第四届蓝桥杯java本科B组试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

/*
* 标题: 世纪末的星期
* 曾有邪教称1999年12月31日是世界末日。当然该谣言已经不攻自破。
还有人称今后的某个世纪末的12月31日如果是星期一则会....
有趣的是任何一个世纪末的年份的12月31日都不可能是星期一!!
于是“谣言制造商”又修改为星期日......
1999年的12月31日是星期五请问未来哪一个离我们最近的一个世纪末年即
xx99年的12月31日正好是星期天即星期日
请回答该年份只写这个4位整数不要写12月31等多余信息
*
*
*/
import java.util.Calendar;
import java.util.Date;

public class Main {
public static void main(String[] args) {
for (int i = 1999;; i += 100) {
Calendar calendar = Calendar.getInstance();
calendar.setTime(new Date(i - 1900, 11, 31));
if (calendar.get(Calendar.DAY_OF_WEEK) - 1 == 0) {
System.out.println(i); return;
}
}
}
}


/*
* 标题: 马虎的算式

小明是个急性子上小学的时候经常把老师写在黑板上的题目抄错了。
有一次老师出的题目是36 x 495 = ?
他却给抄成了396 x 45 = ?
但结果却很戏剧性他的答案竟然是对的
因为 36 * 495 = 396 * 45 = 17820
类似这样的巧合情况可能还有很多比如27 * 594 = 297 * 54
假设 a b c d e 代表1~9不同的5个数字注意是各不相同的数字且不含0
能满足形如 ab * cde = adb * ce 这样的算式一共有多少种呢
*
*/
public class Main {
static int kinds = 0; static int a[] = new int[6];
static boolean vis[] = new boolean[10];
static void check(int a[]) {
int num1 = a[1] * 10 + a[2];
int num2 = a[3] * 100 + a[4] * 10 + a[5];
int num3 = a[1] * 100 + a[4] * 10 + a[2];
int num4 = a[3] * 10 + a[5];
if (num1 * num2 == num3 * num4)
kinds++;
}

static void dfs(int start, int n) {
if (start == 6) {
check(a);
} else {
for (int i = 1; i < n; i++) {
if (vis[i])
continue;
a[start] = i;
vis[i] = true; dfs(start + 1, n); vis[i] = false; }
}
}

public static void main(String[] args) {
dfs(1, 10);
System.out.println(kinds); }
}
/***
*
* 标题: 振兴中华 小明参加了学校的趣味运动会其中的一个项目是跳格子。
地上画着一些格子每个格子里写一个字如下所示也可参见p1.jpg
* 从我做起振我做起振兴做起振兴中起振兴中华
*
* 比赛时先站在左上角的写着“从”字的格子里可以横向或纵向跳到相邻
的格子里但不能跳到对角的格子或其它位置。一直要跳到“华”字结束。
*
* 要求跳过的路线刚好构成“从我做起振兴中华”这句话。 请你

帮助小明算一算他一共有多少种可能的跳跃路线呢
*/
class Node {
int x, y;

public Node(int xx, int yy) {
x = xx;
y = yy;
}
}

public class Main {
static int kinds = 0, dir[][] = { { 0, 1 }, { 1, 0 } };
static Node aim[] = new Node[8]; static boolean vis[][] = new boolean[4][5];
static void dfs(int start, int n) {
if (start == n)
kinds++;
else {
Node pre = aim[start];
for (int i = 0; i < 2; i++) {
int x = pre.x + dir[i][0];
int y = pre.y + dir[i][1]; if (x < 4 && y < 5 && !vis[x][y]) { vis[x][y] = true; aim[start + 1] = new Node(x, y); dfs(start + 1, n); vis[x][y] = false; }
}
}
}

public static void main(String[] args) {
aim[0] = new Node(0, 0);
dfs(0, 7); System.out.println(kinds); }
}

/* * 标题: 黄金连分数

黄金分割数0.61803... 是个无理数这个常数十分重要在许多工程问题中会
出现。有时需要把这个数字求得很精确。
对于某些精密工程常数的精度很重要。也许你听说过哈勃太空望远镜它首次
升空后就发现了一处人工加工错误对那样一个庞然大物其实只是镜面加工时
有比头发丝还细许多倍的一处错误而已却使它成了“近视眼”!!

言归正传我们如何求得黄金分割数的尽可能精确的值呢有许多方法。
比较简单的一种是用连分数
1 黄金数 = --------------------- 1 1 + ----------------- 1 1 +
------------- 1 1 + --------- 1 + ...

这个连分数计算的“层数”越多它的值越接近黄金分割数。
请你利用这一特性求出黄金分割数的足够精确值要求四舍五入到小数点后100
位。
小数点后3位的值为0.618 小数点后4位的值为0.6180 小数点后5位的值为
0.61803 小数点后7位的值为0.6180340 注意尾部的0不能忽略
你的任务是写出精确到小数点后100位精度的黄金分割值。
注意尾数的四舍五入 尾数是0也要保留
*/
import java.math.BigDecimal;

public class Main {
public static void main(String[] args) {
BigDecimal one, ans;
ans = one = BigDecimal.ONE;
for (int i = 0; i < 1000; i++) {
ans = one.add(ans);
ans = one.divide(ans, 200, BigDecimal.ROUND_HALF_UP);
System.out.println(ans); }
System.out.println(ans.setScale(100,
BigDecimal.ROUND_HALF_UP)); }
}


/*
* 标题错误票据
某涉密单位下发了某种票据并要在年终全部收回。
每张票据有唯一的ID号。全年所有票据的ID号是连续的但ID的开始数码是随机
选定的。
因为工作人员疏忽在录入ID号的时候发生了一处错误造成了某个ID断号另外一个ID重号。
你的任务是通过编程找出断

号的ID和重号的ID。
假设断号不可能发生在最大和最小号。
要求程序首先输入一个整数N(N<100)表示后面数据行数。接着读入N行数据。每
行数据长度不等是用空格分开的若干个不大于100个正整数不大于100000
每个整数代表一个ID号。
要求程序输出1行含两个整数m n用空格分隔。其中m表示断号IDn表示重
号ID
例如用户输入
2
5 6 8 11 9
10 12 9
则程序输出7 9

再例如用户输入6
164 178 108 109 180 155 141 159 104 182 179 118 137 184 115 124 125 129
168 196172 189 127 107 112 192 103 131 133 169 158 128 102 110 148 139
157 140 195 197185 152 135 106 123 173 122 136 174 191 145 116 151 143
175 120 161 134 162 190149 138 142 146 199 126 165 156 153 193 144 166
170 121 171 132 101 194 187 188113 130 176 154 177 120 117 150 114 183
186 181 100 163 160 167 147 198 111 119
则程序输出105 120
资源约定峰值内存消耗含虚拟机 < 64MCPU消耗 < 2000ms
*/
import java.util.Scanner;

public class Main {
static int hash[] = new int[100001];

public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
int N = cin.nextInt();
int min = 100001, max = -1;
int m = 0, n = 0;
String strLine = cin.nextLine();// 过滤第一次输入n带来的回车换

while (N-- != 0) {
strLine = cin.nextLine();
Scanner s = new Scanner(strLine);
while (s.hasNextInt()) {
int t = s.nextInt();
min = Math.min(t, min);
max = Math.max(t, max); hash[t]++; }
}
for (int i = min; i <= max; i++) {
if (hash[i] == 0)
m = i;
if (hash[i] == 2)
n = i;
}
System.out.println(m + " " + n);
}
}


/*
* 标题幸运数
幸运数是波兰数学家乌拉姆命名的。它采用与生成素数类似的“筛法”生成。
首先从1开始写出自然数1,2,3,4,5,6,.... 1 就是第一个幸运数。 我们从2这个
数开始。把所有序号能被2整除的项删除变为
1 _ 3 _ 5 _ 7 _ 9 ....
把它们缩紧重新记序为 1 3 5 7 9 .... 。这时3为第2个幸运数然后
把所有能被3整除的序号位置的数删去。注意是序号位置不是那个数本身能
否被3整除!! 删除的应该是511, 17, ...
此时7为第3个幸运数然后再删去序号位置能被7整除的(19,39,...)
最后剩下的序列类似
1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75,
79, ...
本题要求
输入两个正整数m n, 用空格分开 (m < n < 1000*1000)程序输出 位于m和n之间
的幸运数的个数不包含m和n。
例如用户输入1 20程序输出5
例如用户输入30 69程序输出8
*/

import java.util.Scanner;

public class Main {
sta

tic int a[] = new int[500000 + 1];

static void lucky(int start, int a[], int len) {
int k = start, num = a[start];
for (int i = k; i < len; i++)
if (i % num != 0)
a[k++] = a[i];
if (num < len) lucky(start + 1, a, k);
}

public static void main(String[] args) {
int len = 500000, kinds = 0;
for (int i = 1; i < len; i++)
a[i] = 2 * i - 1;
lucky(2, a, len); Scanner cin = new Scanner(System.in); int m = cin.nextInt();
int n = cin.nextInt();
long sta = System.currentTimeMillis();
for (int i = 1; i < len; i++) {
if (a[i] >= n || a[i] == a[i - 1])
break;
if (a[i] > m && a[i] < n)
kinds++;
}
System.out.println(kinds);
}
}

/*
* 标题带分数
100 可以表示为带分数的形式100 = 3 + 69258 / 714
还可以表示为100 = 82 + 3546 / 197
注意特征带分数中数字1~9分别出现且只出现一次不包含0。
类似这样的带分数100 有 11 种表示法。
题目要求从标准输入读入一个正整数N (N<1000*1000)程序输出该数字用数码
1~9不重复不遗漏地组成带分数表示的全部种数。注意不要求输出每个表示
只统计有多少表示法

例如用户输入100
程序输出11
再例如用户输入105
程序输出6
*/
import java.util.Scanner;

public class Main {
static int kinds = 0;
static int a[] = new int[10]; static boolean vis[] = new boolean[10];// 全排列避免重复

static int sum(int start, int end) {
int sum = 0;
for (int i = start; i < end; i++)
sum = sum * 10 + a[i + 1];
return sum;
}

static void check(int a[], int n, int num) {
int begin = 1, temp = num;
while ((temp = temp / 10) != 0)
begin++;
for (int k = 1; k < begin + 1; k++) {
int num1 = sum(0, k);
if (num1 >= num)
return;// 加快跳出
for (int j = k + (n - k) / 2; j < n - 1; j++) {
int num2 = sum(k, j);
int num3 = sum(j, n - 1); if (num2 > num3 && num2 % num3 == 0
&& num == num1 + num2 / num3) {
kinds++;
}
}
}
}

static void dfs(int start, int n, int num) {
if (start == n) {
check(a, n, num);
} else {
for (int i = 1; i < n; i++)// 全排列
{
if (vis[i])
continue;
a[start] = i;
vis[i] = true; dfs(start + 1, n, num); vis[i] = false; }
}
}
public static void main(String[] args) {
Scanner cin = new Scanner(System.in); int num = cin.nextInt();
long start = System.currentTimeMillis();
dfs(1, 10, num); long end = System.currentTimeMillis(); // System.out.println(end-start);//运行时间
System.out.println(kinds);
}
}


/*
* 标题连号区间数
小明这些天一直在思考这样一个奇怪而有趣的问题


在1~N的某个全排列中有多少个连号区间呢这里所说的连号区间的定义是
如果区间[L, R] 里的所有元素即此排列的第L个到第R个元素递增排序后能
得到一个长度为R-L+1的“连续”数列则称这个区间连号区间。
当N很小的时候小明可以很快地算出答案但是当N变大的时候问题就不是那
么简单了现在小明需要你的帮助。
输入格式第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。第
二行是N个不同的数字Pi(1 <= Pi <= N) 表示这N个数字的某一全排列。
输出格式输出一个整数表示不同连号区间的数目。
示例用户输入4
3 2 4 1
程序应输出7
用户输入5
3 4 2 5 1
程序应输出9
解释第一个用例中有7个连号区间分别是
[1,1], [1,2], [1,3], [1,4], [2,2], [3,3], [4,4]
第二个用例中有9个连号区间分别是
[1,1], [1,2], [1,3], [1,4], [1,5], [2,2], [3,3], [4,4], [5,5]
*/
import java.util.Scanner;

public class Main {
static int kinds = 0;

static void lianhao(int a[]) {
for (int i = 1; i < a.length; i++) {
int min = a[i];
int max = a[i];
for (int j = i; j < a.length; j++) { min = Math.min(min, a[j]);
max = Math.max(max, a[j]); if (max - min == j - i) {
kinds++;
}
}
}
}

public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
int n = cin.nextInt();
int a[] = new int[n + 1];
for (int i = 1; i <= n; i++)
a[i] = cin.nextInt();
long start = System.currentTimeMillis();
lianhao(a); System.out.println(kinds); }
}

相关文档
最新文档