平行线的有关证明中考题精选
七年级数学平行线经典证明题
经典平行线经典证明题一、选择题:1.如图,能与∠α构成同旁内角的角有( ) A . 5个B .4个C . 3个D . 2个α2.如图,AB ∥CD ,直线MN 与AB 、CD 分别交于点E 和点F ,GE ⊥MN ,∠1=130°,则∠2等于 ( ) A .50° B .40° C .30° D .65°3.如图,DE ∥AB ,∠CAE=31∠CAB ,∠CDE=75°,∠B=65°则∠AEB 是 ( ) A .70° B .65° C .60° D .55° 4.如图,如果AB ∥CD ,则α∠、β∠、γ∠之间的关系是( ) A 、0180=∠+∠+∠γβα B 、0180=∠+∠-∠γβα C 、0180=∠-∠+∠γβα D 、0270=∠+∠+∠γβα 5.如图所示,AB ∥CD,则∠A+∠E+∠F+∠C 等于( )A.180°B.360°C.540°D.720°6.如图,OP ∥QR ∥ST ,则下列各式中正确的是( )A 、∠1+∠2+∠3=180°B 、∠1+∠2-∠3=90°C 、∠1-∠2+∠3=90°D 、∠2+∠3-∠1=180° 7.如图,AB ∥DE ,那么∠BCD 于( )A 、∠2-∠1B 、∠1+∠2C 、180°+∠1-∠2D 、180°+∠2-2∠1二、填空题:8.把一副三角板按如图方式放置,则两条斜边所形成的钝角α=_______度.α45°30°9.求图中未知角的度数,X=_______,y=_______.10.如图,AB∥CD,AF平分∠CAB,CF平分∠ACD.(1)∠B+∠E+∠D=________;(2)∠AFC=________.11.如图,AB∥CD,∠A=120°,∠1=72°,则∠D的度数为__________.12.如图,∠BAC=90°,EF∥BC,∠1=∠B,则∠DEC=________.13.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于14.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α=____三、计算证明题:15.如图,在四边形ABCD中,∠A=104°-∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F,能辨认∠1=∠2吗?试说明理由.16..如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?17.已知:如图23,AD平分∠BAC,点F在BD上,FE∥AD交AB于G,交CA的延长线于E,求证:∠AGE=∠E。
平行线的证明题及答案
平行线的证明题及答案关于平行线的证明题及答案平行线是几何的知识,关于平行线的证明该怎么解决呢?这类的证明蕴含着那些数学原理呢?下面就是店铺给大家整理的平行线的证明内容,希望大家喜欢。
平行线的证明方法一当∠BPD=∠B+∠D时可以判断AB∥CD过P作PE∥AB则∠BPE=∠B而∠BPD=∠B+∠D∴∠EPD=∠D故PE∥CD∴AB∥CD证明:如果a‖b,a‖c,那么b‖c 证明:假使b、c不平行则b、c交于一点O 又因为a‖b,a‖c 所以过O有b、c两条直线平行于a 这就与平行公理矛盾所以假使不成立所以b‖c 由同位角相等,两直线平行,可推出:内错角相等,两直线平行。
同旁内角互补,两直线平行。
因为a‖b,a‖c, 所以b‖c (平行公理的推论)平行线的证明方法二“两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。
一、怎样证明两直线平行证明两直线平行的常用定理(性质)有: 1.两直线平行的判定定理:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行(或垂直)于同一直线的两直线平行. 2、三角形或梯形的中位线定理. 3、如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 4、平行四边形的性质定理. 5、若一直线上有两点在另一直线的同旁 ).(A)艺l=匕3(B)/2=艺3(C)匕4二艺5(D)匕2+/4=18)分析:利用平行线判定定理可判断答案选 C \认六一值!小人﹃夕叱的一试勺洲洲川JL ZE一B \/(一、图月一飞 /匕\一|求且它们到该直线的距离相等,则两直线平行. 例1(2003年南通市)已知:如图l,下列条件中,不能判断直线l,//l:的是(B). 例2(2003年泉州市)如图2,△注Bc中,匕BAC 的平分线AD交BC于D,④O过点A,且和BC切于D,和AB、Ac分别交B于E、F,设EF交AD于C,连结DF. (l)求证:EF// Bc(1)根据定义。
平行线专项证明题
1.已知:如图,CE平分∠ACD,∠1=∠2.求证:AB∥CD.2.如图,M,N,T和P,Q,R分别在同一直线上,且∠1=∠3,∠P=∠T.求证:∠M=∠R.3.如图,直线m⊥l,n⊥l,∠1=∠2.求证:∠3=∠4.4. 如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H. ∠GFH+∠BHC=180°.求证:.5如图,已知∠B=∠C,AD∥BC,求证:AD平分∠CAE.6.如图,已知,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠AEF,∠1=40°,求∠2的度数.7.如图,DB ∥FG ∥EC ,∠ABD =60°,∠ACE =36°,AP 平分∠BAC.求∠PAG 的度数.8: 如图1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°,求∠C .9.如图,直线AB 、CD 被直线EF 所截,∠AEF +∠CFE =180°,∠1=∠2,则图中的∠H 与∠G 相等吗?说明你的理由. (12分)10.如图(6),DE ⊥AB ,EF ∥AC ,∠A=35°,求∠DEF 的度数。
A 1 BC DEF G H 211.如图①是长方形纸带,将纸带沿EF 折叠成图②,再沿BF 折叠成图③.(1)若图①中∠DEF=20°,则图③中∠CFE 的度数是多少?(2)若图①中∠DEF=α,把图③中∠CFE 的度数用α表示是多少?12、如图,已知l1∥l2,MN 分别和直线l1、l2交于点A 、B ,ME 分别和直线l1、l2交于点C 、D ,点P 在MN 上(P 点与A 、B 、M 三点不重合).(1)如果点P 在A 、B 两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由;(2)如果点P 在A 、B 两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).13、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °.(2)在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.(3)由(1)、(2),请你猜想:当两平面镜a 、b 的夹角∠3= °时,可以使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行.你能说明理由吗?321n m b a。
(完整版)平行线证明(填理由)
平行线证明(填理由)、填空题(本大题共4小题,共12.0分)1. 已知,如图,BE平分/ ABC /仁/ 2,据提示填空.•/ BE平分/ ABC(已知)/•Z 1=7 3 (______________ )又•••/仁/ 2 (已知)•- _____ =7 2 (_____________ )•- _____ 〃______ ( _______________ )•••7 AED= _____ ( _______________ ).2. 根据解答过程填空:如图,已知7 DAF7 F,7 B=7 D,那么AB与DC平行吗? 解:•••/ DAF7 F (已知)•- _____ 〃______ ( _______ )•7 D=7 DCF( _____ )又•••/ D=7 B ( ______ )•7______ =7 DCF(等量代换)•AB// DC( ____ )3. 如图,已知FGLAB CD£AB 垂足分别为G D, 7仁7 2, 求证:7 CED-7 ACB=180 .请你将小明的证明过程补充完整.证明:••• FGLAB CD£AB垂足分别为G D (已知)•7 FGB7 CDB=90 ( ________ ),•GF// CD ( _____ ).••• GF// CD(已证)•7 2=7 BCD ( _____ )又仁72 (已知),•7 1=7 BCD ( _____ ),• _____ , ( _______ )•7 CED-7 ACB=180 _____ .4. 补全证明过程,即在横线处填上遗漏的结论或理由. 已知:如图,7 1=7 2,7 C=7 D.求证:7 A=7 F.证明:1=7 2 (已知)又7 仁7 DMN( _____ )•7 2=7 _____ (等量代换)•DB// EC ( ____ )•7 C=7 ABD( _____ )T7 C=7 D (已知)•7 D=7 ABD( _____ )• _____ (内错角相等,两直线平行)/•Z A=Z F ( _____ )二、解答题(本大题共 12小题,共96.0分)5. (1)问题发现:如图①,直线 AB//CD E 是AB 与AD 之间的一点,连接 BE CE 可 以发现 Z B+Z C=Z BEC请把下面的证明过程补充完整:证明:过点E 作EF// AB••• AB// DC (已知),EF// AB (辅助线的作法)./• EF// DC( _____ ).•••Z C=Z CEF( ____ )•/ EF// AB /Z B=Z BEF (同理).•Z B+Z C= ______ (等量代换)即 Z B+Z C=Z BEC(2) 拓展探究:如果点 E 运动到图②所示的位置,其他条件不变,进一步探究发现: Z B+Z C=360 - Z BEC 请说明理由.(3)解决问题:如图③,AB// DC Z C=12C ° , Z AEC=80,请直接写出ZA 的度数.6. 阅读下列推理过程,在括号中填写理由.已知:如图,点D E 分别在线段 AB BC 上, AC// DE DF// AE 交BC 于点F, AE 平分Z BAC 求 证:DF 平分Z BDE证明:••• AE 平分Z BAC(已知)• Z 1=Z2 ( ______________________________ )•/ AC// DE(已知)• Z 1=Z 3 () 故Z 2=Z 3 () •••DF// AE(已知)• Z 2=Z 5 () • Z 3=Z 4 ( )圉①••• DF平分/ BDE( _________________________ )7. 如图(1), AB// CD猜想/ BPD与/ B/D的关系,说出理由.解:猜想/ BPD/ B+/ D=360理由:过点P作EF// AB•/ B+/ BPE=180 (两直线平行,同旁内角互补)•/ AB// CD EF// AB•EF/ CD (如果两条直线都和第三条直线平行,那么这两条直线也互相平行. )•/ EPD/ D=180 (两直线平行,同旁内角互补)•••/ B+/ BPE/ EPD/ D=360•••/ B+/ BPD/ D=360(1)依照上面的解题方法,观察图(2),已知AB// CD猜想图中的/ BPD与/ B/D 的关系,并说明理由.(2)观察图(3)和(4),已知AB// CD猜想图中的/ BPD与/ B/D的关系,不需要说明理由.A ------------ BC—P (4)8.如图,已知,CD// EF, /仁/ 2,求证:/ 3=/ ACB请补全证明过程.证明:••• CD// EF,( _____ )•/ 2=/ DCB (两直线平行,同位角相等)•••/仁/ 2, ( _____ )•/ 仁/ DCB ( _______ )•GD/ CB ( _______ )•/ 3=/ ACB ( _______ )9.在横线上填写理由,完成下面的证明.如图,已知/ 1+/2=180°, / B=/ 3,求证/ C=/证明:T/ 1+/2=180°(已知),/ 1+/ DFE=180AED•/ 2=/ DFE( ______ )• AB// EF ( _____ )•/ 3=/ ADE( _____ )又•••/ B=/ 3 (已知)•/ B=/ ADE( _____ )•DE// BC ( _____ ))•••/ C=Z AED( ______ )10. 阅读下面的证明过程,在每步后的横线上填写该步推理的依据. 如图,/ E=Z 1,Z 3+Z ABC=180 , BE是/ ABC的角平分线,求证:DF// AB.证明:••• BE是/ ABC的角平分线•••/ 1=Z 2 ( ___________ )又•••/ E=Z1/•Z E=Z 2 ( ____________ )•AE// BC ( ____________ )•Z A+Z ABC=180 ( ____________ )又T Z 3+Z ABC=180•Z A=Z 3 ( ____________ )•DF// AB ( ____________ ).11. 填空:如图,已知DE// AC Z A=Z DEF试说明AB// EF. 解:••• DE// AC _____________ _•Z A=Z BDE ___T Z A=Z DEF _____•Z BDE Z DEF ___ .•AB// EF ______12. 完成下面的证明:已知:如图,AB// DE 求证:Z D+Z BCD - Z B=180°, 证明:过点C作CF// AB.T AB// CF (已知),•Z B= _____ ( ______ ).T AB// DE CF// AB( 已知 ),•CF// DE ( ______ )•Z 2+ ____ =180 ( ______ )T Z 2=Z BCD- Z 1,•Z D+Z BCD- Z B=180°( _____ ).13. 完成下面推理过程.如图:在四边形ABCD中, Z A=106 - a,Z ABC=74+a,BDLDC于点D, EF±DC于点F,求证:Z仁Z2证明:T Z A=106 - a,Z ABC=74 + a(已知)•Z A+Z ABC=180•AD// ____ ( _____________ )•••/1= ______ ( _______________ )•/ BDL DC EF± DC(已知)•••/ BDF2 EFC=90 ( ________ )• BD// ______ ( _____________ )2= _____ ( _______________ )•••/ 仁/ 2 ( _______ )14. 完成下面的证明(在括号中填写推理理由) 如图,已知/ A=Z F,Z C=Z D,求证:BD// CE 证明:因为/ A=Z F,所以AC// DF ( ______ ),所以/ C+Z _____ =180 ( ________ ).因为/ C=Z D,所以Z D+Z _____ =180 ( ________ ),所以BD// CE ( ______ ).15. 如图AB// CD Z 仁Z 2,Z 3=Z 4,试说明AD// BE 解:••• AB// CD (已知)•Z 4=Z ______ ( _______ )•••Z 3=Z 4 (已知)•Z 3=Z ______ ( _______ )•Z仁Z 2 (已知)•Z 1+Z CAF Z 2+Z CAF( _____ )即Z _____ = Z_______ ( ______ )•Z 3=Z _____•AD// BE ( ____ )16. 如图,已知EF// AD Z 仁Z 2,Z BAC=70,求Z AGD(请填空)解:• EF// AD•Z 2= _____ ( ______又T Z 1=Z2•Z 1=Z 3 ( ______ )•AB// _____ ( _____ )•Z BAC+ ____ =180 ( ________ )•Z BAC=70 ( ______ )•Z AGD= ____ ( ______ )。
平行线培优练习题及中考真题
相交线与平行线一、选择题1. (2011山东德州4,3分)如图,直线l 1∥l 2, ∠1=40°,∠2=75°,则∠3等于 (A )55° (B ) 60° (C )65° (D ) 70°【答案】C2. (2011山东日照,3,3分)如图,已知直线AB CD ∥,125C ∠=°,45A ∠=°,那么E ∠的大小为( ) (A )70° (B )80° (C )90° (D )100°【答案】B3. (2011山东泰安,8 ,3分)如图,l ∥m ,等腰直角三角形ABC 的直角顶点C 在直线m 上,若∠β=200,则∠α的度数为( )A.250B.300C.200D.350 【答案】A4. (2011四川南充市,3,3分) 如图,直线DE 经过点A,DE ∥BC,,∠B=60°,下列结论成立的是( )(A )∠C=60° (B )∠DAB=60° (C )∠EAC=60° (D )∠BAC=60°EDCBAl 1l 2123【答案】B5. (2011山东枣庄,2,3分)如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( )A .30° B.40° C .60° D.70° 【答案】A6. (2010湖北孝感,3,3分)如图,直线AB 、CD 相交于点O ,OT ⊥AB 于O ,CE ∥AB 交CD 于点C ,若∠ECO=30°,则∠DOT=( ) A.30° B.45° C. 60° D. 120°【答案】C7. (2011河北,2,2分)如图1∠1+∠2=( )1图1A .60°B .90°C .110°D .180° 【答案】B8. (2011宁波市,8,3分)如图所示,AB ∥CD ,∠E =37°, ∠C =20°, ∠EAB 的度数为 A . 57° B . 60° C . 63° D. 123°【答案】A9. (2011浙江衢州,12,4分)如图,直尺一边AB 与量角器的零刻度线CD 平行,若量角器的一条刻度线OF 的读书为70°,OF 与AB 交于点E ,那么AEF ∠= 度.A CB D E【答案】7010.(2011浙江绍兴,3,4分)如图,已知//,,34AB CD BC ABE C BED ∠∠=︒∠平分,则 的度数是( )A.17︒B. 34︒C. 56︒D. 68︒AD【答案】D11. (2011浙江义乌,8,3分)如图,已知AB ∥CD ,∠A =60°,∠C =25°,则∠E 等于A. 60°B. 25°C. 35°D. 45° 【答案】C12. (2011四川重庆,4,4分)如图,AB ∥CD ,∠C =80°,∠CAD =60°,则∠BAD 的度数等于( )A .60°B .50°C . 45°D . 40° 【答案】D13. (2011浙江丽水,5,3分)如图,有一块含有45°角的直角三角板的两个顶点放在直尺ABCDE60°的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15° 【答案】B14. (2011台湾台北,8)图(二)中有四条互相不平行的直线L 1、L 2、L 3、L 4所截出的七个角。
中考九年级数学考点提升训练——专题二十三:平行线的证明
备战2021中考数学考点提升训练——专题二十三:平行线的证明一.填空题1.如果三角形的三个内角的度数比是2:3:4,则它是三角形(填锐角、直角或钝角).2.如图,△ABC中,∠A=90°,点E、F分别在AB、AC边上,D是BC边上一动点(与点B、C不重合).若∠1=60°,则∠2+∠3=度.3.如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形的两条直角边相交成∠1、∠2,则∠2﹣∠1=°.4.如图,已知OM∥a,ON∥a,所以点O、M、N三点共线的理由.5.如图,a∥b,若∠1=50°,则∠2=.二.选择题1.下列说法正确的个数有()①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系要么相交要么平行;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个B.2个C.3个D.4个2.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为()A.20°B.125°C.20°或125°D.35°或110 3.下列说法中正确的个数有()①经过一点有且只有一条直线与已知直线垂直;②经过直线外一点,有且只有一条直线与已知直线平行;③连接直线外一点与直线上各点的所有线段中,垂线段最短;④两条直线相交,对顶角相等.A.1个B.2个C.3个D.4个4.下列命题中是真命题的是()A.相等的角是对顶角B.数轴上的点与实数一一对应C.同旁内角互补D.无理数就是开方开不尽的数5.下列说法正确的是()A.两点之间,直线最短B.永不相交的两条直线叫做平行线C.若AC=BC,则点C为线段AB的中点D.两点确定一条直线6.如图,AB∥CD,射线AE交CD于点F,若∠1=114°32',则∠2的度数是()A.55°32′B.65°28′C.65°32′D.75°28′7.如图所示,已知AB∥CD,则()A.∠1=∠2+∠3 B.∠1>∠2+∠3 C.∠2=∠1+∠3 D.∠1<∠2+∠3 8.如图,△ABC的∠ABC和∠ACB的角平分线BE,CF相交于点O,∠A=60°,则∠BOC的大小为()A.110°B.120°C.130°D.150°9.如图,在△ABC中,∠A=50°,∠1=30°,∠2=40°,∠D的度数是()A.110°B.120°C.130°D.140°10.如图,AD∥BC,BD为∠ABC的角平分线,DE、DF分别是∠ADB和∠ADC的角平分线,且∠BDF=α,则以下∠A与∠C的关系正确的是()A.∠A=∠C+αB.∠A=∠C+2αC.∠A=2∠C+αD.∠A=2∠C+2α11.如图在△ABC中,BD、BE分别是△ABC的高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F,②2∠BEF=∠BAF+∠C,③∠F =∠BAC﹣∠C,④∠BED=∠ABE+∠C,其中正确的是()A.①②③B.①③④C.①④D.①②④12.如图,将一张长方形纸片ABCD沿AE折叠,若∠BAD′=26°,则∠AED′等于()A.68°B.64°C.58°D.26°13.如图,下列条件中,不能判定l1∥l2的是()A.∠1=∠3 B.∠2+∠4=180°C.∠2=∠3 D.∠4+∠5=180°14.如图,AC∥DE,AB∥DF,EF∥BC,∠B=∠C,则图中与∠B相等的角(∠B除外)有()A.5个B.6个C.7个D.8个三.解答题1.如图,AC平分∠MAE,AE交DB于点F.(1)若AB∥CE,∠BAE=50°,求∠ACE的度数;(2)若∠AFB=∠CAM,说明∠ACE=∠BDE的理由.2.如图,已知∠1=∠2,∠BAC=20°,∠ACF=80°.(1)求∠2的度数;(2)求证:FC∥AD.3.如图,已知∠1=∠2,∠B=∠C,求证:AB∥CD.4.如图,四边形ABCD中,AB∥DC,AB=AD,求证:BD平分∠ADC.5.如图,AD⊥BC,垂足为D,点E、F分别在线段AB、BC上,∠1=∠2,∠C+∠ADE=90°.(1)求证:DE∥AC;(2)判断EF与BC的位置关系,并证明你的猜想.。
中考数学模拟题汇总《平行线的证明》专项练习(附答案解析)
中考数学模拟题汇总《平行线的证明》专项练习(附答案解析)一、综合题1.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.2.如图,在矩形ABCD中,E是BC边上的点,AE=BC ,DF⊥AE,垂足为F,连接DE。
(1)求证:AB=DF;(2)若CE=1,AF=3,求DF的长。
3.如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D在同一直线上,且AB∥DE,连接AE.(1)求证:△ABC≌△DCE.(2)当BC=5,AC=12时,求AE的长.4.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//AB交BC于点E(如图4).若在射线BA上存在点F,使SΔDCF=SΔFDE,请直接写出相应的BF的长.5.如图, ∠1+∠2=180° , ∠DEF=∠A , ∠BED=70° .(1)求证: EF//AB :(2)求∠ACB的度数.6.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.7.在△ABC中,点D在直线AB上,在直线BC上取一点E,连接AE,DE,使得 AE=DE,DE交AC于点G,过点D作DF∥AC,交直线BC于点F,∠EAC=∠DEF.(1)当点E在BC的延长线上,D为AB的中点时,如图1所示.①求证:∠EGC=∠AEC;②若DF=3,求BE的长度;(2)当点E在BC上,点D在AB的延长线上时,如图2所示,若CE=10,5EG=2DE,求AG的长度.8.如图1,在Rt△ABC中,∠C=90°,AC=BC=2√2,点D、E分别在边AC、AB上,AD=DE=12AB,连接DE .将△ADE绕点A顺时针方向旋转,记旋转角为θ .(1)(问题发现)①当θ=0°时,BECD =;②当θ=180°时,BECD=;(2)(拓展研究)试判断:当0°≤θ<360°时,BECD的大小有无变化?请仅就图2的情形给出证明;(3)(问题解决)在旋转过程中,求出BE的最大值.9.如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,的值;①求BCAEEG最小值.②若点G为AE上一点,求OG+ 1210.如图,已知在菱形ABCD中,AB=5,cosB=3,点E、F分别在边BC、CD上,AF的延长5∠BAD.线交BC的延长线于点G,且∠EAF=12(1)求证:AE2=EC⋅EG;(2)如果点F是边CD的中点,求S△ABE的值;(3)延长AE、DC交于点H,联结GH、AC,如果△AGH与△ABC相似,求线段BE的长.11.如图,四边形ABCD中,AB∥CD,点O在BD上,以O为圆心的圆恰好经过A、B、C三点,⌢=CE⌢,连接OA、OF.⊙O交BD于E,交AD于F,且AE(1)求证:四边形ABCD是菱形;(2)若∠AOF=3∠FOE,求∠ABC的度数.,过点C作CD∥AB,点E在边AC上,AE=CD,联结12.在△ABC中,AB=AC=10,sin∠BAC= 35AD,BE的延长线与射线CD、射线AD分别交于点F、G.设CD=x,△CEF的面积为y.(1)求证:∠ABE=∠CAD.(2)如图,当点G在线段AD上时,求y关于x的函数解析式及定义域.(3)若△DFG是直角三角形,求△CEF的面积.13.在ΔABC中,∠A=90°,AB=8cm,AC=6cm,点M,点N同时从点A出发,点M沿边AB以4cm/s的速度向点B运动,点N从点A出发,沿边AC以3cm/s 的速度向点C运动(点M不与A,B重合,点N不与A,C重合),设运动时间为xs .(1)求证:ΔAMN∽ΔABC;(2)当x为何值时,以MN为直径的⊙O与直线BC相切?(3)把ΔAMN沿直线MN折叠得到ΔMNP,若ΔMNP与梯形BCNM重叠部分的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?14.如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD=OB .连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45∘ .(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求EF的值.FG15.小东在做九上课本123页习题:“1:√2也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:√2.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.16.在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF//BC,交射线CA于点F.请解答下列问题:(1)当点E在线段AB上,CD是△ACB的角平分线时,如图①,求证:AE+BC=CF;(提示:延长CD,FE交于点M.)(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,如图②;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,如图③,请直接写出线段AE,BC,CF之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若DE=2AE=6,则CF=.参考答案与解析1.【答案】(1)证明:∵MN∥BC,CE平分∠ACB,CF平分∠ACD,∴∠BCE=∠ACE=∠OEC,∠OCF=∠FCD=∠OFC,∴OE=OC,OC=OF,∴OE=OF(2)解:当O运动到AC中点时,四边形AECF是矩形,∵AO=CO,OE=OF,∴四边形AECF是平行四边形,∵∠ECA+∠ACF= 12∠BCD,∴∠ECF=90°,∴四边形AECF是矩形2.【答案】(1)证明:在矩形ABCD中∴BC=AD AD∥BC,∠B=∠C=90°∴∠DAF=∠AEB∵DF⊥AE,AE=BC,∴∠AFD=90°=∠B,AE=AD∴△ABE≌△DFA,∴AB=DF(2)解:由(1)可得△ABE≌△DFA,∴AF=BE=3,DF=AB=CD∴∠DFE=∠DCE∴△DFE≌△DCE,∴CE=EF=1,AE=4在Rt△ABE中,AB= √42−32 = √73.【答案】(1)证明:∵AB∥DE,∴∠BAC=∠D.在△ABC和△DCE中,{∠B=∠DCE∠BAC=∠DAC=DE∴△ABC≌△DCE(AAS)(2)解:由(1)可得△ABC≌△DCE,∴CE=BC=5,在Rt△ACE中,AE=√AC2+CE2=√122+52=13.4.【答案】(1)DE∥AC;S1=S2(2)解:如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,{∠ACN=∠DCM∠CMD=∠N=90°AC=CD,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2(3)解:如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD= 12∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB= 12×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,{DF1=DF2∠CDF1=∠CDF2CD=CD,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD= 12×60°=30°,又∵BD=4,∴BE= 12×4÷cos30°=2÷√32= 4√33,∴BF1= 4√33,BF2=BF1+F1F2= 4√33+ 4√33= 8√33,故BF的长为4√33或8√33.5.【答案】(1)解:∵∠1+∠DFE=180°,∴∠1+∠2=180°.∴∠DFE=∠2,∴EF//AB;(2)解:∵EF//AB , ∴∠DEF=∠BDE. 又∵∠DEF=∠A , ∴∠BDE=∠A , ∴DE//AC , ∴∠ACB=∠DEB. 又∵∠DEB=70°, ∴∠ACB=70°.6.【答案】(1)解:连接OF ;根据切线长定理得:BE=BF ,CF=CG ,∠OBF=∠OBE ,∠OCF=∠OCG ; ∵AB ∥CD ,∴∠ABC+∠BCD=180°, ∴∠OBE+∠OCF=90°, ∴∠BOC=90°(2)解:由(1)知,∠BOC=90°.∵OB=6cm ,OC=8cm ,∴由勾股定理得到:BC= √OB 2+OC 2 =10cm ,∴BE+CG=BC=10cm(3)解:∵OF ⊥BC ,∴∠BFO=∠OFC=90°∵∠BOC=90°∴∠BOF+∠COF=90°,∠COF+∠FCO=90°。
中考数学模拟题汇总《平行线的判定》专项练习(附答案解析)
中考数学模拟题汇总《平行线的判定》专项练习(附答案解析)一、综合题1.已知:如图,四边形ABCD中,对角线AC,BD相交于点O,AB=AC=AD,∠DAC=∠ABC.(1)求证:BD平分∠ABC;(2)若∠DAC=45°,OA=1,求OC的长.2.已知等腰直角△ABC中,∠BAC=90°,AB=AC,以A为顶点作等腰直角△ADE,其中AD=DE.(1)如图1,点E在BA的延长线上,连接BD,若∠DBC=30°,若AB=6,求BD的值;(2)将等腰直角△ADE绕点A顺时针旋转至图2,连接BE,CE,过点D作DF⊥CE交CE的延长线于F,BE;交BE于M,求证:BM=12(3)如图3,等腰直角△ADE的边长和位置发生变化的过程中,DE边始终经过BC的中点G,连接BE,N 为BE中点,连接AN,当AB=6且AN最长时,连接NG并延长交AC于点K,请直接写出△ANK的面积.3.如图,一条抛物线经过原点和点C(8,0),A、B是该抛物线上的两点,AB∥x轴,点A坐标为(3,4),点E在线段OC上,点F在线段BC上,且满足∠BEF=∠AOC .(1)求抛物线的解析式;(2)若四边形OABE的面积为14,求S△ECF;(3)是否存在点E,使得△BEF为等腰三角形?若存在,求点E的坐标;若不存在,请说明理由. 4.如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二次函数”,如图所示二次函数y1 = x2 + 2x + 2与y2 = x2 - 2x + 2是“关于y轴对称二次函数”.(1)二次函数y= 2(x + 2)2 + 1的“关于y轴对称二次函数”解析式为;二次函数y = a(x - h)2 + k的“关于y轴对称二次函数”解析式为;(2)如备用图,平面直角坐标系中,记“关于y轴对称二次函数”的图象与y轴的交点为A,它们的两个顶点分别为B,C,且BC=6,顺次连接点A,B,O,C得到一个面积为24的菱形,求“关于y轴对称二次函数”的函数表达式.(3)在第(2)题的情况下,如果M是两个抛物线上的一点,以点A,O,C,M为顶点能否构成梯形. 若能,求出此时M坐标;若不能,说明理由.5.如图1,我们把一副两个三角板如图摆放在一起,其中OA,OD在一条直线上,∠B=45°,∠C=30°,固定三角板ODC,将三角板OAB绕点O按顺时针方向旋转,记旋转角∠AOA'=α(0<α<180°).(1)在旋转过程中,当α为度时,A'B'∥OC,当α为度时,A'B'⊥CD;(2)如图2,将图1中的△OAB以点O为旋转中心旋转到△OA'B'的位置,求当α为多少度时,OB'平分∠COD;(3)当90°<α<120°时,连接A'D,利用图3探究∠B'A'D+∠B'OC+∠A'DC值的大小变化情况,并说明理由.6.如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D。
(必考题)初中数学八年级数学上册第七单元《平行线的证明》测试题(含答案解析)(4)
一、选择题1.下列说法正确的是( )A .一组数据6,5,8,8,9的众数是8B .甲、乙两组学生身高的方差分别为2 2.3S =甲,2 1.8S =乙.则甲组学生的身高较整齐C .命题“若||1a =,则1a =”是真命题D .三角形的外角大于任何一个内角2.如图,△ABC 中,∠BAC =58°,∠C =82°,∠BAC 的平分线AD 交BC 于点D ,点E 是AC 上一点,且∠ADE =∠B ,则∠CDE 的度数是( )A .29°B .39°C .42°D .52°3.下列说法正确的有( )①每个定理都有逆定理;②每个命题都有逆命题;③假命题没有逆命题;④真命题的逆命题是真命题A .1个B .2个C .3个D .4个4.如图,有下列说法:①若13∠=∠,//AD BC ,则BD 是ABC ∠的平分线;②若//AD BC ,则123∠=∠=∠;③若13∠=∠,则//AD BC ;④若34180C ∠+∠+∠=,则//AD BC .其中正确的有( ).A .1个B .2个C .3个D .45.如图,在△ABC 中,∠ACB=90°,D 在AB 上,将△ABC 沿CD 折叠,点B 落在AC 边上的点B′处,若'20ADB ∠=︒,则∠A 的度数为( )A .25°B .30°C .35°D .40°6.下列命题为真命题的是( )A .内错角相等,两直线平行B .面积相等的两个三角形全等C .若a b >,则22a b ->-D .一般而言,一组数据的方差越大,这组数据就越稳定7.一个三角形的三个内角中( )A .至少有一个等于90°B .至少有一个大于90°C .不可能有两个大于89°D .不可能都小于60°8.如图,已知ACF DBE?△≌△,下列结论:① AC DB =;② AB DC =;③ DCF ABE ∠∠=;④AF//DE ;⑤ACF DBES S =△△;⑥BC AF =;⑦CF //BE .其中正确的有( )A .4?个B .5?个C .6?个D .7个 9.如图,△CEF 中,∠E=70°,∠F=50°,且AB ∥CF ,AD ∥CE ,连接BC ,CD ,则∠A 的度数是( )A .40°B .45°C .50°D .60°10.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .内错角不一定相等C .平行于同一直线的两条直线平行D .若数a 使得a a >-,则a 一定小于011.如图,在四边形ABCD 中,要得到AB CD ∥,只需要添加一个条件,这个条件可以是( )A .13∠=∠B .24∠∠=C .BD ∠=∠ D .12180B ∠+∠+∠=︒12.如图,AB ∥DE ,80,45B D ︒︒∠=∠=则C ∠的度数为( )A .50︒B .55︒C .60︒D .65︒二、填空题13.在△ABC 中,∠C =90°,如∠A 比∠B 小24°,则∠A =_____度.14.将一副直角三角尺所示放置,已知//AE BC ,则AFD ∠的度数是__________.15.如图,在△ABC 中,点D 在BC 上,将点D 分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF ,根据图中标示的角度,可求得∠EAF 的度数为___________.16.如图,将△ABC 沿着DE 对折,点A 落到A ′处,若∠BDA ′+∠CEA ′=70°,则∠A =_____.17.若△ABC 中,AD 是BC 边上的高线,AE 平分∠BAC ,∠B =40°,∠C =50°,则∠EAD=_____°.18.如图,AE ∥CF ,∠ACF 的平分线交AE 于点B ,G 是CF 上的一点,∠GBE 的平分线交CF 于点D ,且BD ⊥BC ,下列结论:①BC 平分∠ABG ;②AC ∥BG ;③与∠DBE 互余的角有2个;④若∠A =α,则∠BDF =1802α︒-.其中正确的有_____.(把你认为正确结论的序号都填上)19.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截,同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点()P x,y 的坐标满足xy 0<,那么点 P 一定在第二象限.其中正确命题的序号为 ___.20.如图,BD =BC ,BE =CA ,∠DBE =∠C =60°,∠BDE =75°,则∠AFE 的度数等于_____.三、解答题21.如图,已知ABC 与ADG 均为等边三角形,点E 在GD 的延长线上,且GE AC =,连接AE 、BD .(1)求证:AGE DAB ≌△△;(2)F 是BC 上的一点,连接AF 、EF ,AF 与GE 相交于M ,若AEF 是等边三角形,求证://BD EF .22.如图①,在ABC 中,,CD CE 分别是ABC 的高和角平分线,(),BAC B αβαβ∠=∠=∠>(1)若70,40BAC B ︒︒∠=∠=,求DCE ∠的度数(2)若(),BAC B αβαβ∠=∠=∠>,则DCE ∠= (用含,αβ的代数式表示); (3)若将ABC 换成钝角三角形,如图②,其他条件不变,试用含,αβ的代数式表示DCE ∠的度数,并说明理由;(4)如图③,若CE 是ABC 外角ACF ∠的平分线,交BA 延长线与点E ,且30αβ︒-=,则DCE ∠= (直接写出结果)23.(感知)如图①,//AB CD ,130PAB ∠=︒ ,120PCD ∠=︒.求APC ∠的度数.(提示:过点P 作直线//PQ AB )(探究)如图②,//AD BC ,点P 在射线OM 上运动,ADP a ∠=∠ ,BCP β∠=∠. (1)当点P 在线段AB 上运动时,CPD ∠,α∠,β∠之间的数量关系为_______________.(2)当点P 在A ,B 两点外侧运动时(点P 与点A ,B ,O 三点不重合),直接写出CPD ∠,a ∠,β∠ 之间的数量关系为____________________________________________________________.24.如图,已知:AD BC ⊥于D,EG BC ⊥于G,AD 平分BAC ∠.求证:1E ∠∠=.下面是部分推理过程,请你填空或填写理由.证明:∵AD BC EG BC ⊥⊥,(已知),∴ADC EGC 90∠∠==︒(垂直的定义),∴AD //EG ( ) ∴21∠=∠( ),3∠= ( ).又∵AD 平分BAC ∠(已知),∴23∠∠=( ),∴1E ∠∠=( )25.如图,直线AB ∥CD ,EF ⊥CD ,F 为垂足,∠GEF=30°,求∠1的度数.26.在ABC 中,ABC ∠与ACB ∠的平分线相交于点P .(1)如图①,如果80A ∠=︒,求BPC ∠的度数;(2)如图②,作ABC 外角MBC ∠,NCB ∠的角平分线,且交于点Q ,试探索Q ∠,A ∠之间的数量关系;(3)如图③,在图②中延长线段BP ,QC 交于点E 若BQE △中存在一个内角等于另一个内角的2倍,求A ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别根据众数、方差、真命题、三角形外角定理等知识逐项判断即可求解.【详解】解:A.“一组数据6,5,8,8,9的众数是8”,判断正确,符合题意;B. “甲、乙两组学生身高的方差分别为2 2.3S =甲,2 1.8S =乙,则甲组学生的身高较整齐”,因为22S S 甲乙> ,所以乙组学生的身高较整齐,原判断错误,不合题意;C. 命题“若||1a =,则1a =±”,所以原判断错误,不合题意;D.“三角形的外角大于任何一个不相邻的内角”,所以原判断错误,不合题意. 故选:A .【点睛】本题考查了众数,方差,真假命题,三角形的外角等知识,熟知相关定理是解题关键. 2.A解析:A【分析】根据三角形的内角和得到∠B =180︒-∠BAC -∠C =40︒,根据角平分线的定义得到∠BAD=1∠BAC=29︒,根据三角形的外角的性质即可得到结论.2【详解】解:∵在△ABC中,∠BAC=58︒,∠C=82︒,∴∠B=180︒-∠BAC-∠C=180︒-58︒-82︒=40︒,∵AD平分∠BAC,∠BAC=29︒,∴∠BAD=12∴∠ADC=∠B+∠BAD=69︒,∵∠ADE=∠B=40︒,∴∠CDE=29︒,故选:A.【点睛】本题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解题的关键.3.A解析:A【分析】根据逆定理的定义,某一定理的条件和结论互换所得命题是真命题是这个定理的逆定理可以判断①,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,可判断②,利用命题分类分为真命题与假命题都是命题,都有逆命题,可判断③,真命题是正确的命题,真命题的逆命题有真假命题之分,可判断④即可.【详解】解:①每个定理都有逆命题,看根据逆命题的条件能否推出正确的结论,能推出,由逆定理,不能推出,没有逆定理,故①不正确;②每个命题都有逆命题;故②正确;③假命题也是命题,命题都有逆命题,故③不正确;④真命题的逆命题可能是假命题,也可能是真命题,根据条件能否推出正确的结论有关,能推出,由是真命题,不能推出,是假命题,故④不正确.正确的说法只有一个②.故选择:A.【点睛】本题考查命题,真命题,假命题,逆命题,定理,逆定理,掌握命题,真命题,假命题,逆命题,定理,逆定理的定义,以及它们的区别是解题关键.4.B解析:B【分析】根据平行线的性质和角平分线的定义,对各个选项逐个分析,即可得到答案.【详解】13∠=∠,//AD BC∴23∠∠=∴123∠=∠=∠∴BD 是ABC ∠的平分线,即①正确;若//AD BC ,得23∠∠=,14∠=∠,不构成123∠=∠=∠成立的条件,故②错误; 若13∠=∠,不构成//AD BC 成立的条件,故③错误;若34180C ∠+∠+∠=,且34ADC ∠+∠=∠∴180C ADC ∠+∠=∴//AD BC ,即④正确;故选:B .【点睛】本题考查了平行线和角平分线的知识,解题的关键是熟练掌握平行线的性质和角平分线的定义.5.C解析:C【分析】利用翻折不变性,三角形内角和定理和三角形外角的性质即可解决问题.【详解】∵∠ACB =90°,∴∠A +∠B =90°,∵△CDB′是由△CDB 翻折得到,∴∠CB′D =∠B ,∵∠CB′D =∠A +∠ADB′=∠A +20°,∴∠A +∠A +20°=90°,解得∠A =35°.故选:C .【点睛】本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.A解析:A【分析】根据平行线的判定和性质、三角形全等的判定、不等式的性质、方差的性质逐一判断即可.【详解】A 、内错角相等,两直线平行,是真命题,符合题意;B 、面积相等的两个三角形不一定全等,原命题是假命题,不符合题意;C 、若a b >,则22a b -<-,原命题是假命题,不符合题意;D 、一般而言,一组数据的方差越大,这组数据就越不稳定,原命题是假命题,不符合题意;故选:A .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.D解析:D【分析】根据三角形的内角性质、三角形的内角和定理逐项判断即可得.【详解】A 、反例:锐角三角形的三个内角均小于90︒,此项错误;B 、反例:锐角三角形的三个内角均小于90︒,此项错误;C 、反例:一个三角形的三个内角分别为89.5,89.5,1︒︒︒,此项错误;D 、因为三角形的内角和等于180︒,所以不可能都小于60︒,此项正确;故选:D .【点睛】本题考查了三角形的内角、三角形的内角和定理,熟练掌握三角形的内角和定理是解题关键.8.C解析:C【分析】利用ACF DBE △≌△得到对应边和对应角相等可以推出①③,根据对应角相等、对应边相等可推出②④⑦,再根据全等三角形面积相等可推出⑤,正确;根据已知条件不能推出⑥.【详解】解:①∵ACF DBE △≌△∴ AC DB =故①正确;②∵ AC DB =∴ AC-BC DB-BC =即: AB DC =,故②正确;③∵ACF DBE △≌△∴ ACF DBE ∠∠=;∴ 180-ACF 180-DBE ︒∠=︒∠即: DCF ABE ∠∠=,故③正确;④∵ACF DBE △≌△∴ A D ∠=∠;∴AF//DE ,故④正确;⑤∵ACF DBE △≌△∴ACF DBE S S =△△,故⑤正确;⑥根据已知条件不能证得BC AF =,故⑥错误;⑦∵ACF DBE △≌△∴ EBD FCA ∠=∠;∴CF //BE ,故⑦正确;故①②③④⑤⑦,正确的6个.故选C .【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应边相等,对应角相等是解答此题的关键.9.D解析:D【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】连接AC 并延长交EF 于点M .∵AB CF , ∴31∠=∠, ∵AD CE , ∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒,∴60BAD FCE ∠=∠=︒,故选D .【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.10.D解析:D【分析】利用三角形内角和对A 进行判断;根据内错角的定义对B 进行判断;根据平行线的判定方法对C 进行判断;根据绝对值的意义对D 进行判断.【详解】解:A 、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A选项为真命题;B、内错角不一定相等,所以B选项为真命题;C、平行于同一直线的两条直线平行,所以C选项为真命题;D、若数a使得|a|>-a,则a为不等于0的实数,所以D选项为假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.B解析:B【解析】A不可以;∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行),不能得出AB∥CD,∴A不可以;B可以;∵∠2=∠4,∴AB∥CD(内错角相等,两直线平行);∴B可以;C、D不可以;∵∠B=∠D,不能得出AB∥CD;∵∠1+∠2+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),不能得出AB∥BC;∴C、D不可以;故选B.12.B解析:B【分析】延长DE交BC于F,利用平行线的性质求出∠DFC=∠B=80°,再利用三角形的内角和定理求 的度数.出C【详解】延长DE交BC于F,如图,∵AB∥DE,∴∠DFC=∠B=80°,∵∠C+∠D+∠DFC=180°,∴∠C= =180°-∠D-∠DFC=55°,故选:B.【点睛】此题考查平行线的性质:两直线平行,同位角相等;三角形的内角和定理.二、填空题13.33【分析】设∠A为x则∠B=x+24°利用三角形内角和定理列方程求出x的值即可得答案【详解】设∠A为x∵∠A比∠B小24°∴∠B=x+24°∵∠C=90°∴90°+x+x+24°=180°解得:x解析:33【分析】设∠A为x,则∠B=x+24°,利用三角形内角和定理列方程求出x的值即可得答案.【详解】设∠A为x,∵∠A比∠B小24°,∴∠B=x+24°,∵∠C=90°,∴90°+x+x+24°=180°,解得:x=33°,即∠A=33°.故答案为:33【点睛】本题考查了三角形的内角和,能够用一个未知数表示其中的未知角,然后根据三角形的内角和定理列方程求解.14.【详解】根据平行线的性质及三角形内角和定理解答【点睛】解:由三角板的性质可知∠EAD=45°∠C=30°∠BAC=∠ADE=90°∵AE∥BC∴∠EAC=∠C=30°∴∠DAF=∠EAD-∠EAC=解析:75【详解】根据平行线的性质及三角形内角和定理解答.【点睛】解:由三角板的性质可知∠EAD=45°,∠C=30°,∠BAC=∠ADE=90°.∵AE∥BC,∴∠EAC=∠C=30°,∴∠DAF=∠EAD-∠EAC=45°-30°=15°.∴∠AFD=180°-∠ADE-∠DAF=180°-90°-15°=75°.故答案为:75°.本题考查的是平行线的性质及三角形内角和定理,平行线的性质:两直线平行同位角相等,同旁内角互补.三角形内角和定理:三角形的内角和等于180°.15.130°【分析】连接AD利用轴对称的性质三角形的内角和定理解答即可【详解】连接AD∵D点分别以ABAC为对称轴画出对称点EF∴∠EAB=∠BAD∠FAC =∠CAD∵∠B=63°∠C=52°∴∠BAC解析:130°【分析】连接AD,利用轴对称的性质、三角形的内角和定理解答即可.【详解】连接AD,∵D点分别以AB、AC为对称轴,画出对称点E、F,∴∠EAB=∠BAD,∠FAC=∠CAD,∵∠B=63°,∠C=52°,∴∠BAC=∠BAD+∠DAC=180°−63°−52°=65°,∴∠EAF=2∠BAC=130°,故答案为:130°.【点睛】此题考查轴对称的性质等知识点,关键是利用轴对称的性质解答.16.35°【分析】先根据折叠性质可求得∠A′DE=∠ADE∠A′ED=∠AED再和平角性质可求得根据平角定义和已知可求得∠ADE+∠AED=145°然后利用三角形的内角和定理即可求得∠A的度数【详解】解解析:35°【分析】先根据折叠性质可求得∠A′DE=∠ADE,∠A′ED=∠AED,再和平角性质可求得根据平角定义和已知可求得∠ADE+∠AED=145°,然后利用三角形的内角和定理即可求得∠A的度数.【详解】解:∵将△ABC沿着DE对折,A落到A′,∴∠A′DE=∠ADE,∠A′ED=∠AED,∴∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,∴∠BDA′+2∠ADE+∠A′EC+2∠AED=360°,∵∠BDA′+∠CEA′=70°,∴∠ADE+∠AED =145°,∴∠A =180°-(∠ADE+∠AED )=180°-145°=35°,故答案为:35°.【点睛】本题考查了折叠的性质、平角定义和三角形的内角和定理,熟练掌握折叠的性质是解答的关键.17.5【分析】由三角形的高得出求出由三角形内角和定理求出由角平分线求出即可得出的度数【详解】解:中是边上的高平分故答案为:5【点睛】本题考查了三角形内角和定理角平分线的定义角的和差计算;熟练掌握三角形内 解析:5【分析】由三角形的高得出90ADC ∠=︒,求出DAC ∠,由三角形内角和定理求出 BAC ∠,由角平分线求出EAC ∠,即可得出EAD ∠的度数.【详解】解:ABC ∆中,AD 是BC 边上的高,90ADC ∴∠=︒,90905040DAC C ,180180405090BAC B C , AE ∵平分BAC ∠, 11904522EAC BAC ,45405EAD EAC DAC .故答案为:5.【点睛】本题考查了三角形内角和定理、角平分线的定义、角的和差计算;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.18.①②④【分析】求出∠EBD +∠ABC =90°∠DBG +∠CBG =90°求出∠ABC =∠GBC 根据角平分线的定义即可判断①;根据平行线的性质得出∠ABC =∠BCG 求出∠ACB =∠GBC 根据平行线的判定解析:①②④.【分析】求出∠EBD +∠ABC =90°,∠DBG +∠CBG =90°,求出∠ABC =∠GBC ,根据角平分线的定义即可判断①;根据平行线的性质得出∠ABC =∠BCG ,求出∠ACB =∠GBC ,根据平行线的判定即可判断②;根据余角的定义即可判断③;根据平行线的性质得出∠EBG =∠A =α,求出∠EBD =12∠EBG =12α,根据平行线的性质得出∠EBD +∠BDF =180°,即可判断④.【详解】∵BD⊥BC,∴∠DBC=90°,∴∠EBD+∠ABC=180°﹣90°=90°,∠DBG+∠CBG=90°,∵BD平分∠EBG,∴∠EBD=∠DBG,∴∠ABC=∠GBC,即BC平分∠ABG,故①正确;∵AE∥CF,∴∠ABC=∠BCG,∵CB平分∠ACF,∴∠ACB=∠BCG,∵∠ABC=∠GBC,∴∠ACB=∠GBC,∴AC∥BG,故②正确;与∠DBE互余的角有∠ABC,∠CBG,∠ACB,∠BCG,共4个,故③错误;∵AC∥BG,∠A=α,∴∠EBG=∠A=α,∵∠EBD=∠DBG,∴∠EBD=12∠EBG=12α,∵AB∥CF,∴∠EBD+∠BDF=180°,∴∠BDF=180°﹣∠EBD=180°﹣12α,故④正确;故答案为:①②④.【点睛】本题考查了平行线的性质和判定,角平分线的定义等知识点,能灵活运用定理进行推理是解此题的关键.19.①③【分析】依次分析判断即可得到答案【详解】①在同一平面内过一点有且只有一条直线与已知直线垂直故该项正确;②两条平行线被第三条直线所截同旁内角互补故该项错误;③数轴上的每一个点都表示一个实数故该项正解析:①③【分析】依次分析判断即可得到答案.【详解】①在同一平面内,过一点有且只有一条直线与已知直线垂直,故该项正确;②两条平行线被第三条直线所截,同旁内角互补,故该项错误;③数轴上的每一个点都表示一个实数,故该项正确;④如果点()P x,y 的坐标满足xy 0<,则x 与y 异号,那么点P 在第二或第四象限,故该项错误;故答案为:①③.【点睛】此题考查命题的正确与否,正确掌握各知识点并熟练运用解题是关键.20.150°【分析】由三角形内角和定理可得∠E =45°由SAS 可证△ABC ≌△EDB 可得∠A =∠E =45°由三角形的外角性质可求∠AFD =30°即可求解【详解】解:∵∠DBE =60°∠BDE =75°∴∠解析:150°【分析】由三角形内角和定理可得∠E =45°,由“SAS ”可证△ABC ≌△EDB ,可得∠A =∠E =45°,由三角形的外角性质可求∠AFD =30°,即可求解.【详解】解:∵∠DBE =60°,∠BDE =75°,∴∠E =180°﹣60°﹣75°=45°,∵BD =BC ,BE =CA ,∠DBE =∠C =60°,∴△ABC ≌△EDB (SAS ),∴∠A =∠E =45°,∵∠BDE =∠A +∠AFD =75°,∴∠AFD =30°,∴∠AFE =150°,故答案为:150°.【点睛】本题考查了三角形内角和定理,全等三角形的判定和性质,三角形外角的性质,证明△ABC ≌△EDB 是解题关键.三、解答题21.(1)见解析;(2)见解析.【分析】(1)由等边三角形的性质,解得60BAC DAG ∠=∠=︒,,AB BC AC AD DG AG ====,结合GE AC =,可证明ABD ≅()GEA SAS ; (2)由等边三角形的性质,解得60ABC AGD ∠=∠=︒,60ABC AEF ∠=∠=︒继而根据同位角相等,两直线平行判定//GE BC ,由两直线平行,内错角相等解得EFC GEF ∠=∠,接着由全等三角形的对应角相等得到ABD GEA ∠=∠,最后由角的和差解得DBF GEF ∠=∠整理得DBF EFC ∠=∠据此解题即可.【详解】解:(1)ABC 与ADG 均为等边三角形,60BAC DAG ∴∠=∠=︒,,AB BC AC AD DG AG ====GE AC =∴GE AB =在DAB 与AGE 中,AD AG BAD EGA AB GE =⎧⎪∠=∠⎨⎪=⎩ABD ∴≅()GEA SAS ;(2)ABC 与ADG 均为等边三角形,60ABC AGD ∴∠=∠=︒ //GE BC ∴EFC GEF ∴∠=∠ABD ≅()GEA SASABD GEA ∴∠=∠若AEF 是等边三角形,60ABC AEF ∴∠=∠=︒ABC ABD AEF GEA ∴∠-∠=∠-∠即DBF GEF ∠=∠DBF EFC ∴∠=∠//BD EF ∴.【点睛】本题考查等边三角形的性质、全等三角形的判定与性质、平行线的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)15°;(2)1122a β-;(3)1122a β-,理由见解析;(4)75°. 【分析】(1)根据三角形的内角和180°解得=70BCA ∠︒、20DCA ∠=︒,再根据角平分线的性质,得到35ACE ∠=︒,最后由DCE ACE DCA ∠=∠-∠解题即可;(2)根据三角形的内角和180°解得BCA ∠、DCA ∠的度数,再根据角平分线的性质,得到ACE ∠的度数,最后由DCE ACE DCA ∠=∠-∠解题即可;(3)根据三角形的内角和180°解得BCA ∠、DCA ∠的度数,再根据角平分线的性质,得到BCE ∠的度数,最后由DCE BCD BCE ∠=∠-∠解题即可;(4)根据角平分线的性质,12FCE ECA FCA ∠=∠=∠,结合三角形一个外角等于不相邻的两个内角和,解得1()2ECA αβ∠=+,根据三角形的内角和180°解得DCA ∠的度数,最后由DCE DCA ACE ∠=∠+∠解题即可.【详解】(1)180BAC B BCA ∠+∠+∠=︒,70,40BAC B ∠=︒∠=︒=180704070BCA ∴∠︒-︒-︒=︒ CE 平分BCA ∠11703522ACE BCA ∴∠=∠=⨯︒=︒, CD AB ⊥180907020DCA ∴∠=︒-︒-︒=︒352015DCE ACE DCA ∴∠=∠-∠=︒-︒=︒;(2)若(),BAC B αβαβ∠=∠=∠>,=180BCA αβ∴∠︒-- CE 平分BCA ∠1111(180)902222ACE BCA αβαβ∴∠=∠=︒--=︒--, CD AB ⊥1809090DCA αα∴∠=︒-︒-=︒-11119022(90)22DCE ACE DCA αβαβα∴∠=∠-∠=-︒-=︒---, 故答案为:1122a β-; (3)若将ABC 换成钝角三角形,(),BAC B αβαβ∠=∠=∠>,=180BCA αβ∴∠︒-- CE 平分BCA ∠1111(180)902222BCE ACE BCA αβαβ∴∠=∠=∠=︒--=︒--, CD AB ⊥1809090BCD ββ∴∠=︒-︒-=︒-DCE BCD BCE ∴∠=∠-∠1190(90)22βαβ=︒--︒-- 01190229βαβ︒+=︒--+ 1122αβ=- 故答案为:1122αβ-; (4)CE 是ABC 外角ACF ∠的平分线,12FCE ECA FCA ∴∠=∠=∠ 由三角形的外角性质得,11=()22FCE ECA FCA αβ∴∠=∠=∠+ CD AB ⊥1809090ACD αα∴∠=︒-︒-=︒-DCE ACD ACE ∴∠=∠+∠190()2ααβ=︒-++ 119022αβ=︒-+ 190()2αβ=︒-- 30αβ-=︒19030752DCE ∴∠=︒-⨯︒=︒ 故答案为:75︒.【点睛】本题考查角平分线的性质、三角形内角和180°、三角形外角性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.23.【感知】110︒;【探究】(1)CPD αβ∠=∠+∠;(2)CPD αβ∠=∠-∠或CPD βα∠=∠-∠.【分析】根据平行线性质知两直线平行同旁内角互补可以求出,∠APQ 和∠CPQ ,探究(1)作//PQ BC ,根据两直线平行内错角相等结合等量代换即可得出结论;(2)分类讨论当P 在AM 上或OB 上时两种情况,分别作平行线结合两直线平行内错角相等进行求证即可.【详解】解:过点P 作直线//PQ AB ,∵//AB CD ,∴//PQ CD .∴180PAB APQ ∠+∠=︒,180QPC PCD ∠+∠=︒,∵130PAB ∠=︒,120PCD ∠=︒,∴50APQ ∠=︒,60CPQ ∠=︒,∴5060110APC ∠=︒+︒=︒.∴APC ∠的度数为110︒.探究(1)CPD αβ∠=∠+∠.如图②:作//PQ BC ,∵//AD BC ,∴////PQ BC AD ,∴∠DPQ=∠α,∠CPQ=∠β ,∴DP C Q PD CPQ αβ∠+∠=∠=∠+∠;(2)CPD αβ∠=∠-∠或CPD βα∠=∠-∠.如图③:当P 在AM 上时,作//PQ BC ,∵//AD BC ,∴////PQ BC AD ,∴∠DPQ=∠α,∠CPQ=∠β ,∴CP C Q PD DPQ βα∠-∠=∠=∠-∠;当P 在OB 上时,同理:CPD αβ∠=∠-∠.综上所述,CPD βα∠=∠-∠或CPD αβ∠=∠-∠.【点睛】此题主要考查平行线的性质:两直线平行,内错角相等,同旁内角互补等结合等量代换进行证明,做辅助线进行转化是关键.24.同位角相等,两直线平行;两直线平行,内错角相等;∠E ;两直线平行,同位角相等;角平分线的定义;等量代换.【分析】根据垂直的定义、平行线的判定与性质、角平分线的定义以及等量代换进行解答即可.【详解】证明:∵AD BC EG BC ⊥⊥,(已知),∴ADC EGC 90∠∠==︒(垂直的定义),∴AD //EG (同位角相等,两直线平行)∴21∠=∠(两直线平行,内错角相等),3∠=∠E (两直线平行,同位角相等).又∵AD 平分BAC ∠(已知),∴23∠∠=(角平分线的定义),∴1E ∠∠=(等量代换).【点睛】本题主要考查了垂直的定义、平行线的判定与性质和角平分线的定义等知识点,灵活应用平行线的判定与性质成为解答本题的关键.25.120°【分析】由EF ⊥CD ,∠GEF=30°,根据直角三角形中两个锐角互余,即可求得∠EGF 的度数,根据邻补角的定义得到∠CGE 的度数,又由两直线平行,同位角相等,即可求得∠1的度数.【详解】∵EF ⊥CD 于点F ,∴∠EFG=90°,∴∠EGF=90°﹣∠GEF=90°﹣30°=60°,∵∠CGE+∠EGF=180°,∴∠CGE=180°﹣60°=120°,∵AB ∥CD ,∴∠1=∠CGE=120°(两直线平行,同位角相等).【点睛】此题考查了平行线的性质与直角三角形的性质.此题比较简单,注意掌握两直线平行,同位角相等定理的应用.26.(1)130︒;(2)1902Q A ∠=︒-∠;(3)A ∠的度数是90°或60°或120° 【分析】(1)运用三角形的内角和定理及角平分线的定义,首先求出∠PBC+∠PCB ,进而求出∠BPC 即可解决问题;(2)根据三角形的外角性质分别表示出∠MBC 与∠BCN ,再根据角平分线的性质可求得∠CBQ+∠BCQ ,最后根据三角形内角和定理即可求解;(3)在△BQE 中,由于∠Q=90°12-∠A ,求出∠E=12∠A ,∠EBQ=90°,所以如果△BQE 中,存在一个内角等于另一个内角的2倍,那么分四种情况进行讨论:①∠EBQ=2∠E=90°;②∠EBQ=2∠Q=90°;③∠Q=2∠E ;④∠E=2∠Q ;分别列出方程,求解即可.【详解】(1)∵80A ∠=︒,∴100ABC ACB ∠+∠=︒,又∵点P 是ABC ∠和ACB ∠的平分线的交点,∴50PBC PCB ∠+∠=︒,∴()180********P PBC PCB ∠=︒-∠+∠=︒-︒=︒;(2)∵外角MBC ∠,NCB ∠的角平分线交于点Q , ∴12QBC MBC ∠=∠,12QCB NCB ∠=∠,∵180ABC MBC ∠+∠=︒,180ACB NCB ∠+∠=︒,∴180MBC ABC ∠=︒-∠,180NCB ACB ∠=︒-∠, ∴()12QBC QCB MBC NCB ∠+∠=∠+∠ ()13602ABC ACB =︒-∠-∠ ()1360180-2A =︒-︒∠⎡⎤⎣⎦ ()11802A =︒+∠ 1902A =+∠︒, ∴()180Q QBC QCB ∠=︒-∠+∠1180902A ⎛⎫=︒-︒+∠ ⎪⎝⎭1902A =︒-∠; (3)延长BC 至F ,∵CQ 为△ABC 的外角∠NCB 的角平分线,∴CE 是△ABC 的外角∠ACF 的平分线,∴∠ACF=2∠ECF ,∵BE 平分∠ABC ,∴∠ABC=2∠EBC ,∵∠ECF=∠EBC+∠E ,∴2∠ECF=2∠EBC+2∠E ,即∠ACF=∠ABC+2∠E ,又∵∠ACF=∠ABC+∠A ,∴∠A=2∠E ,即∠E=12∠A , ∵∠EBQ=∠EBC+∠CBQ=12∠ABC+12∠MBC=12(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则∠E=30°,解得∠A=2∠E=60°;④∠E=2∠Q,则∠E=60°,解得∠A=2∠E=120°.综上所述,∠A的度数是90°或60°或120°.【点睛】本题是三角形综合题,考查了三角形内角和定理、外角的性质,角平分线定义等知识;灵活运用三角形的内角和定理、外角的性质进行分类讨论是解题的关键.。
平行线的判定与性质(含答案)-
22.平行线的判定与性质知识纵横在同一平面内,不相交的两条直线叫做平行线(parallel lines).角是平面几何图形中最活跃的元素,前面我们已学习过特殊角、•数量关系角等角的知识。
当两条直线相交或分别与第三条直线相交,就产生对顶角、同位角、内错角、同旁内角等位置关系角,进一步丰富了角的知识,它们在角的计算与证明中有广泛的应用。
与平行线相关的问题一般都是平行线的判定与性质的综合运用,主要体现在如下两个方面:1.由角定角 已知角的关系−−−→判定两直线平行−−−→性质确定其他角的关系.2.由线定线 已知两直线平行−−−→性质角的关系−−−→判定确定其他两直线平行.例题求解【例1】如图,AB ∥CD,AC ⊥BC,图中与∠CAB 互余的角有_______个.(2003年安徽省中考题)思路点拨 充分运用对顶角、平行线性质等与角相关的知识,借助互余的概念判断。
解:3个 提示:分别为∠BCD,∠ABC,∠EBF. 【例2】如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有( • ).A.4对B.8对C.12对D.16对 (第11届“希望杯”邀请赛试题) 思路点拨 每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解入手。
解:选D 提示:原图形可分解出如下8个基本图形.BFDG E C AB FHD GECA【例3】如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°,求证:AB∥EF思路点拨解本例的困难在于图形中没有“三线八角”,考虑创造条件,在图中添置“三线八角”或作出与AB或CD平行的直线。
解:过C点作CG∥AB,过点D作DH∥AB,可证得∠HDE=10°=∠DEF,故HD∥EF,•又HD∥AB,所以AB∥EF.【例4】如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线.•求证:∠EDF=∠BDF.思路点拨综合运用角平分线、垂直(vertical)的定义、平行线的判定与性质等知识,因图形复杂,故需恰当分解图形.解:提示:由DF∥CE得,∠BDF=∠BCE,∠FDE=∠DEC,由AC∥DE得,∠DEC=∠ECA【例5】探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?B F DE CAB FDECAB (a)DE CA B (b)DEC A(c)B D EC A B (d)F DG E C A F 2E nE 2F n-1F 1B(e)DE 1CA思路点拨:已知AB ∥CD,连结AB 、CD 的折线内折或外折;或改变E 点位置、•或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间。
七年级10道平行线证明题
七年级10道平行线证明题
以下是七年级的10道平行线证明题:
题目:已知直线AB与CD相交于点O,且∠AOC = ∠BOD。
求证:AB ∥ CD。
题目:在直线AB上取一点O,作射线OC,使∠AOC = ∠BOC。
求证:OA ∥ OC。
题目:已知∠1 = ∠2,∠2 = ∠3,且∠1和∠3是内错角。
求证:AB ∥ CD。
题目:在△ABC中,若∠A = ∠B,则BC边上的中线AD等于BC的一半。
求证:AD ∥ BC。
题目:已知∠1 = ∠2,∠3 = ∠4,且∠1和∠3是同位角。
求证:EF ∥ GH。
题目:在梯形ABCD中,若AD ∥ BC,且∠A = ∠B,求证:梯形ABCD是等腰梯形。
题目:在△ABC中,若∠C = 90°,且AC = BC,D为AB的中点。
求证:CD ⊥ AB。
题目:已知∠1 + ∠2 = 180°,∠2 + ∠3 = 180°,求证:AB ∥ CD。
题目:在△ABC中,若∠A = ∠B = ∠C,则△ABC是等边三角形。
求证:AB ∥ BC ∥ CA。
题目:已知∠1 = ∠2,∠3 = ∠4,且∠1和∠3是同旁内角。
求证:EF ∥ GH。
这些题目涵盖了平行线的多种性质和判定方法,通过练习这些题目,学生可以加深对平行线概念的理解,提高解题能力。
平行线有关比值的计算与证明知识讲解
平行线有关比值的计算与证明比值的求(证)法方法1 直接法例1、如图,ABCD为正方形,A. E. F. G在同一条直线上,并且AE=5cm,EF=3cm,求FG.例1 练11、已知,如图在△ABC中,AE=ED=DC,FE∥MD∥BC,FD的延长线交BC的延长线于N,则EF:BN为___.例2、如图,▱ABCD中,AC、BD交于点O,E是DC延长线上一点,连结OE,交BC于F,AB=4,BC=6,CE=2,求CF的长。
例2 练22、如图,▱ABCD中,E是AB的中点,在AD上截取2AF=FD,EF交AC于G,求AGGC的值。
方法2 等线代换法例3、如图,菱形ABCD内接于△AEF,AE=5,AF=4,求菱形的边长。
例3 练3 练43、(上海中考)如图,已知在△ABC中,点D. E. F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于___.4、(2016临沂)如图,已知在△ABC中,点D. E. F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AB=8,BD=3,BF=4,那么CF等于___.方法3 等比代换法例4、(2016临夏)如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:OA2=OE•OF.例4 练5 例55、如图,在△ABC中,DE∥BC,EF∥CD,求证:AF:AD=AD:AB.方法4 等积代换法例5、如图,在△ABC中,D是AB上一点,E是△ABC内一点,DE∥BC,过D作AC 的平行线交CE的延长线于F,CF与AB交于P,求证:PE:PF=PA:PB.方法5 集中转化法例6、如图,梯形ABCD中,AB∥CD,AB=12,CD=9,过对角线交点O作EF∥AB交AD于E,交BC于F. 求EF的长。
例6 练66、(株洲中考)如图,已知AB、CD、EF都与BD垂直,垂足分别是B.D. F,且AB=1,CD=3,那么EF的长是___.方法6 平行转化法例7、如图,在△ABC中,AC=BC,F为底边AB上一点,BF:AF=3:2,取CF 的中点D,连接AD并延长交BC于点E,求BE:EC的值.例7 练77、已知,△ABC中,D、E分别是BC、AB上的点,AD、CE交于F,且CD=1:3,BC:AE=2:5AB.求s△ACF:s△CDF的值。
初中数学平行线证明专题训练含答案
平行线证明专题训练一.选择题(共16小题)1.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O.若∠BOC=130°,则∠A的度数为()A.100°B.90°C.80°D.70°2.下列命题为假命题的是()A.直角都相等B.对顶角相等C.同位角相等D.同角的余角相等3.下列命题中:正确的说法有()①成轴对称的两个图形一定全等;②直线l经过线段AB的中点,则l是线段AB的垂直平分线;③一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形;④等腰三角形是轴对称图形,对称轴是顶角的角平分线.A.1个B.2个C.3个D.4个4.下列命题是真命题的是()A.如果a>b,a>c,那么b=cB.相等的角是对顶角C.一个角的补角大于这个角D.一个三角形中至少有两个锐角5.如图,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB,要使DF∥BC,只需再有下列条件中的()即可.A.∠1=∠2B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD 6.如图,已知∠1=∠2,则有()A.AD∥BC B.AB∥CD C.∠ABC=∠ADC D.AB⊥CD7.如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.36°B.72°C.50°D.46°8.在△ABC中,∠A=35°,∠B=80°,则∠C=()A.85°B.75°C.65°D.55°9.如图,将木条a,b与c钉在一起,∠1=85°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.15°B.25°C.35°D.50°10.图中,∠2的度数是()A.110°B.70°C.60°D.40°11.如图,在△ABC中,AD平分∠BAC,AE是高,若∠B=40°,∠C=60°,则∠EAD 的度数为()A.30°B.10°C.40°D.20°12.如图,BD是∠ABC的角平分线,CD是∠ACB的角平分线,∠BDC=120°,则∠A的度数为()A.40°B.50°C.60°D.75°13.如图,△ABC中,∠A=75°,∠B=65°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为()A.40°B.45°C.50°D.60°14.对于命题“若a>b,则a2>b2”,能说明它属于假命题的反例是()A.a=2,b=1B.a=﹣1,b=﹣2C.a=﹣2,b=﹣1D.a=﹣1,b=1 15.能说明命题“若a2=b2,则a=b”是假命题的一个反例可以是()A.a=2,b=﹣2B.a=2,b=3C.a=﹣2,b=﹣2D.a=﹣2,b=﹣3 16.如图,下列条件中能得到AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠1=∠4D.∠2=∠3二.填空题(共3小题)17.如图,△ABC中,∠A=80°,△ABC的两条角平分线交于点P,∠BPD的度数是_____.18.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠AOB=_____.19.如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=75°,则∠BDF的度数为_____.三.解答题(共8小题)20.已知:如图∠B=40°,∠B=∠BAD,∠C=∠ADC,求∠DAC的度数.21.如图,在下列解答中,填写适当的理由或数学式:(1)∵AD∥BE,(已知)∴∠B=∠_____.(_____)(2)∵∠E+∠_____=180°,(已知)∴AC∥DE.(_____)(3)∵_____∥_____,(已知)∴∠ACB=∠DAC.(_____)22.如图,在△ABC中,∠B=60°,∠C=40°,AD是∠BAC的角平分线,AE是高,求∠EAD的度数.23.如图,∠1=∠2,∠A=∠F,求证:∠C=∠D.请阅读下面的解答过程,并填空(理由或数学式)证明:∵∠1=∠2(已知)∠1=∠3(_____)∴∠2=∠3(等量代换)∴BD∥_____(_____)∴∠4=_____(_____)又∵∠A=∠F(已知)∴AC∥_____(_____)∴∠4=_____(_____)∴∠C=∠D(等量代换)24.如图,在△ABC中,BO,CO分别平分∠ABC和∠ACB.(Ⅰ)若∠A=60°,则∠BOC的度数为_____;(Ⅱ)若∠A=100°,则∠BOC的度数_____;(Ⅲ)若∠A=α,求∠BOC的度数,并说明理由.25.已知:如图,∠1+∠2=180°,∠A=∠D.求证:AB∥CD.(在每步证明过程后面注明理由)26.(1)如图,在三角形纸片ABC中.∠A=64°,∠B=76°,将纸片的一角折叠,使点C落在△ABC内部,折痕为MN.如果∠1=17°,求∠2的度数;(2)小明在(1)的解题过程中发现∠1+∠2=2∠C,小明的这个发现对任意的三角形都成立吗?请说明理由.27.如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.试说明:∠A=∠F.请同学们补充下面的解答过程,并填空(理由或数学式).解:∵∠AGB=∠DGF(_____)∠AGB=∠EHF(已知)∴∠DGF=∠EHF(_____)∴_____∥_____(_____)∴∠D=_____(_____)∵∠D=∠C(已知)∴_____=∠C(_____)∴_____∥_____(_____)∴∠A=∠F(_____)平行线证明专题训练参考答案与试题解析一.选择题(共16小题)1.解:在△OBC中,∠OBC+∠OCB=180﹣∠BOC=180﹣130=50°,又∵∠ABC、∠ACB的平分线交于点O.∴∠ABC+∠ACB=2∠OBC+2∠OCB=2(∠OBC+∠OCB)=100°∴∠A=180﹣(∠ABC+∠ACB)=180﹣100=80°故选:C.2.解:A、直角都相等,是真命题;B、对顶角相等,是真命题;C、两直线平行,同位角相等,则同位角相等是假命题;D、同角的余角相等,是真命题;故选:C.3.解:①成轴对称的两个图形一定全等,故符合题意;②直线l经过线段AB的中点且垂直线段,则l是线段AB的垂直平分线,故不符合题意;③一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,故符合题意;④等腰三角形是轴对称图形,对称轴是顶角的角平分线所在的直线.故不符合题意故选:B.4.解:A、如果a>b,a>c,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、个三角形中至少有两个锐角,原命题是真命题;故选:D.5.解:∵EF∥AB,∴∠1=∠2,∵∠1=∠DFE,∴∠2=∠DFE,∴DF∥BC,故选:B.6.解:∵∠1=∠2,∴AB∥CD,故选:B.7.解:由折叠的性质得:∠D=∠C=36°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+72°,则∠1﹣∠2=72°.故选:B.8.解:∵∠A=35°,∠B=80°,∴∠C=180°﹣∠A﹣∠B=180°﹣35°﹣80°=65°,故选:C.9.解:∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是85°﹣50°=35°.故选:C.10.解:∵∠1=60°+20°=80°,∴∠2=180°﹣60°﹣80°=40°,故选:D.11.解:∵∠B=40°,∠C=60°,∠B+∠C+∠BAC=180°∴∠BAC=80°又∵AD平分∠BAC∴∠CAD=40°∵AE⊥BC,∠C=60°∴∠AEC=90°,∠CAE=30°∴∠EAD=10°,故选:B.12.解:∵BD、CD是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠D=180°﹣(∠DBC+∠DCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=120°,∴∠A=60°;故选:C.13.解:∵∠A=75°,∠B=65°,∴∠C=180°﹣(65°+75°)=40°,∴∠CDE+∠CED=180°﹣∠C=140°,∴∠2=360°﹣(∠A+∠B+∠1+∠CED+∠CDE)=360°﹣300°=60°.故选:D.14.解:对于命题“若a>b,则a2>b2”,能说明它属于假命题的反例是a=﹣1,b=﹣2,a>b,但(﹣1)2<(﹣2)2,故选:B.15.解:能说明命题“若a2=b2,则a=b”是假命题的一个反例是a=2,b=﹣2,a2=b2,但a=﹣b,故选:A.16.解:A,∠1=∠2不能判定两条直线平行;不符合题意;B,∠3=∠4不能判定两条直线平行,不符合题意;C,∠1=∠4可以判定AD∥BC,不符合题意;D,∠2=∠3可以判定AB∥CD,根据内错角相等,两条直线平行,符合题意.故选:D.二.填空题(共3小题)17.解:∵△ABC中,∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∵△ABC的两条角平分线交于点P,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=(∠ABC+ACB)=×100°=50°,∴∠BPD=∠PBC+∠PCB=50°;故答案为:50°.18.解:∵AD平分∠BAC,CE平分∠ACB,∠DAC=30°,∠ECA=35°,∴∠BAC=2∠DAC=60°,∠ACB=2∠ECA=70°,∴∠ABC=180°﹣∠BAC﹣∠ACB=50°.∵△ABC的三条角平分线交于一点,∴BO平分∠ABC,∴∠ABO=∠ABC=25°,∴∠AOB=180°﹣25°﹣30°=125°故答案为125°19.解:∵DE∥BC,∴∠ADE=∠B=75°,又∵∠ADE=∠EDF=75°,∴∠BDF=180°﹣75°﹣75°=30°,故答案为30°.三.解答题(共8小题)20.解:∵∠B=40°,∴∠B=∠BAD=40°,∴∠ADC=80°,∴∠C=∠ADC=80°,∴∠DAC=180°﹣80°﹣80°=20°.21.解:(1)∵AD∥BE,(已知)∴∠B=∠F AD.(两直线平行,同位角相等)(2)∵∠E+∠ACE=180°,(已知)∴AC∥DE.(同旁内角互补,两直线平行)(3)∵AD∥BE,(已知)∴∠ACB=∠DAC.(两直线平行,内错角相等)故答案为:(1)F AD;两直线平行,同位角相等;(2)ACE;同旁内角互补,两直线平行;AD;BE;两直线平行,内错角相等.22.解:∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∵AD是角平分线,∴∠BAD=∠BAC=×80°=40°,∵AE是高,∴∠BEA=90°,∴∠BAE=90°﹣∠B=90°﹣60°=30°,∴∠EAD=∠BAD﹣∠BAE=40°﹣30°=10°.23.解:∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠4=∠C(两直线平行,同位角相等)又∵∠A=∠F(已知)∴AC∥DF(内错角相等,两直线平行)∴∠4=∠D(两直线平行,内错角相等)∴∠C=∠D(等量代换);故答案为:对顶角相等;CE;同位角相等,两直线平行;∠C;两直线平行,同位角相等;DF;内错角相等,两直线平行;∠D;两直线平行,内错角相等.24.解:(Ⅰ)∵BO、CO分别平分∠ABC和∠ACB,∠A=60°,∴∠CBO+∠BCO=(180°﹣∠A)=(180°﹣60°)=60°,∴∠BOC=180°﹣(∠CBO+∠BCO)=180°﹣60°=120°;故答案为:120°;(Ⅱ)同理,若∠A=100°,则∠BOC=180°﹣(180°﹣∠A)=90°+∠A=140°,故答案为140°;(Ⅲ)同理,若∠A=α,则∠BOC=180°﹣(180°﹣∠A)=90°+.25.证明:∵∠1与∠CGD是对顶角,∴∠1=∠CGD(对顶角相等),∵∠1+∠2=180°(已知),∴∠CGD+∠2=180°(等量代换),∴AE∥FD(同旁内角互补,两直线平行),∴∠A=∠BFD(两直线平行,同位角相等),又∵∠A=∠D(已知),∴∠BFD=∠D(等量代换),∴AB∥CD(内错角相等,两直线平行).26.解:(1)∵△ABC中,∠A=64°,∠B=76°,∴∠C=180°﹣∠A﹣∠B=180°﹣64°﹣76°=40°,∵∠1=17°,∴∠CNM=,在△CMN中,∠CMN=180°﹣∠C﹣∠CNM=180°﹣40°﹣81.5°=58.5°,∴∠2=180°﹣2∠CMN=180°﹣2×58.5°=63°.(2)由题意可知:2∠CNM+∠1=180°,2∠CMN+∠2=180°,∴2(∠CNM+∠CMN)+∠1+∠2=360°,∵∠C+∠CNM+∠CMN=180°,∴∠CMN+∠CMN=180°﹣∠C,∴2(180°﹣∠C)=360°﹣(∠1+∠2),∴∠1+∠2=2∠C.27.解:∵∠AGB=∠DGF(对顶角相等)∠AGB=∠EHF(已知)∴∠DGF=∠EHF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠D=∠CEF(两直线平行,同位角相等)∵∠D=∠C(已知)∴∠CEF=∠C(等量代换)∴DF∥AC(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等)故答案为:对顶角相等;等量代换;BD;CE;同位角相等,两直线平行;∠CEF;两直线平行,同位角相等;∠CEF;等量代换;DF;AC;内错角相等,两直线平行;两直线平行,内错角相等.。
(典型题)初中数学八年级数学上册第七单元《平行线的证明》测试卷(有答案解析)(1)
一、选择题1.甲、乙、丙、丁四个同学在玩推理游戏,要找出谁在数学测评中获奖.甲说:“是乙获奖.”乙说:“是丙获奖.”丙说:“乙说的不是实话.”丁说:“反正我没有获奖.”如果这四个同学中只有一个人说了实话,请问是谁获奖( )A .甲B .乙C .丙D .丁2.如图,将直尺与30角的三角尺叠放在一起,若270,则1∠的大小是( )A .45︒B .50︒C .55︒D .40︒3.如图,在折纸活动中,小明制作了一张ABC ∆纸片,点D E 、分别是边AB AC 、上的点,将ABC ∆沿着DE 折叠压平,A 与A '重合,若50A ∠=︒,则12∠+∠=( )A .90︒B .100︒C .110︒D .120︒ 4.如图,在△ABC 中,D 为BC 上一点,∠1=∠2,∠3=∠4,∠BAC =105°,则∠DAC 的度数为( )A .80°B .82°C .84°D .86°5.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .56.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多A .60°B .75°C .85°D .90° 7.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC∠的度数是( )A .65︒B .75︒C .85︒D .105︒8.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等9.在下列条件中:①A C B ∠=∠-∠,②::2:3:5A B C ∠∠∠=,③90A B ∠=︒-∠,④90B C ∠-∠=︒中,能确定ABC 是直角三角形的条件有( )A .1个B .2个C .3个D .4个 10.下列命题是真命题的是( )A .相等的角是对顶角B .内错角相等C .任何非负数的算术平方根是非负数D .直线外一点到这条直线的垂线段叫做点到直线的距离11.下列说法错误的是( )A .过任意一点P 可作已知直线m 的一条平行线B .同一平面内的两条不相交的直线是平行线C .过直线外一点只能画一条直线与已知直线平行D .平行于同一条直线的两条直线平行12.下列语句中,不是命题的是( )A .过一点作已知直线的垂线B .两点确定一条直线C .钝角大于90度D .平角都相等13.如图,AB ,CD 相交于点E ,ACE AEC ∠=∠,BDE BED ∠=∠,过A 作AF BD ⊥,垂足为F .求证:AC AF ⊥.证明:∵ACE AEC ∠=∠,BDE BED ∠=∠又AEC BED ∠=∠(________________)∴ACE BDE ∠=∠∴//AC DB (________________________)∴CAF AFD ∠=∠(________________________)∵AF DB ⊥∴90AFD ∠=︒(________________________)∴90CAF =︒∠∴AC AF ⊥14.如图,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A =70°,则∠BOC =________.15.如图,在△ABC 中,点D 在BC 上,将点D 分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF ,根据图中标示的角度,可求得∠EAF 的度数为___________.16.如图,在ABC 中,A β∠=度,ABC ∠与ACD ∠的平分线交于点1A ,则1A ∠=______度;1A BC ∠与1A CD ∠的平分线交于点2A ,得2A ∠;…2018∠A BC 与2018A CD ∠的平分线交于点2019A ,得2019A ∠.则2019A ∠=______度.17.命题“若a 2>b 2则a >b ”是_____命题(填“真”或“假”),它的逆命题是_____. 18.在△ABC 中,∠A=∠B+∠C ,∠B=2∠C ﹣6°,则∠C 的度数为_____.19.某机器零件的横截面如图所示,按要求线段AB 和DC 的延长线相交成直角才算合格.一工人测得23A ∠=︒,31D ∠=︒,143AED ∠=∠︒,请你帮他判断该零件是否合格_______(填“合格”或“不合格”).20.在四边形ABCD 中,ADC ∠与BCD ∠的角平分线交于点E ,115DEC ∠=︒,过点B 作//BF AD 交CE 于点F ,2CE BF =,54CBF BCE ∠=∠,连接BE ,254BCE S ∆=,则CE =___.三、解答题21.如图,已知//AB CD ,A E ∠=∠,则//DC EF 吗?为什么?22.如图1,点A 是射线OE :y x =-(x≥0)上的一点,已知232OA =,过点A 作x 轴的垂线,垂足为B ,过点B 作OE 的平行线交∠AOB 的平分线于点C .(1)求点A 的坐标;(2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .(3)①若射线OC 与AB 交于点D ,在射线BC 上是否存在一点P 使得△ACP 与△BDC 全等,若存在,请求出点P 的坐标;若不存在,请说明理由.②在①的条件下,在平面内另有三点1(8,8)P -、2P (4,32-)、3(8484)P +-,,请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)23.已知点A 在射线CE 上,BDA C ∠=∠.(1)如图1,若AC //BD ,求证:AD //BC ;(2)如图2,若BAC BAD ∠=∠,BD BC ⊥,请证明290DAE C ∠+∠=︒; (3)如图3,在(2)的条件下,过点D 作DF //BC 交射线CE 于点F ,当8DFE DAE ∠=∠时,求BAD ∠的度数.(直接写出结果)24.如图,直线MN 与直线PQ 垂直相交于点Q ,点A 在射线OP 上运动,点B 在射线OM 上运动.(1)如图1,已知AF 、BF 分别是BAO ∠和ABO ∠的平分线,点A 、B 在运动的过程中,AFB ∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,请说明理由,并求AFB ∠的大小;(2)如图2,点F 是BAP ∠和ABM ∠的角平分线的交点,点A 、B 在运动过程中,F ∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,请说明理由;(3)如图 3,在(2)的条件下将FCD 沿直线CD 翻折,使点F 落在点E 处,已知AB 不平行于CD ,直接写出E ∠、BCE ∠、ADE ∠之间的数量关系.25.如图,BAE ∠,CBF ∠,ACD ∠是ABC 的三个外角.求BAE CBF ACD ∠+∠+∠的度数.(要求:写出求解过程,不能直接用外角和公式)26.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C =60°,请说明∠DAE 的度数;(2)如图2(∠B <∠C ),试说明∠DAE 、∠B 、∠C 的数量关系;(3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,请直接写出∠G 的度数 .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】若甲说的是真话,则乙是假话,丙说的是真话,和已知不符合.故甲说的是假话,不是乙获奖;若乙说的是真话,则丁说的也是真话,和已知不符合.故乙说的是假话,不是丙获奖.显然丙说的是真话,丁说的是假话,则是丁获奖.【详解】解:本题可分三种情况:①如果甲是真命题,则乙是假命题,丙是真命题,丁是真命题;显然与已知不符;②如果甲是假命题,乙是真命题,则丙是假命题,丁是真命题;显然与已知不符;③如果甲是假命题,乙是假命题,则丙是真命题,丁是假命题;在这种情况下,只有丙说了实话,而其他人都说了假话,因此这种情况符合题意.在③的条件下,丁说了假话,因此丁才是真正获奖的人.故选D.【点睛】此题主要考查命题的真假推理,解题的关键是用假设的方法,进行分析排除.2.B解析:B【分析】根据平角的定义和平行线的性质即可得到结论.【详解】解:如图:由题意得:∠4=180°−90°−30°=60°,∵AB∥CD,∴∠3=∠2=70°,∴∠1=180°−∠3-∠4=180°−70°−60°=50°.故选:B.【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.3.B解析:B【分析】根据三角形的内角和等于180°求出∠ADE+∠AED,再根据翻折变换的性质可得∠A′DE=∠ADE,∠A′ED=∠AED,然后利用平角等于180°列式计算即可得解.【详解】∵∠A=50°,∴∠ADE+∠AED=180°-50°=130°,∵△ABC沿着DE折叠压平,A与A′重合,∴∠A′DE=∠ADE,∠A′ED=∠AED,∴∠1+∠2=180°-(∠A′ED+∠AED)+180°-(∠A′DE+∠ADE)=360°-2×130°=100°.故选:B.【点睛】本题考查了三角形的内角和定理,翻折变换的性质,整体思想的利用求解更简便.4.A解析:A【分析】根据三角形的内角和定理和三角形的外角性质即可解决.【详解】解:∵∠BAC=105°,∴∠2+∠3=75°①∵∠1=∠2,∴∠4=∠3=∠1+∠2=2∠2②把②代入①得:3∠2=75°,∴∠2=25°.∴∠DAC=105°−25°=80°.故选A.【点睛】此题主要考查了三角形的外角性质以及三角形内角和定理,熟记三角形的内角和定理,三角形的外角性质是解题的关键.5.B解析:B【分析】首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .【点睛】本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.6.C解析:C【分析】根据折叠前后对应角相等可得ADE A DE '∠=∠,AED A ED '∠=∠,再运用平角的定义和三角形内角和定理依次求得ADE ∠、AED ∠,再次运用平角的定义即可求得CEA '∠.【详解】解:∵将A ∠沿DE 翻折,∴ADE A DE '∠=∠,AED A ED '∠=∠,∵D 是线段AB 上的点,25BDA '∠=︒,∴180ADE A D B E DA '∠+∠-'∠=︒,即251280ADE ︒=∠-︒,解得102.5ADE ∠=︒,∵30A ∠=︒,180A AED ADE ∠+∠+∠=︒,∴180180102.53047.5AED ADE A ∠=︒-∠-∠=︒-︒-︒=︒,∴18018047.547.585CEA AED A ED ''∠=︒-∠-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查折叠的性质,三角形内角和定理,平角的定义.理解折叠前后对应角相等是解题关键.7.B解析:B【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】解:∵∠CEA =60︒,∠BAE =45︒,∴∠ADE = 180︒−∠CEA −∠BAE =75︒,∴∠BDC =∠ADE =75︒,故选:B【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.8.D解析:D【分析】根据垂线的性质,线段垂直平分线的判定,全等三角形的判定对各选项分析判断后利用排除法求解.【详解】A、同一平面内,垂直于同一条直线的两直线互相平行,真命题,本选项不符合题意;B、到线段两端点距离相等的点在这条线段的垂直平分线上,真命题,本选项不符合题意;C、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;D、有一边相等的两个等腰直角三角形不一定全等,如:一个等腰直角三角形的直角边与另一个等腰直角三角形的斜边相等,这两个等腰直角三角形并不全等,假命题,本选项符合题意.故选:D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.C解析:C【分析】根据直角三角形的判定方法对各个选项进行分析,从而得到答案.【详解】①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=2:3:5,设∠A=2x,则2x+3x+5x=180,x=18°,∠C=18°×5=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;④因为∠B﹣∠C=90°,则∠B=90°+∠C,所以三角形为钝角三角形.所以能确定△ABC是直角三角形的有①②③.故选:C.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°;理解三角形内若有一个内角为90°,则△ABC是直角三角形.10.C解析:C【分析】根据对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义逐一分析即可.【详解】解:A.对顶角相等,但是相等的角不一定是对顶角,该项为假命题;B.两直线平行,内错角相等,该项为假命题;C.任何非负数的算术平方根是非负数,该项为真命题;D.直线外一点到这条直线的垂线段的长度叫做点到直线的距离,该项为假命题;故选:C.【点睛】本题考查判断命题的真假,掌握对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义是解题的关键.11.A解析:A【分析】根据平行线的定义及平行公理进行判断.【详解】解:选项A:当点P在直线m上时则不可以作出已知直线的平行线,而是与已知直线重合,故选项A错误,选项B、C、D显然正确,故选:A.【点睛】本题主要考查平行线的定义及平行公理,熟练掌握公理、定理是解决本题的关键.12.A解析:A【分析】根据命题的定义:判断一件事情的语句叫命题,进行选择.【详解】解:A、没判断一件事情,只是叙述一件事情,故不是命题;B、两点确定一条直线,判断一件事情,故是命题;C、钝角大于90°,判断一件事情,故是命题;D、平角都相等,判断一件事情,故是命题;故选:A.【点睛】本题考查命题的概念,解题关键是熟练掌握并灵活运用概念.二、填空题13.对顶角相等;内错角相等两直线平行;两直线平行内错角相等;垂直定义【分析】依据对顶角相等推出利用平行线的判定定理内错角相等两直线平行利用平行线的性质得由垂直再根据同旁内角互补即可【详解】证明:∵又(对解析:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义【分析】依据对顶角相等推出ACE BDE ∠=∠,利用平行线的判定定理内错角相等两直线平行//AC DB ,利用平行线的性质得CAF AFD ∠=∠,由垂直90AFD ∠=︒,再根据同旁内角互补90CAF =︒∠即可.【详解】证明:∵ACE AEC ∠=∠,BDE BED ∠=∠,又AEC BED ∠=∠(对顶角相等),∴ACE BDE ∠=∠,∴//AC DB (内错角相等,两直线平行),∴CAF AFD ∠=∠(两直线平行,内错角相等),∵AF DB ⊥,∴90AFD ∠=︒(垂直定义),∴90CAF =︒∠,∴AC AF ⊥.故答案为:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义.【点睛】本题主要考查了平行线的判定和性质,对顶角性质,等式的性质,垂直定义,掌握平行线的判定和性质,对顶角性质,等式的性质,垂直定义,解题时注意:两直线平行,同旁内角互补是解题关键.14.125°【分析】求出O 为△ABC 的三条角平分线的交点求出∠OBC=∠ABC ∠OCB=∠ACB 根据三角形内角和定理求出∠ABC+∠ACB 求出∠OBC+∠OCB 再根据三角形内角和定理求出∠BOC 的度数即解析:125°【分析】求出O 为△ABC 的三条角平分线的交点,求出∠OBC=12∠ABC ,∠OCB=12∠ACB ,根据三角形内角和定理求出∠ABC+∠ACB ,求出∠OBC+∠OCB ,再根据三角形内角和定理求出∠BOC 的度数即可;【详解】∵ 在△ ABC 中,点O 是△ABC 内的一点,且点O 到△ ABC 三边距离相等,∴ O 为△ABC 的三条角平分线的交点,∴∠OBC=12∠ABC ,∠OCB=12∠ACB , ∵∠A=70°,∴∠ABC+∠ACB=180°-∠A=110°,∴∠OBC+∠OCB=55°,∴∠BOC=180°-∠OBC-∠OCB=125°,故答案为:125°.【点睛】本题考查了角平分线的有关计算,三角形内角和定理的应用,能正确掌握与角平分线有关的三角形内角和问题是解题的关键;15.130°【分析】连接AD利用轴对称的性质三角形的内角和定理解答即可【详解】连接AD∵D点分别以ABAC为对称轴画出对称点EF∴∠EAB=∠BAD∠FAC =∠CAD∵∠B=63°∠C=52°∴∠BAC解析:130°【分析】连接AD,利用轴对称的性质、三角形的内角和定理解答即可.【详解】连接AD,∵D点分别以AB、AC为对称轴,画出对称点E、F,∴∠EAB=∠BAD,∠FAC=∠CAD,∵∠B=63°,∠C=52°,∴∠BAC=∠BAD+∠DAC=180°−63°−52°=65°,∴∠EAF=2∠BAC=130°,故答案为:130°.【点睛】此题考查轴对称的性质等知识点,关键是利用轴对称的性质解答.16.ββ【分析】已知∠A求∠A1利用外角定理可得∠ACD=∠A+∠ABC∠A1CD=∠A1+∠A1BC把∠ACD利用角平分线转成2∠A1CD∠ABC转成2∠A1BC消去∠A1BC∠A1CD即可再用类似的解析:12β,201912β【分析】已知∠A,求∠A1,利用外角定理可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,把∠ACD 利用角平分线转成2∠A1CD,∠ABC转成2∠A1BC,消去∠A1BC,∠A1CD即可,再用类似的办法求∠A2,以此类推即可【详解】∵BA1平分∠ABC,CA1平分∠A1CD,∴∠AB A1=∠A1BC=12∠ABC,∠AC A1=∠A1CD=12∠ACD,由三角形的外角得∴∠A1CD=∠A1+∠A1BC,∴∠A1CD=∠A1+∠A1BC①∴2∠A1CD=∠A+2∠A1BC②把①代入②得∠A 1=12∠A=12β CA 2平分∠A 2CD ,∠A 2C A 1=∠A 2CD=12∠A 1CD , 由三角形的外角得∴∠A 1CD=∠A 1+∠A 1BC ,∴∠A 2CD=∠A 2+∠A 2BC③∴2∠A 2CD=∠A 1+2∠A 2BC④解得∠A 2=12∠A 1, ∠A 2=12∠A 114∠A=14β=212β 同理∠A 3=12∠A 2=18∠A=18β=312β …∠A 2019= 201912β故答案为:①12β,②201912β【点睛】本题考查(第二内角的)外角平分线与(第一)内角平分线所夹的角问题,找到两平分线的夹角与第三个角的关系是解决问题关键17.假若a >b 则a2>b2【分析】a2大于b2则a 不一定大于b 所以该命题是假命题它的逆命题是若a >b 则a2>b2【详解】①当a =-2b =1时满足a2>b2但不满足a >b 所以是假命题;②命题若a2>b2则解析:假 若a >b 则a 2>b 2【分析】a 2大于b 2则a 不一定大于b ,所以该命题是假命题,它的逆命题是“若a >b 则a 2>b 2”.【详解】①当a =-2,b =1时,满足a 2>b 2,但不满足a >b ,所以是假命题;②命题“若a 2>b 2则a >b ”的逆命题是若“a >b 则a 2>b 2”;故答案为:假;若a>b则a2>b2.【点睛】本题主要考查判断命题真假、逆命题的概念以及平方的计算,熟记相关概念取特殊值代入是解题关键.18.32°【分析】根据三角形的内角和等于180°求出∠A=90°从而得到∠B∠C互余然后用∠C表示出∠B再列方程求解即可【详解】∵∠A=∠B+∠C∠A+∠B+∠C=180°∴∠A=90°∴∠B+∠C=9解析:32°【分析】根据三角形的内角和等于180°求出∠A=90°,从而得到∠B、∠C互余,然后用∠C表示出∠B,再列方程求解即可.【详解】∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴∠B+∠C=90°,∴∠B=90°-∠C,∵∠B=2∠C-6°,∴90°-∠C=2∠C-6°,∴∠C=32°.故答案为32°.【点睛】本题考查了三角形内角和定理,熟记定理并求出∠A的度数是解题的关键.19.不合格【解析】试题分析:延长ABDC相交F连接FE并延长至G根据三角形的外角的性质可得(∠A+∠AFG)+(∠D+∠DFG)=∠AEG+∠DEG再根据∠AFD=∠AFG+∠DFG=∠AED-∠A-∠解析:不合格【解析】试题分析:延长AB、DC相交F,连接F、E并延长至G.根据三角形的外角的性质可得(∠A+∠AFG)+(∠D+∠DFG)=∠AEG+∠DEG,再根据∠AFD=∠AFG+∠DFG=∠AED-∠A-∠D即可作出判断.延长AB、DC相交F,连接F、E并延长至G.则有(∠A+∠AFG)+(∠D+∠DFG)=∠AEG+∠DEG=∠AED=143°;∵∠A=23°,∠D=31°,∴∠AFD=∠AFG+∠DFG=∠AED-∠A-∠D=143°-23°-31°=89°≠90°.所以零件不合格.考点:三角形的外角的性质点评:解题的关键是熟练掌握三角形的外角的性质:三角形的任何一个外角等于和它不相邻的两个内角的和.20.5【分析】设∠BCE=4x ∠CBF=5x 设∠ADE=∠EDC=y 构建方程组求出xy 证明∠CFB=90°再利用三角形的面积公式构建方程即可解决问题【详解】解:∵∴可以假设∠BCE=4x 则∠CBF=5x解析:5【分析】设∠BCE=4x ,∠CBF=5x ,设∠ADE=∠EDC=y ,构建方程组求出x ,y ,证明∠CFB=90°,再利用三角形的面积公式构建方程即可解决问题.【详解】解:∵54CBF BCE ∠=∠, ∴可以假设∠BCE=4x ,则∠CBF=5x ,∵DE 平分∠ADC ,CE 平分∠DCB ,∴∠ADE=∠EDC ,∠ECD=∠ECB=4x ,设∠ADE=∠EDC=y ,∵AD ∥BF ,∴∠A+∠ABF=180°,∴∠ADC+∠DCB+∠CBF=180°,∴2y+13x=180°①,∵∠DEC=115°,∴∠EDC+∠ECD=65°,即y+4x=65° ②,联立①②解得x=10°,y=25°,∴∠BCF=40°,∠CBF=50°,∴∠CFB=90°,∴BF ⊥EC ,∴CE=2BF ,设BF=m ,则CE=2m ,12524∆=⨯⨯=BCE S EC BF , ∴125224⨯⨯=m m , 解得52m =(负值舍去), ∴CE=2m =5,故答案为5.【点睛】 本题考查了角平分线的性质,平行线的性质,三角形内角和定理,二元一次方程组等知识,解题的关键是学会利用参数构建方程或方程组组解决问题.三、解答题21.//DC EF ,理由见解析.【分析】利用两直线平行,同位角相等,得到A ECD ∠=∠,结合A E ∠=∠,转化为内错角相等证明即可.【详解】解: //DC EF ,理由如下://AB CD ,A ECD ∴∠=∠,A E ∠=∠,ECD E ∴∠=∠,//DC EF ∴.【点睛】本题考查了平行线的性质和判定,熟练掌握性质和判定是解题的关键.22.(1)(4,4)A -;(2)见解析;(3)①存在,P (8,-4);②满足全等的点有P 1、P 2、P 3,见解析.【分析】(1)根据题意,设(,)A a a -,在Rt △AOB 中,利用勾股定理,解得a 的值,即可解得点A 的坐标;(2)过点C 作CM ⊥x 轴于M ,由平行线的性质得到∠MBC=∠ABC ,结合角平分线上的点到角两边的距离相等可得CM= CH ,据此可证明CG =CH ;(3)①先计算∠BDC 的度数,再根据角平分线及平行线性质可证明∠BOC=∠BCO ,由等角对等边可解得BO=BC=AB ,继而得到∠ACP=∠BDC ,接着证明△APB 为等腰直角三角形,解答AP 的长,据此解题;②根据全等三角形的判定方法,分别证明1()BCD PCA AAS ≅、2()BCD P CA AAS ≅、3()BCD P AC AAS ≅即可解题.【详解】(1)∵AB ⊥x 轴=-上∵A在y xA a a-∴设(,)则AB=OB=a即△ABO为等腰直角三角形在Rt△AOB中∵222AB OB OA+=∴2232a a+=∴a=±4(负值舍去)A-,∴(44)(2)如图,过点C作CM⊥x轴于M∵BC//OE∴∠MBC=∠BOA=45°,∠ABC=∠OAB=45°∴∠MBC=∠ABC∵CM⊥x轴,CG⊥AB∴CM= CG∵OC平分∠AOB,CM⊥x轴 CH⊥OE∴CM= CH∴CG=CH(3)①存在点P易证∠BDC=∠BOD+∠OBD=22.5°+90°=112.5°∵OC平分∠AOB,BC∥OE∴∠BOC=∠COA ,∠BCO=∠COA∴BO=BC=AB又∠ABC =45°∴∠BAC=∠BCA=67.5°∴∠ACP=112.5°∴∠ACP=∠BDC又∠BAC=∠CDA=67.5°∴CA=CD∴当CP=BD 时,△ACP ≌△CDB ∴∠APC=∠DBC=45°∴△APB 为等腰直角三角形 ∴AP=AB=OB=4∴P (8,-4)②如图,满足全等的点有P 1、P 2、P 3理由如下, 1(8,8)P -∴点1P 在射线(0)OE x x =-≥:y 上,84<1P ∴在线段OA 上,连接1CP,45CG AB CBG ⊥∠=︒ BCG ∴是等腰直角三角形, CG BG ∴=(4,4)A -4OB ∴=BC OB =222216BC BG CG OB ∴=+== 2,4BG CG BC ∴=== (42,2)C ∴+- 1422224CP ∴=+=11,//CP BC CP x ∴=轴 145CP A BOA CBD ∴∠=∠=∠=︒ 190,PGA ∠=︒ 145P AG ∴∠=︒ 1167.545112.5CAP CAG P AG ∴∠=∠+∠=︒+︒=︒ 在BCD △与1PCA 中 111BDC P AC CP A CBD BC PC ∠=∠⎧⎪∠=∠⎨⎪=⎩1()BCD PCA AAS ∴≅ 2P 的横坐标为4,点(4,4)4A OB -=, 2P ∴在BA 的延长线上, 连接22,AP CP 67.5BAC ∠=︒ 2180112.5CAP BAC ∴∠=︒-∠=︒ 2CAP BDC ∴∠=∠ 2P的纵坐标为2BP ∴==2BG =22GP BP BG ∴=-=CG ∴=2GP CG ∴= CG AB ⊥245AP C ∴∠=︒ 2AP C ABC ∴∠=∠ 在BCD △与2P CA 中, 22BDC P AC ABC AP C CD CA ∠=∠⎧⎪∠=∠⎨⎪=⎩2()BCD P CA AAS ∴≅ 3P,点C的横坐标为4, 3CP ∴所在的直线垂直于x 轴,AB x ⊥轴3//CP AB ∴连接33CP AP 、,过点A 作3AQ CP ⊥交3P C 的延长线于点Q ,3//CP AB3180BAC ACP ∴∠+∠=︒3180112.5ACP BAC ∴∠=︒-∠=︒3ACP BDC ∴∠=∠(4,4)A -3444(4)AQ PQ ∴=-==--=3AQ PQ ∴= 3AQ PQ ⊥ 345APQ ∴∠=︒ 3APQ ABC ∴∠=∠ 在BCD △与3P AC 中33BDC PCA APC ABC CD AC ∠=∠⎧⎪∠=∠⎨⎪=⎩3()BCD P AC AAS ∴≅故答案为:123P P P 、、 .【点睛】本题考查等腰直角三角形、全等三角形的判定与性质、平行线的性质、角平分线的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.23.(1)见解析;(2)见解析;(3)99BAD ∠=︒.【分析】(1)根据AC ∥BD ,可得∠DAE=∠C ,再根据∠C=∠D ,即可得到∠DAE=∠D ,则结论得证;(2)根据∠CGB 是△ADG 是外角,即可得到∠CGB=∠D+∠DAE ,再根据△BCG 中,∠CGB+∠C=90°,即可得到∠D+∠DAE+∠C=90°,进而得出2∠C+∠DAE=90°;(3)设∠DAE=α,则∠DFE=8α,∠AFD=180°-8α,根据DF ∥BC ,即可得到∠C=∠AFD=180°-8α,再根据2∠C+∠DAE=90°,即可得到2(180°-8α)+α=90°,求得α的值,由三角形内角和定理得到∠BAD 的度数.【详解】解:(1)证明:∵AC ∥BD ,∴∠DAE=∠BDA ,∵∠BDA=∠C ,∴∠DAE=∠C ,∴AD ∥BC ;(2)证明:如图2,设CE 与BD 相交于点G ,∠BGA=∠BDA+DAE ,∵BD ⊥BC ,∴∠BGA+∠C=90°,∴∠BDA+∠DAE+∠C=90°,∵∠BDA=∠C ,∴∠DAE+2∠C=90°;(3)如图3,设∠DAE=α,则∠DFE=8α,∵∠DFE+∠AFD=180°,∴∠AFD=180°-8α,∵DF ∥BC ,∴∠C=∠AFD=180°-8α,又∵2∠C+∠DAE=90°,∴2(180°-8α)+α=90°,∴α=18°,∴∠C=180°-8α=36°=∠ADB ,又∵∠C=∠BDA ,∠BAC=∠BAD ,∴∠ABC=∠ABD=12∠CBD=45°, △ABD 中,∠BAD=180°-45°-36°=99°.答:∠BAD 的度数是99°.【点睛】本题考查了平行线的判定与性质以及三角形内角和定理的运用,解决本题的关键是掌握平行线的判定与性质.24.(1)AFB ∠的大小不变,135AFB ∠=︒;(2)F ∠的大小不变,理由见解析;(3)2BCE ADE E ∠+∠=∠【分析】(1)∠AFB 的大小不变.根据三角形内角和定理,角平分线的定义计算即可;(2)∠AFB 的大小不变.根据三角形内角和定理,邻补角的定义,角平分线的定义计算即可;(3)利用折叠的性质,邻补角的定义,三角形内角和定理,角平分线的定义即可求解.【详解】(1)结论:∠AFB 的大小不变.理由:∵∠AOB=90°,∴∠OAB+∠OBA=90°,∵AF 、BF 分别是∠BAO 和∠ABO 角的平分线,∴∠FAB=12∠OAB ,∠FBA=12∠OBA , ∴∠FAB+∠FBA=12(∠OAB+∠OBA)=45°, ∴∠AFB=180°-45°=135°;(2)结论:∠AFB 的大小不变.理由:∵∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠BAP+∠ABM=360︒-90°=270°, ∵AF 、BF 分别是∠BAO 和∠ABO 的外角的平分线,∴∠FAB=12∠PAB ,∠FBA=12∠MBA , ∴∠FAB+∠FBA=12(∠PAB+∠MBA)=135°, ∴∠AFB=180°-135°=45°;(3)在△FDC 中,∠F=180︒-∠FCD-∠FDC ,∴∠FCD+∠FDC=180︒-∠F=180︒-∠E , 根据折叠的性质得:∠FCD=∠ECD ,∠FDC=∠EDC ,∠F=∠E ,∴∠BCE=180︒-∠FCD-∠ECD=180︒-2∠FCD ,∠ADE=180︒-∠FDC -∠EDC =180︒-2∠FDC ,∴∠BCE+∠ADE=360︒-2(∠FCD+∠FDC),在△FDC 中,∠F=180︒-∠FCD-∠FDC ,∴∠FCD+∠FDC=180︒-∠F=180︒-∠E ,∴∠BCE+∠ADE=360︒-2(180︒-∠E)=2∠E .【点睛】本题考查了折叠的性质,邻补角的定义,三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识.注意:三角形内角和等于180°.25.360BAE CBF ACD ∠+∠+∠=︒【分析】利用邻补角的定义以及三角形内角和定理,计算即可求解.【详解】解:∵1180BAE ∠+∠=︒,2180CBF ︒∠+∠=,3180ACD ︒∠+∠=,∴1231803540BAE CBF ACD ∠+∠+∠+∠+∠+∠=︒⨯=︒,又∵123180∠+∠+∠=︒,∴540(123)540180360BAE CBF ACD ︒︒︒︒∠+∠+∠=-∠+∠+∠=-=.【点睛】本题考查了邻补角的定义以及三角形内角和定理,正确的识别图形是解题的关键. 26.(1)∠DAE =10°;(2)∠DAE =12∠C ﹣12∠B ;(3)45°. 【分析】(1)先根据三角形的内角和定理求得80BAC ∠=︒、30CAE ∠=︒,再根据角平分线的定义得到40CAD ∠=︒,最后根据角的和差解答即可;(2)先根据三角形的内角和定理求得180BAC B C ∠=︒-∠-∠、90CAE C ∠=︒-∠,再根据角平分线的定义得到12CAD BAD BAC ∠=∠=∠,然后根据角的和差表示出来即可;(3)先根据角平分线的定义得到2,2CAE CAG FCB FCG ∠=∠∠=∠,再结合三角形外角的性质得到2AEC G ∠=∠,然后根据题意得到90AEC ∠=︒,最后算出∠G 即可.【详解】解:(1)40,60,180B C BAC B C ∠=︒∠=︒∠+∠+∠=︒80BAC ∴∠=︒AE ∵是ABC ∆的高,90,AEC ∴∠=︒60,C ∠=︒906030CAE ∴∠=︒-︒=︒ AD 是BAC ∠的角平分线,1402CAD BAD BAC ∴∠=∠=∠=︒, 10DAE CAD CAE ∴∠=∠-∠=︒.(2)180,BAC B C ∠+∠+∠=︒180BAC B C ∴∠=︒-∠-∠AE ∵是ABC ∆的高,90,AEC ∴∠=︒90CAE C ∴∠=︒-∠ AD 是BAC ∠的角平分线,12CAD BAD BAC ∴∠=∠=∠, ()1902DAE CAD CAE BAC C ∴∠=-∠=∠-︒-∠ ()1180902C C =︒-∠B -∠-︒+∠ 1122C B =∠-∠ 即1122DAE C B ∠=∠-∠; (3)CAE ∠和BCF ∠的角平分线交于点G ,2,2CAE CAG FCB FCG ∴∠=∠∠=∠,CAE FCB AEC CAG FCG G ∠=∠-∠∠=∠-∠()2222FCG AEC FCG G FCG G ∴∠-∠=∠-∠=∠-∠,即2AEC G ∠=∠, AE ∵是ABC ∆的高,90AEC ∴∠=︒,45G ∴∠=︒.故答案为:45°.【点睛】本题主要考查了三角形内角和定理、角平分线的定义、三角形外角的性质等知识点,灵活应用相关知识成为解答本题的关键.。
平行线的有关证明中考题精选
平行线的有关证明中考题精选一.解答题(共29小题)1.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.2.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.3.如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF 的关系(不要求证明).4.如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.5.如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.6.如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.7.已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DFE的平分线相交于点P.求证:∠P=90°.8.如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.9.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG 平分∠BMF,MG交CD于G,求∠1的度数.10.如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.11.如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37°,求∠D的度数.12.写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,.求证:.证明:13.(1)三角形内角和等于.(2)请证明以上命题.14.大冠买了一包宣纸练习书法,每星期一写1张,每星期二写2张,每星期三写3张,每星期四写4张,每星期五写5张,每星期六写6张,每星期日写7张.若大冠从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数已超过120张,则5月30日可能为星期几?请求出所有可能的答案并完整说明理由.15.先作图,再证明.(1)在所给的图形(如图)中完成下列作图(保留作图痕迹)①作∠ACB的平分线CD,交AB于点D;②延长BC到点E,使CE=CA,连接AE;(2)求证:CD∥AE.16.平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD 是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在如图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图4中∠A+∠B+∠C+∠D+∠E的度数.17.在学习中,小明发现:当n=1,2,3时,n2﹣6n的值都是负数.于是小明猜想:当n为任意正整数时,n2﹣6n的值都是负数.小明的猜想正确吗?请简要说明你的理由.18.阅读下列材料并填空:(1)探究:平面上有n个点(n≥2)且任意3个点不在同一条直线上,经过每两点画一条直线,一共能画多少条直线?我们知道,两点确定一条直线.平面上有2个点时,可以画条直线,平面内有3个点时,一共可以画条直线,平面上有4个点时,一共可以画条直线,平面内有5个点时,一共可以画条直线,…平面内有n个点时,一共可以画条直线.(2)迁移:某足球比赛中有n个球队(n≥2)进行单循环比赛(每两队之间必须比赛一场),一共要进行多少场比赛?有2个球队时,要进行场比赛,有3个球队时,要进行场比赛,有4个球队时,要进行场比赛,…那么有20个球队时,要进行场比赛.19.(1)如图,在△ABC中,∠B=32°,∠C=68°,则∠A=.20.下面是同学们玩过的“锤子、剪子、布”的游戏规则:游戏在两位同学之间进行,用伸出拳头表示“锤子”,伸出食指和中指表示“剪子”,伸出手掌表示“布”,两人同时口念“锤子、剪子、布”,一念到“布”时,同时出手,“布”赢“锤子”,“锤子”赢“剪子”,“剪子”赢“布”.现在我们约定:“布”赢“锤子”得9分,“锤子”赢“剪子”得5分,“剪子”赢“布”得2分.(1)小明和某同学玩此游戏过程中,小明赢了21次,得108分,其中“剪子”赢“布”7次.聪明的同学,请你用所学的数学知识求出小明“布”赢“锤子”、“锤子”赢“剪子”各多少次?(2)如果小明与某同学玩了若干次,得了30分,请你探究一下小明各种可能的赢法,并选择其中的三种赢法填入下表.赢法一:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数赢法二:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数赢法三:“布”赢“锤子”“锤子”赢“剪子”赢“剪子”“布”赢的次数21.甲、乙两同学开展“投球进筐”比赛,双方约定:①比赛分6局进行,每局在指定区域内将球投向筐中,只要投进一次后该局便结束;②若一次未进可再投第二次,以此类推,但每局最多只能投8次,若8次投球都未进,该局也结束;③计分规则如下:a.得分为正数或0;b.若8次都未投进,该局得分为0;c.投球次数越多,得分越低;d.6局比赛的总得分高者获胜.(1)设某局比赛第n(n=1,2,3,4,5,6,7,8)次将球投进,请你按上述约定,用公式、表格或语言叙述等方式,为甲、乙两位同学制定一个把n换算为得分M的计分方案;(2)若两人6局比赛的投球情况如下(其中的数字表示该局比赛进球时的投球次数,“×”表示该局比赛8次投球都未进):根据上述计分规则和你制定的计分方案,确定两人谁在这次比赛中获胜.第一局第二局第三局第四局第五局第六局甲5x 4 8 1 3乙8 2 4 2 6 x22.质检员为控制盒装饮料产品质量,需每天不定时的30次去检测生产线上的产品.若把从0时到24时的每十分钟作为一个时间段(共计144个时间段),请你设计一种随机抽取30个时间段的方法,使得任意一个时间段被抽取的机会均等,且同一时间段可以多次被抽取?(要求写出具体的操作步骤)23.如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD的度数.24.A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线,小组赛结束后,如果A队没有全胜,那么A 队的积分至少要几分才能保证一定出线?请说明理由.[注:单循环比赛就是小组内的每一个队都要和其他队赛一场].25.如图,AE与CD交于点O,∠A=50°,OC=OE,∠C=25°,求证:AB∥CD.26.如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.27.附加题:请你把上面的解答再认真地检查一遍,别留下什么遗憾,并估算一下成绩是否达到了80分,如果你的全卷得分低于80分,则本题的得分将计入全卷总分,但计入后全卷总分最多不超过80分;如果你全卷得分已经达到或超过80分,则本题的得分不计入全卷总分.(1)﹣2的倒数是;(2)如图,AB∥CD,直线EF分别与AB,CD交于点G,H,∠1=50°,求∠2的度数.28.阅读以下材料,并解答以下问题.“完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法,这就是分步乘法计数原理.”如完成沿图1所示的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A点出发到某些交叉点的走法数已在图2填出.(1)根据以上原理和图2的提示,算出从A出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种?(2)运用适当的原理和方法算出从A点出发到达B点,并禁止通过交叉点C的走法有多少种?(3)现由于交叉点C道路施工,禁止通行.求如任选一种走法,从A点出发能顺利开车到达B点(无返回)概率是多少?29.附加题:要将29个数学竞赛的名额分配给10所学校,每所学校至少要分到一个名额.(1)试提出一种分配方案,使得分到相同名额的学校少于4所;(2)证明:不管怎样分配,至少有3所学校得到的名额相同;(3)证明:如果分到相同名额的学校少于4所,则29名选手至少有5名来自同一学校.。
【中考冲刺】初三数学培优专题 14 平行线分线段成比例(含答案)(难)
平行线分线段成比例阅读与思考平行线分线段成比例定理是证明比例线段的常用依据之一,是研究比例线段及相似形的最基本、最重要的理论.运用平行线分线段成比例定理解题的关键是寻找题中的平行线.若无平行线,需作平行线,而作平行线要考虑好过哪一个点作平行线,一般是由成比例的两条线段启发而得.此外,还要熟悉并善于从复杂的图形中分解出如下的基本图形:例题与求解【例1】如图,在梯形ABCD 中,AD ∥BC ,AD =a ,BC =b ,E ,F 分别是AD ,BC 的中点,且AF 交BE 于P ,CE 交DF 于Q ,则PQ 的长为____.(上海市竞赛试题)解题思路:建立含PQ 的比例式,为此,应首先判断PQ 与AD (或BC )的位置关系,关键是从复杂的图形中分解出基本图形,并能在多个成比例线段中建立联系.【例2】如图,在△ABC 中,D ,E 是BC 的三等分点,M 是AC 的中点,BM 交AD ,AE 于G ,H ,则BG ︰GH :HM 等于( )A .3︰2︰1B .4︰2︰1C .5︰4︰3D .5︰3︰2(“祖冲之杯”邀请赛试题)解题思路:因题设条件没有平行线,故须过M 作BC 的平行线,构造基本图形.A BCDEGH MQA BCDEFP【例3】如图,□ABCD中,P为对角线BD上一点,过点P作一直线分别交BA,BC的延长线于Q,R,交CD,AD于S,T.求证:PQ•PT=P R•PS.(吉林省中考试题)解题思路:要证PQ•PT=P R•PS,需证PQPS=PRPT,由于PQ,PT,P R,PS在同一直线上,故不能直接应用定理,需观察分解图形.【例4】梯形ABCD中,AD//BC,AB=DC.(1)如图1,如果P,E,F分别是BC,AC,BD的中点,求证:AB=PE+PF;(2)如图2,如果P是BC上的任意一点(中点除外),PE∥AB,PF∥DC,那么AB=PE+PF这个结论还成立吗?如果成立,请证明;如果不成立,说明理由.(上海市闵行区中考试题)解题思路:(1)不难证明;对于(2),先假设结论成立,从平行线出发证明AB=PE+PF,即要证明PEAB+PFAB=1,将线段和差问题的证明转化为与成比例线段相关问题的证明.AB CDEFP图2AB CDEFP图1QARBCDSP【例5】如图,已知AB ∥CD ,AD ∥CE ,F ,G 分别是AC 和FD 的中点,过G 的直线依次交AB ,AD ,CD ,CE 于点M ,N ,P ,Q .求证:MN +PQ =2PN .解题思路:考虑延长BA ,EC 构造平行四边形,再利用平行线设法构造有关的比例式.(浙江省竞赛试题)【例6】已知:△ABC 是任意三角形.(1)如图1,点M ,P ,N 分别是边AB ,BC ,CA 的中点,求证:∠MPN =∠A ; (2)如图2,点M ,N 分别在边AB ,AC 上,且AM AB =13,AN AC =13,点P 1,P 2是 边BC 的三等分点,你认为∠MP 1N +∠MP 2N =∠A 是否正确?请说明你的理由;(3)如图3,点M ,N 分别在边AB ,AC 上,且P 1,P 2,…,P 2009是边BC 的2010等分点,则∠MP 1N +∠MP 2N +…+∠MP 2009N =____.(济南市中考试题)解题思路:本题涉及的考点有三角形中位线定理、平行四边形的判定、相似三角形的判定与性质.ABCM NP图1A BC MN1P 2P 图2A MNBC1P 2P 2009P 图3QABCDEFGMNP能力训练A 级1.设K =a b c c +-=a b c b -+=a b ca-++,则K =____. (镇江市中考试题)2.如图,AD ∥EF ∥BC ,AD =15,BC =21,2AE =EB ,则EF =____.3.如图,在△ABC 中,AM 与BN 相交于D ,BM =3MC ,AD =DM ,则BD ︰DN =____.(杭州市中考试题)4.如图,ABCD 是正方形,E ,F 是AB ,BC 的中点,连结EC 交DB ,交DF 于G ,H ,则EG ︰GH ︰HC =____.(重庆市中考试题)5.如图,在正△ABC 的边BC ,CA 上分别有点E ,F ,且满足BE =CF =a ,EC =F A =b (a >b ),当BF 平分AE 时,则ab 的值为( ) ABCD6.如图,△ABC 中,AD 是BC 边上的中线,F 是AD 上的一点,且AF ︰FD =1︰5,连结CF 并延长交AB 于E ,则AE ︰EB 等于( )A .1︰10B .1︰9C .1︰8D .1︰77.如图,PQ ∥AB ,PQ =6,BP =4,AB =8,则PC 等于( ) A .4B .8C .12D .168.如图,EF ∥BC ,FD ∥AB ,BD =35BC ,则BE ︰EA 等于( )A .3︰5B .2︰5C .2︰3D .3︰2A BCD E F 第2题ABCD M N第3题ABCDEFGH 第4题A BCEFG第5题ABCDE F第6题QABCP第7题AB CDEF 第8题9.(1)阅读下列材料,补全证明过程.已知,如图,矩形ABCD 中,AC ,BD 相交于点O ,OE ⊥BC 于E ,连结DE 交OC 于点F ,作FG ⊥BC 于G .求证:点G 是线段BC 的一个三等分点.(2)请你依照上面的画法,在原图上画出BC 的一个四等分点.(要求:保留画图痕迹,不写画法及证明过程)(山西中考试题)10.如图,已知在□ABCD 中,E 为AB 边的中点,AF =12FD ,FE 与AC 相交于G . 求证:AG =15AC .11.如图,梯形ABCD 中,AD ∥BC ,EF 经过梯形对角线的交点O ,且EF ∥AD . (1)求证:OE =OF ; (2)求OE AD +OEBC的值; (3)求证:1AD +1BC =2EF. (宿迁市中考试题)ABCDE FGO第9题ABCDEG第10题ABCD EFO第11题12.如图,四边形ABCD 是梯形,点E 是上底边AD 上的一点,CE 的延长线与BC 的延长线交于点F ,过点E 作BA 的平行线交CD 的延长线于点M ,MB 与AD 交于点N .求证:∠AFN =∠DME .(全国初中数学联赛试题)B 级1.如图,工地上竖立着两根电线杆AB ,CD ,它们相距15cm ,分别自两杆上高出地面4m ,6m 的A ,C 处,向两侧地面上的E ,D 和B ,F 点处,用钢丝绳拉紧,以固定电线杆,那么钢丝绳AD 与BC 的交点P 离地面的高度为____m .(全国初中数学联赛试题)2.如图,□ABCD 的对角线交于O 点,过O 任作一直线与CD ,BC 的延长线分别交于F ,E 点.设BC =a ,CD =b ,CF =c ,则CE =____.(黑龙江省中考试题)3.如图,D ,F 分别是△ABC 边AB ,AC 上的点,且AD ︰DB =CF ︰F A =2︰3,连结DF 交BC 边的延长线于点E ,那么EF ︰FD =____.(“祖冲之杯”邀请赛试题)4.如图,设AF =10,FB =12,BD =14,DC =6,CE =9,EA =7,且KL ∥DF ,LM ∥FE ,MN ∥ED ,则EF ︰FD =____.(江苏省竞赛试题)ABCDEF M NP ABCDEF O第2题ABCD EF 第3题QABCD EF 第1题5.如图,AB ∥EF ∥CD ,已知AB =20,CD =80,那么EF 的值是( ) A .10B .12C .16D .18(全国初中数学联赛试题)6.如图,CE ,CF 分别平分∠ACB ,∠ACD ,AE ∥CF ,AF ∥CE ,直线EF 分别交AB ,AC 于点M ,N .若BC =a ,AC =b ,AB =c ,且c >a >b ,则EM 的长为( )A .2c a- B .2a b- C .2c b- D .2a b c+- (山东省竞赛试题)7.如图,在□ABCD 的边AD 延长线上取一点F ,BF 分别交AC 与CD 于E ,G .若EF =32,GF =24,则BE 等于( )A .4B .8C .10D .12E .16(美国初中数学联赛试题)8.如图,在梯形ABCD 中,AB ∥CD ,AB =3CD ,E 是对角线AC 的中点,直线BE 交AD 于点F ,则AF ︰FD 的值是( )A .2B .53C .32D .1(黄冈市竞赛试题)9.如图,P 是梯形ABCD 的中位线MN 所在直线上的任意一点,直线AP ,BP 分别交直线CD 于E ,F .求证:MN NP =1()2AE BFEP FP+. (宁波市竞赛试题)ABCD EFG第7题ABCDE F第8题A BCD E F MNP第9题A BCDE F第5题AB CD E F LKMN第4题AB CDEFM第6题10.如图,在四边形ABCD 中,AC 与BD 相交于O ,直线l 平行于BD 且与AB ,DC ,BC ,AD 及AC 的延长线分别交于点M ,N ,R ,S 和P .求证:PM ·PN =P R ·PS .(山东省竞赛试题)11.如图,AB ⊥BC ,CD ⊥BC ,B ,D 是垂足,AD 和BC 交于E ,EF ⊥BD 于F .我们可以证明:11AB CD +=1EF 成立(不要求证出).以下请回答:若将图中垂直改为AB ∥CD ∥EF ,那么, (1)11AB CD+=1EF 还成立吗?如果成立,请给出证明;如果不成立,请说明理由. (2)请找出S △ABD ,S △BED 和S △BDC 的关系式,并给出证明.(黄冈市竞赛试题)ABCDEF第11题SA R BC DMN OPl第10题12.在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过D点的直线PQ交边AC于点P,交边AB 的延长线于点Q.(1)如图1,当PQ⊥AC时,求证:11AQ AP+;(2)如图2,当PQ不与AD垂直时,(1)的结论还成立吗?证明你的结论;(3)如图3,若∠BAC=60°,其它条件不变,且11AQ AP+=nAD,则n=____(直接写出结果)AQ B CDP图1AQB CDP图2AQB CDP图3专题14 平行线分线段成比例例1aba b+ 提示:由AP DQ a PF QF b ==,推得PQ ∥AD 。
平行线的证明典型题练习
平行线的证明典型题练习1.命题“对顶角相等”的题设是:_________________,结论是____________________2. 下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有3. 如图,BE平分∠ABC,DE∥BC,图中相等的角共有对4. 如图,在△A B C中,D是B C的延长线上的一点,E是C A的延长线上的一点,F在A B上,连接E F,请你判断∠A C D∠A F E.5.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=6. 如图,已知AB∥CD,∠B=65 °,CM平分∠BCE,∠MCN=90 °,求∠DCN=第3题图第4题图第5题图第6题图7.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2013BC的平分线与∠A2013CD的平分线交于点A2014,得∠A2014CD,则∠A2014=______.8. 如图,在△ABC中,AB=AD=DC,∠BAD=26°.∠B= ∠C=9.如图所示.∠A=10°,∠ABC=90°,∠ACB=∠DCE,∠ADC=∠EDF,∠CED=∠FEG.则∠F °10.如图所示,CD是∠ACB的平分线,CF是△ABC的外角∠ACB的外角平分线,FD∥BC交CF于点F.若∠A=40°,∠B=60°,∠FCD= ,∠DFC=第7题图第8题图第9题图第10题图11.已知如图所示,在△ABC中,AB>AC,∠AEF=∠AFE,延长EF与BC的延长线交于点G,求证:∠G=1/2(∠ACB-∠B).12.如图所示,BE与CD相交于点A,CF为∠BCD的平分线,EF为∠BED的平分线.(1)试探索∠F与∠B,∠D之间的数量关系,并加以证明(2)若∠B:∠D:∠F=2:4:x 求x的值13.在△ABC中,角平分线BE与CF相交于点O.求证:∠BOC=90°+1/2∠A14. (1)如图所示,在△ABC中,AD丄BC于D,AE平分∠BAC,且∠C 大于∠B ,求证:∠EAD=1/2(∠C-∠B).(2)若把问题(1)中的“AD丄BC”改为“点F为EA上一点且FD丄BC于D”,画出新的图形,并试说明∠EFD=1/2(∠C-∠B).(3)若把问题(2)中的“F为EA上一点”改为“F为AE延长线上的一点”,则问题(2)中的结论成立吗?请说明你的理由.15、如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,F为BC中点,BE与DF、DC分别交于点G、H,∠ABE=∠CBE.(1)线段BH与AC相等吗?若相等给予证明,若不相等,请说明理由;(2)求证:BG2-GE2=EA2.16.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,①快递车从甲地到乙地的速度为千米/时;②甲、乙两地之间的距离为千米;③图中点B的坐标为;④快递车从乙地返回时的速度为千米/时.17.已知一组数据x1,x2,…,x n的方差是s2,则新的一组数据ax1+1,ax2+1,…,ax n+1(a为常数,a≠0)的方差是a2s2(用含a,s2的代数式表示)18.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B 落在点B′处.当△CEB′为直角三角形时,BE的长为多少?19.如图直线:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(-8,0),点A的坐标为(-6,0)(1)求k的值.(2)若P(x,y)是直线?在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.。
专题训练中考数学总复习《平行线的证明》专题复习练习及答案
中考数学复习平行线的证明专题复习练习1. 下列说法正确的是( D )A.经验、观察或试验完全可以判断一个数学结论的正确与否B.推理是科学家的事,与我们没有多大的关系C.对于自然数n,n2+n+37一定是质数D.有10个苹果,将它放进9个筐中,则至少有一个筐中的苹果不少于2个2. “两条平行直线被第三条直线所截,同位角相等”这句话是( C )A.定义 B.假命题 C.公理 D.定理3. 下列语句中,是命题的是( C )A.直线AB和CD垂直吗B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不平行D.连接A,B两点4.如图,AB∥CD,CB⊥DB,∠D=65°,则∠ABC的大小是( A ) A.25°B.35°C.50°D.65°5.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2等于( B )A.90°B.100°C.130°D.180°6.如图,已知△ABC中,点D在AC上,延长BC至E,连接DE,则下列结论不成立的是( A )A .∠DCE>∠ADB B .∠ADB>∠DBCC .∠ADB>∠ACBD .∠ADB>∠DEC7.如图,AB ∥CD ,直线EF 交AB 于点E ,交CD 于点F ,EG 平分∠BEF ,交CD 于点G ,∠1=50°,则∠2等于( C )A .50°B .60°C .65°D .90°8.如图,已知直线AB ∥CD ,BE 平分∠ABC ,且BE 交CD 于点D ,∠CDE =150°,则∠C 的度数为( C )A .150°B .130°C .120°D .100°9.如图,直线a ∥b ,∠A =38°,∠1=46°,则∠ACB 的度数是( C )A .84°B .106°C .96°D .104°10.适合条件∠A =12∠B =13∠C 的三角形ABC 是( B )A .锐角三角形 B. 直角三角形 C .钝角三角形 D .都有可能11.如图,在折纸活动中,小明制作了一张△ABC 纸片,点D ,E 分别在边AB ,AC 上,将△ABC 沿着DE 折叠压平,A 与A ′重合.若∠A =75°,则∠1+∠2等于( A )A.150° B. 210°C.105°D.75°12.已知直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( B )A.30° B. 35°C.40°D.45°13.如图,DAE是一条直线,DE∥BC,则x=__64°__.14.如图,已知AB∥CD,∠DEF=50°,∠D=80°,∠B的度数是__50°__.15.如图,已知∠A=∠F=40°,∠C=∠D=70°,则∠ABD=__70°__,∠CED=__110°__.16.已知如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠DAC =100°,则∠BAC=__120°__.17.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为__22°__.18.已知等腰三角形的一腰上的高与另一腰的夹角为40°,则这个等腰三角形的顶角为__50°或130°__.19.如图所示,AB=BC=CD=DE=EF=FG,∠1=130°,则∠A=__10__度.20.如图,∠C=∠1,∠2和∠D互余,BE⊥FD,求证:AB∥CD.解:∵∠C=∠1,∴CF∥BE,又BE⊥FD,∴CF⊥FD,∴∠CFD=90°,则∠2+∠BFD=90°,又∠2+∠D=90°,∴∠D=∠BFD,则AB∥CD21.一天,爸爸带着小刚到建筑工地去玩,看见有如图所示的人字架,爸爸说:“小刚,我考考你,这个人字架的夹角∠1等于130°,你能求出∠3比∠2大多少吗?”小刚马上得到了正确答案,他的答案是多少?请说明理由.解:50°,因为∠1=130°,所以与∠1相邻的内角为50°,所以∠3-∠2=50°。
(完整版)七年级数学平行线的有关证明及答案
平行线的性质与判定的证明练习题温故而知新:1.平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.2.平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行互补.例1 已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数;(2)探求∠DNQ与∠AMN,∠EPN的数量关系.解析:在我们完成涉及平行线性质的相关问题时,注意实现同位角、内错角、同旁内角之间的角度转换,即同位角相等,内错角相等,同旁内角互补.例2 如图,∠AGD=∠ACB,CD⊥AB,EF⊥AB,证明:∠1=∠2.解析:在完成证明的问题时,我们可以由角的关系可以得到直线之间的关系,由直线之间的关系也可得到角的关系.例3 (1)已知:如图2-4①,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD;(2)当点C位于如图2-4②所示时,∠ABC,∠CDE与∠BCD存在什么等量关系?并证明.解析:在运用平行线性质时,有时需要作平行线,取到桥梁的作用,实现已知条件的转化.例4 如图2-5,一条公路修到湖边时,需绕道,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C应为多少度?解析:把关于角度的问题转化为平行线问题,利用平行线的性质与判定予以解答.举一反三:1.如图2-9,FG∥HI,则∠x的度数为()A.60°B. 72°C. 90°D. 100°2. 已知如图所示,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.3.已知:如图2-10,AB∥EF,BC∥ED,AB,DE交于点G.求证:∠B=∠E.例4如图2-6,已知AB ∥CD ,试再添上一个条件,使∠1=∠2成立,并说明理由.解决此类条件开放性问题需要从结果出发,找出结果成立所需要的条件,由果溯因.5.如图1-7,已知直线1l 2l ,且3l 和1l 、2l 分别交于A 、两点,点P 在AB 上,4l 和1l 、2l 分别交于C 、D 两点,连接PC 、PD 。
(必考题)初中数学八年级数学上册第七单元《平行线的证明》检测题(答案解析)(2)
一、选择题1.下列四个命题中为真命题的是( )A .两条直线被第三条直线所截,内错角相等B .若1∠和2∠是对顶角,则12∠=∠C .三角形的一个外角大于任何一个内角D .22a b =,则a b =2.如图,在折纸活动中,小明制作了一张ABC ∆纸片,点D E 、分别是边AB AC 、上的点,将ABC ∆沿着DE 折叠压平,A 与A '重合,若50A ∠=︒,则12∠+∠=( )A .90︒B .100︒C .110︒D .120︒ 3.下列说法正确的有( )①每个定理都有逆定理;②每个命题都有逆命题;③假命题没有逆命题;④真命题的逆命题是真命题A .1个B .2个C .3个D .4个4.下列命题是假命题的是( )A .同旁内角互补,两直线平行B .直角三角形的两个锐角互余C .三角形的一个外角等于它的两个内角之和D .有一个角是60°的等腰三角形是等边三角形5.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC ∠的度数是( )A .65︒B .75︒C .85︒D .105︒ 6.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④ 7.下列命题中的假命题是( )A .三角形的一个外角大于内角B .同旁内角互补,两直线平行C .21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解 D .方差是刻画数据离散程度的量8.如图,//AB CD ,一副三角尺按如图所示放置,18AEG ∠=︒,则HFD ∠为( )A .23B .33C .36D .389.如图,直线a ∥b ,点B 在a 上,且AB ⊥BC ,若∠1=35°,那么∠2等于( )A .45°B .50°C .55°D .60°10.如图,已知四边形ABCD 中,98B ∠=︒,62D ∠=︒,点E 、F 分别在边BC 、CD 上.将CEF △沿EF 翻折得到GEF △,若GE AB ∥,GF AD ∥,则C ∠的度数为( )A .80︒B .90︒C .100︒D .110︒11.如图,//AB EF ,C 点在EF 上,EAC ECA ∠=∠,BC 平分DCF ∠,且AC BC ⊥.下列结论:①AC 平分DCE ∠;②//AE CD ;③190B ∠+∠=︒;④BDC 21∠=∠.其中结论正确的个数有( )A .1个B .2个C .3个D .4个 12.如图,//AB CD ,BE 交CD 于点F ,48B ∠=︒,20E ∠=︒,则D ∠的度数为( ).A .28B .20C .48D .68二、填空题13.如图,点P 是三角形三条角平分线的交点,若∠BPC=100︒,则∠BAC=_________.14.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.15.如图,A α∠=,,ABC ACD ∠∠的平分线相交于点1P ,11,PBC PCD ∠∠的平分线相交于点2P ,2P BC ∠,2P CD ∠的平分线相交于点3P ……以此类推,则n P ∠的度数是___________(用含n 与α的代数式表示).16.如图,三角形纸片ABC 中∠A =66°,∠B =73°,将纸片一角折叠,使点C 落在△ABC 的内部C′处,若∠2=55°,则∠1=_____.17.如图,已知:AB ∥CD ,DB ⊥BC ,∠1=40°,求∠2的度数.完成下面的证明过程: 证明:∵AB ∥CD ( ),∴∠1=∠BCD =40°( ).∵BD ⊥BC ,∴∠CBD = .∵∠2+∠CBD+∠BCD = ( ),∴∠2= .18.如图, AM 、CM 分别平分∠BAD 和∠BCD ,且∠B=31°,∠D=39°,则∠M=______.19.如图,在ABC 中,AD 是BC 边上的高,AE 是BAC ∠的平分线,15EAD ∠=︒,40B ∠=︒,则C ∠=_________︒.20.三角形中,如果有一个内角是另外一个内角的3倍,我们把这个三角形叫做“三倍角三角形”.在一个“三倍角三角形”中有一个内角为60°,则另外两个角分别为_____.三、解答题21.如图,已知CF 是ACB ∠的平分线,交AB 于点F ,D 、E 、G 分别是AC 、AB 、BC 上的点,且3ACB ,45180︒∠+∠=.(1)图中1∠与3∠是一对_______,2∠与5∠是一对________,3∠与4∠是一对_______.(填“同位角”或“内错角”或“同旁内角”)(2)判断CF 与DE 是什么位置关系?说明理由;(3)若CF AB ⊥,垂足为F ,58A ︒∠=,求ACB ∠的度数.22.如图1,点A 是射线OE :y x =-(x≥0)上的一点,已知232OA =,过点A 作x 轴的垂线,垂足为B ,过点B 作OE 的平行线交∠AOB 的平分线于点C .(1)求点A 的坐标;(2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .(3)①若射线OC 与AB 交于点D ,在射线BC 上是否存在一点P 使得△ACP 与△BDC 全等,若存在,请求出点P 的坐标;若不存在,请说明理由.②在①的条件下,在平面内另有三点1(8,8)P -、2P (4,32-)、3(8484)P +-,,请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)23.如图,AB ∥CD ,点E 是CD 上一点,连结AE .EB 平分∠AED ,且DB ⊥BE ,AF ⊥AC ,AF 与BE 交于点M .(1)若∠AEC =100°,求∠1的度数;(2)若∠2=∠D ,则∠CAE =∠C 吗?请说明理由.24.如图1,AD //BC ,BAD ∠的平分线交BC 于点G ,90BCD ∠=︒.(1)求证:BAG BGA ∠=∠(2)如图2,若50ABC ∠=︒,BCD ∠的平分线交AD 于点E ,交射线GA 于点F ,AFC ∠的度数.(3)如图3,线段AG 上有一点P ,满足2ABP PBG ∠=∠,过点C 作CH //AG . 若在直线AG 上取一点M ,使PBM DCH ∠=∠,请求:ABM GBM ∠∠的值.25.如图,在△ABC 中,点D 是AC 边上的一点,已知ABC C ∠=∠,A ABD DBC ∠=∠=∠,求C ∠的度数.26.已知E ,A ,C 在同一直线上,AD BC ⊥于点D ,EG BC ⊥于点G ,交AB 于F ,3E ∠=∠.求证:(1)//AD EC ;(2)AD 平分BAC ∠证明:(1)∵AD BC ⊥,EG BC ⊥∴ADC EGC ∠==______∴//AD EG(2)∵//AD EG∴1∠=∠______(______),∠2=∠3(_______)∵3E ∠=∠(______)∴______=______即AD 平分BAC ∠【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平行线的性质、对顶角相等、三角形外角定理、乘方的性质逐项判断即可求解.【详解】解:A. “两条直线被第三条直线所截,内错角相等”,缺少两直线平行这一条件,判断错误,是假命题,不合题意;B. “若1∠和2∠是对顶角,则12∠=∠”,是真命题,符合题意;C. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于任何一个和它不相邻的内角”,判断错误,是假命题,不合题意;D. “22a b =,则a b =,”是假命题,a 和b 也可以互为相反数,不合题意.故选:B【点睛】本题考查了平行线的性质、对顶角相等、三角形外角定理、乘方的性质、真假命题等知识,熟知相关知识是解题关键.2.B解析:B【分析】根据三角形的内角和等于180°求出∠ADE+∠AED ,再根据翻折变换的性质可得∠A′DE=∠ADE ,∠A′ED=∠AED ,然后利用平角等于180°列式计算即可得解.【详解】∵∠A=50°,∴∠ADE+∠AED=180°-50°=130°,∵△ABC 沿着DE 折叠压平,A 与A′重合,∴∠A′DE=∠ADE ,∠A′ED=∠AED ,∴∠1+∠2=180°-(∠A′ED+∠AED )+180°-(∠A′DE+∠ADE )=360°-2×130°=100°.【点睛】本题考查了三角形的内角和定理,翻折变换的性质,整体思想的利用求解更简便.3.A解析:A【分析】根据逆定理的定义,某一定理的条件和结论互换所得命题是真命题是这个定理的逆定理可以判断①,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,可判断②,利用命题分类分为真命题与假命题都是命题,都有逆命题,可判断③,真命题是正确的命题,真命题的逆命题有真假命题之分,可判断④即可.【详解】解:①每个定理都有逆命题,看根据逆命题的条件能否推出正确的结论,能推出,由逆定理,不能推出,没有逆定理,故①不正确;②每个命题都有逆命题;故②正确;③假命题也是命题,命题都有逆命题,故③不正确;④真命题的逆命题可能是假命题,也可能是真命题,根据条件能否推出正确的结论有关,能推出,由是真命题,不能推出,是假命题,故④不正确.正确的说法只有一个②.故选择:A.【点睛】本题考查命题,真命题,假命题,逆命题,定理,逆定理,掌握命题,真命题,假命题,逆命题,定理,逆定理的定义,以及它们的区别是解题关键.4.C解析:C【分析】根据平行线的判定定理,直角三角形互余性质,三角形的外角性质,等边三角形的判定去分别判断即可.【详解】解:∵同旁内角互补,两直线平行,∴选项A选项为真命题,不符合题意;根据三角形内角和定理,得直角三角形的两个锐角互余,∴选项B选项为真命题,不符合题意;∵三角形的一个外角等于和它不相邻的两个内角之和,∴选项C选项为假命题,符合题意;根据等角对等边,有一个角是60°的等腰三角形是等边三角形,∴选项D选项为真命题,不符合题意;故选C.本题考查了对数学基础知识的掌握,全面规范掌握数学基础知识是解题的关键.5.B解析:B【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】解:∵∠CEA=60︒,∠BAE=45︒,∴∠ADE= 180︒−∠CEA−∠BAE=75︒,∴∠BDC=∠ADE=75︒,故选:B【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.6.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.7.A解析:A【分析】根据三角形的外角、平行线的判断、二元一次方程的解以及方差即可判断出结果.【详解】解:在三角形内角中大于90°角的外角是一个锐角,故A 选项符合题目要求;同旁内角互补,两直线平行,故B 选项不符合题目要求;21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解,故C 选项不符合题目要求; 方差是刻画数据离散程度的量,故D 选项不符合题目要求.故选:A【点睛】本题主要考查的是命题与定理的知识,正确的掌握这些知识点是解题的关键. 8.B解析:B【分析】过点G 作AB 平行线交EF 于P ,根据平行线的性质求出∠EGP ,求出∠PGF ,根据平行线的性质、平角的概念计算即可.【详解】解:过点G 作AB 平行线交EF 于P ,由题意易知,AB ∥GP ∥CD ,∴∠EGP=∠AEG=18°,∴∠PGF=72°,∴∠GFC=∠PGF=72°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=33°.故选:B .【点睛】本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.9.C解析:C【分析】先根据直线平行的性质得到∠BAC=∠1=35°,再由三角形内角和定理求出55BCA ∠=︒,再根据对顶角的性质即可得到答案.【详解】解:∵直线a ∥b ,∴∠BAC=∠1=35°(两直线平行,内错角相等),又∵AB ⊥BC ,∴∠ABC=90°,∴180903555BCA ∠=︒-︒-︒=︒ (三角形内角和定理),∴255BCA ∠=∠=︒(对顶角相等),故选:C .【点睛】本题主要考查了直线平行的性质、三角形内角和定理、对顶角的性质,掌握对顶角相等以及两直线平行内错角相等是解题的关键.10.C解析:C【分析】已知GE AB ∥,GF AD ∥,98B ∠=︒,62D ∠=︒,根据平行线的性质可得98B GEC ∠=∠=︒,62D GFC ∠=∠=︒;因CEF △沿EF 翻折得到GEF △,由折叠的性质可得1492GEF CEF GEC ∠=∠=∠=︒,1312GFE CFE GFC ∠=∠=∠=︒;在△EFC 中,由三角形的内角和定理即可求得∠C=00°.【详解】∵GE AB ∥,GF AD ∥,98B ∠=︒,62D ∠=︒,∴98B GEC ∠=∠=︒,62D GFC ∠=∠=︒,∵CEF △沿EF 翻折得到GEF △, ∴1492GEF CEF GEC ∠=∠=∠=︒,1312GFE CFE GFC ∠=∠=∠=︒, 在△EFC 中,由三角形的内角和定理可得,∠C=180°-∠FEC-∠CFE=180°-49°-31°=100°.故选C.【点睛】本题考查了平行线的性质、折叠的性质及三角形的内角和定理,熟练运用相关知识是解决问题的关键.11.D解析:D【分析】根据平行线的性质及角度的计算,等腰三角形的性质即可进行一一求解判断.【详解】根据//AB EF , BC 平分DCF ∠,且AC BC ⊥可得∠1+∠BCD=90°,∠BCD=12∠DCF , 又∠DCF+∠ECD=180°,∴∠1=12∠ECD ,故AC 平分DCE ∠,①正确; ∵AC 平分DCE ∠,∴∠1=∠ECA,∵EAC ECA ∠=∠∴EAC ∠=∠1,∴//AE CD ,②正确;∵EF ∥AB ,∴∠FCB=∠B ,∴∠B=∠DCB ,∵∠1+∠DCB=90°,∴190B ∠+∠=︒,③正确;∵EF ∥AB ,∴∠ECA=∠CAD ,∵∠1=∠ECA∴∠1=∠CAD∵∠CDB 是△ACD 的一个外角,∴∠CAD=∠1+∠CAD=2∠1,④正确;故选D【点睛】此题主要考查平行线的角度计算,解题的关键是根据图像的特点进行求解.12.A解析:A【分析】由//AB CD 和48B ∠=︒,可得到CFB ∠;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵//AB CD∴180********CFB B ∠=-∠=-=∴132EFD CFB ∠=∠=∴1801801322028D EFD E ∠=-∠-∠=--=故选:A .【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.二、填空题13.【分析】先根据三角形的内角和求出∠PBC+∠PCB=故可得到∠ABC+∠ACB=即可得出答案【详解】在△BPC 中∠BPC=∴∠PBC+∠PCB=∵P 是三角形三条角平分线的交点∴∠ABC=2∠PBC ∠解析:20︒【分析】先根据三角形的内角和求出∠PBC+∠PCB=80︒,故可得到∠ABC+∠ACB=160︒,即可得出答案.【详解】在△BPC 中,∠BPC=100︒,∴∠PBC+∠PCB=80︒,∵P 是三角形三条角平分线的交点,∴∠ABC=2∠PBC ,∠ACB=2∠PCB ,∴∠ABC+∠ACB=2∠PBC+2∠PCB=160︒,∴∠BAC=180()20ABC ACB ︒-∠+∠=︒,故答案为:20︒.【点睛】此题考查三角形的内角和定理,角平分线的有关计算,熟练应用定理解决问题是解题的关键.14.65【分析】利用平行线的判定定理和性质定理等量代换可得∠CBD=∠EBC 可得结果【详解】∵∠1=50°∴∠DBE=180°-∠1=180°-50°=130°∵∠2=130°∴∠DBE=∠2∴AE∥C解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.15.【分析】由∠P1CD=∠P1+∠P1BC∠ACD=∠ABC+∠A而P1BP1C分别平分∠ABC和∠ACD得到∠ACD=2∠P1CD∠ABC=2∠P1BC于是有∠A=2∠P1同理可得∠P1=2∠P2即解析:12nα⎛⎫ ⎪⎝⎭【分析】由∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,而P1B、P1C分别平分∠ABC和∠ACD,得到∠ACD=2∠P1CD,∠ABC=2∠P1BC,于是有∠A=2∠P1,同理可得∠P1=2∠P2,即∠A=22∠P2,因此找出规律.【详解】∵P1B、P1C分别平分∠ABC和∠ACD,∴∠ACD=2∠P1CD,∠ABC=2∠P1BC,而∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,∴∠A=2∠P1,∴∠P1=12∠A,同理可得∠P1=2∠P2,即∠A=22∠P2,∴∠A=2n∠P n,∴∠P n=12n α⎛⎫⎪⎝⎭.故答案为:12nα⎛⎫⎪⎝⎭.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的外角性质以及角平分线性质,难度适中.16.27°【分析】设折痕为EF连接CC′如图根据三角形的外角性质和折叠的性质可得∠1+∠2=2∠C根据三角形的内角和定理可得∠C的度数进一步即可求出答案【详解】解:设折痕为EF连接CC′如图∵∠2=∠E解析:27°【分析】设折痕为EF,连接CC′,如图,根据三角形的外角性质和折叠的性质可得∠1+∠2=2∠C,根据三角形的内角和定理可得∠C的度数,进一步即可求出答案.【详解】解:设折痕为EF,连接CC′,如图.∵∠2=∠ECC′+∠EC′C,∠1=∠FCC′+∠FC′C,∠ECF=∠EC′F,∴∠1+∠2=∠ECC′+∠EC′C+∠FCC′+∠FC′C=∠ECF+∠EC′F= 2∠ECF,∵∠ECF=180°﹣66°﹣73°=41°,∴∠1=82°﹣55°=27°,故答案为:27°.【点睛】本题考查了折叠的性质、三角形的内角和定理以及三角形的外角性质,属于常考题型,得出∠1+∠2=2∠C是解本题的关键.17.已知;两直线平行同位角相等;90°;180°;三角形内角和定理;50°【分析】由平行线的性质和垂线的定义可得∠1=∠BCD=40°∠CBD=90°由三角形内角和定理可求∠2的度数【详解】∵AB∥CD解析:已知;两直线平行,同位角相等;90°;180°;三角形内角和定理;50°【分析】由平行线的性质和垂线的定义可得∠1=∠BCD=40°,∠CBD=90°,由三角形内角和定理可求∠2的度数.【详解】∵AB∥CD(已知),∴∠1=∠BCD=40°(两直线平行,同位角相等).∵BD⊥BC,∴∠CBD=90°.∵∠2+∠CBD+∠BCD=180°(三角形内角和定理),∴∠2=50°.故答案为:已知,两直线平行,同位角相等,90°,180°,三角形内角和定理,50°.【点睛】本题考查了平行线的性质,垂线的定义,三角形内角和定理,熟练运用三角形内角和定理是本题的关键.18.35°【分析】根据三角形内角和定理用∠B∠M表示出∠BAM-∠BCM再用∠B∠M表示出∠MAD-∠MCD再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD然后求出∠M与∠B∠D关系代入数解析:35°【分析】根据三角形内角和定理用∠B、∠M表示出∠BAM-∠BCM,再用∠B、∠M表示出∠MAD-∠MCD,再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD,然后求出∠M与∠B、∠D关系,代入数据进行计算即可得解;【详解】解:根据三角形内角和定理,∠B+∠BAM=∠M+∠BCM,∴∠BAM-∠BCM=∠M-∠B,同理,∠MAD-∠MCD=∠D-∠M,∵AM、CM分别平分∠BAD和∠BCD,∴∠BAM=∠MAD,∠BCM=∠MCD,∴∠M-∠B=∠D-∠M,∴∠M=12(∠B+∠D)=12(31°+39°)=35°;故答案为:35°【点睛】本题考查了三角形的内角和定理,角平分线的定义.注意利用“8字形”的对应角相等求出角的关系是解题的关键,要注意整体思想的利用.19.70【分析】根据三角形的内角和定理求出∠BAD求出∠BAE根据角平分线的定义求出∠BAC即可求出答案【详解】解:∵AD⊥BC∴∠ADC=∠ADB=90°∵∠B=40°∴∠BAD=90°-40°=50解析:70【分析】根据三角形的内角和定理求出∠BAD,求出∠BAE,根据角平分线的定义求出∠BAC,即可求出答案.【详解】解:∵AD⊥BC,∴∠ADC=∠ADB=90°,∵∠B=40°,∴∠BAD=90°-40°=50°,∵∠EAD=15°,∴∠BAE=50°-15°=35°,∵AE平分∠BAC,∠BAC=35°,∴∠CAE=∠BAE=12∴∠BAC=70°,∴∠C=180°-∠BAC-∠B=180°-70°-40°=70°;故答案为:70.【点睛】本题考查了三角形的内角和定理,能灵活运用定理进行计算是解此题的关键.20.100°20°或90°30°【分析】分三种情形讨论求解即可解决问题【详解】解:在△ABC中不妨设∠A=60°①若∠A=3∠C则∠C=20°∠B=100°②若∠C=3∠A则∠C=180°(不合题意)③解析:100°,20°或90°,30°【分析】分三种情形讨论求解即可解决问题.【详解】解:在△ABC中,不妨设∠A=60°.①若∠A=3∠C,则∠C=20°,∠B=100°.②若∠C=3∠A,则∠C=180°(不合题意).③若∠B=3∠C,则∠B=90°,∠C=30°,综上所述,另外两个角的度数为100°,20°或90°,30°.故答案为:100°,20°或90°,30°.【点睛】本题考查了三角形的内角和定理的运用,解题的关键是学会用分类讨论的思想思考问题.三、解答题21.(1)同位角,同旁内角,内错角;(2)平行,理由见解析;(3)64°【分析】(1)根据同位角,同旁内角,内错角的定义分别判断;(2)根据∠3=∠ACB 得到FG ∥AC ,得到∠2=∠4,结合∠4+∠5=180°,可得结论;(3)根据FG ∥AC 得到∠BFG=∠A=58°,结合CF ⊥AB 得到∠4,可得∠2,最后根据角平分线的定义得到∠ACB .【详解】解:(1)∵∠1和∠3分别在CF ,GF 的同侧,并且在第三条直线BC 的同旁, ∴∠1与∠3是一对同位角,∵∠2和∠5夹在CF ,DE 两条直线之间,并且在第三条直线AC 的同旁,∴∠2与∠5是一对同旁内角,∵∠3和∠4夹在CF ,CB 两条直线之间,并且在第三条直线FG 的同旁,∴∠3与∠4是一对内错角;故答案为:同位角,同旁内角,内错角;(2)CF ∥DE ,∵∠3=∠ACB ,∴FG ∥AC ,∴∠2=∠4,又∵∠4+∠5=180°,∴∠2+∠5=180°,∴CF ∥DE ;(3)由(2)知:FG ∥AC ,∴∠BFG=∠A=58°,∵CF ⊥AB ,∴∠BFC=∠BFG+∠4=90°,∴∠4=90°-58°=32°,∴∠2=∠4=32°,∵CF 是∠ACB 的平分线,∴∠ACB=2∠2=64°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.22.(1)(4,4)A -;(2)见解析;(3)①存在,P (8,-4);②满足全等的点有P 1、P 2、P 3,见解析.【分析】(1)根据题意,设(,)A a a -,在Rt △AOB 中,利用勾股定理,解得a 的值,即可解得点A 的坐标;(2)过点C 作CM ⊥x 轴于M ,由平行线的性质得到∠MBC=∠ABC ,结合角平分线上的点到角两边的距离相等可得CM= CH ,据此可证明CG =CH ;(3)①先计算∠BDC 的度数,再根据角平分线及平行线性质可证明∠BOC=∠BCO ,由等角对等边可解得BO=BC=AB ,继而得到∠ACP=∠BDC ,接着证明△APB 为等腰直角三角形,解答AP 的长,据此解题;②根据全等三角形的判定方法,分别证明1()BCD PCA AAS ≅、2()BCD P CA AAS ≅、3()BCD P AC AAS ≅即可解题.【详解】(1)∵AB ⊥x 轴∴∠ABO=90°∵A 在y x =-上∴设(,)A a a -则AB=OB=a即△ABO 为等腰直角三角形在Rt △AOB 中∵222AB OB OA +=∴2232a a +=∴a=±4(负值舍去)∴(44)A -,(2)如图,过点C 作CM ⊥x 轴于M∵BC//OE∴∠MBC=∠BOA=45°,∠ABC=∠OAB=45°∴∠MBC=∠ABC∵CM ⊥x 轴,CG ⊥AB∴CM= CG∵OC 平分∠AOB ,CM ⊥x 轴 CH ⊥OE∴CM= CH∴CG =CH(3)①存在点P易证∠BDC=∠BOD+∠OBD=22.5°+90°=112.5° ∵OC 平分∠AOB ,BC ∥OE ∴∠BOC=∠COA ,∠BCO=∠COA ∴∠BOC=∠BCO∴BO=BC=AB又∠ABC =45°∴∠BAC=∠BCA=67.5° ∴∠ACP=112.5°∴∠ACP=∠BDC又∠BAC=∠CDA=67.5°∴CA=CD∴当CP=BD 时,△ACP ≌△CDB ∴∠APC=∠DBC=45°∴△APB 为等腰直角三角形 ∴AP=AB=OB=4∴P (8,-4)②如图,满足全等的点有P 1、P 2、P 3理由如下, 1(8,8)P -∴点1P 在射线(0)OE x x =-≥:y 上,84<1P ∴在线段OA 上, 连接1CP,45CG AB CBG ⊥∠=︒BCG ∴是等腰直角三角形, CG BG ∴=(4,4)A -4OB ∴=BC OB =222216BC BG CG OB ∴=+==4BG CG BC ∴===(4C ∴+-144CP ∴=+= 11,//CP BC CP x ∴=轴 145CP A BOA CBD ∴∠=∠=∠=︒ 190,PGA ∠=︒ 145P AG ∴∠=︒1167.545112.5CAP CAG P AG ∴∠=∠+∠=︒+︒=︒ 在BCD △与1PCA 中 111BDC P AC CP A CBD BC PC ∠=∠⎧⎪∠=∠⎨⎪=⎩1()BCD PCA AAS ∴≅ 2P 的横坐标为4,点(4,4)4A OB -=, 2P ∴在BA 的延长线上, 连接22,AP CP67.5BAC ∠=︒2180112.5CAP BAC ∴∠=︒-∠=︒ 2CAP BDC ∴∠=∠ 2P的纵坐标为2BP ∴==2BG =22GP BP BG ∴=-=CG ∴=2GP CG ∴=CG AB ⊥245AP C ∴∠=︒2AP C ABC ∴∠=∠在BCD △与2P CA 中,22BDC P AC ABC AP C CD CA ∠=∠⎧⎪∠=∠⎨⎪=⎩2()BCD P CA AAS ∴≅3P,点C的横坐标为4,3CP ∴所在的直线垂直于x 轴,AB x ⊥轴3//CP AB ∴连接33CP AP 、,过点A 作3AQ CP ⊥交3P C 的延长线于点Q ,3//CP AB3180BAC ACP ∴∠+∠=︒3180112.5ACP BAC ∴∠=︒-∠=︒3ACP BDC ∴∠=∠(4,4)A -3444(4)AQ PQ ∴=-==--=3AQ PQ ∴= 3AQ PQ ⊥ 345APQ ∴∠=︒ 3APQ ABC ∴∠=∠ 在BCD △与3P AC 中33BDC PCA APC ABC CD AC ∠=∠⎧⎪∠=∠⎨⎪=⎩3()BCD P AC AAS ∴≅故答案为:123P P P 、、 .【点睛】本题考查等腰直角三角形、全等三角形的判定与性质、平行线的性质、角平分线的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.23.(1)40°;(2)∠CAE =∠C ,理由见解析.【分析】(1)根据邻补角的定义可求∠AED ,再根据角平分线的定义和平行线的性质可求∠1的度数;(2)根据三角形内角和定理可求∠BED =∠C ,根据平行线的判定可知AC ∥BE ,根据平行线的性质可得∠CAE =∠AEB ,根据角平分线的定义和等量关系即可求解.【详解】(1)∵∠AEC =100°,∴∠AED =80°,∵EB 平分∠AED ,∴∠BED =40°,∵AB ∥CD ,∴∠1=∠BED =40°;(2)∵DB ⊥BE ,AF ⊥AC ,∴∠EBD =∠CAF =90°,∵∠2=∠D ,∴∠BED =∠C ,∴AC ∥BE ,∴∠CAE =∠AEB ,∵EB 平分∠AED ,∴∠AEB =∠BED ,∴∠CAE =∠C .【点睛】本题考查平行线的判定和性质,邻补角的定义,角平分线的定义,三角形内角和定理.熟悉相应的性质和定义是解答本题的关键.24.(1)见解析;(2)20︒;(3)1:5或7:5.【分析】(1)由两直线平行,内错角相等证得DAG AGB ∠=∠,再由角平分线的性质得到12BAG DAG BAD ∠=∠=∠,据此解题; (2)由等腰三角形的性质结合三角形内角和解得65BGA ∠=︒,再由补角的定义解得115AGC ∠=︒,接着由角平分线的性质解得ECB ∠的度数,最后根据三角形内角和180°解题;(3)设,1802AGB BAG ABG αα∠=∠=∠=︒-,根据题意,解得ABP PBG ∠∠、的度数,再根据两直线平行,同位角相等解得HCB AGB α∠=∠=,继而解得DCH PBM ∠∠、的度数,接着分两种情况讨论:当M 在BP 上方时,或当M 在BP 下方时,分别解得ABM GBM ∠∠、的度数,即可解题.【详解】解:(1)//AD BCDAG AGB ∴∠=∠ AC 平分BAD ∠12BAG DAG BAD ∴∠=∠=∠ ∴∠=∠BAG BGA ;(2)50ABC ∠=︒1(180)652BGA ABG ∴∠=︒-∠=︒ 180115AGC AGB ∴∠=︒-∠=︒CE 平分DCB ∠1452ECB DCB ∴∠=∠=︒ 18020AFC AGC ECB ∴∠=︒-∠-∠=︒;(3)设,1802AGB BAG ABG αα∠=∠=∠=︒-2ABP PBG ∠=∠2412033ABP ABG α∴∠=∠=︒- 126033PBG ABG α∠=∠=︒- //CH AGHCB AGB α∴∠=∠=90DCH α∴∠=︒-PBM DCH ∴∠=∠90PBM α∴∠=︒-90α<︒160902αα∴︒-<︒- 4120903αα∴︒->︒- PBG PBM ABP ∴∠<∠<∠当M 在BP 上方时,1303ABM ABP PBM α∠=∠-∠=︒-51503GBM PBG PBM α∠=∠+∠=︒- :1:5ABM GBM ∠∠=当M 在BP 下方时,72103ABM ABP PBM α∠=∠+∠=︒- 51503GBM PBG PBM α∠=∠+∠=︒- 7:5ABM GBM ∠∠=:综上所述,:1:5ABM GBM ∠∠=或7:5ABM GBM ∠∠=:.【点睛】本题考查平行线的性质、角平分线的定义、三角形内角和180°等知识,是重要考点,难度一般,掌握相关知识是解题关键.25.72︒【分析】设∠A=∠ABD=∠DBC=x ,则∠ABC=2∠A=2x ,根据三角形的内角和定理得到x+2x+2x=180°,求出x 即可得到答案.【详解】设∠A=∠ABD=∠DBC=x ,则∠ABC=2∠A=2x ,∵∠A+∠ABC+∠C=180°,即x+2x+2x=180°,x=36°,∴∠C=2x=72°.【点睛】此题考查三角形的内角和定理:三角形的内角和为180°,设设∠A=∠ABD=∠DBC=x ,用含x 的式子表示三角形的内角和是解题的关键.26.(1)90°;(2)E ;两直线平行,同位角相等;两直线平行,内错角相等;已知;∠1;∠2【分析】(1)根据垂直的性质可得对应角等于90°,再根据同位角相等两直线平行即可证明; (2)根据平行线的性质和等量代换可得∠1=∠2,由此可证得结论.【详解】证明:(1)∵AD BC ⊥,EG BC ⊥∴ADC EGC ∠==90°∴//AD EG故答案为:90°.(2)∵//AD EG∴1∠=∠E (两直线平行,同位角相等),∠2=∠3(两直线平行,内错角相等)∵3E ∠=∠(已知)∴∠1=∠2即AD 平分BAC ∠故答案为:E ;两直线平行,同位角相等;两直线平行,内错角相等;已知;∠1;∠2.【点睛】本题考查了平行线的性质和判定.解题的关键是掌握平行线的性质定理和判定定理的运用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.解答题(共29小题)1.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.
2.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.
(1)求证:CF∥AB;(2)求∠DFC的度数.
3.如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.
(2)迁移:某足球比赛中有n个球队(n≥2)进行单循环比赛(每两队之间必须比赛一场),一共要进行多少场比赛?有2个球队时,要进行 场比赛,有3个球队时,要进行 场比赛,有4个球队时,要进行场比赛,…那么有20个球队时,要进行场比赛.
19.(1)如图,在△ABC中,∠B=32°,∠C=68°,则∠A=.
“锤子”赢“剪子”
“剪子”赢“布”
赢的次数
赢法二:
“布”赢
“锤子”
“锤子”赢“剪子”
“剪子”赢“布”
赢的次数
赢法三:
“布”赢
“锤子”
“锤子”赢“剪子”
“剪子”赢“布”
赢的次数
21.甲、乙两同学开展“投球进筐”比赛,双方约定:
①比赛分6局进行,每局在指定区域内将球投向筐中,只要投进一次后该局便结束;
②若一次未进可再投第二次,以此类推,但每局最多只能投8次,若8次投球都数或0;b.若8次都未投进,该局得分为0;
c.投球次数越多,得分越低;d.6局比赛的总得分高者获胜.
(1)设某局比赛第n(n=1,2,3,4,5,6,7,8)次将球投进,请你按上述约定,用公式、表格或语言叙述等方式,为甲、乙两位同学制定一个把n换算为得分M的计分方案;
(2)若两人6局比赛的投球情况如下(其中的数字表示该局比赛进球时的投球次数,“×”表示该局比赛8次投球都未进):根据上述计分规则和你制定的计分方案,确定两人谁在这次比赛中获胜.
29.附加题:
要将29个数学竞赛的名额分配给10所学校,每所学校至少要分到一个名额.
(1)试提出一种分配方案,使得分到相同名额的学校少于4所;
(2)证明:不管怎样分配,至少有3所学校得到的名额相同;
(3)证明:如果分到相同名额的学校少于4所,则29名选手至少有5名来自同一学校.
(1)小明和某同学玩此游戏过程中,小明赢了21次,得108分,其中“剪子”赢“布”7次.聪明的同学,请你用所学的数学知识求出小明“布”赢“锤子”、“锤子”赢“剪子”各多少次?
(2)如果小明与某同学玩了若干次,得了30分,请你探究一下小明各种可能的赢法,并选择其中的三种赢法填入下表.
赢法一:
“布”赢
“锤子”
(2)在如图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明);
(3)根据(2)的结论求如图4中∠A+∠B+∠C+∠D+∠E的度数.
17.在学习中,小明发现:当n=1,2,3时,n2﹣6n的值都是负数.于是小明猜想:当n为任意正整数时,n2﹣6n的值都是负数.小明的猜想正确吗?请简要说明你的理由.
[注:单循环比赛就是小组内的每一个队都要和其他队赛一场].
25.如图,AE与CD交于点O,∠A=50°,OC=OE,∠C=25°,求证:AB∥CD.
26.如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.
27.附加题:
请你把上面的解答再认真地检查一遍,别留下什么遗憾,并估算一下成绩是否达到了80分,如果你的全卷得分低于80分,则本题的得分将计入全卷总分,但计入后全卷总分最多不超过80分;如果你全卷得分已经达到或超过80分,则本题的得分不计入全卷总分.
20.下面是同学们玩过的“锤子、剪子、布”的游戏规则:游戏在两位同学之间进行,用伸出拳头表示“锤子”,伸出食指和中指表示“剪子”,伸出手掌表示“布”,两人同时口念“锤子、剪子、布”,一念到“布”时,同时出手,“布”赢“锤子”,“锤子”赢“剪子”,“剪子”赢“布”.
现在我们约定:“布”赢“锤子”得9分,“锤子”赢“剪子”得5分,“剪子”赢“布”得2分.
4.如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.
5.如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.
6.如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.
7.已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DFE的平分线相交于点P.求证:∠P=90°.
18.阅读下列材料并填空:
(1)探究:平面上有n个点(n≥2)且任意3个点不在同一条直线上,经过每两点画一条直线,一共能画多少条直线?
我们知道,两点确定一条直线.平面上有2个点时,可以画 条直线,平面内有3个点时,一共可以画 条直线,平面上有4个点时,一共可以画 条直线,平面内有5个点时,一共可以画条直线,…平面内有n个点时,一共可以画条直线.
14.大冠买了一包宣纸练习书法,每星期一写1张,每星期二写2张,每星期三写3张,每星期四写4张,每星期五写5张,每星期六写6张,每星期日写7张.若大冠从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数已超过120张,则5月30日可能为星期几?请求出所有可能的答案并完整说明理由.
15.先作图,再证明.(1)在所给的图形(如图)中完成下列作图(保留作图痕迹)
(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.
(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).
第一局
第二局
第三局
第四局
第五局
第六局
甲
5
x
4
8
1
3
乙
8
2
4
2
6
x
22.质检员为控制盒装饮料产品质量,需每天不定时的30次去检测生产线上的产品.若把从0时到24时的每十分钟作为一个时间段(共计144个时间段),请你设计一种随机抽取30个时间段的方法,使得任意一个时间段被抽取的机会均等,且同一时间段可以多次被抽取?(要求写出具体的操作步骤)
23.如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD的度数.
24.A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线,小组赛结束后,如果A队没有全胜,那么A队的积分至少要几分才能保证一定出线?请说明理由.
(1)根据以上原理和图2的提示,算出从A出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种?
(2)运用适当的原理和方法算出从A点出发到达B点,并禁止通过交叉点C的走法有多少种?
(3)现由于交叉点C道路施工,禁止通行.求如任选一种走法,从A点出发能顺利开车到达B点(无返回)概率是多少?
11.如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37°,求∠D的度数.
12.写出下列命题的已知、求证,并完成证明过程.
命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,.求证:.证明:
13.(1)三角形内角和等于.(2)请证明以上命题.
(1)﹣2的倒数是;
(2)如图,AB∥CD,直线EF分别与AB,CD交于点G,H,∠1=50°,求∠2的度数.
28.阅读以下材料,并解答以下问题.
“完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法,这就是分步乘法计数原理.”如完成沿图1所示的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A点出发到某些交叉点的走法数已在图2填出.
8.如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.
9.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.
10.如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.
①作∠ACB的平分线CD,交AB于点D;②延长BC到点E,使CE=CA,连接AE;
(2)求证:CD∥AE.
16.平面内的两条直线有相交和平行两种位置关系.
(1)如图1,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;