大学物理2作业题1-3

合集下载

大连理工大学大学物理作业2(静电场二)及答案详解

大连理工大学大学物理作业2(静电场二)及答案详解

1.如图所示,把点电荷q +从高斯面外P 移到R 处()OP OR =,O 为S 上一点,则[ ].A 穿过S 的电通量e φ发生改变,O 处E变.B e φ不变,E 变。

.C e φ变,E 不变。

.D e φ不变,E不变。

答案:【B 】[解]闭合面外的电荷对穿过闭合面的电通量无贡献,或者说,闭合面外的电荷产生的电场,穿过闭合面的电通量的代数和为零;移动点电荷,会使电荷重新分布,或者说改变电荷的分布,因此改变了O 点的场强。

2.半径为R 的均匀带电球面上,电荷面密度为σ,在球面上取小面元S ∆,则S ∆上的电荷受到的电场力为[ ]。

.A 0 .B 22Sσε∆ .C2S σε∆ .D2204SRσπε∆答案:【B 】解:应用高斯定理和叠加原理求解。

如图所示。

面元S ∆上的电荷受到的库仑力是其他电荷在面元S ∆处产生的总电场强度1E与面元S ∆上的电荷量S Q ∆=∆σ的乘积:111E S E Q F∆=∆=σ。

面元S ∆处电场强度E是面元S ∆电荷在此产生的电场强度2E 与其他电荷在面元S∆处产生的总电场强度1E 的矢量和,21E E E+=。

首先,由高斯定理求得全部球面分布电荷在面元S ∆处产生的总电场强度 R E ˆ0εσ=其次,面元S ∆上的电荷量S Q ∆=∆σ对于面元S ∆来说,相当于无限大带电平面,因此,面元S ∆上的电荷量S Q ∆=∆σ在面元S ∆处产生的电场强度为R E ˆ202εσ=由叠加原理,其他电荷在面元S ∆处产生的总电场强度为 R E E E ˆ2021εσ=-=面元S ∆上的电荷量S Q ∆=∆σ受到的库仑力为RS R S E S E Q F ˆ2ˆ2020111εσεσσσ∆=∆=∆=∆= 注:本题可以用叠加原理直接进行计算,太麻烦。

3.如图所示,一个带电量为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于[ ]。

.A06q ε .B 012q ε .C24qε .D48q ε答案:【C 】[解] :如果以A 为中心,再补充上7个相同大小的立方体,则组成一个边长为小立方体边长2倍大立方体,点电荷q 位于大立方体的中心。

07-08(二)大学物理Ⅱ重修班试卷及解答 (1)

07-08(二)大学物理Ⅱ重修班试卷及解答 (1)

07/08(二)大学物理Ⅱ 重修班试卷(A )一 选择题(共24分) 1.(本题3分)(2018)边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度 (A) 与L 无关. (B) 正比于L 2. (C) 与L 成正比. (D) 与L 成反比.(E) 与I 2有关. [ D ] 【提示】0O 124(cos cos )4I B r μθθπ=⨯-, =2Lr ,145θ=︒,2135θ=︒ 2.(本题3分)(2125)如图,长度为l 的直导线ab 在均匀磁场B中以速度v移动,直导线ab 中的电动势为 (A) Bl v .(B) Bl v sin α. (C) Bl v cos α. (D) 0. [ D ]【提示】没有切割磁感应线。

()B L ε=⨯⋅v ,()B ⨯v 的方向垂直于纸面,与L 点积后等于零。

3.(本题3分)(5138)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为ε的正方向,则代表线圈内自感电动势ε随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个?[ D ]【提示】d d L I L t ε=-,d d It为I —t 曲线上的斜率;还有一负号。

4.(本题3分)(2420)在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示.B的大小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在AB 导线中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等.(D) AB 导线中的电动势小于AB 导线中的电动势. [ D ] 【提示】作径向辅助线后构成一个回路,则AB 的电动势等于该回路的电动势,而回路的电vttt动势与回路的面积成正比。

所以,面积大的,电动势就大。

5.(本题3分)(3356) 在如图所示的单缝夫琅禾费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹 (A) 间距变大.(B) 间距变小.(C) 不发生变化. (D) 间距不变,但明暗条纹的位置交替变化. [ C ]6.(本题3分)(3361)某元素的特征光谱中含有波长分别为λ1=450 nm 和λ2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是 (A) 2 ,3 ,4 ,5 ...... (B) 2 ,5 ,8 ,11...... (C) 2 ,4 ,6 ,8 ...... (D) 3 ,6 ,9 ,12...... [ D ] 【提示】1122sin d k k θλλ==,2133,6,9,......5k k == 7.(本题3分)(3368)一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为 (A) 4/0I 2 . (B) I 0 / 4.(C) I 0 / 2. (D)2I 0 / 2. [ B ]【提示】自然光通过一个偏振片后,为光强2I 的线偏振光,再通过第二个偏振片后,光强为200cos 4524I I I ⎛⎫=︒=⎪⎝⎭8.(本题3分)(3544)一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i 0,则在界面2的反射光 (A) 是自然光. (B) 是线偏振光且光矢量的振动方向垂直于入射面. (C) 是线偏振光且光矢量的振动方向平行于入射面. (D) 是部分偏振光. [ B ]【提示】0090=+γi ,r 为界面2上的布儒斯特角,所以,在界面2的反射光是线偏振光且光矢量的振动方向垂直于入射面.二 填空题(共26分) 9.(本题4分)(2065)两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电屏幕荷之比是1∶2,它们所受的磁场力之比是____________,运动轨迹半径之比是______________.1∶2 2分 1∶2 2分 【提示】磁场力F q B =v ,1212::1:2F F q q ==2q B m R =v v →m R qB =v ,112221121==412R m q R m q ⎛⎫⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭10.(本题3分)(2584)有一半径为a ,流过稳恒电流为I 的1/4圆弧形载流导线bc ,按图示方式置于均匀外磁场B中,则该载流导线所受的安培力大小为______ . aIB【提示】均匀外磁场中,弯曲导线的受力=从起点到终点通以同样电流的直导线的受力。

大学物理第二版习题答案

大学物理第二版习题答案

13级应用化学(2)班物理习题详解习题精解1-1某质点的速度为j t i v 82-=,已知t=0时它经过点(3,7),则该质点的运动方程为( )A.j t i t 242-B.()()j t i t 74322+-+ C.j 8- D.不能确定解:本题答案为B.因为 dt rd v =所以 ()dt j t i r d82-=于是有()d t j t i r d t rr ⎰⎰-=0820即 j t i t r r2042-=-亦即 ()j t i t j i r 24273-=-- 故 ()()j t i t r 74322+-+=1-2 一质点在平面上作曲线运动,1t 时刻位置矢量为j i r 621+-=,2t 时刻的位置矢量为j i r 422+=,求:(1)在12t t t -=∆时间内质点的位移矢量式;(2)该段时间内位移的大小和方向;(3)在坐标图上画出21,r r及r∆。

解 (1)在12t t t -=∆时间内质点的位移矢量式为()()m j i r r r 2412-=-=∆ (2)该段时间内位移的大小 ()()m r 522422=+=∆该段时间内位移的方向与轴的夹角为 ︒-=⎪⎭⎫⎝⎛-=-6.2642tan 1α (3)坐标图上的表示如图1.1所示1-3某质点作直线运动,其运动方程为214x t t =+- ,其中x 以m 计,t 以s 计,求:(1)第3s 末质点的位置;(2)头3s 的位移大小;(3)头3s 内经过的路程。

解 (1)第3s 末质点的位置为2(3)14334()x m =+⨯-=(2)头3s 的位移大小为 ()(3)03()x x m -=(3)因为质点做反向运动是有()0v t =,所以令0dxdt=,即420,2t t s -==因此头3s 内经过的路程为 (3)(2)(2)(0)45515()x x x x m -+-=-+-=1-4 已知某质点的运动方程为22,2x t y t ==-,式中t 以s 计,x 和y 以m 计。

大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解

大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解

3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。

若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。

答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。

大学物理基础教程答案1-3力-3

大学物理基础教程答案1-3力-3

v = v +( + ) v ' mv mv m m v v ' = ( v − v ) /( + ) v mv mv m m
O f 1 2 C C O f 1 2
300 m1
x
v v 1 v 1 v −1 = m(2i − 1j) /(4 + 2) = i − j(m.s ) 6 12
( Vc’是子系统质心速度) 是子系统质心速度)
2
(2)绳中张力处处近似相等,如图: (2)绳中张力处处近似相等,如图: − 2F cos θ + mg = ma , 绳中张力处处近似相等
v l dv d v0 l a= )=− = (− 3 dt dt 2 x 16 x m 0l2 (x2 + l2 4)1/ 2 v2 F = (m + g ) 3 16x 2x
走了多远. 走了多远 水平方向合外力为零,故水平方向动量守恒 故水平方向动量守恒: 解: 水平方向合外力为零 故水平方向动量守恒 (M+m) xc=Mx1+mx2 Vc=0 △xc=0 m ∆x2 (M+m) △xc=M△x1+m△x2=0 ∆x1 = − △ △ M 由相对运动可知 △x1+ l =△x2 m M
(2)若用此绳提升箱子,则有 若用此绳提升箱子,
F−m = m g a
F ∴ m= = 92.6(kg) (g + a)
如题图所示, 使木箱上升,若绳端的下降速度不变, 3-2 如题图所示,用力F使木箱上升,若绳端的下降速度不变, 定滑轮和绳的固定端在同一高度上, 木箱质量为m,定滑轮和绳的固定端在同一高度上,且相距为l, 动滑轮、定滑轮和绳的质量以及绳的伸长量都忽略不及,(1)以 动滑轮、定滑轮和绳的质量以及绳的伸长量都忽略不及,(1)以x (2)求F(x)。 为变量表示m的速率v; (2)求F(x)。

大学物理2习题参考答案

大学物理2习题参考答案

题1-3图第一章 流体力学1.概念(3)理想流体:完全不可压缩又无黏性的流体。

(4)连续性原理:理想流体在管道中定常流动时,根据质量守恒定律,流体在管道内既不能增 多,也不能减少,因此单位时间内流入管道的质量应恒等于流出管道的质量。

(6)伯努利方程:C gh v P =++ρρ221(7)泊肃叶公式:LPR Q ηπ84∆=2、从水龙头徐徐流出的水流,下落时逐渐变细,其原因是( A )。

A. 压强不变,速度变大; B. 压强不变,速度变小;C. 压强变小,流速变大;D. 压强变大,速度变大。

3、 如图所示,土壤中的悬着水,其上下两个液面都与大气相同,如果两个页面的曲率半径分别为R A 和R B (R A <R B ),水的表面张力系数为α,密度为ρ,则悬着水的高度h 为___)11(2BA R R g -ρα__。

(解题:BB A A A B R P P R P P gh P P ααρ2,2,00-=-==-) 4、已知动物的某根动脉的半径为R, 血管中通过的血液流量为Q , 单位长度血管两端的压强差为ΔP ,则在单位长度的血管中维持上述流量需要的功率为____ΔPQ ___。

5、城市自来水管网的供水方式为:自来水从主管道到片区支管道再到居民家的进户管道。

一般说来,进户管道的总横截面积大于片区支管的总横截面积,主水管道的横截面积最小。

不考虑各类管道的海拔高差(即假设所有管道处于同水平面),假设所有管道均有水流,则主水管道中的水流速度 大 ,进户管道中的水流速度 小 。

10、如图所示,虹吸管的粗细均匀,略去水的粘滞性,求水流速度及A 、B 、C 三处的压强。

221.2 理想流体的定常流动'2gh v C =∴222121'CC D D v P v gh P ρρρ+=++0,0≈==D C D v P P P 练习5:如图,虹吸管粗细均匀,略去水的粘滞性,求管中水流流速及A 、B 、C 三处的压强。

大学物理习题(下)

大学物理习题(下)

习 题 课(一)1-1 在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为 (A )aQ 034πε (B )a Q 032πε (C )a Q 06πε (D )a Q 012πε1-2 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A )302r U R (B )R U 0 (C )20r RU (D )rU1-3 在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是(A )内表面均匀,外表面也均匀。

(B )内表面不均匀,外表面均匀。

(C )内表面均匀,外表面不均匀。

(D )内表面不均匀,外表面也不均匀。

1-4 一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电量Q 、电场强度的大小E 和电场能量W 将发生如下变化(A )Q 增大,E 增大,W 增大。

(B )Q 减小,E 减小,W 减小。

(C )Q 增大,E 减小,W 增大。

(D )Q 增大,E 增大,W 减小。

1-5 一半径为R 的均匀带电圆盘,电荷面密度为 ,设无穷远处为电势零点,则圆盘中心O 点的电势U 0 = 。

1-6 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电量为+q 的点电荷,O 点有一电量为q 的点电荷,线段BA = R ,现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所做的功为 。

1-7 两个电容器1和2,串联后接上电源充电。

在电源保证连接的情况下,若把电介质充入电容器2中,则电容器1上的电势差 ,电容器极板上的电量 。

(填增大、减小、不变)1-8 如图所示为一个均匀带电的球层,其电荷体密度为,球层内表面半径为R 1,外表面半径为R 2,设无穷远处为电势零点,求空腔内任一点的电势。

1-9 如图所示,半径分别为R 1和R 2(R 2 > R 1)的两个同心导体薄球壳,分别带电量Q 1和Q 2,今将内球壳用细导线与远处半径为r 的导体球相连,导体球原来不带电,试求相连后导体球所带电量q 。

大学物理作业题2

大学物理作业题2

M dm dx l
x
dx

f
M dt L L f 2 1 0 L 0
2 m ( v1 v 2 ) t Mg
1 Mglt ml (v1 v 2 ) 2
17、空心圆环可绕竖直轴AC自由转动,如图所示,其转动惯量 为I0,环半径为R,初始角速度为0.质量为m的小球,原来静 置于A点,由于微小的干扰,小球向下滑动.设圆环内壁是光滑 的,问小球滑到B点与C点时,小球相对于环的速率各为多少?

L y v2 L x 1 2 c
v2 0.5 1 2 0.866 c
把 = 45°及Lx ',Ly '代入,得
v 0.816 c
(2)在S系中测得米尺长度为
L
Ly sin 45
0.707 m
3、在惯性系S中,有两事件发生于同一地点,且第二事件比第 一事件晚发生t =2s;而在另一惯性系S'中,观测第二事件比 第一事件晚发生t'=3s.那么在S'系中发生两事件的地点之 间的距离是多少? 解: 令S'系与S系的相对速度为v,有
2
1 1 ( v / c )2
1)
代入题干中的具体数值,解得 平均寿命为
v = 0.91c
t
t0
1 (v / c)
2
5.31 10 8
9、一正负电子对撞机可以把电子加速到动能=2.8×109eV.这 种电子速率比光速差多少? 这样的一个电子动量是多大?(与电子 静止质量相应的能量为=0.511×106eV ) 解:
解 : ( 1)
t
t 0 v2 1 2 c
t 0 2 10 6 s
d vt 9470 m
因d>6000m,故该介子能到达地球

哈工大大学物理第二章 作业题+答案

哈工大大学物理第二章   作业题+答案
方向向下。
T1 m1 ( g a1 ) 0.2 (9.8 1.96) 1.57 N 1 T2 T1 0.785 N 2 m g T2 0.1 9.8 0.785 a2 2 1.95 m s 2 m2 0.1
方向向下。
a3
方向向上。
m3 g T2 0.05 9.8 0.785 5.9 m s 2 m3 0.05
5
物体受力: 真实力:重力 mg, 、斜面对它的正压力 N 惯性力: ma0
mg N ( ma0 ) mar
mgsin ma0sin mar mgcos N ma0cos 0
解得
N m ( g 0a) c o s; ar (g a0 ) sin
A

mg N ma
x 方向: mg sin max m(ar a0 sin ) y 方向: ma y N mg cos ma0 cos 解得
N m ( g 0a) c o s; ar (g a0 ) sin
解法二: 以升降机为参考系(非惯性系) ,建立坐标系如图,
解 当雨滴均匀运动时 得 所以当速率为 4.0 m s 时
1
mg k v 2 k mg / 25
F ma mg k v 2 mg

16 9 mg mg 25 25 a 9 g / 25
12. 2-12 质量为 m 的物体系于长度为 R 的绳子的一个端点上,在竖直平面内绕 绳子另一端点(固定)作圆周运动.设时刻物体瞬时速度的大小为 ,绳子 与竖直向上的方向成 θ 角,如图所示。(1) 求t时刻绳中的张力 T 和物体的 切向加速度 at;(2) 说明在物体运动过程中 at 的大小和方向如何变化?

大学物理 第二章练习及答案

大学物理 第二章练习及答案

一、判断题1. 根据冲量的定义21d t t I F t =⋅⎰知,I 与F 的方向相同. ······················································· [×]2. 在应用动量定理时,物体的始末动量应由同一个惯性系来确定. ···································· [√]3. 外力在某一方向的分量之和为零,总动量在该方向的分量守恒. ···································· [√]4. 系统的内力可以改变系统的总动量,也可改变系统内质点的动量. ································ [×]5. 保守力做功等于势能的增量. ································································································ [×]6. 系统的势能的量值只有相对意义,而势能差值具有绝对意义. ········································ [√]7. 系统的外力做功等于系统动能的增量. ················································································ [×]8. 非保守力做功一定为负值. ···································································································· [×]9. 势能属于整个物体系统,不为单个物体拥有. ···································································· [√] 10. 质点受有心力作用下绕定点转动,质点对定点的角动量守恒. ········································ [√] 二、选择题11. 质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动。

大学物理习题2

大学物理习题2

《普通物理》作业:动量与角动量 No.2序号 姓名 院系. 专业. 年级 成绩 你最感兴趣的题目是 你认为最困难的题目是一. 选择题[ ] 1. A. B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示,若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为 (A)21。

(B) 2。

(C) 2。

(D) 2/2。

解:以m A . m B 及弹簧为研究对象,系统所受合外力为零,动量守恒 0=+B B A A v m v m分量式为0=-B B A A v m v m∴ 2==AB B A m m v v ∴ 222121212222=⨯=⎪⎪⎭⎫ ⎝⎛==B A B A B B A A KB KAv v m m v m v m E E ∴选B[ ] 2. 粒子B 的质量是粒子A 的质量的4倍,开始时粒子A 的速度为)43(j i +,粒子B的速度为)72(j i -,由于两者的相互作用,粒子A 的速度变为)47(j i -,此时粒子B 的速度等于(A) j i 5-。

(B)j i 72-。

(C) 0。

(D)j i 35-。

解:以两个粒子为研究对象,无外力作用,动量守恒,即:B B A B A v m j i m j i m j i m +-=-++)47()72()43(∴ B AB A B v m m j i j i m m j i +-=-++47)72(43 将4=AB m m 代入,得j i v B 5-=,选A 。

[ ] 3. 如图所示,砂子从h =0.8m 高处落到以3m /s 的速率水平向右运动的传送带上,取重力加速度g =10m /s 2,传送带给予砂子的作用力的方向为(A) 与水平夹角 53向下。

(B) 与水平夹角 53向上。

(C) 与水平夹角 37向下。

(D) 与水平夹角 37向下。

最新大学物理2(上)总复习1--选择题70题

最新大学物理2(上)总复习1--选择题70题

大学物理2(上)总复习---选择题选择题(1) 1.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f ( b )。

A .恒为零;B .不为零,但保持不变;C . 随F 成正比地增大;D .开始随F 增大,达到某一最大值后,就保持不变。

2.如图所示,两个同频率、同振幅的简谐振动曲线和 ,它们的相位关系是(a )。

A .a 比b 滞后 2 ; B .a 比b 超前2 ; C .b比a 超前4 ; D .b 比a 滞后4 。

3.有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J, 开始时转台以匀角速度0 转动,此时有一质量为m 的人站住转台中心, 随后人沿半径向外跑去,当人到达转台边缘时, 转台的角速度为( a )。

A .02 mR J J ;B . 02 R m J J ;C .0 ;D .02mR J 。

4.一台工作于温度为327C 0和27 C 0的高温和低温热源之间的卡诺热机,每经历一个循环吸热2000J ,则对外做功为 ( b )。

A .2000J ;B .1000J ;C .800J ;D .500J 。

5.在同一媒质中两列相干的平面简谐波强度之比是12:4:1I I ,则两列波的振幅之比21:A A 为 ( b )。

A .4;B .2;C .16;D .1/4。

6.一运动质点在某瞬时位于位矢),(y x r的端点处,对其速度的大小有四种意见,即(1)dt dr ; (2)dt r d ; (3)dt ds ; (4)22 dt dy dt dx 。

下述判断正确的是 ( d )。

A . 只有(1)(2)正确;B .只有(2)正确;C .只有(2)(3)正确;D . 只有(3)(4)正确。

7.一质点沿y 方向振动,振幅为A ,周期为T ,0t s 时,位于平衡位置 0y 处,向y 轴正方向运动。

由该质点引起的平面简谐波的波长为 ,沿Ox 轴正向传播。

大学物理考试试题及答案3套

大学物理考试试题及答案3套

大学物理考试试题及答案3套2011 年12 月考试大学物理第一次作业一、判断题(本大题共30 分,共10 小题,每小题3 分) 1. 物体运动的速度越大,它具有的功也越大( ) 2. 物体处于一定的高度,就具有一定的重力势能( ) 3. 若刚体所受到的合外力为零,则刚体对定轴的角动量守恒( ) 4. 一物体的加速度恒定,而其速度方向不断改变( ) 5. 不可逆过程一定找不到另一过程使系统和外界同时复原( ) 6. 气体的温度表示每个分子的冷热程度( ) 7. 弹性势能和重力势能的零势点均可任意选择( ) 8. 气体的温度是分子平均动能的量度( ) 9. a 变化但质点作直线运动是可能的( ) 10. 在封闭容器中有一定量的理想气体,若气体各部分压强相等,分子数密度也相同,则该气体处于平衡态( )二、填空题(本大题共40 分,共8 小题,每小题5 分) 1. 质量为M 的车以速度v 沿光滑水平地面直线前进,车上的人将一质量为m 的物体相对于车以速度u 竖直上抛,则此时车的速度为______ 2. 温度27 ℃时,1mol 氢气具有的平动动能为______ ,转动动能为______ 3. 一质点沿x 轴运动,速度与位置的关系为v=kx,其中k 为一正常量,则质点在任意x 处的加速度为______ 4. 一圆运动质点的轨迹半径R=1.24,质点的角加速度α =2t,若t=0 时质点角速度为=0.32,t=1 时质点的角速度为______ 、切向加速度为______ 何法向加速度为______ 5. 一质点运动的速度与路程关系为v=4+3s ,则切向加速度与路程的关系为______ 6. 一星球可看作绕轴转动的匀质球体,若在一个演化过程中它的半径缩小为原来的一半,它的自转周期为原来的______ 倍,它赤道上一点的速率是原来的______ 倍7. 有氦气、氢气和水蒸气混合处于平衡态,若氦分子的平均动能为0.03eV,则氢分子的平均动能为______ eV,水分子的平均平动动能为______ eV,平均转动动能为______ eV 8. 一质点沿半径为R 的圆周运动,角速度,其中k 为一正常量。

1力学(1-3章)

1力学(1-3章)

大学物理习题解答——力学部分 11—2 一质点的运动方程为 k t j t i r ++=24,式中r 、t 分别以m 、s 为单位。

试求:(1)它的速度与加速度;(2)它的轨迹方程。

解 ⑴ j dtd a k j t dt r d 8 8==+==υυ ⑵ t z t y x === ,4 ,12 所以轨道方程为 ⎩⎨⎧==241zy x l —3 一质点自原点开始沿抛物线2bx y =运动,它在O x 轴上的分速度为一恒量,值为10.4-⋅=s m x υ,15.0-=m b 。

求质点位于m x 0.2=处的速度和加速度。

解 抛物线2bx y =是质点的轨迹方程,它是参数方程)(t x x =和)(t y y =合成的结果.由于x υ是已知的,可得x 方向上的运动方程)(t x x =及加速度分量x a ,由)(t x x =和轨迹方程)(x f y =,求得运动方程在y 方向上的分量式)(t y y =及其加速度分量y a ,再由速度和加速度的分量可得其矢量表达式.因10.4-⋅=s m x υ为一常量,故0=x a .当0=t 时,0=x ,由dt dx x =υ积分可得 t x x υ= (1)又由质点的抛物线方程,有22)(t b bx y x υ== (2)由y 方向的运动方程可得该方向的速度和加速度分量分别为t b dt dy x y 22υυ== (3) 2222xy b dt y d a υ== (4) 当质点位于m x 0.2=时,由上述各式可得→-→-→→→⋅+⋅=+=j sm i s m j i y x 110.80.4υυυ; →-→→→⋅=+=j s m j a i a a y x 216. 1—5 质点的运动方程为230)10(t t x +-=;22015t t y -=.试求:(1)初速度的大小和方向;(2)加速度的大小和方向。

解 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.(1)速度的分量式为t dt dx x 6010+-==υ;t dt dy y 4015-==υ;当0=t 时,1010-⋅-=s m x υ,1015-⋅=s m y υ,则初速度大小为1202000.18-⋅=+=s m y x υυυ;设0→υ与x 轴的夹角为α,则2300-==x tg y υυα,/041123=α;(2)加速度的分量式为 260-⋅==s m dt d a x x υ;240-⋅-==s m dtd a y y υ.则加速度的大小为 2221.72-⋅=+=s m a a a y x设→a 与x 轴的夹角为β,则 32-==x y a a tg β,)19326(4133/0/0或-=β 1—9 一半径为0.50m 的飞轮在启动时的短时间内,角速度与时间的平方成正比。

大学物理2期末作业题

大学物理2期末作业题

⼤学物理2期末作业题1、⼀均匀带电球⾯,电荷⾯密度为σ,球⾯内电场强度处处为零,球⾯上⾯元d S 的⼀个带电量为σd S 的电荷元,在球⾯内各点产⽣的电场强度()A 处处为零 ()B 不⼀定都为零 ()C 处处不为零()D ⽆法判定〔〕2、空间某处附近的正电荷越多,那么有:〔〕()A 位于该处的点电荷所受的⼒越⼤;()B 该处的电场强度越⼤;()C 该处的电场强度不可能为零; ()D 以上说法都不正确;3、两条⽆限长载流导线,间距厘⽶,电流10A ,电流⽅向相同,在两导线间距中点处磁场强度⼤⼩为〔〕(A )0 (B )πµ02000T (C )πµ04000 T (D )πµ0400T 4、⼀根长为L ,载流I 的直导线置于均匀磁场B 中,计算安培⼒⼤⼩的公式是θsin IBL F =,这个式中的θ代表(A )直导线L 和磁场B 的夹⾓(B )直导线中电流⽅向和磁场B 的夹⾓(C )直导线L 的法线和磁场B 的夹⾓(D )因为是直导线和均匀磁场,则可令θ=900[]5、如图所⽰,光滑固定导轨M 、N ⽔平放置,两根导体棒P 和Q 平⾏放在导轨上,形成⼀个闭合回路,当⼀条形磁铁从⾼处下落接近回路时 [ ](A)P和Q将互相靠近;(B)P和Q均向左运动;(C)P和Q将互相远离;(D)P和Q均向右运动。

6、在感⽣电场是()(A)由电荷激发,是⽆源场;(B)由电荷激发,是有源场;(C)由变化的磁场激发,是⽆源场;(D)由变化的磁场激发,是有源场。

7、关于感应电动势的正确说法是:()(A)导体回路中的感应电动势的⼤⼩与穿过回路的磁感应通量成正⽐;(B)当导体回路所构成的平⾯与磁场垂直时,平移导体回路不会产⽣感应电动势;(C)只要导体回路所在处的磁场发⽣变化,回路中⼀定产⽣感应电动势;(D)将导体回路改为绝缘体环,通过环的磁通量发⽣变化时,环中有可能产⽣感应电动势。

8、在双缝⼲涉实验中,若单⾊光源S到两缝1S、2S距离相等,则观察屏上中央明纹中⼼位于图中O处,现将光源S向下移动到⽰意图中的S'位置,则()(A)中央明条纹向下移动,且条纹间距不变;(B)中央明条纹向上移动,且条纹间距增⼤;(C)中央明条纹向下移动,且条纹间距增⼤;SS(D )中央明条纹向上移动,且条纹间距不变。

理学大学物理C2练习题新1

理学大学物理C2练习题新1

电学练习题(一)学习目标1.掌握静电场的库仑定律、掌握电场强度和电势、电势能的概念。

2.学会计算点电荷系电场的电场强度和电势。

3.理解静电力做功与电势差的关系。

一、选择题1.下列哪一说法正确?()A 电荷在电场中某点受到的电场力很大,该点的电场强度一定很大;B 在某一点电荷附近的任一点,如果没有把试验电荷放进去,则这点的电场强度为零;C 如果把质量为m的点电荷q放在一电场中,由静止释放,电荷一定沿电场线运动;D电场线上任一点的切线方向,代表正电荷q在该点处获得的加速度的方向。

2.如图所示,一个带负电荷的质点,在电场力的作用下从A点经C点运动到B点,其运动轨迹如图所示。

已知质点运动的速率是递减的,下面关于C点场强方向的四个图示中正确的是:()3.一电量为的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,现将一试验电荷从A点分别移动到BCD各点则()A 从A至B电场力作功最大B 从A到C电场力作功最大。

C 从A到D电场力作功最大D 从A到各点电场力作功相等。

二、填空题1.如图所示,在直角三角形ABC的A点上有电荷911.810q C-=⨯,B点上有电荷924.810q C-=-⨯。

则C点的电场强度大小为E=________,方向__________。

C点的电势为_________。

2.如图所示静电场中,把一正电荷从P点移到Q点,则电场力作_____功(以正、负作答),它的电势能PQ______(以增加、减少作答),______点的电势高。

3. 一点电荷q = 10-9 C ,A 、B 、C 三点分别距该点电荷10 cm 、20 cm 、30 cm 。

若选B 点的电势为零,则A 点的电势为__________,C 点的电势为__________。

三、计算题1. 如图所示,四个电量均为+q 的点电荷,固定于水平面内边长为a 的正方形的四个顶点上,O 为正方形的两对角线的交点,P 在O 点的正上方(即PO 垂直于正方形所在平面),PO=a ,求:(1)O 点的电场强度和电势;(2)P 点的电场强度和电势。

大学物理第2章质点动力学习题答案

大学物理第2章质点动力学习题答案

第二章 质点动力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数。

解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-20(2)(31)v s g u ∴=-把式(2)代入式(1)得,()222200.1983v v u v v-==+2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。

解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdt v F T mg mR αα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr vg rrv mg mg rmg ααααωαααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。

习题2-2图Ao B r DCT α解:如图所示()1212minmax sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+-2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少。

大学物理(下册)习题与答案

大学物理(下册)习题与答案

大学物理练习册物理教研室遍热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示。

(B)不是平衡过程,但它能用P—V图上的一条曲线表示。

(C)不是平衡过程,它不能用P—V图上的一条曲线表示。

(D)是平衡过程,但它不能用P—V图上的一条曲线表示。

[ ]2、在下列各种说法中,哪些是正确的?[ ](1)热平衡就是无摩擦的、平衡力作用的过程。

(2)热平衡过程一定是可逆过程。

(3)热平衡过程是无限多个连续变化的平衡态的连接。

(4)热平衡过程在P—V图上可用一连续曲线表示。

(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程:[ ](1)用活塞缓慢的压缩绝热容器中的理想气体。

(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升。

(3)冰溶解为水。

(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动。

其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断:[ ](1)可逆热力学过程一定是准静态过程。

(2)准静态过程一定是可逆过程。

(3)不可逆过程就是不能向相反方向进行的过程。

(4)凡有摩擦的过程,一定是不可逆过程。

以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的?[ ](1)可逆过程一定是平衡过程。

(2)平衡过程一定是可逆的。

(3)不可逆过程一定是非平衡过程。

(4)非平衡过程一定是不可逆的。

(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器的气体,如果气体各处压强相等,或气体各处温度相同,则这两种情况下气体的状态 [ ](A )一定都是平衡态。

理三大学物理期末练习题

理三大学物理期末练习题

大学物理(2)期末练习题()一、选择1.依照高斯定理的数学表达式⎰∑⋅=Sεq S E 0/d可知下述各类说法中,正确的选项是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强必然为零. (B) 闭合面内的电荷代数和不为零时,闭合面上各点场强必然处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不必然处处为零.(D) 闭合面上各点场强均为零时,闭合面内必然处处无电荷. [ ] 2.一“无穷大”均匀带电平面A ,其周围放一与它平行的有必然厚度的“无穷大”平面导体板B ,如下图。

已知A 上的电荷面密度为+σ ,那么在导体板B 的两个表面1和2上的感生电荷面密度为:(A) σ 1 = - σ, σ 2 = + σ.(B) σ 1 = σ21-, σ 2 =σ21+.(C) σ 1 = σ21-, σ 1 = σ21-.(D) σ 1 = - σ, σ 2 = 0. [ ] 3. 真空中一根无穷长直细导线上通电流I ,那么距导线垂直距离为a 的空间某点处的磁能密度为(A)200)2(21a I πμμ (B) 200)2(21aI πμμ (C) 20)2(21I a μπ (D) 200)2(21aI μμ [ ]4. 在圆柱形空间内有一磁感强度为B的均匀磁场,如下图.B的大小以速度d B /d t 转变.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线B A,那么(A) 电动势只在直导线AB 中产生。

(B) 电动势只在弯曲的导线B A中产生。

(C) 电动势在AB 和B A中都产生,且二者大小相等。

(D) AB 导线中的电动势小于B A导线中的电动势。

[ ]5.有两个大小不相同的金属球,大球直径是小球的两倍,大球带电,小球不带电,二者相距很远.今用细长导线将二者相连,在忽略导线的阻碍下,大球与小球的带电之比为: [ ](A) 2; (B) 1; (C) 1/2; (D) 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业题一(静止电荷的电场)班级:_____________ 姓名:_____________ 学号:_____________ 一、选择题1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零. (C) 处处不为零. (D) 无法判定 .[ ] 2. 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]3. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则 (A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值. (D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ]4. 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于:(A)06εq . (B) 012εq. (C) 024εq . (D) 048εq . [ ]5. 高斯定理 ⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场.02εP 0(B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. [ ]6. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212ελλπ+. (B) 20210122R R ελελπ+π(C) 1012R ελπ. (D) 0. [ ]7. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q至曲面外一点,如图所示,则引入前后: (A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]8. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电 [ ]二、填空题9. A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.则A 、B 两平面上的电荷面密度分别 为σA =_______________, σB =____________________.qABE 0E 0/3E 0/310. 三个平行的“无限大”均匀带电平面,其电荷面密度都是+σ,如图所示,则A 、B 、C 、D 三个区域的电场强 度分别为:E A =_________________,E B =_____________, E C =_________,E D =___________ (设方向向右为正).11. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R)环上均匀带有正电,电荷为q ,如图所 示.则圆心O 处的场强大小E =__________________ __________,场强方向为______________________.12. 如图所示,真空中两个正点电荷Q ,相距2R .若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强 度通量=______________;若以 0r 表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为________________________. 三、计算题13. 带电细线弯成半径为R 的半圆形,电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.14. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.+σ+σ+σABCD15. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.16. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )答 案作业题 (一)一、1-8 CBACADDC 二、9. -2ε0E 0 / 3; 4ε0E 0 / 310. -3σ / (2ε0); -σ / (2ε0); σ / (2ε0); 3σ / (2ε0) 11.()30220824R qdd R R qd εεπ≈-ππ; 从O 点指向缺口中心点.12. Q / ε0;a E =0,()20018/5R r Q E b επ=aa aaxzyO三、13. 解:在φ处取电荷元,其电荷为d q =λd l = λ0R sin φ d φ它在O 点产生的场强为R Rq E 00204d sin 4d d εφφλεπ=π= 3分 在x 、y 轴上的二个分量 d E x =-d E cos φ d E y =-d E sin φ 对各分量分别求和 ⎰ππ=000d cos sin 4φφφελRE x =0 RR E y 0002008d sin 4ελφφελ-=π=⎰π∴ j Rj E i E E yx 008ελ-=+= 14. 解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为θλλλd d d π=π=l R取θ位置处的一条,它在轴线上一点产生的场强为 θελελd 22d d 020RR E π=π=如图所示. 它在x 、y 轴上的二个分量为:d E x =d E sin θ , d E y =-d E cos θ对各分量分别积分 R R E x 02002d sin 2ελθθελππ=π=⎰ 0d cos 2002=π-=⎰πθθελR E y 场强 i Rj E i E E y x02ελπ=+= 15. 解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r Ar V q d 4d d 2π⋅==ρ 在半径为r 的球面内包含的总电荷为403d 4Ar r Ar dV q rVπ=π==⎰⎰ρ (r ≤R)以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π⋅ 得到()0214/εAr E =, (r ≤R )方向沿径向,A >0时向外, A <0时向里. 在球体外作一半径为r 的同心高斯球面,按高斯定理有 0422/4εAR r E π=π⋅ 得到 ()20424/r AR E ε=, (r >R )方向沿径向,A >0时向外,A <0时向里. 16. 解:设闭合面内包含净电荷为Q .因场强只有x 分量不为零,故只是二个垂直于x 轴的平面上电场强度通量不为零.由高斯定理得:-E 1S 1+ E 2S 2=Q / ε0 ( S 1 = S 2 =S ) 3分则 Q = ε0S (E 2- E 1) = ε0Sb (x 2- x 1)= ε0ba 2(2a -a ) =ε0ba 3 = 8.85×10-12 C作业题二(电势)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1.(1019) 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为 (A)a q 04επ. (B) a q 08επ. (C) a q 04επ-. (D) aq08επ-. [ ]2. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在内球壳里面,距离球心为r 处的P 点的场强大小及电势分别为: (A) E =0,U =104R Q επ. (B) E =0,U =⎪⎪⎭⎫ ⎝⎛-π21114R R Qε.(C) E =204r Q επ,U =r Q04επ (D) E =204r Q επ,U =104R Q επ.[ ] 3. 关于静电场中某点电势值的正负,下列说法中正确的是: (A) 电势值的正负取决于置于该点的试验电荷的正负. (B) 电势值的正负取决于电场力对试验电荷作功的正负. (C) 电势值的正负取决于电势零点的选取. (D) 电势值的正负取决于产生电场的电荷的正负. [ ]4. 点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则(A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大. (C) 从A 到D ,电场力作功最大.(D) 从A 到各点,电场力作功相等. [ ] 5. 如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功A7.(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ ] 6. 半径为r 的均匀带电球面1,带有电荷q ,其外有一同心的半径为R 的均匀带电球面2,带有电荷Q ,则此两球面之间的电势差U 1-U 2为: (A)⎪⎭⎫⎝⎛-πR r q 1140ε . (B) ⎪⎭⎫ ⎝⎛-πr R Q 1140ε .(C) ⎪⎭⎫ ⎝⎛-πR Q r q 041ε . (D)rq04επ . [ ] 7. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为(A)d S q q 0212ε+. (B) d Sq q 0214ε+. (C)d S q q 0212ε-. (D) d Sq q 0214ε-. [ ] 8. 面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02ε. (B) S q 022ε.(C) 2022S q ε. (D) 202Sq ε. [ ] 二、填空题9. 如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8 C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×10­8C ,设无穷远处电势为零,则空间另一电势为 零的球面半径r = __________________.10. 真空中一半径为R 的均匀带电球面,总电荷为Q .今在球面上挖去很小一块面积△S (连同其上电荷),若电荷分布不改变,则挖去小块后球心处电势(设无穷远处电势为零)为________________.11. 把一个均匀带有电荷+Q 的球形肥皂泡由半径r 1吹胀到r 2,则半径为R (r 1<R <r 2)的球面上任一点的场强大小E 由______________变为______________;电 势U 由 __________________________变为________________(选无穷远处为电势零点).12. 静电场的环路定理的数学表示式为:______________________.该式的物理意义是:____________________________________________________________.该定理表明,静电场是______ _________场.BAS q 1q 2三、计算题13. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).14. 图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R 1,外表面半径为R 2.设无穷远处为电势零点,求空腔内任一点的电势.15.两个带等量异号电荷的均匀带电同心球面,半径分别为R 1=0.03 m 和R 2=0.10 m .已知两者的电势差为450 V ,求内球面上所带的电荷.16. 有两根半径都是R 的“无限长”直导线,彼此平行放置,两者轴线的距离是d (d ≥2R ),沿轴线方向单位长度上分别带有+λ和-λ的电荷,如图所示.设两带电导线之间的相互作用不影响它们的电荷分布,试求两导线间的电势差.作业题(二)一、1-8 DBCDDACB 二、9. 10cm 10.⎪⎭⎫⎝⎛π∆-π20414R SR Q ε 11. Q / (4πε0R 2); 0 ; Q / (4πε0R ); Q / (4πε0r 2)12. 0d =⋅⎰Ll E单位正电荷在静电场中沿任意闭合路径绕行一周,电场力作功等于零 有势(或保守力) 三、13. 解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为ixx E 012εσ=圆盘在该处的场强为i x R x x E ⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴ i x R xE E E 220212+=+=εσ该点电势为 ()22002202d 2x R R x R x x U x +-=+=⎰εσεσ 14. 解: 由高斯定理可知空腔内E =0,故带电球层的空腔是等势区,各点电势均为U .在球层内取半径为r →r +d r 的薄球层.其电荷为 d q = ρ 4πr 2d r该薄层电荷在球心处产生的电势为 ()00/d 4/d d ερεr r r q U =π= 整个带电球层在球心处产生的电势为()212200002d d 21R R r r U U R R -===⎰⎰ερερ 因为空腔内为等势区所以空腔内任一点的电势U 为()2122002R R U U -==ερ 若根据电势定义⎰⋅=l E Ud 计算同样给分.15.解:设内球上所带电荷为Q ,则两球间的电场强度的大小为204r QE επ= (R 1<r <R 2)两球的电势差⎰⎰π==212120124d R R R R r dr Qr E U ε⎪⎪⎭⎫ ⎝⎛-π=21114R R Q ε∴ 12122104R R U R R Q -π=ε=2.14×10-9 CO x P16. 解:设原点O 在左边导线的轴线上,x 轴通过两导线轴线并与之垂直.在两轴线组成的平面上,在R <x <(d -R )区域内,离原点距离x 处的P 点场强为()x d x E E E -π+π=+=-+0022ελελ 则两导线间的电势差 ⎰-=R d Rx E U d ⎰-⎪⎭⎫ ⎝⎛-+π=Rd Rx x d x d 1120ελ()[]R d Rx d x ---π=ln ln 20ελ⎪⎭⎫ ⎝⎛---π=R d R R R d ln ln 20ελ RR d -π=ln 0ελ+λ作业题三(导体和电介质)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为 [ ](A) S Q 012ε .(B) SQ Q 0212ε-.(C)SQ 01ε. (D) S Q Q 0212ε+.2. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A) N 上有负电荷入地.(B) N 上有正电荷入地(地面负电荷进入导体). (C ) N 上的电荷不动.(D) N 上所有电荷都入地. [ ] 3. 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 [ ] (A) ε 0 E . (B) ε 0 ε r E . (C) ε r E . (D) (ε 0 ε r - ε 0)E .4. 一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ,电位移为D,则 [ ](A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=.5. 在静电场中,作闭合曲面S ,若有0d =⎰⋅SS D (式中D为电位移矢量),则S面内必定 [ ](A) 既无自由电荷,也无束缚电荷. (B) 没有自由电荷. (C) 自由电荷和束缚电荷的代数和为零.(D) 自由电荷的代数和为零.1+Q 2B6. 一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点 [ ](A) 保持不动. (B) 向上运动. (C) 向下运动. (D) 是否运动不能确定.7.一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 12、电场强度的大小E 、电场能量W 将发生如下变化: [ ](A) U 12减小,E 减小,W 减小.(B) U 12增大,E 增大,W 增大. (C) U 12增大,E 不变,W 增大.(D) U 12减小,E 不变,W 不变. 8. 如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将 (A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定.[ ] 二、填空题9. 半径为R 1和R 2的两个同轴金属圆筒,其间充满着相对介电常量为εr 的均匀介质.设两筒上单位长度带有的电荷分别为+λ和-λ,则介质中离轴线的距离为r 处的电位移矢量的大小D =____________,电场强度的大小 E =____________.10. 一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质,这时两极板上的电荷是原来的______倍;电场强度是原来的 _________倍;电场能量是原来的_________倍.11. 一平行板电容器,充电后切断电源,然后使两极板间充满相对介电常量为εr的各向同性均匀电介质.此时两极板间的电场强度是原来的____________倍;电场 能量是原来的___________ 倍.12. 分子的正负电荷中心重合的电介质叫做_______________ 电介质 .在外电场作用下,分子的正负电荷中心发生相对位移,形成________________________.三、计算题13. 如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求:(1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势.(3) 球心O 点处的总电势.+Q14. 半径分别为R1和R2 (R2 > R1 )的两个同心导体薄球相联后导体球所带电荷q.15. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电. (1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功?(2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?16. 一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R 1 = 2 cm ,R 2 = 5 cm ,其间充满相对介电常量为εr 的各向同性、均匀电介质.电容器接在电压U = 32 V 的电源上,(如图所示),试求距离轴线R = 3.5 cm 处的A 点的电场强度和A 点与外筒间的电势差.参考答案一、1-8 CBBBDBCB 二、9. λ/(2πr );λ/(2π ε0 εr r ) 10. ,1,r r εε 11.1r ε;1rε12. 无极分子;电偶极子 三、13. 解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q .(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的距离都是a ,所以由这些电荷在O 点产生的电势为adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和 q Q q q O U U U U +-++= r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+ 14. 解:设导体球带电q ,取无穷远处为电势零点,则导体球电势:r qU 004επ=内球壳电势: 10114R q Q U επ-=2024R Q επ+二者等电势,即 r q04επ1014R q Q επ-=2024R Q επ+ 解得 )()(122112r R R Q R Q R r q ++=15. 解:(1) 令无限远处电势为零,则带电荷为q 的导体球,其电势为R qU 04επ=将d q 从无限远处搬到球上过程中,外力作的功等于该电荷元在球上所具有的电势能 q RqW A d 4d d 0επ== (2) 带电球体的电荷从零增加到Q 的过程中,外力作功为⎰⎰==QR q q A A 004d d πεR Q 028επ=16. 解:设内外圆筒沿轴向单位长度上分别带有电荷+λ和-λ, 根据高斯定理可求得两圆筒间任一点的电场强度为 rE r εελ02π=则两圆筒的电势差为 1200ln 22d d 2121R R r r r E U r R R r R R εελεελπ=π==⎰⎰⋅解得 120ln 2R R Ur εελπ=于是可求得A点的电场强度为 A E )/ln(12R R R U== 998 V/m 方向沿径向向外A 点与外筒间的电势差: ⎰⎰=='22d )/ln(d 12RR R Rr rR R U r E U RR R R U212ln )/ln(== 12.5 V。

相关文档
最新文档