运用(共28 分)1. 下列加点字注音完全正确的一项是()(3 分)A. 酝酿.(niàng)黄晕.(yùn)棱.镜(líng)咄.咄逼人(duō)B. 着.落(zhuó)抖擞.(sǒu)高邈.(miǎo)人迹罕.至(hǎn)C. 应和.(hè)贮.蓄(chǔ)静谧.(mì)翻来覆.去(fù)D. 莅.临(wèi)粗犷.(guǎng)吝.啬(lìn)淅.淅沥沥(xī)2. 下列词语中没有错别字的一项是()(3 分)A. 朗润建壮花枝招展B. 烘托慈善呼朋引伴C. 缭亮静谧各得其所D. 喉咙蓑笠人生鼎沸3. 下列句子中加点词语使用不正确的一项是()(3 分)A. 春天来了,大地万象更新....,一片生机勃勃的景象。
B. 他在床上翻来覆去....,怎么也睡不着。
C. 他的表演幽默风趣,让观众们忍俊不禁....地大笑起来。
D. 看到孩子们的进步,老师的脸上露出了欣慰..的笑容。
4. 古诗文默写。
(8 分)(1)水何澹澹,。
(曹操《观沧海》)(2)我寄愁心与明月,。
(李白《闻王昌龄左迁龙标遥有此寄》)(3),小桥流水人家。
(马致远《天净沙·秋思》)(4)峨眉山月半轮秋,。
(李白《峨眉山月歌》)(5)《次北固山下》中蕴含新事物必将取代旧事物这一哲理的诗句是:,。
(6)孔子在《论语·述而》中论述君子对富贵的正确态度的句子是:,。
5. 名著阅读。
(4 分)《朝花夕拾》原名《》,是鲁迅的回忆性散文集。
在这本书中,鲁迅回忆了自己童年、少年和青年时期的许多经历,请你写出其中两篇文章的题目:《》《__________》。
6. 综合性学习。
(7 分)寒来暑往,四季更替,自然界就是这样演绎着春夏秋冬的变化,周而复始。
2025届六安市一中高三数学上学期第三次月考试卷及答案解析
六安一中2025届高三年级第三次月考数学试卷时间:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数()i 12i z =-+,其中i 是虚数单位,则z =( )A. 1B. 2C.D.【答案】D 【解析】【分析】根据复数的乘法运算可得2i z =-,进而可求模长.【详解】因为()i 12i 2i z =-+=-,所以z ==.故选:D.2. 已知等差数列{}n a 的前n 项和为 n S ,若38304S a ==,,则9S =( )A. 54 B. 63C. 72 D. 135【答案】B 【解析】【分析】根据给定条件,利用等差数列的性质求出2a ,再求出9S .【详解】等差数列{}n a 中,由330S =,得2123330a a a a =++=,解得210a =,而84a =,所以192899()9()6322a a a a S ++===.故选:B3. 已知平面向量,a b 满足4a = ,(1,b = ,且()()23a b a b +⊥- .则向量a 与向量b的夹角是( )A.π6B.π3C.2π3D.5π6【答案】C 【解析】【分析】根据垂直得出向量的数量积,再由夹角公式计算即可.【详解】因为(1,b =,所以3b == ,由()()23a b a b +⊥- 可得()()2223325481850a b a b a b a b a b +⋅-=-+⋅=-+⋅=,所以6a b ⋅=-,所以61cos ,432a b a b a b ⋅-===-⨯⋅,由[],0,πa b ∈ 知2π,3a b =,故选:C4. 在等比数列{}n a 中,已知13a =,48n a =,93n S =,则n 的值为( )A. 4 B. 5C. 6D. 7【答案】B 【解析】【分析】由1(1)1-=-n n a q S q及通项公式11n n a a q -=,列出方程组求解即可.【详解】在等比数列{a n }中,13a =,48n a =,93n S =,所以1q ≠,由1(1)1-=-n n a q S q ,及通项公式11n n a a q -=,可得13(1)931483n n q q q -⎧-=⎪-⎨⎪=⎩,解得2,5q n ==.故选:B.5. 已知数列{}n a 满足1211n n a a n +-=-,且110a =,则n a 的最小值是( )A. -15 B. -14C. -11D. -6【答案】A 【解析】【分析】根据已知条件得出最小项为6a ,利用迭代的思想即可求得6a .【详解】∵1211n n a a n +-=-,∴当5n ≤时,10n n a a +-<,当5n >时,10n n a a +->,∴12345678a a a a a a a a >>>>><<<⋅⋅⋅,显然n a 的最小值是6a .又1211n n a a n +-=-,∴()()()()()612132435465a a a a a a a a a a a a =+-+-+-+-+-()()()()()109753115=+-+-+-+-+-=-,即n a 的最小值是15-.故选:A6. 已知ABC V 是边长为1的正三角形,1,3AN NC P = 是BN 上一点且29AP mAB AC =+,则AP AB ⋅=( )A.29B.19C.23D. 1【答案】A 【解析】【分析】根据题意得89AP mAB AN =+,由,,P B N 三点共线求得19m =,利用向量数量积运算求解.【详解】13AN NC =,14AN AC ∴=u u u r u u u r ,且2899AP mAB AC mAB AN =+=+u u u r u u u r u u u r u u u r u u u r ,而,,P B N 三点共线,819m ∴+=,即19m =,1299AP AB AC ∴=+u u u r u u u r u u u r ,所以o12122cos 6099999AP AB AB AC AB ⎛⎫⋅=+⋅=+⨯= ⎪⎝⎭.故选:A.7. 数列{}n a 的前n 项和为n S ,满足1024n n S a +=,则数列{}n a 的前n 项积的最大值为( )A. 552 B. 452 C. 92 D. 102【答案】B 【解析】【分析】根据给定的递推公式求出1a ,进而求出数列{}n a 通项,借助单调性求解即得.【详解】依题意,N n *∈,1024n n S a +=,则1512a =,当2n ≥时,111024n n S a --+=,两式相减得12n n a a -=,即112n n a a -=,因此数列{}n a 是以512为首项,12为公比的等比数列,于是1101512()22n n n a --=⨯=,显然数列{}n a 单调递减,当10n ≤时,1n a ≥,当11n ≥,1n a <,所以当9n =或10n =时,数列{}n a 的前n 项积最大,最大值为98720452222222⨯⨯⨯⨯⨯⨯= .故选:B8. 已知O 是ABC V 所在平面内一点,且2AB = ,1OA AC ⋅=- ,1OC AC ⋅=,则ABC ∠的最大值为( )A.π6B.π4C.π3D.π2【答案】B 【解析】【分析】根据题意可得C 点轨迹是以A 为圆心,的圆,再由直线与圆相切可得ABC ∠的最大值为π4.【详解】根据1OA AC ⋅=- ,1OC AC ⋅=可得()22OC AC OA AC OC OA AC AC ⋅-⋅=-⋅== ,即可知C 点轨迹是以A的圆,如下图所示:由图可知,当BC 与圆相切时,ABC ∠取到最大,又2AB =可知此时π4ABC ∠=故选:B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知z 为复数,设z ,z ,i z 在复平面上对应的点分别为A ,B ,C ,其中O 为坐标原点,则( )A. OA OB= B. OA OC⊥.C. AC BC= D. OB AC∥ 【答案】AB 【解析】【分析】根据复数的几何意义、共轭复数、复数的乘法运算可以表示出A ,B ,C 三点的坐标,通过向量的模长、向量的平行和垂直知识进而可以判断.【详解】设()i ,z a b a b =+∈R ,(),∴A a b ,()i ,z a b a b =-∈R ,(),B a b ∴-,()i i i i =+=-+z a b b a ,(),∴-C b a ,()()()()(),,,,,,,,,==-=------+==OA a b OB a b OC b a b a a b b a a b AC BC 对于A,=∴=OA O B ,故选项A 正确;对于B , ()0-+= a b ba ,∴⊥OA OC ,故选项B 正确;对于C ,AC =,当0ab ≠时,AC BC ≠,故选项C 错误;对于D ,()()()222a a b b b a a ab b -----=-- ,222a ab b --可以为零,也可以不为零,所以OB 不一定平行于AC,故选项D 错误.故选:AB.10. 已知等差数列{}n a 的首项为1a ,公差为d ,前n 项和为n S ,若1089S S S <<,则下列说法正确的是( )A. 当9n =时,n S 最大B. 使得0nS <成立的最小自然数18n =C. 891011a a a a +>+D. 数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为1100S a 【答案】ABD 【解析】【分析】利用,n n a S 关系及等差数列通项公式得a 1>0d <0,a 9>0,a 10<0判断A ;根据已知及A 项分析得81191090a a a a a +=+<<,进而确定()101189101189,a a a a a a a a +-++++的符号判断C ;根据A 、C 项分析确定数列正负分界项,再由等差数列前n 项和确定0nS <对应n 的最小值判断B ;根据以上分析确定n n S a ⎧⎫⎨⎬⎩⎭各项符号判断D.【详解】根据题意:S 8<S 9S 10<S 9⇒S 9−S 8=a 9>0S 10−S 9=a 10<0,即911018090a a d a a d -=--<⎧⎨=+<⎩,两式相加,解得a 1>0d <0,a 9>0,a 10<0,当9n =时,n S 最大,故A 正确;由108S S <,可得91090a a a +<<,所以8110a a +<,故()10118910118940,0a a a a d a a a a +-+=<+++<,所以891011a a a a +<+,故C 错误;由以上可得:1213910110a a a a a a >>>>>>>> ,()117179171702a a S a +==>,而()()1181891018902a a S a a +==+<,当17n ≤时,0n S >;当18n ≥时,0n S <;所以使得0nS <成立的最小自然数18n =,故B 正确.当9n ≤或18n ≥时0nn S a >;当918n <<时0n nS a <;由101117101112170,0a a a S S S S >>>>>>>>> ,所以n n S a ⎧⎫⎨⎬⎩⎭中最小项为1100S a ,故D 正确.故选:ABD11. 已知数列{}n a 是各项为正数的等比数列,公比为q ,在12,a a 之间插入1个数,使这3个数成等差数列,记公差为1d ,在23,a a 之间插入2个数,使这4个数成等差数列,公差为2,d ,在1,n n a a +之间插入n 个数,使这2n +个数成等差数列,公差为n d ,则下列说法错误的是( )A. 当01q <<时,数列{}n d 单调递减B. 当1q >时,数列{}n d 单调递增C. 当12d d >时,数列{}n d 单调递减D. 当12d d <时,数列{}n d 单调递增【答案】ABC 【解析】【分析】由等差数列得(1)1n n a q d n -=+,然后在01q <<或1q >分别确定{}n d 的单调性判断AB ,进行讨论判断各选项.再由12d d <或12d d >确定q 的范围,从而确定{}n d 的单调性判断CD .【详解】数列{a n }是各项为正数的等比数列,则公比为0q >,由题意1(1)n n n a a n d +=++,得()1111n n n n a q a a d n n +--==++,01q <<时,0n d <,有()1112n n q n d d n ++=<+,1n n d d +>,数列{}n d 单调递增,A 选项错误;1q >时,0n d >,()112n n q n d d n ++=+,若数列{}n d 单调递增,则()112q n n +>+, 即21n q n +>+,由*N n ∈,需要32q >,故B 选项错误;12d d >时,()()111123a q a q q -->,解得312q <<,1q >时,0n d >,由()112n n q n d d n ++=+,若数列{}n d 单调递减,则()112q n n +<+, 即21111n q n n +<=+++,而 312q <<不能满足()*11N 1q n n <+∈+恒成立,C 选项错误;12d d <时,()()111123a q a q q --<,解得01q <<或32q >,由AB 选项的解析可知,数列{}n d 单调递增,D 选项正确.故选:ABC【点睛】方法点睛:本题数列的单调性,解题方法是利用等差数列的定义确定n d 与q 的关系,利用此关系通过q 的范围确定{}n d 的单调性,同样根据12,d d 的大小确定q 的范围,再得单调性.三、填空题:本题共3小题,每小题5分,共15分.12. 设正项等比数列{}n a 的前n 项和为n S ,若4210S S =,则62S S 的值为______.【答案】91【解析】【分析】方法一:利用等比数列前n 项和性质即可求解;方法二:利用等比数列前n 项和的公式,代入计算即可求解.【详解】方法一:等比数列{}n a 中,2S ,42S S -,64S S -成等比数列,则2S ,29S ,281S 成等比数列,∴64281S S S -=,∴6291S S =,∴6291S S =.方法二:设{}n a 公比为q ,由题意显然0q >且1q ≠,所以()()42111110311a q a q q qq--=⋅⇒=--,∴()()616622211131911311a q S q S a q q---===---,故答案为:91.13. 已知数列{}n a 中,11a =,12,2,n n na n a a n ++⎧=⎨-+⎩为奇数为偶数,则数列{}n a 前2024项的和为__________.【答案】2024【解析】【分析】利用数列{}n a 的周期性可得答案.【详解】因为11a =,12,2,n n na n a a n ++⎧=⎨-+⎩为奇数为偶数,所以2123a a =+=,322321=-+=-+=-a a ,4321=+=a a ,542121=-+=-+=a a ,652123=+=+=a a ,L ,所以数列{}n a 是周期为4的周期数列,且123413114+++=+-+=a a a a ,所以()220241202443215062024+=⨯==+++++ S a a a a a a a .的故答案为:2024.14. 在ABC V 中,内角A ,B ,C 所对的边分别为,,a b c (a b ≠).已知2cos c a A =,则sin sin B A -的最大值是__________.【解析】【分析】利用正弦边角关系、三角恒等变换得到2C A =、π03A <<,再应用和角正弦公式、倍角公式,将目标式化为34sin 2sin A A -+,应用换元法及导数研究其最大值即可.【详解】由2cos c a A =,则sin 2sin cos sin 2C A A A ==,,(0,π)A C ∈,所以2C A =或2πC A +=,而πA B C ++=,且a b ≠,即A B ≠,所以2C A =,且03πA C A <+=<,即π03A <<,sin sin sin 3sin sin cos 2cos sin 2sin B A A A A A A A A∴-=-=+-2232sin (12sin )2cos sin sin sin 2sin 2(1sin )sin sin A A A A A A A A A A=-+-=-+--34sin 2sin A A =-+,令sin t A =∈,则3()42f t t t =-+,2()122f t t '=-+,当t ∈时()0f t '>,则()f t在上递增;当t ∈时()0f t '<,则()f t在上递减;故t =()f t 的极大值点,()f t ∴最大值为342-⨯+⨯=..四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 设等比数列{a n }满足124a a +=,318a a -=.的(1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S +++=,求m .【答案】(1)13n n a -=;(2)6m =.【解析】【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式;(2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13n na -=;(2)令313log log 31n n n b a n -===-,所以(01)(1)22n n n n n S +--==,根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=,整理得2560m m --=,因为0m >,所以6m =,【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.16. 在ABC V 中,角,,A B C 所对的边分别为,,a b c ,且()22a cb bc -=+.(1)求角A ;(2)若3,2a BA AC BD DC =⋅==,求AD 的长.【答案】(1)2π3(2【解析】【分析】(1)变形后利用余弦定理可求;(2)先将2π3A =代入3BA AC ⋅= 可得6bc =,再将a =代入()22a c b b c -=+得2213b c +=,联立方程组解得,b c ,由此将向量AD 用,AB AC 表示,求解向量的模可得.【小问1详解】由()22a c b b c -=+得222b c a bc +-=-,则由余弦定理得2221cos 222b c a bc A bc bc +--===-,0πA << ,2π3A ∴=.【小问2详解】由31cos 2BA AC A A bc A b B C c ⋅=-⋅=-== ,解得6bc =①,a = ,22219abc bc ∴=++=,则2213b c +=②,联立①②可得,2,3b c ==,或3,2b c ==.2BD DC = ,∴()2AD AB AC AD -=- ,则1233AD AB AC =+ ,且3AB AC ⋅=- , 所以()()22222114441299AD AB AC AB AC c b =++⋅=+- ,当2,3b c ==时,2113(91612)99AD =+-= ,则AD当3,2b c ==时,2128(43612)99AD =+-= ,则AD .综上所述,AD .17. 已知数列{}n a 的前n 项和为n S ,*12111,3,22(2,N )n n n a a S S S n n +-==+=+≥∈.(1)求证:数列{}n a 为等差数列;(2)在数列{}n b 中,1213,n n n n b a b a b ++==,若{}n b 的前n 项和为n T ,求证:92n T <.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)利用n a 与n S 的关系式,结合等差数列的定义即可得证;(2)利用(1)中结论求得n a ,进而利用累乘法求得n b ,再利用裂项相消法求得n T ,从而得证.【小问1详解】因为*1122(2,N )n n n S S S n n +-+=+≥∈,所以*112(2,N )n n n n S S S S n n +--=-+≥∈,即1*(2,N )2n n a n a n +=+≥∈,又21312a a -=-=,所以数列{}n a 是首项为1,公差为2的等差数列.【小问2详解】由(1)知:()11221n a n n =+-⨯=-,则()222123n a n n +=+-=+,又21n n n n a b a b ++=,所以122123n n n n b a n b a n ++-==+,所以312112213332325272151n n n n n b b b b b n b b b b n n b n ---=⋅⋅⋅=⋅-⋅--⋅+9911(21)(21)22121n n n n ⎛⎫==- ⎪-+-+⎝⎭,所以911111123352121n T n n ⎛⎫=-+-++- ⎪-+⎝⎭ 91912212n ⎛⎫=-< ⎪+⎝⎭.18. 设各项均为正数的数列{}n a 的前n 项和为n S ,已知2132a a a =+,数列是公差为d 的等差数列.(1)求证:21a d =,并求出数列{}n a 的通项公式(用,n d 表示);(2)设c 为实数,对满足3m n k +=且m n ≠的任意正整数,,m n k ,不等式m n k S S cS +>都成立,求证:c 的最大值为92.【答案】(1)证明见解析,()221n a n d =-(2)证明见解析【解析】【分析】(1关于1,a d 的关系式,再利用题设条件得到关于1,a d 的方n a ,从而得解;(2)利用(1)中结论与完全平方公式求得92c ≤,再利用基本不等式检验92c =时的情况,从而得证.【小问1详解】由题意知:0d >(1)(1)n d n d =+-=+-,因为2132a a a =+,则233a S =,所以2133()S S S -=,则2212)]2)d a d +-=+,整理得210a d d -+=21,d a d ==,22(1),n d n d nd S n d =+-==,当2n ≥时,222221(1)(21)n n n a S S n d n d n d -=-=--=-,适合1n =情形.所以()221n a n d =-.【小问2详解】由m n k S S cS +>,得222222m d n d c k d +>⋅,则222m n c k +>⋅,所以222m n c k+<恒成立,又3m n k +=且m n ≠,,,m n k 正整数,所以22222()()9m n m n k +>+=,则22292m n k +>,故92c ≤,当92c =时,()2222222222999222m n k S S S m d n d k d k d m n mn ⎡⎤=+--⎢⎥+-⎣=+⎦-,22922d k mn ⎛⎫=- ⎪⎝⎭,由不等式可得3m n k +=≥,即294k mn ≤,当且仅当32m n k ==时,等号成立,而m n ≠,故294k mn <,为故092m n k S S S ->+,故c 的最大值为92.19. 已知函数()x f x e =.(1)当0x ≥时,求证:()()2f x f x x --≥;(2)若0k >,且()f x kx b ≥+在R 上恒成立,求2k b +的最大值;(3)设*2,n n ≥∈Nln n +> .【答案】(1)证明见解析(2)2e(3)证明见解析【解析】【分析】(1)不等式成立转换为函数最小值问题,利用导函数求得到点区间,从而得出最小值,不等式得证;(2)构建函数,利用导函数求得单调区间,从而找到最小值,由题意得到不等关系,再令所求代数式为函数,借助导函数求得最大值;(3)由(1()ln ln ln 11n n n n ⎛⎫>=-- ⎪-⎝⎭,从而得证.【小问1详解】令e e ()2(0)x x g x x x -=--≥,所以()()1e 20e x x g x x '=+-≥,所以()e 2e 220x x g x -'=-+≥-=,当且仅当1e e 1ex x x =⇒=,即0x =时,等号成立,所以当[)0,x ∈+∞时,()()0,g x g x '≥单调递增,则()()00g x g ≥=;小问2详解】令()e x F x kx b =--,e ()x F x k '=-;由()0F x '>得出ln x k >;由()0F x '<得出ln x k <;min ()(ln )ln 0F x F k k k k b ∴==--≥;ln b k k k ∴≤-,23ln k b k k k ∴+≤-,令()3ln G k k k k =-,0k >;()2ln G k k '=-,【当20e k <<时,()0G k '>,()G k 单调递增,当2e k >时,()0G k '<,()G k 单调递减,所以2e 是的()G k 极大值点,22()(e )e G k G ∴≤=,2k b +的最大值为2e ;【小问3详解】由(1)知,()e 2e 0,0,x x x x ∞--->∈+,令ln (1)x s s =>,则12ln 0s s s --->,即12ln (1)s s s s ->>,设*2,s n n =≥∈N ,则满足1s >,->1ln 11n ⎛⎫>+ ⎪-⎝⎭,()ln ln ln 11n n n n ⎛⎫>=-- ⎪-⎝⎭,()ln2ln1ln3ln2ln ln 1ln n n n +>-+-++--= ,ln n ++> .【点睛】方法点睛:不等式成立问题:(1)通过令两项的差为函数关系,再利用函数单调性求出函数的最值的方式来解决;(2)多项求和的不等关系的证明,可以先找到某一项的不等关系,再求和得到结论.。
2024-2025学年河北省省级联测高三(上)月考数学试卷(含答案)
2024-2025学年河北省省级联测高三(上)月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={−1,2,3,4},B ={x ∈Z|y =ln (9−x 2)},则A ∩B =( )A. {1,2,3}B. {−1,2}C. {2,3}D. {0,1,2,3,4}2.已知复数z 1=a 2−3a +3i ,z 2=2+(a 2−4a)i ,a ∈R ,若z 1+z 2为纯虚数,则a =( )A. 1或2B. 1C. 2D. 33.已知向量a ,b 满足|a |=2,b =(2,0),且|a +b |=2,则a 在b 上的投影向量的坐标为( )A. (−1,0)B. (1,0)C. (−2,0)D. (2,0)4.已知cos (α+π2)=2cos(α+3π),则sin 2α+12sin2αcos 2α=( )A. −14 B. 34 C. 2D. 65.某中学开展劳动实习,学习制作模具,有一个模具的毛坏直观图如图所示,它是由一个圆柱体与一个半球对接而成的组合体,已知该几何体的下半部分圆柱的轴截面(过圆柱上、下底面圆的圆心连线的平面)ABCD 是面积为16的正方形,则该几何体的体积为( )A. 16π3B. 16πC. 64π3D. 72π6.设S n 为正项等比数列{a n }的前n 项和,3S 2=a 1+2a 3,a 3=8,则数列{a n +2n−1}的前5项和为( )A. 55B. 57C. 87D. 897.已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,将函数f(x)的图象先向右平移π4个单位长度,再将所有点的横坐标缩短为原来的12(纵坐标不变),得到函数g(x)的图象,若关于x 的方程g(x)−m =0在x ∈[−π12,π6]上有两个不等实根,则实数m 的取值范围为( )A. (−2,2]B. (−2,− 3]C. [ 3,2]D. (− 3, 3]8.已知定义域为R的函数f(x)不是常函数,且满足f(x+y)+f(x−y)=f(x)f(y),f(1)=0,则∑2026i=1f (i)=( )A. −2B. 2C. −2026D. 2026二、多选题:本题共3小题,共18分。
2024-2025学年高一上第一次月考数学试卷附答案解析(9月份)
2024-2025学年高一上第一次月考数学试卷(9月份)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x∈N|1<x<6},B={x|4﹣x>0},则A∩B=()A.{2,3,4}B.{2,3}C.{2}D.{3}2.(5分)下列说法正确的是()A.∅∈{0}B.0⊆N C.D.{﹣1}⊆Z3.(5分)命题“∀x∈(0,1),x3<x2”的否定是()A.∀x∈(0,1),x3>x2B.∀x∉(0,1),x3≥x2C.∃x0∈(0,1),D.∃x0∉(0,1),4.(5分)“a>b”是“a2>b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)若集合A={x|2mx﹣3>0,m∈R},其中2∈A且1∉A,则实数m的取值范围是()A.B.C.D.6.(5分)满足集合{1,2}⫋M⊆{1,2,3,4,5}的集合M的个数是()A.6B.7C.8D.157.(5分)设集合A={x|1<x≤2},B={x|x<a},若A⊆B,则实数a的取值范围是()A.{a|a<1}B.{a|a≤1}C.{a|a>2}D.{a|a≥2}8.(5分)已知集合A={1,2},B={0,2},若定义集合运算:A*B={z|z=xy,x∈A,y∈B},则集合A*B 的所有元素之和为()A.6B.3C.2D.0二、选择题:本题共3小题,每小题6分,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,有选错的得0分,部分选对的得部分分。
(多选)9.(6分)已知命题p:x2﹣4x+3<0,那么命题p成立的一个充分不必要条件是()A.x≤1B.1<x<2C.x≥3D.2<x<3(多选)10.(6分)集合A={x|ax2﹣x+a=0}只有一个元素,则实数a的取值可以是()A.0B.C.1D.(多选)11.(6分)设S是实数集R的一个非空子集,如果对于任意的a,b∈S(a与b可以相等,也可以不相等),都有a+b∈S且a﹣b∈S,则称S是“和谐集”,则下列命题中为真命题的是()A.存在一个集合S,它既是“和谐集”,又是有限集B.集合{x|x=3k,k∈Z}是“和谐集”C.若S1,S2都是“和谐集”,则S1∩S2≠∅D.对任意两个不同的“和谐集”S1,S2,总有S1∪S2=R三、填空题:本题共3小题,每小题5分,共15分。
2024-2025学年湖南师范大学附属中学高三上学期月考(一)数学试题及答案
大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}A x x xB x x =+-≤=-<∣∣,则A B = ( )A. {}32x x -≤≤∣ B. {32}xx -≤<∣C. {12}xx <≤∣ D. {12}xx <<∣2. 若复数z 满足()1i 3i z +=-+(i 是虚数单位),则z 等于( )A.B.54C.D.3. 已知平面向量()()5,0,2,1a b ==- ,则向量a b + 在向量b 上投影向量为( )A. ()6,3- B. ()4,2- C. ()2,1- D. ()5,04. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A. 21B. 19C. 12D. 425. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nμσ~,记()()p k P k X k μσμσ=-≤≤+,则()()0.750.547,10.683p p ≈≈.A 136人B. 272人C. 328人D. 820人6. 已知()π5,0,,cos ,tan tan 426αβαβαβ⎛⎫∈-=⋅= ⎪⎝⎭,则αβ+=( )A.π6 B.π4C.π3D.2π37. 已知12,F F 是双曲线22221(0)x y a b a b-=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条的.渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A. ⎛ ⎝B. ⎛ ⎝C. (D. (8. 已知函数()220log 0x a x f x x x ⎧⋅≤=⎨>⎩,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( )A. ()0,1 B. ()(),00,1-∞⋃ C. [)1,+∞ D. ()()0,11,+∞ 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN10. 已知函数()5π24f x x ⎛⎫=+ ⎪⎝⎭,则( )A. ()f x 的一个对称中心为3π,08⎛⎫ ⎪⎝⎭B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C. ()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m ⎛⎤∈⎥⎝⎦11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则()A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =-=∑三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +-的展开式中2x y 的系数为______.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()10f =,则不等式()0f x >的解集为__________.14. 已知点C 为扇形AOB 弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λμλμ=+∈,则λμ+的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ==CD 的长.16. 已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x -≥,求k 的取值范围.17. 已知四棱锥P ABCD -中,平面PAB ⊥底面,ABCD AD∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥====为AB 的中点,F 为棱PC 上异于,P C 的点.的(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C y px p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r -+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况.销售量千张经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t =======∑∑∑(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()N n P n *∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε-<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛..参考公式:()()()1122211ˆˆ,n ni i i ii in ni ii ix x y y x y nx ya y bxx x x nx====---==---∑∑∑∑.大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}A x x xB x x =+-≤=-<∣∣,则A B = ( )A. {}32x x -≤≤∣ B. {32}xx -≤<∣C. {12}xx <≤∣ D. {12}xx <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集.【详解】集合{}()32,{lg 10}{12}A x x B x x x x =-≤≤=-<=<<∣∣∣,则{12}A B xx ⋂=<<∣,故选:D .2. 若复数z 满足()1i 3i z +=-+(i 是虚数单位),则z 等于( )A.B.54C.D.【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =-+,再由模长公式即可得出结果.【详解】依题意()1i 3i z +=-+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z -+--+-+====-+++-,所以z ==.故选:C3. 已知平面向量()()5,0,2,1a b ==- ,则向量a b +在向量b 上的投影向量为( )A. ()6,3- B. ()4,2- C. ()2,1- D. ()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=-+⋅=== 所以向量a b +在向量b 上的投影向量为()()236,3||a b b b b b +⋅==- .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A. 21 B. 19C. 12D. 42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a ==故公差76162,53d a a a a d =-=∴=-=-,()767732212S ⨯∴=⨯-+⨯=,故选:A5. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nμσ~,记()()p k P k X k μσμσ=-≤≤+,则()()0.750.547,10.683p p ≈≈.A. 136人B. 272人C. 328人D. 820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22μσ=⨯==,()()(),0.750.547p k P k X k p μσμσ=-≤≤+≈ ,()5790P X ∴≤≤()0.750.547p =≈,()()900.510.5470.2265P X ≥=⨯-=,∴该校及格人数为0.22651200272⨯≈(人),故选:B .6. 已知()π5,0,,cos ,tan tan 426αβαβαβ⎛⎫∈-=⋅= ⎪⎝⎭,则αβ+=( )A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⎧⋅+⋅=⎪⎪⎨⋅⎪=⋅⎪⎩,解得1cos cos 62sin sin 3αβαβ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅-⋅=-,π,0,2αβ⎛⎫∈ ⎪⎝⎭,()0,παβ∴+∈,2π,3αβ∴+=,故选:D .7. 已知12,F F 是双曲线22221(0)x y a b a b-=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A. ⎛ ⎝B. ⎛ ⎝C. (D. (【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay -=交于,A B 两点,则2F 到渐近线0bx ay -=的距离d b ==,所以AB =,因为123AB F F >,所以32c ⨯>,可得2222299a b c a b ->=+,即22224555a b c a >=-,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是⎛ ⎝.故选:B8. 已知函数()220log 0x a x f x x x ⎧⋅≤=⎨>⎩,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( )A. ()0,1 B. ()(),00,1-∞⋃ C. [)1,+∞ D. ()()0,11,+∞ 【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可.【详解】令()u f x =,则()0f u =.①当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;②当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x ==,可得2x =,因为关于x 的方程()()0f f x =有且仅有两个实数根,则方程()1f x =在(,0∞-]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥;若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞,故选:C .二、多选题:本题共36分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN ,由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =,所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=︒,90EMG ∴∠=︒,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.故选:BD .10. 已知函数()5π24f x x ⎛⎫=+ ⎪⎝⎭,则( )A. ()f x 的一个对称中心为3π,08⎛⎫ ⎪⎝⎭B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C. ()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m ⎛⎤∈ ⎥⎝⎦【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x ⎛⎫+= ⎪⎝⎭求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f ⎛⎫⎛⎫=+⨯=≠⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得:3π3π5ππ228842y f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,为奇函数,故B 正确;对于C ,当5π7π,88x ⎡⎤∈⎢⎥⎣⎦时,则5π5π2,3π42x ⎡⎤+∈⎢⎥⎣⎦,由余弦函数单调性知,()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x ⎛⎫+= ⎪⎝⎭ππ4x k =+或ππ,2k k +∈Z ,()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242,而第7个交点的横坐标为13π4,5π13π24m ∴<≤,故D 正确.故选:BD11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =-=∑【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++-=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =-=∑,可得D 错误.【详解】由题意()()()(),f x f x g x g x -=-=-,且()()()00,21g f x g x =++-=,即()()21f x g x +-=①,用x -替换()()21f x g x ++-=中的x ,得()()21f x g x -+=②,由①+②得()()222f x f x ++-=所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++-=,可得()()()()()42,422f x f x f x f x f x ++-=+=--=-,所以()()()()82422f x f x f x f x ⎡⎤+=-+=--=⎣⎦,所以()f x 是以8为周期的周期函数,故B 正确;由①知()()21g x f x =+-,则()()()()882121g x f x f x g x +=++-=+-=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数,所以()()202400g g ==,C 正确;又因为()()42f x f x ++-=,所以()()42f x f x ++=,令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…,令8090x =,则有()()809080942f f +=,所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =-=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +-的展开式中2x y 的系数为______.【答案】180-【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅-,化简即可得到结果.【详解】在6(31)x y +-的展开式中,由()2213264C C 3(1)180x y x y ⋅⋅-=-,得2x y 的系数为180-.故答案为:180-.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,-⋃+∞【解析】【分析】根据函数奇偶性并求导可得()()f x f x ''-=,因此可得()()2f x f x '>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论.【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x -=-,两边同时求导可得()()f x f x ''--=-,即()()f x f x ''-=且()00f =,又因为当0x >时,()()2f x f x '->,所以()()2f x f x '>.构造函数()()2x f x h x =e ,则()()()22xf x f x h x '-'=e,所以当0x >时,()()0,h x h x '>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零,又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零,因为()f x 为奇函数,所以()f x 在(),1∞--上小于零,在()1,0-上大于零,综上所述,()0f x >的解集为()()1,01,-⋃+∞.故答案为:()()1,01,-⋃+∞14. 已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λμλμ=+∈,则λμ+的取值范围是__________.【答案】⎡⎢⎣【解析】【分析】建系设点的坐标,再结合向量关系表示λμ+,最后应用三角恒等变换及三角函数值域求范围即可.【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ⎛ ⎝,其中π,0,3BOC θθ⎡⎤∠=∈⎢⎥⎣⎦,由(),R OC OA OB λμλμ=+∈,即()()1cos ,sin 1,02θθλμ⎛=+⎝,整理得1cos sin 2λμθθ+==,解得cos λμθ==,则ππcos cos ,0,33λμθθθθθ⎛⎫⎡⎤+==+=+∈ ⎪⎢⎥⎝⎭⎣⎦,ππ2ππ,,sin 3333θθ⎤⎡⎤⎛⎫+∈+∈⎥⎪⎢⎥⎣⎦⎝⎭⎦所以λμ⎡+∈⎢⎣.方法二:设k λμ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λμ=+=;当点C 运动到AB的中点时,k λμ=+==,所以λμ⎡+∈⎢⎣故答案为:⎡⎢⎣四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ==CD 的长.【答案】(1)2π3C = (2)3CD =【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解.【小问1详解】由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=,因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠,因此1cos 2C =-,所以2π3C =.【小问2详解】因为CD 是角C的平分线,AD DB ==所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==,因此sin 3sin B ADA BD==,即sin 3sin B A =,所以3b a =,又由余弦定理可得2222cos c a b ab C =+-,即222293a a a =++,解得4a =,所以12b =.又ABC ACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅,即4816CD =,所以3CD =.16. 已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x -≥,求k 的取值范围.【答案】(1)1a = (2)(]()10,-∞-+∞ ,【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围.【小问1详解】()()111ln ln 1a a f x ax x x x a x xα--=='+⋅+,由1111ln 10e e e a f a -⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪⎪⎝⎭⎝⎭'⎭⎝,得1a =,当1a =时,()ln 1f x x ='+,函数()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e∞⎛⎫+ ⎪⎝⎭上单调递增,所以1ex =为函数()ln af x x x =的极小值点,所以1a =.【小问2详解】由(1)知min 11()e e f x f ⎛⎫==- ⎪⎝⎭.函数()g x 的导函数()()1exg x k x -=-'①若0k >,对()1210,,x x k ∞∀∈+∃=-,使得()()12111e 1e k g x g f x k ⎛⎫=-=-<-<-≤ ⎪⎝⎭,即()()120f x g x -≥,符合题意.②若()0,0k g x ==,取11ex =,对2x ∀∈R ,有()()120f x g x -<,不符合题意.③若0k <,当1x <时,()()0,g x g x '<在(),1∞-上单调递减;当1x >时,()()0,g x g x '>在(1,+∞)上单调递增,所以()min ()1ek g x g ==,若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x -≥,只需min min ()()g x f x ≤,即1e ek ≤-,解得1k ≤-.综上所述,k 的取值范围为(](),10,∞∞--⋃+.17. 已知四棱锥P ABCD -中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥====为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析(2)F 位于棱PC 靠近P 的三等分点【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证;(2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB PE =⊂平面PAB ,所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= ,所以BD EC ⊥,因为,,PE EC E PE EC ⋂=⊂平面PEC ,所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥.【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E -,设(),,,(01)F x y z PF PC λλ=<<,所以()(),,11,2,1x y z λ-=-,所以,2,1x y z λλλ===-,即(),2,1F λλλ-.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==-=-,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⎧⋅=⎪⎨⋅=⎪⎩,,即2020a b a b c +=⎧⎨+-=⎩,,取()1,2,3m =--,设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅====整理得2620λλ-=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C y px p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r -+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240r x r x r -+-+-=的两个解,即可利用韦达定理代入化简求解定点.【小问1详解】由题意得椭圆的方程:221116y x +=,所以短半轴14b =所以112242p b ==⨯=,所以抛物线1C 的方程是2y x =.设点()2,P t t ,则111222PQ PE ≥-=-=≥,所以当232ι=时,线段PQ.【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则:直线()222:b a MN y a x a b a --=--,即()21y a x a a b-=-+,即()0x a b y ab -++=.直线()21:111a DM y x a --=--,即()10x a y a -++=.由直线DMr =,即()()()2222124240r a r a r -+-+-=..同理,由直线DN 与圆相切得()()()2222124240r b r b r -+-+-=.所以,a b 是方程()()()2222124240r x r x r -+-+-=的两个解,22224224,11r r a b ab r r --∴+==--代入方程()0x a b y ab -++=得()()222440x y r x y +++---=,220,440,x y x y ++=⎧∴⎨++=⎩解得0,1.x y =⎧⎨=-⎩∴直线MN 恒过定点()0,1-.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x -=-,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况.日期t 12345678910销售量千张 1.9 1.98 2.2 2.36 2.43259 2.682.76 2.70.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t =======∑∑∑.(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()Nn P n *∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε-<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式: ()()()1122211ˆˆ,n ni i i i i i n n ii i i x x y y x y nx y ay bx x x x nx ====---==---∑∑∑∑.【答案】(1)673220710001200y t =+ (2)433774n n P ⎛⎫=+⋅- ⎪⎝⎭(3)①最大值为1316,最小值为14;②证明见解析【解析】【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程;(2)由题意可知1213,(3)44n n n P P P n --=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证.【小问1详解】解:剔除第10天的数据,可得 2.2100.4 2.49y ⨯-==新,12345678959t ++++++++==新,则9922111119.73100.4114,73,38510285i i i i t y t ==⎛⎫⎛⎫=-⨯==-= ⎪ ⎪⎝⎭⎝⎭∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t ==⎛⎫- ⎪-⨯⨯⎝⎭===-⨯⎛⎫- ⎪⎝⎭∑∑新新新新新,可得6732207ˆ 2.4560001200a =-⨯=,所以6732207ˆ60001200y t =+.【小问2详解】解:由题意知1213,(3)44n n n P P P n --=+≥,其中12111313,444416P P ==⨯+=,所以11233,(3)44n n n n P P P P n ---+=+≥,又由2131331141644P P +=+⨯=,所以134n n P P -⎧⎫+⎨⎬⎩⎭是首项为1的常数列,所以131,(2)4n n P P n -+=≥所以1434(2)747n n P P n --=--≥,又因为1414974728P -=-=-,所以数列47n P ⎧⎫-⎨⎬⎩⎭是首项为928-,公比为34-的等比数列,故143)74n n P --=-,所以1934433(()2847774n n n P -=--+=+-.【小问3详解】解:①当n 为偶数时,19344334()(28477747n n n P -=--+=+⋅>单调递减,最大值为21316P =;当n 为奇数时,19344334()(28477747n n n P -=--+=-⋅<单调递增,最小值为114P =,综上可得,数列{}n P 的最大值为1316,最小值为14.②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数,当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε-=⋅-=⋅<⋅=,所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。
四川省成都市石室中学2024-2025学年高三上学期10月月考地理试题答案
成都石室中学2024~2025学年度下期高2025届10月月考题号 1 2 3 4 5 6 7 8 9 10 答案 A C D C A C C A D B 题号11 12 13 14 15 16答案 C D B A D D【知识点】海洋空间资源开发对国家资源安全的影响【解析】1.深海养殖距陆地较远,受沿海工业、港口等人类活动影响小,海洋环境质量更好,海产品品质优,所以能取得更好的经济效益,A正确;与深海养殖相比,浅海阳光充足,浮游生物光合作用强,因而浅海饵料更多,浅海水温更高,海产品生长速度更快,B错误;海域空间大小影响生产规模,产品品质决定经济效益,C错误;近海也受沿岸洋流影响,洋流影响浮游生物,可能增加海产品数量而非质量,D错误;故选A。
2.由于远离陆地设备维护、人工投食等比较麻烦,设计时要考虑提高自动运作水平,设计成为全自动、智能化的养殖设备,同时考虑抵御海洋恶劣天气的能力平台结构强度一定要高,②④⑤正确。
深海养殖平台的建设成本比较高,海底地形复杂,这些与减轻远洋环境带来的不利影响关系不大,①③错误;深海自净能力较强,也无需考虑水体净化系统,⑥错误;故选C。
3.“耕海牧渔”的海洋开发战略让越来越多的高品质海鲜被端上百姓餐桌,增加了粮食来源的途径,保证粮食安全,D正确;“耕海牧渔”的海洋开发战略无法增加国土面积、扩大领海范围,AC错误;“耕海牧渔”的海洋开发战略可能会带来海洋污染,B错误。
故选D。
4.C 5.A【解析】【知识点】环境与国家安全【分析】4.根据图示信息可知,垃圾焚烧发电也会产生大气污染,不能完全杜绝,A错误;不能够彻底消除垃圾,B错误;能够提供建材和电力,增加有益产出,C正确;垃圾焚烧发电不能净化河流水质(可减少对河流水的污染),D错误。
所以选C。
5.根据图示信息可知,垃圾焚烧发电的流程较为复杂,①正确;垃圾焚烧流程较多,投资成本较高,②正确;我国目前垃圾分类回收程度较低,不是所有的垃圾都适宜焚烧发电,③正确;垃圾焚烧发电能够减少污染物的排放,减轻环保的压力,④错误。
七年级月考试卷及答案语文
一、选择题(每题2分,共20分)1. 下列词语中,字形、字音都正确的一项是:A. 漫步(màn bù)荒谬(huāng miù)突兀(tū wù)B. 灵巧(líng qiǎo)畸形(jī xíng)倔强(jué jiàng)C. 瞬间(shùn jiān)奔腾(bēn téng)沉默(chén mò)D. 拥挤(yōng jǐ)纷飞(fēn fēi)瞬息(shùn xī)2. 下列句子中,没有语病的一项是:A. 为了提高学生的阅读兴趣,学校决定每周增加一节阅读课。
B. 这个故事让我深受感动,使我明白了人生的意义。
C. 他的成绩一直名列前茅,是班级的骄傲。
D. 我们要努力学习,争取早日成为祖国的栋梁之才。
3. 下列词语中,与“春暖花开”意思相近的一项是:A. 阳光明媚B. 风和日丽C. 雨过天晴D. 金色阳光4. 下列句子中,使用了比喻修辞手法的一项是:A. 月亮像一个银盘挂在天空中。
B. 她的眼睛像星星一样明亮。
C. 他的声音像一阵风一样飘过。
D. 小明的成绩像一朵花一样绽放。
5. 下列成语中,与“三顾茅庐”意思相近的一项是:A. 五湖四海B. 千里迢迢C. 翻天覆地D. 风起云涌6. 下列诗句中,出自唐代诗人杜甫的一首诗是:A. 春风又绿江南岸,明月何时照我还?B. 人生自古谁无死,留取丹心照汗青。
C. 谁言寸草心,报得三春晖。
D. 山重水复疑无路,柳暗花明又一村。
7. 下列名言中,与“勤学如春起之苗,不见其增,日有所长”意思相近的一项是:A. 学如逆水行舟,不进则退。
B. 一寸光阴一寸金,寸金难买寸光阴。
C. 知之者不如好之者,好之者不如乐之者。
D. 知识就像海洋,无边无际。
8. 下列词语中,字形正确的一项是:A. 招摇(zhāo yáo)比翼(bǐ yì)落魄(luò pò)B. 沉着(chén zhuó)装扮(zhuāng bǎn)勤奋(qín fèn)C. 倔强(jué jiàng)纷飞(fēn fēi)沉默(chén mò)D. 拥挤(yōng jǐ)灵巧(líng qiǎo)挑剔(tiāo tī)9. 下列句子中,没有错别字的一项是:A. 他把这件事做得井井有条,得到了大家的认可。
吉林省2024-2025学年高二上学期第一次月考数学试卷含答案
2024—2025学年上学期高二年级数学学科阶段验收考试试卷(答案在最后)考试时间:90分钟满分:120分命题人:一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若随机试验的样本空间为{}Ω0,1,2=,则下列说法不正确的是()A.事件{}1,2P =是随机事件B.事件{}0,1,2Q =是必然事件C.事件{}1,2M =--是不可能事件D.事件{}1,0-是随机事件【答案】D 【解析】【分析】根据随机事件,必然事件,不可能事件的概念判断即可.【详解】随机试验的样本空间为{}Ω0,1,2=,则事件{}1,2P =是随机事件,故A 正确;事件{}0,1,2Q =是必然事件,故B 正确;事件{}1,2M =--是不可能事件,故C 正确;事件{}1,0-是不可能事件,故D 错误.故选:D2.已知点()1,0A ,(1,B -,则直线AB 的倾斜角为()A.5π6B.2π3C.π3 D.π6【答案】B 【解析】【分析】由两点坐标求出斜率,由倾斜角与斜率的关系即可求【详解】0tan 11AB k α-===--,()0,πα∈,故直线AB 的倾斜角2π3α=.故选:B3.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图为一幅唐朝的投壶图,甲、乙、丙是唐朝的三位投壶游戏参与者,假设甲、乙、丙每次投壶时,投中的概率均为0.6且投壶结果互不影响.若甲、乙、丙各投壶1次,则这3人中至少有2人投中的概率为()A.0.648B.0.432C.0.36D.0.312【答案】A 【解析】【分析】由独立事件概率乘法公式可得.【详解】记甲、乙、丙投中分别即为事件123,,A A A ,由题知()()()()()()1231230.6,0.4P A P A P A P A P A P A ======,则3人中至少有2人投中的概率为:()()()()123123123123P P A A A P A A A P A A A P A A A =+++320.630.60.40.648=+⨯⨯=.故选:A.4.设,A B 是一个随机试验中的两个事件,且()()()131,,+252P A P B P A B ===,则()P AB =()A.13B.15C.25D.110【答案】D 【解析】【分析】先利用和事件的概率公式求出()P AB ,然后利用()()()P AB P A P AB =-求解即可.【详解】因为1()2P A =,3()5P B =,所以()251,()2P A P B ==,又()()()()()122512P A B P A P B P AB P AB +=+-=+-=,所以()25P AB =,所以()()()1102512P P P A AB A B ==-=-.故选:D.5.若()2,2,1A ,()0,0,1B ,()2,0,0C ,则点A 到直线BC 的距离为()A.5B.5C.5D.5【答案】A 【解析】【分析】由题意得()2,2,0BA = ,()2,0,1BC =-,再根据点线距离的向量公式即可求解.【详解】()2,2,0BA = ,()2,0,1BC =- ,则BA 在BC上的投影向量的模为BA BC BC⋅= 则点A 到直线BC5=.故选:A.6.某乒乓球队在长春训练基地进行封闭式集训,甲、乙两位队员进行对抗赛,每局依次轮流....发球,连续赢2个球者获胜,通过分析甲、乙过去对抗赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为14,不同球的结果互不影响,已知某局甲先发球.则该局打4个球甲赢的概率为()A.13B.16C.112 D.524【答案】C 【解析】【分析】由于连胜两局者赢,则可写出四局的结果,计算即可.【详解】由于连胜两局者赢,甲先发球可分为:该局:第一个球甲赢、第二个球乙赢、第三个球甲赢、第四个球甲赢,则概率为22133231441⨯⨯⨯=;故选:C.7.据史书记载,古代的算筹是由一根根同样长短和粗细的小棍制成,如图所示,据《孙子算经》记载,算筹记数法则是:凡算之法,先识其位,一纵十横,百立千僵,千十相望,万百相当.即在算筹计数法中,表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推.例如⊥‖表示62,=T 表示26,现有6根算筹,据此表示方式任意表示两位数(算筹不剩余且个位不为0),则这个两位数不小于50的概率为()A.13B.12C.23D.35【答案】B 【解析】【分析】根据6根算筹,分为五类情况:51,42,33,24,15+++++,逐一分类求解满足要求的两位数,即可求解概率.【详解】根据题意可知:一共6根算筹,十位和个位上可用的算筹可以分为51,42,33,24,15+++++一共五类情况;第一类:51+,即十位用5根算筹,个位用1根算筹,那十位可能是5或者9,个位为1,则两位数为51或者91;第二类:42+,即十位用4根算筹,个位用2根算筹,那十位可能是4或者8,个位可能为2或者6,故两位数可能42,46,82,86;第三类:33+,即十位用3根算筹,个位用3根算筹,那么十位可能是3或者7,个位可能为3或者7,故两位数可能是33,37,73,77;第四类:24+,即十位用2根算筹,个位用4根算筹,那么十位为2或6,个位可能为4或者8,则该两位数为24或者28或者64或者68,第五类:15+,即十位用1根算筹,个位用5根算筹,那十位是1,个位为5或者9,则两位数为15或者19;综上可知:用6根算筹组成的满足题意的所有的两位数有:15,19,24,28,33,37,42,46,51,64,68,73,77,82,86,91共计16个,则不小于50的有:51,64,68,73,77,82,86,91共计8个,故概率为81=162,故选:B.8.正三棱柱111ABC A B C -中,12,3,AB AA O ==为BC 的中点,M 为棱11B C 上的动点,N 为棱AM上的动点,且MN MOMO MA=,则线段MN 长度的取值范围为()A.4⎡⎫⎢⎣⎭B.,27⎢⎣⎦C.34747⎢⎣⎦D.【答案】B 【解析】【分析】根据正三棱柱建立空间直角坐标系,设动点坐标,结合线线关系求线段MN 的表达式,利用函数求最值即可.【详解】因为正三棱柱11ABC A B C -中,O 为BC 的中点,取11B C 中点Q ,连接OQ ,如图,以O 为原点,,,OC OA OQ 为,,x y z轴建立空间直角坐标系,则()()((110,0,0,,1,0,,1,0,O A B C -,因为M 是棱11B C上一动点,设(M a ,且[1,1]a ∈-,所以(()0OM OA a ⋅=⋅=,则OA OM ⊥,因为ON AM ⊥,且MN MOMO MA=所以在直角三角形OMA 中可得:~OMN AMO 即222MO MN MA===,于是令tt =∈,2233tt t t-==-,t ∈,又符合函数3=-y t t 为增增符合,所以在t ∈上为增函数,所以当t =min 32t t ⎛⎫-== ⎪⎝⎭,即线段MN 长度的最小值为62,当t =时,max 37t t ⎛⎫-== ⎪⎝⎭,即线段MN长度的最大值为7,故选:B.【点睛】关键点睛:1.找到~OMN AMO ,再利用函数单调性求出最值.2.建系,设出动点(M a ,利用空间向量法求出ON AM ⊥,再结合线线关系求线段MN 的表达式,利用函数求最值即可.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中正确的是()A.若表示两个空间向量的有向线段的终点不同,则这两个向量可能相等;B.在所有棱长都相等的直平行六面体1111ABCD A B C D -中,BD ⊥平面11ACC A ;C.对于空间三个非零向量,,a b c,一定有()()a b c a b c ⋅⋅=⋅⋅r r r r r r 成立;D.在棱长为2的正方体1111ABCD A B C D -中,点,M N 分别是棱11A D ,AB 的中点,则异面直线MD 与NC 所成角的余弦值为25.【答案】ABD 【解析】【分析】由相等向量的概念即可判断选项A ,利用线面垂直的判定定理证明即可判断选项B ,由数量积的性质即可判断选项C ,建立空间直角坐标系利用向量的坐标即可计算异面直线MD 与NC 所成角的余弦值判断选项D.【详解】若表示两个空间向量的有向线段的终点不同,而当两向量方向和长度相等时,这两个向量相等;故A 正确;在所有棱长都相等的直平行六面体1111ABCD A B C D -中,即直棱柱1111ABCD A B C D -中底面为菱形,因为BD AC ⊥,1AA ⊥平面ABCD ,BD ⊂平面ABCD ,所以1AA BD ⊥,又1AA AC A = ,所以BD ⊥平面11ACC A ;故B 正确;对于空间三个非零向量,,a b c ,有()a b c c λ⋅⋅= ,()a b c a μ⋅⋅=,所以不一定有()()a b c a b c ⋅⋅=⋅⋅成立,故C错误;建立如图所示的空间直角坐标系,则()0,0,0D ,()1,0,2M ,()2,1,0N ,()0,2,0C ,所以()1,0,2DM = ,()2,1,0NC =-,所以2cos ,5DM NC ==-,所以异面直线MD 与NC 所成角的余弦值为25,故D 正确.故选:ABD.10.连续抛掷一枚质地均匀的骰子两次,用数字x 表示第一次抛掷骰子的点数,数字y 表示第二次抛掷骰子的点数,用(),x y 表示一次试验的结果.记事件A =“7x y +=”,事件B =“3x ≤”,事件C =“()21N xy k k *=-∈”,则()A.()14P C =B.A 与B 相互独立C.A 与C 为对立事件D.B 与C 相互独立【答案】AB 【解析】【分析】用列举法列出所有可能结果,再结合互斥事件、对立事件、相互独立事件及古典概型的概率公式计算可得.【详解】依题意依次抛掷两枚质地均匀的骰子,基本事件总数为6636⨯=个;其中事件A =“7x y +=”包含的样本点有:()1,6,()2,5,()3,4,()4,3,()5,2,()6,1共6个;事件C =“()*21Nxy k k =-∈”,包含的样本点有:()1,1,()3,3,()5,5,()1,3,()1,5,()3,1,()3,5,()5,1,()5,3共9个,事件B =“3x ≤”,包含的样本点有:()1,1,()1,2,()1,3,()1,4,()1,5,()1,6,()2,1,()2,2,()2,3,()2,4,()2,5,()2,6,()3,1,()3,2,()3,3,()3,4,()3,5,()3,6共18个,对于A ,()91364P C ==,故A 正确;对于B ,事件AB 包含的样本点有()1,6,()2,5,()3,4共3个,所以()()()6118131,,3663623612P A P B P AB ======,所以()()()P A P B P AB =,所以A 与B 相互独立,故B 正确;对于C ,A C U 包含的样本点个数满足691536+=<,所以A 与C 不为对立事件,故C 错误;对于D ,事件BC 包含的样本点有:()1,1,()1,3,()1,5,()3,1,()3,3,()3,5,共6个,而()14P C =,()12P B =,()61366P BC ==,从而()()()1816P P P BC B C ≠==,所以B 与C 不相互独立,故D 错误.故选:AB.11.在棱长为1的正方体1111ABCD A B C D -中,P 为棱1BB 上一点,且12B P PB =,Q 为正方形11BB C C 内一动点(含边界),则下列说法中正确的是()A.若1D Q ∥平面1A PD ,则动点Q 的轨迹是一条长为3的线段B.存在点Q ,使得1D Q ⊥平面1A PD C.三棱锥1Q A PD -的最大体积为518D.若12D Q =,且1D Q 与平面1A PD 所成的角为θ,则sin θ【答案】ACD 【解析】【分析】在111,BC CC 取点,E F ,使得1112,2C E B E C F CF ==,证得平面//DEF 平面1A PD ,进而得到1//D Q 平面1A PD ,可判定A 正确;以1D 为原点,建立空间直角坐标系,求得平面1A PD 的一个法向量(3,2,3)m =-,根据1D Q m λ= ,得出矛盾,可判定B 不正确;利用向量的数量积的运算及三角形的面积公式,求得16A PD S =,在求得点Q 到平面1A PD的最大距离max d =,结合体积公式,可判定C 正确;根据题意,求得点点Q 的轨迹,结合线面角的公式,求得11(,1,)22Q 时,取得最大值,进而可判定D 正确.【详解】对于A 中,如图所示,分别在111,BC CC 取点,E F ,使得1112,2C E B E C F CF ==,可得1//EF B C ,因为11//A D B C ,所以1//EF A D ,因为1A D ⊂平面1A PD ,EF ⊄平面1A PD ,所以//EF 平面1A PD ,又由11//D F A P ,且1A P ⊂平面1A PD ,1D F ⊄平面1A PD ,所以1//D F 平面1A PD ,又因为1EF D F F ⋂=,且1,EF D F ⊂平面DEF ,所以平面//DEF 平面1A PD ,且平面DEF ⋂平面11BCC B EF =,若1//D Q 平面1A PD ,则动点Q 的轨迹为线段EF ,且223EF =,所以A 正确;对于B 中,以1D 为原点,以11111,,D A D C D D 所在的直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,可得12(1,0,0),(0,0,1),(1,1,)3A D P ,则112(1,0,1),(0,1,)3A D A P =-= ,设(,1,)(01,01)Q x z x z ≤≤≤≤,可得1(,1,)D Q x z =,设(,,)m a b c = 是平面1A PD 的一个法向量,则110203m A D a c m A P b c ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取3c =,可得3,2z b ==-,所以(3,2,3)m =-,若1D Q ⊥平面1A PD ,则1//D Q m,所以存在R λ∈,使得1D Q m λ= ,则3[0,1]2x z ==-∉,所以不存在点Q ,使得1D Q ⊥平面1A PD ,所以B 错误;对于C 中,由112(1,0,1),(0,1,3A D A P =-=,可得1111132,33A D A P A D A P ==⋅=,则11cos ,A D A P =11sin ,A D A P = ,所以111111sin 2236A PD S A D A P DA P =⋅∠=⨯ ,要使得三棱锥1Q A PD -的体积最大,只需点Q 到平面1A PD 的距离最大,由1(1,1,)AQ x z =- ,可得点Q 到平面1A PD的距离1)5A Q m d x z m ⋅==+-,因为01,01x z ≤≤≤≤,所以当0x z +=时,即点Q 与点1C重合时,可得max d =,所以三棱锥1Q A PD -的最大体积为111533618A PD S =⋅=,所以C 正确;对于D 中,在正方体中,可得11D C ⊥平面11BCC B ,且1C Q ⊂平面11BCC B ,所以111D C C Q ⊥,则12C Q ==,所以点Q 的轨迹是以1C为圆心,以2为半径的圆弧,其圆心角为π2,则1(,0,)C Q x z =,所以12C Q == ,即2212x z +=,又由1(,1,)D Q x z =,设1D Q 与平面1A PD 所成的角θ,所以111sin cos ,m D Q m D Q m D Qθ⋅===,因为2212x z +=,可得222()2()x z x z +≤+,当且仅当x z =时,等号成立,所以1x z +≤,即12x z ==时,1D Q 与平面1A PD 所成的角最大值,sin θ=D 正确.故选:ACD.【点睛】方法点睛:求解立体几何中的动态问题与存在性问题的策略:1、解答方法:一般时根据线面平行,线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程;2、对于线面位置关系的存在性问题,首先假设存在,然后再该假设条件下,利用线面位置关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论,则否定假设;3、对于探索性问题用向量法比较容易入手,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若由解且满足题意则存在,若有解但不满足题意或无解则不存在,同时,用已知向量来表示未知向量,一定要结合图形,以图形为指导思想是解答此类问题的关键.三、填空题:本大题共3小题,每小题5分,第14题第一个空2分,第二个空3分,共15分.12.已知()3,2,1a =- ,()2,1,2b =r,当()()2ka b a b +⊥- 时,实数k 的值为____________.【答案】6【解析】【分析】由题意依次算得22,,a b a b ⋅ 的值,然后根据()()2ka b a b +⊥-列方程即可求解.【详解】因为()3,2,1a =-,()2,1,2b = ,所以()2294114,4149,3221126a ba b =++==++=⋅=⋅+⋅+-⋅=,因为()()2ka b a b +⊥-,所以()()()()22221214186122120ka b a b ka b k a b k k k +⋅-=-+-⋅=-+-=-=,解得6k =.故答案为:6.13.柜子里有3双不同的鞋子,分别用121212,,,,,a a b b c c 表示6只鞋,从中有放回地....取出2只,记事件M =“取出的鞋是一只左脚一只右脚的,但不是一双鞋”,则事件M 的概率是____________.【答案】13【解析】【分析】列举法写出试验的样本空间,根据古典概型的概率公式直接可得解.【详解】设111,,a b c 表示三只左鞋,222,,a b c 表示三只右鞋,则从中有放回取出2只的所有可能为:()()()()()()111211121112,,,,,,,,,,,a a a a a b a b a c a c ()()()()()()212221222122,,,,,,,,,,,a a a a a b a b a c a c ()()()()()()111211121112,,,,,,,,,,,b a b a b b b b b c b c ()()()()()()212221222122,,,,,,,,,,,b a b a b b b b b c b c ()()()()()()111211121112,,,,,,,,,,,c a c a c b c b c c c c ()()()()()()212221222122,,,,,,,,,,,c a c a c b c b c c c c ,共计36种,其中满足取出的鞋一只左脚一只右脚,但不是一双鞋的有12种,()121363P M ∴==.故答案为:13.14.已知正四面体ABCD 的棱切球1T (正四面体的中心与球心重合,六条棱与球面相切)的半径为1,则该正四面体的内切球2T 的半径为______;若动点,M N 分别在1T 与2T 的球面上运动,且满足MN x AB y AC z AD =++,则2x y z ++的最大值为______.【答案】①.3②.26+【解析】【分析】第一空:将正四面体ABCD 放入正方体中,由等体积法可知,只需求出正四面体的表面积以及体积即可列式求解该正四面体的内切球2T 的半径;第二空:由不等式可知,()maxmin222MN x y z AT MN x y z x y z AT AT AT++++≤++==≤,只需求出max MN 、minAT 即可.【详解】第一空:连接,AD EF ,设交点为M ,则M 是AD 中点,如图所示,将正四面体ABCD 放入正方体中,由对称性可知正方体中心就是正四面体ABCD 的中心,设正方体棱长为2a ,则棱切球球心到正四面体ABCD 的六条棱的距离都等于a ,设正四面体ABCD 的棱切球1T 的半径为1r ,所以11r a ==,正方体棱长为2,AD =,而正四面体ABCD 的体积为1182224222323A BCD V -⎛⎫=⨯⨯-⨯⨯⨯⨯⨯=⎪⎝⎭,正四面体ABCD的表面积为(21422A BCD S -=⨯⨯⨯=设该正四面体的内切球2T 的半径为r,则由等体积法可知,1833⨯=,解得33r =;第二空:取任意一点T ,使得()22x y z AT MN xAB y AC z AD xAO y AC z AD ++==++=++,所以点T 在面OCD 内(其中O 是AB 中点),所以()13213x y z AT MN r r ++=≤+=+,而点A 到平面OCD 的距离为d AO ==所以()1232226x y z AT x y z x y z AT+++++≤++=≤+,等号成立当且仅当2x y z ++是正数且,T O重合且13MN =+ ,综上所述,2x y z ++的最大值为26+.故答案为:33,2626+.【点睛】关键点点睛:第二空的关键是得出()maxmin222MN x y z AT MN x y z x y z AT AT AT++++≤++==≤,由此即可顺利得解.四、解答题:本大题共4小题,共47分.解答应写出文字说明,证明过程或演算步骤.15.如图,在三棱柱111ABC A B C -中,,M N 分别是111,A B B C 上的点,且1112,2A M MB B N NC ==.设1,,AB a AC b AA c ===.(1)试用,,a b c 表示向量MN;(2)若11190,60,1BAC BAA CAA AB AC AA ∠=∠=∠====,求异面直线MN 与AC 的夹角的余弦值.【答案】(1)122333a b c-++(2)11【解析】【分析】(1)由空间向量的基本定理求解即可;(2)先用基向量,,a b c 表示AC 与MN ,然后求解MN 与AC 以及数量积MN AC ⋅,然后计算夹角的余弦值即可.【小问1详解】由图可得:()()1111111112123333MN MB BB B N A B AA B C AB AA AA AC AB=++=++=-++- 1122122333333AB AC AA a b c =-++=-++.【小问2详解】由(1)可知122333MN a b c =-++ ,因为11190,60,1BAC BAA CAA AB AC AA ∠=∠=∠====,所以0a b ⋅=,12a c ⋅= ,12b c ⋅= ,2222212214444814424110333999999999999MN a b c a b c a b a c b c ⎛⎫=-++=++-⋅-⋅+⋅=++--+= ⎪⎝⎭ ,所以113MN = ,AC b = ,1AC =,212212221·133333333MN AC a b c b a b b c b ⎛⎫⋅=-++=-⋅++⋅=+= ⎪⎝⎭所以cos ,11MN AC MN AC MN AC⋅==,所以异面直线MN 与AC的夹角的余弦值为11.16.如图,在正四棱柱1111ABCD A B C D -中,122AA AB ==,,E F 分别为1BB ,1CC的中点.(1)证明:1A F ∥平面CDE ;(2)求三棱锥1A CDE -的体积;(3)求直线1A E 与平面CDE 所成的角.【答案】(1)证明过程见解析(2)16(3)π6【解析】【分析】(1)借助正四棱柱的性质可建立空间直角坐标系,求出空间向量1A F与平面CDE 的法向量后,借助空间向量计算即可得;(2)求出空间向量1A E与平面CDE 的法向量后,借助空间向量夹角公式计算即可得直线1A E 与平面CDE 所成的角的正弦值,进一步求得三棱锥的高以及底面积即可得解.(3)由(2)可知直线1A E 与平面CDE 所成的角的正弦值,从而即可得解.【小问1详解】在正四棱柱1111ABCD A B C D -中,AB ,AD ,1AA 两两垂直,且122AA AB ==,以A 为坐标原点,AB ,AD ,1AA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()1,1,0C ,()0,1,0D ,()10,0,2A.因为E ,F 分别为11,BB CC 的中点,所以()1,0,1E ,()1,1,1F ,则()1,0,0CD =- ,()0,1,1CE =- ,()11,1,1A F =-,设平面CDE 的法向量为(),,m x y z = ,则00CD m CE m ⎧⋅=⎪⎨⋅=⎪⎩,即00x y z -=⎧⎨-+=⎩,令1y =,则有0x =,1z =,即()0,1,1m =,因为()11011110A F m ⋅=⨯+⨯+-⨯= ,所以1A F m ⊥ ,又1⊄A F 平面CDE ,所以1//A F 平面CDE ;【小问2详解】由(1)可知,()11,0,1A E =-,1111cos ,2A E m A E m A E m⋅==-,所以1A E 与平面CDE 所成角的正弦值为12.注意到1A E =所以点1A 到平面CDE122=,而()1,0,0CD =- ,()0,1,1CE =-,从而0CD CE =⋅,1,CD CE == 所以CD CE ⊥,三角形CDE的面积为1122⨯=,所以三棱锥1A CDE -的体积为113226⨯⨯=;【小问3详解】由(2)可知,1A E 与平面CDE 所成角的正弦值为12,所以直线1A E 与平面CDE 所成的角为π6.17.2023年10月31日,东北师大附中以“邂逅数学之美,闪耀科技之光”为主题的第17届科技节在自由、青华两校区开幕.在科技节中数学教研室组织开展了“送书券”活动.该活动由三个游戏组成,每个游戏各玩一次且结果互不影响.连胜两个游戏可以获得一张书券,连胜三个游戏可以获得两张书券.游戏规则如下表:游戏一游戏二游戏三箱子中球的颜色和数量大小质地完全相同的红球4个,白球2个(红球编号为“1,2,3,4”,白球编号为“5,6”)取球规则取出一个球有放回地依次取出两个球不放回地依次取出两个球获胜规则取到白球获胜取到两个红球获胜编号之和不超过m 获胜(1)分别求出游戏一,游戏二的获胜概率;(2)甲同学先玩了游戏一,当m 为何值时,接下来先玩游戏三比先玩游戏二获得书券的概率更大.【答案】(1)13,49(2)m 可能取值为7,8,9,10,11【解析】【分析】(1)利用列举法,结合古典概型的概率公式即可得解;(2)利用互斥事件与独立事件的概率公式求得先玩游戏二与先玩游戏三获得书券的概率,从而得到游戏三获胜的概率,由此得解.【小问1详解】设事件A 表示“游戏一获胜”,B 表示“游戏二获胜”,C 表示“游戏三获胜”,游戏一中取出一个球的样本空间为{}1Ω1,2,3,4,5,6=,则()1Ω6n =,()2n A =,()2163P A ∴==,所以游戏一获胜的概率为13.游戏二中有放回地依次取出两个球的样本空间(){}21Ω,,Ωx y x y =∈,则()2Ω36n =,而(){}{},,1,2,3,4B x y x y =∈,所以()16n B =,()164369P B ∴==,所以游戏二获胜的概率为49.【小问2详解】设M 表示“先玩游戏二,获得书券”,N 表示“先玩游戏三,获得书券”,则M ABC ABC ABC =⋃⋃,且ABC ,ABC ,ABC 互斥,,,A B C 相互独立,()()()()()P M P ABC ABC ABC P ABC P ABC P ABC ∴=⋃⋃=++()()()()()()()()()11P A P B P C P A P B P C P A P B P C ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦()()()1424141393939P C P C P C ⎡⎤=⨯-+⨯+⨯⎣⎦()482727P C =+,则N AC B ACB ACB =⋃⋃,且,AC B ACB ACB 互斥,,,A B C 相互独立,()P N =()()()()P ACB ACB ACB P ACB P ACB P ACB ⋃⋃=++()()()()()()()()()11P A P C P B P A P C P B P A P C P B ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦()()()152414393939P C P C P C =⨯⨯+⨯⨯+⨯⨯()1727P C =,若要接下来先玩游戏三比先玩游戏二获得书券的概率更大,则()()P N P M >,即()()1748272727P C P C >+,解得()49P C >,设游戏三中两次取球的编号和为X ,则()26113C 15P X ===,()26114C 15P X ===,()26225C 15P X ===,()26226C 15P X ===,()26337C 15P X ===,()26228C 15P X ===,()26229C 15P X ===,()261110C 15P X ===,()261111C 15P X ===,所以当3m =时,()()143159P C P X ===<,不合题意;当4m =时,()()()2434159P C P X P X ==+==<,不合题意;当5m =时,()()()()44345159P C P X P X P X ==+=+==<,不合题意;当6m =时,()()()()()643456159P C P X P X P X P X ==+=+=+==<,不合题意;当7m =时,()()()()()()9434567159P C P X P X P X P X P X ==+=+=+=+==>,符合题意;所以当7m ≥时,都有()49P C >,所以符合题意的m 的取值有7,8,9,10,11.18.球面三角学是研究球面三角形的边、角关系的一门学科.如图,球O 的半径为R ,A 、B 、C 为球面上的三点,设a O 表示以O 为圆心,且过B 、C 的圆,劣弧BC 的长度记为a ,同理,圆b O ,c O 的劣弧AC 、AB 的长度分别记为b ,c ,曲面ABC (阴影部分)叫做球面三角形.如果二面角,,C OA B A OB C B OC A ------的大小分别为,,αβγ,那么球面三角形的面积为()2++πABC S R αβγ=- 球面.(1)若平面OAB 、平面OAC 、平面OBC 两两垂直,求球面三角形ABC 的面积;(2)若平面三角形ABC 为直角三角形,AC BC ⊥,设1AOC θ∠=,2BOC θ∠=,3AOB θ∠=.①求证:123cos cos cos 1θθθ+-=;②延长AO 与球O 交于点D ,若直线DA ,DC 与平面ABC 所成的角分别为ππ,43,,(0,1]BE BD λλ=∈,S 为AC 的中点,T 为BC 的中点.设平面OBC 与平面EST 的夹角为θ,求cos θ的最大值及此时平面AEC 截球O 的面积.【答案】(1)2π2R (2)①证明见解析;②cos 5θ=,253π78R 【解析】【分析】(1)根据题意结合相应公式分析求解即可;(2)①根据题意结合余弦定理分析证明;②建系,利用空间向量求线面夹角,利用基本不等式分析可知点E ,再利用空间向量求球心O 到平面AEC 距离,结合球的性质分析求解.【小问1详解】若平面,,OAB OAC OBC 两两垂直,有π2αβγ===,所以球面三角形ABC 面积为()22ππ2ABC S R R αβγ=++-= 球面.【小问2详解】①证明:由余弦定理有:2222122222222232cos 2cos 2cos AC R R R BC R R R AB R R R θθθ⎧=+-⎪=+-⎨⎪=+-⎩,且222AC BC AB +=,消掉2R ,可得123cos cos cos 1θθθ+-=;②由AD 是球的直径,则,AB BD AC CD ⊥⊥,且AC BC ⊥,CD BC C ⋂=,,CD BC ⊂平面BCD ,所以AC ⊥平面BCD ,且BD ⊂平面BCD ,则AC BD ⊥,且AB AC A ⋂=,,AB AC ⊂平面ABC ,可得BD ⊥平面ABC ,由直线DA ,DC 与平面ABC 所成的角分别为ππ,43,所以ππ,43DAB DCB ∠=∠=,不妨先令R =,则2AD AB BD BC AC =====,由AC BC ⊥,AC BD ⊥,BC BD ⊥,以C 为坐标原点,以CB ,CA 所在直线为x ,y 轴,过点C 作BD 的平行线为z 轴,建立如图空间直角坐标系,设(,BE t t =∈,则())()0,2,0,,0,0,0,A B C D ,可得()20,1,0,,0,02S T ⎛⎫ ⎪ ⎪⎝⎭,)26,,1,22E t O ⎛⎫ ⎪ ⎪⎝⎭,则),22CB CO ⎛⎫== ⎪ ⎪⎝⎭,,1,0,22ST TE t ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设平面OBC 法向量()111,,m x y z =,则11110022m CB m CO x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,取12z =-,则110y x ==,可得()2m =- ,设平面EST 法向量()222,,n x y z =,则222202202n ST x y n TE x tz ⎧⋅=-=⎪⎪⎨⎪⋅=+=⎪⎩,取2x =,则22,1y t z ==-,可得),,1n t =- ,因为cos cos ,m n m n m n θ⋅======,令(]1,1,13m m=+∈,则()2218mt t-==,可得()2221888293129621218m mt m mm mm+===≤=+-+--+-+,当且仅当3,m t==取等.则cosθ5=,此时点E,可得CE=,()0,2,0CA=,设平面AEC中的法向量(),,k x yz=,则20k CE zk CA y⎧⋅==⎪⎨⎪⋅==⎩,取1x=,则0,y z==-,可得(1,0,k=-,可得球心O到平面AEC距离为AO kdk⋅==设平面AEC截球O圆半径为r,则2225326r R d=-=,所以截面圆面积为225353πππ2678r R==.【点睛】方法点睛:1.利用空间向量求线面角的思路:直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角ϕ求得,即sin cosθϕ=.2.利用空间向量求点到平面距离的方法:设A为平面α内的一点,B为平面α外的一点,n为平面α的法向量,则B到平面α的距离AB ndn⋅=.。
月考试卷(试题)(含答案)2024-2025学年人教版数学六年级上册
月考试卷(1-2单元)2024-2025学年人教版数学六年级上册姓名:班级:一、单选题1.一堆化肥15吨,用去23,用去( )A.35吨B.10吨C.15吨D.23吨2.一个平行四边形,底长24米,高是底的58,这个平行四边形的面积是( )A.15平方米B.360平方米C.39平方米D.306平方米3.一根绳子,第一次用去37米,第二次用去37,如果第一次用去的比第二次长,那么原来这根绳子( )。
A.大于1米B.小于1米C.等于1米D.无法确定4.修一条1000米长的公路,甲队修了全长的25,余下的由乙队修完。
甲队比乙队少修了多少米?正确的列式是( )。
A.1000× 25B.1000×(1- 25- 25)C.1000×(1- 25)D.1000×(1- 25+ 25)5.养鸡场养公鸡400只,养的母鸡比公鸡的只数多58,母鸡比公鸡多( )只。
A.400×(1- 58)B.400× 58C.400×(1+ 58)D.400×(1+1+ 58)二、判断题6.1米的45等于4米的15。
( )7.89减去8个19等于0。
( )8.4吨的12和4个12吨一样重。
( )9.整数乘法的运算定律对于分数乘法同样适用。
( )10.一根绳子长2米,用去12后,还剩12米。
( )三、填空题11.甲数是78,乙数是甲数的37,乙数是 ;丙数是甲、乙两数积的倒数,丙数是 。
12.六(1)班有56人,美术小组人数占全班人数的18,美术小组有多少人?单位“1”的量是 ,求美术小组人数就是求 的 (几分之几),列式计算: .13.一本连环画有96页,优优第一天看了全书的14,第二天看了全书的38,优优第三天应该从第 页看起。
14.小华从家出发,向 走 m到达养鱼塘,再向 偏 ( )度走 m到达广播站,再向 走 m到达学校。
四、计算题15.计算下面各题。
黑龙江省哈尔滨市第九中学校2024-2025学年高一上学期10月月考 数学试卷(含答案)
哈九中2024级高一学年10月月考数学试卷(时间:120分钟 满分:150分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列表示正确的是()A. B. C.2.若集合,则应满足()A. B. C. D.3.对于集合,若不成立,则下列理解正确的是()A.集合的任何一个元素都属于B.集合的任何一个元素都不属于C.集合中至少有一个元素属于D.集合中至少有一个元素不属于4.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件5.若命题是假命题,则实数的取值范围是()A.B.C. D.6.若函数的定义域是,则函数的定义域是( )A. B. C. D.7.《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.下图是我国古代数学家赵爽创作的弦图,弦图由四个全等的直角三角形与一个小正方形(边长可以为0)拼成的一个大正方形.若直角三角形的直角边长分别为和,则该图形可以完成的无字证明为( )*0∈N 12∈Z π∈Q R{},A x x =-x 0x >0x <0x =0x ≤,A B B A ⊆B AB AB AB Ax ∈R 05x <<01x <<2:,40p x x x a ∃∈++=R a 04a <<4a >0a <4a ≥()y f x =[]1,2y f=[]1,2⎡⎣[]1,4[]2,4a bA.B.8.若函数的部分图象如图所示,则( )A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分.9.下列各组函数表示不同函数的是()A.B.C.D.)0,02a b a b +≥>>()2220,0a b ab a b +≥>>()20,011a b a b ≥>>+()0,02a b a b +≥>>()22f x ax bx c=++()1f =23-112-16-13-()()0,f x g x ==+()()01,f x g x x==()()f x g x x==()()211,1x f x x g x x -=+=-10.已知,则下列命题正确的是( )A.若且,则B.若,则C.若,则D.若且,则11.已知集合,则可能是( )A. B.C.或 D.三、填空题:本题共3小题,每小题5分,共15分.12.已知集合,则__________.13.若正数满足,则的最小值是__________.14.表示不大于的最大整数,例,则的的取值范围__________,方程的解集是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题13分)已知集合(1)求;(2)若,求实数的取值范围.16.(本题15分)已知函数的解析式(1)求(2)画出的图像,并写出函数的单调区间和值域(直接写出结果即可).,,a b c ∈R 0ab ≠a b <11a b >01a <<2a a<0a b >>11b b a a+>+c b a <<0ac <22bc ac <(){}{}2110,1,0A x ax a x a B x x =-++><=>∣∣A B ⋂10x x a ⎧⎫<<⎨⎬⎩⎭{01}x x <<∣{01x x <<∣1x a ⎫>⎬⎭11x x a ⎧⎫<<⎨⎬⎩⎭{}{}2340,230A xx x B x x =+-<=+≥∣∣A B ⋂=,x y 35x y xy +=34x y +[]x x ][2.32, 5.66⎡⎤=-=-⎣⎦[]2x =x []22x x ={}20,21,2x A xB x a x a a x ⎧⎫-=≤=≤≤+∈⎨⎬+⎩⎭R ∣A B A ⊆a ()f x ()350501281x x f x x x x x +≤⎧⎪=+<<⎨⎪-+>⎩12f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()f x(3)若,求的值.17.(本题15分)(1)已知关于的不等式的解集为,求的解集;(2)若不等式对于任何实数恒成立,求实数的取值范围.18.(本题17分)已知函数,且(1)求的解析式;(2)已知:当时,不等式恒成立;:当时,是单调函数,若和只有一个是真命题,求实数的取值范围.19.(本题17分)若存在实数使得,则称是区间的一内点.(1)若是区间的一内点,求的值;(2)求证:的充要条件是存在,使得是区间的一内点;(3)给定实数,若对于任意区间是区间的一内点,是区间的一内点,且不等式和不等式对于任意都恒成立,求证:()2f a =a x 220ax x c ++>11,32⎛⎫- ⎪⎝⎭220cx x a -+->()()()211310m x m x m +--+->x m ()2f x x bx c =++()()()11,02f x f x f +=-=-()f x ,a p ∈R 01x <<()32f x x a +<+q []2,2x ∈-()()g x f x ax =-p q a ()0,1λ∈()1x a b λλ=+-x (),()a b a b <λ2x =()1,3λλ(),x a b ∈()0,1λ∈x (),a b λ()0,1ω∈()1,(),a b a b x <1λ2x 2λ()22211x a b ωω≤+-()22221x a b ωω≤-+a b ∈R 、121λλ+=答案1-8DADB BCBD9.ABD 10.BCD11.BC 12. 13.5 14.;15.(1)由题意得,解得,则.(2)因为,当时,,解得,满足题意,当时,因为,所以,解得,综上所述,实数的取值范围为.16.【详解】(1)解:因为,所以,则.(2)解:如图所示,当时,函数最大值为6,无最小值,所以值域为单调递增区间,单调递减区间最大值无法取到(3)解:当时,,解得;当时,,解得,不符合题意;当时,,解得,综上所述,或3.17.(1)由题意得:是方程的两个根,3,12⎡⎫-⎪⎢⎣⎭[)2,3{}2()()22020x x x ⎧-+≤⎨+≠⎩22x -<≤{22}A xx =-<≤∣B A ⊆B =∅21a a >+1a <-B ≠∅B A ⊆212212a a a a ≤+⎧⎪>-⎨⎪+≤⎩112a -≤≤a 1,2∞⎛⎤- ⎥⎝⎦1012<<111122f ⎛⎫=> ⎪⎝⎭11111283222f f f ⎛⎫⎛⎫⎛⎫==-⨯+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1x =(),6∞-(],1∞-[)1,∞+0a ≤()352f a a =+=1a =-01a <≤()52f a a =+=3a =-1a >282a -+=3a =1a =-11,32-220ax x c ++=所以,解得,所以不等式即为,即,解得,所以不等式的解集为.(2)因为不等式对任何实数恒成立,①当即时,不等式为,不满足题意,舍去,②当时,则解得,综上所述,实数的取值范围为.18.(1)因为,则的对称轴是,解得,又因为,所以.(2)若为真,,则对任意的恒成立,可知的图象开口向上,对称轴为,可知在内单调递减,且,则;若为真,,可知的图象开口向上,对称轴为,因为在内是单调函数,则或,解得或;120931104a c a c ⎧-+=⎪⎪⎨⎪++=⎪⎩122a c =-⎧⎨=⎩220cx x a -+->222120x x -++>()()2230x x -+->23x -<<{23}xx -<<∣()()()211310m x m x m +--+->x 10m +=1m =-260x ->1m ≠-()()210Δ(1)12110m m m m +>⎧⎨=--+-<⎩1m >m ()1,∞+()()11f x f x +=-()f x 12b x =-=2b =-()02f c ==-()222f x x x =--p ()32f x x a +<+()22341a f x x x x >-+=-+()0,1x ∈()241h x x x =-+2x =()241h x x x =-+()0,1()01h =1a ≥q ()()()222g x f x ax x a x =-=-+-()g x 22a x +=()g x []2,2-222a +≤-222a +≥6a ≤-2a ≥若与真假性相反,则或,解得或,所以实数的取值范围为或.19.解:(1)(2)①若是区间的一内点,则存在实数使得,,则,②若,取,则,且,则是区间的一内点,故的充要条件是存在,使得是区间的一内点;(3)因为是区间的一内点,则,则恒成立,则恒成立,当时,上式不可能恒成立,因此,所以,即,即同理,故.p q 162a a ≥⎧⎨-<<⎩162a a a <⎧⎨≤-≥⎩或6a ≤-12a ≤<a 6a ≤-12a ≤<12λ=x (),()a b a b <λ()0,1λ∈()1x a b λλ=+-()()()1,x a b a b b a b λλλ=+-=-+∈(),x a b ∈b x b a λ-=-()1x a b λλ=+-01b x b a b a b a--<<=--x (),()a b a b <λ(),x a b ∈()0,1λ∈x (),a b λ1x 1λ()1111x a b λλ=+-()()2221111a b a b λλωω⎡⎤+-≤+-⎣⎦()()()2222211111220a ab b ωλλλλλω---+-+-≥210ωλ-≤210ωλ->()()()222211111Δ4420λλωλλλω=----+-≤()210λω-≤1,λω=21λω=-121λλ+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一物理测试答案
一、二将选择题答案填入下表
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 B A B C B D BD BD BD BC BC AB 三、填充题
(1)BD
(2)______0.25_________________、_0.4______________________
(3)______ d/ △t1_________________、__(v2B-v2A)/2L
四、计算题
14(13分)释放后2s末物资速度大小;20m/s
(2)直升飞机距离地面的高度;125m
(3)物资落地前最后1s内的平均速度.45m/s
15(13分)解答:解:(1)取初速度方向为正,a=﹣5m/s2
汽车速度减为零的时间,
则刹车后3s末的速度v=v0+at=20﹣5×3m/s=5m/s.
(2)根据得,30=20t﹣2.5t2,
解得t1=2s,t2=6s(不合题意,舍去)
(3)刹车后5s内的位移等于4s内的位移,则x=
16(14分)(1)当两车速度相等时,相距最远,则有:,
则相距的最远距离为:
==225m.
(2)赛车追上安全车时有:v0t+s=,
代入数据解得:t=20s
(3)两车相遇时赛车的速度为:v1=at=40m/s;
赛车减速到静止所用的时间为:,
赛车减速到静止前进的距离为:
相同的时间内安全车前进的距离为:x=V0t′=100m<X max
1
所以赛车停止后安全车与赛车再次相遇,所用时间为:.。