2019-2020学年高中数学 1.4.2正弦、余弦函数的性质(2)导学案新人教版必修4.doc
人教版高中数学全套教案导学案高中数学 (1.4.2 正弦函数、余弦函数的性质)教案 新人教A版必修4
![人教版高中数学全套教案导学案高中数学 (1.4.2 正弦函数、余弦函数的性质)教案 新人教A版必修4](https://img.taocdn.com/s3/m/00b979ff28ea81c758f5786d.png)
1.4.2 正弦函数、余弦函数的性质整体设计教学分析对于函数性质的研究,在高一必修中已经研究了幂函数、指数函数、对数函数的图象与性质.因此作为高中最后一个基本初等函数的性质的研究,学生已经有些经验了.其中,通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想方法的应用.由于三角函数是刻画周期变化现象的重要数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期区间上的性质,那么就完全清楚它在整个定义域内的性质.正弦、余弦函数性质的难点,在于对函数周期性的正确理解与运用,以下的奇偶性,无论是由图象观察,还是由诱导公式进行证明,都很容易.单调性只要求由图象观察,不要求证明,而正弦、余弦函数的最大值和最小值可以作为单调性的一个推论,只要注意引导学生利用周期进行正确归纳即可.三维目标1.通过创设情境,如单摆运动、波浪、四季变化等,让学生感知周期现象;理解周期函数的概念;能熟练地求出简单三角函数的周期,并能根据周期函数的定义进行简单的拓展运用.2.通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物.重点难点教学重点:正弦、余弦、正切函数的主要性质(包括周期性、单调性、奇偶性、最值或值域);深入研究函数性质的思想方法.教学难点:正弦函数和余弦函数图象间的关系、图象变换,以及周期函数概念的理解,最小正周期的意义及简单的应用.课时安排2课时教学过程第1课时导入新课思路 1.人的情绪、体力、智力都有周期性的变化现象,在日常生活和工作中,人们常常有这样的自我感觉,有的时候体力充沛,心情愉快,思维敏捷;有的时候却疲倦乏力,心灰意冷,反应迟钝;也有的时候思绪不稳,喜怒无常,烦躁不安,糊涂健忘,这些感觉呈周期性发生,贯穿人的一生,这就是人体节律.这种有规律性的重复,我们称之为周期性现象.请同学们举出生活中存在周期现象的例子,在学生热烈的争论中引入新课.思路2.取出一个钟表,实际操作,我们发现钟表上的时针、分针和秒针每经过一周就会重复,这是一种周期现象.我们这节课要研究的主要内容就是周期现象与周期函数.那么我们怎样从数学的角度研究周期现象呢?在图形上让学生观察正弦线“周而复始”的变化规律,在代数式上让学生思考诱导公式:sin(x+2kπ)=sinx又是怎样反映函数值的“周而复始”的变化规律的.要求学生用日常语言叙述这个公式,通过对图象、函数解析式的特点的描述,使学生建立在比较牢固的理解周期性的认知基础上,来理解“周而复始”变化的代数刻画,由此引出周期函数的概念.推进新课新知探究提出问题问题①正弦函数、余弦函数是周期函数吗?如果是,又是怎样周期性变化的?问题②阅读教材并思考:怎样从代数的角度定义周期函数?活动:教师可先引导学生查阅思考上节学过的正弦函数图象,让学生观察正弦线的变化规律,有什么新的发现?再让学生描述这种规律是如何体现在正弦函数的图象上的,即描述正弦函数图象是如何体现“周而复始”的变化规律的.通过研究图象,学生很容易看出正弦函数、余弦函数是周期函数.怎样变化呢?从图1中也能看出是每隔2π就重复一次.对问题①,学生对正弦函数是周期函数是没有疑问的,至于怎样描述,学生一时很难回答.教师可引导学生思考讨论,正弦函数图象是怎样重复出现的?对于回答对的学生给予肯定,鼓励继续探究.对于找不到思路的学生给予提示,指导其正确的探究思路.图1问题②,从图象上能够看出,但关键是怎样对“周而复始”的变化规律作出代数描述,这对学生有一定的难度.在引入正式定义之前,可以引导学生先从不同角度进行描述.例如:对于函数f(x)自变量每增加或减少一个定值(这样的定值可以有很多个),函数值就重复出现,那么这个函数就叫做周期函数.教师也可以引导点拨学生从诱导公式进行描述.例如:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,k∈Z.这表明,正弦函数、余弦函数在定义域内自变量每增加(k>0时)或减少(k<0时)一个定值2kπ,它的函数值就重复出现,所以正弦函数、余弦函数都是周期函数.还可以通过类比奇函数、偶函数、周期函数的研究方法来加深理解周期性概念.如果函数f(x)对于其定义域内的每一个值,都有:f(-x)=-f(x),那么f(x)叫做奇函数;f(-x)=f(x),那么f(x)叫做偶函数;f(x+T)=f(x),其中T是非零常数,那么f(x)叫做周期函数.从上述定义可以看到,函数的性质是对函数的一种整体考察结果,反映了同一类函数的共同特点,它们可以从代数角度得到统一刻画.这种共同特点还可以从函数的图象上得到反映.讨论结果:①正弦函数、余弦函数是周期函数,每隔2π就重复一次.②略.定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数.非零常数T叫做这个函数的周期.如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π.提出问题①怎样正确理解三角函数是周期函数的定义?并举例说明.②通过探求思考怎样求一些简单三角函数的周期?活动:对问题①,学生一时可能难于理解周期的代数刻画.教师在引导学生阅读、讨论、思考问题时可多举些具体例子,以使抽象概念具体化.如常数函数f(x)=c(c为常数,x∈R)是周期函数,所有非零实数T都是它的周期.同时应特别强调:(1)对周期函数与周期定义中的“当x取定义域内每一个值时”这句话,要特别注意“每一个值”的要求.如果只是对某些x 有f(x+T)=f(x),那么T就不是f(x)的周期.例如,分别取x 1=2k π+4π(k∈Z ),x 2=6π,则由sin(2k π+4π+2π)≠sin(2k π+4π),sin(6π+2π)≠sin 6π,可知2π不是正弦函数的周期.又如sin(30°+120°)=sin30°,但不是对所有x 都有f(x+120°)=f(x),所以120°不是f(x)的周期.(2)从上述定义还可以看到周期函数的周期不唯一,例如2π,4π,6π,8π,……都是它的周期,有无穷多个,即2k π(k∈Z ,k≠0)都是正弦函数的周期.这一点可以从周期函数的图象上得到反映,也可以从代数上给以证明:设T 是函数f(x)的周期,那么对于任意的k∈Z ,k≠0,kT 也是函数f(x)的周期.(3)对于周期函数来说,如果所有的周期中存在着一个最小的正数,就称它为最小正周期.但周期函数不一定存在最小正周期,例如,对于常数函数f(x)=c(c 为常数,x∈R),所有非零实数T 都是它的周期,由于T 可以是任意不为零的常数,而正数集合中没有最小值,即最小正数是不存在的,所以常数函数没有最小正周期.(4)正弦函数中,正周期无穷多,2π是最小的一个,在我们学习的三角函数中,如果不加特别说明,教科书提到的周期,一般都是指最小正周期.对问题②,教师要指导学生紧扣定义,可先出一些简单的求周期的例子,如:若T 是f(x)的周期,那么2T 、3T 、…呢?怎样求?实际上,由于T 是f(x)的周期,那么2T 、3T 、…也是它的周期.因为f(x+2T)=f(x+T+T)=f(x+T)=f(x).这样学生就会明白,数学中的周期函数,其实就是在独立变量上加上一个确定的周期之后数值重复出现的函数.讨论结果:①略.②定义法、公式法和图象法.应用示例思路1例1 求下列函数的周期:(1)y=3cosx,x∈R ;(2)y=sin2x,x∈R ; (3)y=2sin(2x -6π),x∈R . 活动:教师引导学生紧扣定义,一切从定义出发来求.(1)因为3cos(x+2π)=3cosx,根据周期函数的定义可知,原函数的周期为2π.有的学生可能会提出π是不是呢?让学生自己试一试,加深对概念的理解.因为3cos(x+π)=-3cosx≠3cosx,所以π不是周期.(2)教师引导学生观察2x,可把2x 看成一个新的变量u,那么cosu 的最小正周期是2π,就是说,当u 增加到u+2π时,函数cosu 的值重复出现,而u+2π=2x+2π=2(x+π),所以当自变量x 增加到x+π且必须增加到x+π时函数值重复出现.因为sin2(x+π)=sin(2x+2π),所以由周期函数的定义可知,原函数的周期为π.(3)因为2sin [21(x+4π)-6π]=2sin [(2x -6π)+2π]=2sin(2x -6π). 所以由周期函数的定义可知,原函数的周期为4π.解:(1)周期为2π;(2)周期为π;(3)周期为4π.点评:通过本例我们看到函数周期的变化仅与自变量的系数有关,关键是让学生认识到,f(x+T)=f(x)中,T 是相对于自变量x 而言的,让学生总结归纳一下这些函数的周期与解析式中哪些量有关.一般地,函数y=Asin(ωx+φ)(其中A 、ω、φ为常数,A≠0,ω>0,x∈R )的周期为T=ωπ2.可以按照如下的方法求它的周期:y=Asin(ωx+φ+2π)=Asin [ω(x+ωπ2)+φ]=Asin(ωx+φ). 于是有f(x+ωπ2)=f(x),所以其周期为ωπ2.例如,在第(3)小题,y=2sin(21x-6π),x∈R 中,ω=21,所以其周期是4π.由上述解法可以看到,思考的基本依据还是y=sinx 的周期为2π.根据这个结论,我们可以由这类函数的解析式直接写出函数的周期.如例3中的第(3)小题:T=ωπ2=4π.这是求简单三角函数周期的最基本方法,即公式法.变式训练1.已知f(x)是周期为5的周期函数,且f(1)=2 007,求f(11).解:因为5是函数f(x)在R 上的周期,所以f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2 007.2.已知奇函数f(x)是R 上的函数,且f(1)=2,f(x+3)=f(x),求f(8).解:由题意知,3是函数f(x)的周期,且f(-x)=-f(x),所以f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2.思路2例1 判断函数f(x)=2sin 2x+|cosx |,x∈R 的周期性.如果是周期函数,最小正周期是多少?活动:本例的难度较大,教师可引导学生从定义出发,结合诱导公式,寻求使f(x+T)=f(x)成立的T 的值.学生可能会很容易找出4π,2π,这的确是原函数的周期,但是不是最小正周期呢?教师引导学生选其他几个值试试.如果学生很快求出,教师给予表扬鼓励;如果学生做不出,教师点拨学生的探究思路,主要让学生自己讨论解决.解:因为f(x+π)=2sin 2(x+π)+|cos(x+π)|=2sin 2x+|cosx |=f(x).所以原函数是周期函数,最小正周期是π.点评:本题能很容易判断是周期函数,但要求的是“最小正周期”,那就要多加小心了.虽然将4π,2π带入公式后也符合要求,但还必须进一步变形,即f(x)中的x 以x+π代替后看看函数值变不变.为此需将π, 2π等都代入试一试.实际上,在f(x)=2sin 2x+|cosx |,x∈R 中,学生应看到平方与绝对值的作用是一样的,与负没有关系.因而π肯定是原函数的一个周期.变式训练1.求函数y=2sin31(π-x)的周期. 解:因为y=2sin 31(π-x)=-2sin(31x-3π), 所以周期T=6π.2.证明正弦、余弦函数的最小正周期是2π.证明:(反证法)先证正弦函数的最小正周期是2π.由于2π是它的一个周期,所以只需证明任意一个小于2π的正数都不是它的周期.假设T 是正弦函数的周期,且0<T<2π,那么根据周期函数的定义,当x 取定义域内的每一个值时,都有sin(x+T)=sinx.令x=2π, 代入上式,得sin(2π+T)=sin 2π=1, 但sin(2π+T)=cosT,于是有cosT=1. 根据余弦函数的定义,当T∈(0,2π)时,cosT<1.这说明上述cosT=1是不可能的.于是T 必须等于2π,即正弦函数的最小正周期是2π.同理可证,余弦函数的最小正周期也是2π.知能训练课本本节练习解答:1.成立.但不能说12°是正弦函数的一个周期,因为此等式不是对x 的一切值都成立. 例如sin(20°+120°)≠sin20°.点评:理解周期函数概念中“当x 取定义域内每一个值时”的“每一个值”的含义. 2.(1)38π; (2)2π; (3)2π; (4)6π. 点评:利用周期函数的图象和定义求周期,体会周期与自变量x 的系数有关.3.可以先在一个周期的区间上研究函数的其他性质,再利用函数的周期性,将所研究的性质扩展到整个定义域.点评:了解如何利用函数的周期性来认识周期函数的其他性质.可让学生课堂讨论,然后归纳总结.课堂小结由学生回顾本节所学的数学知识有哪些?〔周期函数的概念,最小正周期的定义,正弦、余弦函数的周期性,y=Asin(ωx+φ)(ω>0)的周期〕.并思考总结本节都用了哪些数学方法?(观察与归纳,特殊到一般,定义法,数形结合,辩证的观点)作业1.课本习题 A 组3,B 组3.2.预习正弦函数、余弦函数的奇偶性.设计感想1.本节课的设计思想是:在学生的探究活动中突破正弦、余弦函数的周期性这个教学难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.如果学生一开始没有很好的理解,那么,以后有些题就会很难做.通过探究让学生找出周期这个规律性的东西,并明确知识依附于问题而存在,方法为解决问题的需要而产生.将周期性概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更高的广度.2.本节设计的特点是从形到数、由特殊到一般、由易到难,这符合学生的认知规律.让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启导.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续探讨函数的周期性的规律及一般三角函数的周期的求法.3.根据本节课的特点可考虑分层推进、照顾全体.对优等生,重在引导他们进行一题多解,多题合一,变式思考的训练,培养他们求同思维、求异思维能力,以及思维的灵活性、深刻性与创造性,鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.(设计者:郑吉星)第2课时导入新课思路1.(类比导入)我们在研究一个函数的性质时,如幂函数、指数函数、对数函数的性质,往往通过它们的图象来研究.先让学生画出正弦函数、余弦函数的图象,从学生画图象、观察图象入手,由此展开正弦函数、余弦函数性质的探究.思路2.(直接导入)研究函数就是要讨论函数的一些性质,y=sinx,y=cosx是函数,我们当然也要探讨它们的一些性质.本节课,我们就来研究正弦函数、余弦函数最基本的几条性质.请同学们回想一下,一般来说,我们是从哪些方面去研究一个函数的性质的呢(定义域、值域、奇偶性、单调性、最值)?然后逐一进行探究.推进新课新知探究提出问题①回忆并画出正弦曲线和余弦曲线,观察它们的形状及在坐标系中的位置;②观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的定义域各是什么;③观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的值域各是什么;由值域又能得到什么;④观察正弦曲线和余弦曲线,函数值的变化有什么特点?⑤观察正弦曲线和余弦曲线,它们都有哪些对称?(1)(2)图2活动:先让学生充分思考、讨论后再回答.对回答正确的学生,教师可鼓励他们按自己的思路继续探究,对找不到思考方向的学生,教师可参与到他们中去,并适时的给予点拨、指导. 在上一节中,要求学生不仅会画图,还要识图,这也是学生必须熟练掌握的基本功.因此,在研究正弦、余弦函数性质时,教师要引导学生充分挖掘正弦、余弦函数曲线或单位圆中的三角函数线,当然用多媒体课件来研究三角函数性质是最理想的,因为单位圆中的三角函数线更直观地表现了三角函数中的自变量与函数值之间的关系,是研究三角函数性质的好工具.用三角函数线研究三角函数的性质,体现了数形结合的思想方法,有利于我们从整体上把握有关性质.对问题①,学生不一定画准确,教师要求学生尽量画准确,能画出它们的变化趋势.对问题②,学生很容易看出正弦函数、余弦函数的定义域都是实数集R 〔或(-∞,+∞)〕. 对问题③,学生很容易观察出正弦曲线和余弦曲线上、下都有界,得出正弦函数、余弦函数的值域都是[-1,1].教师要引导学生从代数的角度思考并给出证明.∵正弦线、余弦线的长度小于或等于单位圆的半径的长度,∴|sinx |≤1,|cosx |≤1,即-1≤sinx≤1,-1≤cosx≤1.也就是说,正弦函数、余弦函数的值域都是[-1,1].对于正弦函数y=sinx(x∈R ),(1)当且仅当x=2π+2k π,k∈Z 时,取得最大值1. (2)当且仅当x=-2π+2k π,k∈Z 时,取得最小值-1. 对于余弦函数y=cosx(x∈R ),(1)当且仅当x=2k π,k∈Z 时,取得最大值1.(2)当且仅当x=(2k+1)π,k∈Z 时,取得最小值-1.对问题④,教师可引导、点拨学生先截取一段来看,选哪一段呢?如图3,通过学生充分讨论后确定,选图象上的[-2π,23π](如图4)这段.教师还要强调为什么选这段,而不选[0,2π]的道理,其他类似.图3图4这个变化情况也可从下表中显示出来: x-2π … 0 … 2π … π … 23π sinx -1↗ 0 ↗ 1 ↘ 0 ↘ -1 就是说,函数y=sinx ,x∈[-2π,23π].当x∈[-2π,2π]时,曲线逐渐上升,是增函数,sinx 的值由-1增大到1; 当x∈[2π,23π]时,曲线逐渐下降,是减函数,sinx 的值由1减小到-1. 类似地,同样可得y=cosx,x∈[-π,π]的单调变化情况.教师要适时点拨、引导学生先如何恰当地选取余弦曲线的一段来研究,如图5,为什么选[-π,π],而不是选[0,2π].图5引导学生列出下表: x-π … -2π … 0 … 2π … π cosx -1 ↗ 0 ↗ 1 ↘ 0 ↘ -1 结合正弦函数、余弦函数的周期性可知:正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k∈Z )上都是减函数,其值从1减小到-1. 余弦函数在每一个闭区间[(2k-1)π,2k π](k∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k+1)π](k∈Z )上都是减函数,其值从1减小到-1.对问题⑤,学生能直观地得出:正弦曲线关于原点O 对称,余弦曲线关于y 轴对称.在R 上,y=sinx 为奇函数,y=cosx 为偶函数.教师要恰时恰点地引导,怎样用学过的知识方法给予证明?由诱导公式:∵sin(-x)=-sinx,cos(-x)=cosx,∴y=sinx 为奇函数,y=cosx 为偶函数.至此,一部分学生已经看出来了,在正弦曲线、余弦曲线上还有其他的对称点和对称轴,如正弦曲线还关于直线x=2π对称,余弦曲线还关于点(2π,0)对称,等等,这是由它的周期性而来的.教师可就此引导学生进一步探讨,为今后的学习打下伏笔.讨论结果:①略.②定义域为R .③值域为[-1,1],最大值都是1,最小值都是-1.④单调性(略).⑤奇偶性(略).当我们仔细对比正弦函数、余弦函数性质后,会发现它们有很多共同之处.我们不妨把两个图象中的直角坐标系都去掉,会发现它们其实都是同样形状的曲线,所以它们的定义域相同,都为R ,值域也相同,都是[-1,1],最大值都是1,最小值都是-1,只不过由于y 轴放置的位置不同,使取得最大(或最小)值的时刻不同;它们的周期相同,最小正周期都是2π;它们的图象都是轴对称图形和中心对称图形,且都是以图象上函数值为零所对应的点为对称中心,以过最值点且垂直于x 轴的直线为对称轴.但是由于y 轴的位置不同,对称中心及对称轴与x轴交点的横坐标也不同.它们都不具备单调性,但都有单调区间,且都是增、减区间间隔出现,也是由于y 轴的位置改变,使增减区间的位置有所不同,也使奇偶性发生了改变.应用示例思路1例1 数有最大值、最小值吗?如果有,请写出取最大值、最小值时的自变量x 的集合,并说出最大值、最小值分别是什么.(1)y=cosx+1,x∈R ;(2)y=-3sin2x,x∈R .活动:通过这道例题直接巩固所学的正弦、余弦的性质.容易知道,这两个函数都有最大值、最小值.课堂上可放手让学生自己去探究,教师适时的指导、点拨、纠错,并体会对应取得最大(小)值的自变量为什么会有无穷多个.解:(1)使函数y=cosx+1,x∈R 取得最大值的x 的集合,就是使函数y=cosx,x∈R 取得最大值的x 的集合{x|x=2k π,k∈Z };使函数y=cosx+1,x∈R 取得最小值的x 的集合,就是使函数y=cosx,x∈R 取得最小值的x 的集合{x|x=(2k+1)π,k∈Z }.函数y=cosx+1,x∈R 的最大值是1+1=2,最小值是-1+1=0.(2)令Z =2x,使函数y=-3sin Z ,Z ∈R 取得最大值的Z 的集合是{Z |Z =-2π+2k π,k∈Z }, 由2x=Z =-2π+2k π,得x=-4π+k π. 因此使函数y=-3sin2x,x∈R 取得最大值的x 的集合是{x|x=-4π+k π,k∈Z }. 同理,使函数y=-3sin2x,x∈R 取得最小值的x 的集合是{x|x=4π+k π,k∈Z }. 函数y=-3sin2x,x∈R 的最大值是3,最小值是-3.点评:以前我们求过最值,本例也是求最值,但对应的自变量x 的值却不唯一,这从正弦函数的周期性容易得到解释.求解本例的基本依据是正弦函数、余弦函数的最大(小)值的性质,对于形如y=Asin(ωx+φ)+B 的函数,一般通过变量代换(如设Z =ωx+φ化归为y=Asin Z +B 的形式),然后进行求解.这种思想对于利用正弦函数、余弦函数的其他性质解决问题时也适用.例2 函数的单调性,比较下列各组数的大小: (1)sin(-18π)与sin(-10π);(2)cos(523π-)与cos(417π-). 活动:学生很容易回忆起利用指数函数、对数函数的图象与性质进行大小比较,充分利用学生的知识迁移,有利于学生能力的快速提高.本例的两组都是正弦或余弦,只需将角化为同一个单调区间内,然后根据单调性比较大小即可.课堂上教师要让学生自己独立地去操作,教师适时地点拨、纠错,对思考方法不对的学生给予帮助指导.解:(1)因为2π-<10π-<18π-<0,正弦函数y=sinx 在区间[2π-,0]上是增函数,所以sin(18π-)>sin(10π-). (2)cos(523π-)=cos 523π=cos 53π,cos(417π-)=cos 417π=cos 4π. 因为0<4π<53π<π,且函数y=cosx,x∈[0,π]是减函数,所以cos 4π>cos 53π,即cos(523π-)<cos(417π-). 点评:推进本例时应提醒学生注意,在今后遇到的三角函数值大小比较时,必须将已知角化到同一个单调区间内,其次要注意首先大致地判断一下有没有符不同的情况,以便快速解题,如本例中,cos4π>0,cos 53π<0,显然大小立判. 例3 函数y=sin(21x+3π),x∈[-2π,2π]的单调递增区间. 活动:可以利用正弦函数的单调性来求所给函数的单调区间.教师要引导学生的思考方向: 把21x+3π看成Z ,这样问题就转化为求y=sin Z 的单调区间问题,而这就简单多了. 解:令Z =21x+3π.函数y=sin Z 的单调递增区间是 [2π-+2k π,2π+2k π]. 由-2π+2k π≤21x+3π≤2π+2k π,得35π-+4k π≤x≤3π+4k π,k∈Z . 由x∈[-2π,2π]可知,-2π≤35π-+4k π且3π+4k π≤2π,于是121-≤k≤125,由于k∈Z ,所以k=0,即35π-≤x≤3π,而[35π-,3π][-2π,2π], 因此,函数y=sin(2x +3π),x∈[-2π,2π]的单调递增区间是[35π-, 3π]. 点评:本例的求解是转化与化归思想的运用,即利用正弦函数的单调性,将问题转化为一个关于x 的不等式问题.然后通过解不等式得到所求的单调区间,要让学生熟悉并灵活运用这一数学思想方法,善于将复杂的问题简单化.思路2例1 求下列函数的定义域: (1)y=xsin 11+;(2)y=cosx . 活动:学生思考操作,教师提醒学生充分利用函数图象,根据实际情况进行适当的指导点拨,纠正出现的一些错误或书写不规范等.解:(1)由1+sinx≠0,得sinx≠-1,即x≠23π+2k π(k∈Z ). ∴原函数的定义域为{x |x≠23π+2k π,k∈Z }. (2)由cosx≥0,得2π-+2k π≤x≤2π+2k π(k∈Z ). ∴原函数的定义域为[2π-+2k π,2π+2k π](k∈Z ). 点评:本例实际上是解三角不等式,可根据正弦曲线、余弦曲线直接写出结果.本例分作两步,第一步转化,第二步利用三角函数曲线写出解集.例2 在下列区间中,函数y=sin(x+4π4π)的单调增区间是( ) A.[2π,π] B.[0,4π] C.[-π,0] D.[4π,2π] 活动:函数y=sin(x+4π)是一个复合函数,即y=sin[φ(x)],φ(x)=x+4π,欲求y=sin(x+4π)的单调增区间,因φ(x)=x+4π在实数集上恒递增,故应求使y 随φ(x)递增而递增的区间.也可从转化与化归思想的角度考虑,即把x+4π看成一个整体,其道理是一样的. 解:∵φ(x)=x+4π在实数集上恒递增,又y=sinx 在[2k π-2π,2k π+2π](k∈Z )上是递增的,故令2k π-2π≤x+4π≤2k π+2π. ∴2k π-43π≤x≤2k π+4π. ∴y=sin(x+4π)的递增区间是[2k π-43π,2k π+4π]. 取k=-1、0、1分别得[411π-,47π]、[43π-,4π]、[45π,49π], 对照选择肢,可知应选B.答案:B点评:像这类题型,上述解法属常规解法,而运用y=Asin(ωx+φ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,若本题运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.当然作为选择题还可利用特殊值、图象变换等手段更快地解出.解题规律:求复合函数单调区间的一般思路是:(1)求定义域;(2)确定复合过程,y=f(t),t=φ(x);(3)根据函数f(t)的单调性确定φ(x)的单调性;(4)写出满足φ(x)的单调性的含有x 的式子,并求出x 的范围;(5)得到x 的范围,与其定义域求交集,即是原函数的单调区间.结论:对于复合函数的单调性,可以直接根据构成函数的单调性来判断.变式训练1.如果函数f(x)=sin(πx+θ)(0<θ<2π)的最小正周期是T,且当x=2时取得最大值,那么( )A.T=2,θ=2π B.T=1,θ=π C.T=2,θ=π D.T=1,θ=2π 解:T=ππ2=2,又当x=2时,sin(π·2+θ)=sin(2π+θ)=sin θ,要使上式取得最大值,可取θ=2π. 答案:A。
高中数学必修4教案1.4.2正弦函数余弦函数的性质(教、学案)
![高中数学必修4教案1.4.2正弦函数余弦函数的性质(教、学案)](https://img.taocdn.com/s3/m/bb91b957cf84b9d528ea7aa0.png)
§1.4.2正弦函数余弦函数的性质【教材分析】《正弦函数和余弦函数的性质》是普通高中课程标准实验教材必修4中的内容,是正弦函数和余弦函数图像的继续,本课是根据正弦曲线余弦曲线这两种曲线的特点得出正弦函数和余弦函数的性质。
【教学目标】1. 会根据图象观察得出正弦函数、余弦函数的性质;会求含有x x cos ,sin 的三角式的性质;会应用正、余弦的值域来求函数)0(sin ≠+=a b x a y 和函数c x b x a y ++=cos cos 2)0(≠a 的值域2. 在探究正切函数基本性质和图像的过程中,渗透数形结合的思想,形成发现问题、提出问题、解决问题的能力,养成良好的数学学习习惯.3. 在解决问题的过程中,体验克服困难取得成功的喜悦.【教学重点难点】教学重点:正弦函数和余弦函数的性质。
教学难点:应用正、余弦的定义域、值域来求含有x x cos ,sin 的函数的值域【学情分析】知识结构:在函数中我们学习了如何研究函数,对于正弦函数余弦函数图像的学习使学生已经具备了一定的绘图技能,类比推理画出图象,并通过观察图象,总结性质的能力。
心理特征:高一普通班学生已掌握三角函数的诱导公式,并了解了三角函数的周期性,但学生运用数学知识解决实际问题的能力还不强;能够通过讨论、合作交流、辩论得到正确的知识。
但在处理问题时学生考虑问题不深入,往往会造成错误的结果。
【教学方法】1.学案导学:见后面的学案。
2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习【课前准备】1.学生的学习准备:预习“正弦函数和余弦函数的性质”,初步把握性质的推导。
2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。
【课时安排】1课时【教学过程】一、预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
二、复 习导入、展示目标。
高中数学 1.4.2正弦、余弦函数的性质(2)导学案 新人教A版必修4 学案
![高中数学 1.4.2正弦、余弦函数的性质(2)导学案 新人教A版必修4 学案](https://img.taocdn.com/s3/m/4fe046c26037ee06eff9aef8941ea76e58fa4aa2.png)
黑龙江省漠河县高级中学高中数学 1.4.2正弦、余弦函数的性质(2)导学案新人教A版必修4一、三维目标:知识与技能: 1、掌握正、余弦函数的奇偶性和单调性;2、理解正、余弦函数的奇偶性和单调性。
过程与方法: 掌握正、余弦函数的奇偶性的判断,并能求出正、余弦函数的单调区间。
情感态度价值观: 激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。
二、学习重、难点:重点: 正、余弦函数的奇偶性和单调性。
难点: 正、余弦函数奇偶性和单调性的理解与应用。
三、学法指导: 认真阅读教材,对教材的内容进行分析。
四、知识链接:A问题1:奇、偶函数的定义;A问题2:奇、偶函数的图像性质;五、学习过程:奇偶性:问题3:观察正、余弦函数的图形,说出函数图象有怎样的对称性?其特点是什么?(1)余弦函数∵cos(-x)=cosx ∴f(-x)= f(x)。
以上情况反映在图象上就是:如果点(x,y)是函数y=cosx的图象上的任一点,那么,与它关于y轴的对称点(-x,y)也在函数y=cosx的图象上,这时,我们说函数y=cosx是偶函数。
(2)正弦函数B问题4:观察函数y=sinx的图象,当自变量取一对相反数时,它们对应的函数值有什么关系?B问题5:这个事实反映在图象上,说明函数的图象有怎样的对称性呢?也就是说,如果点(x,y)是函数y=sinx的图象上任一点,那么与它关于原点对称的点(-x,-y)也在函数y=sinx的图象上,这时,我们说函数y=sinx是奇函数。
单调性问题6:从y=sin x,x∈[-23,2ππ]的图象上可看出:当x∈[-2π,2π]时,曲线逐渐,sin x的值由-1 到1。
当x∈[2π,23π]时,曲线逐渐,sin x的值由1 到-1。
B 例2.不通过求值,比较大小: ①sin()_____sin()1810ππ--; ②2317cos()_____cos()54ππ--B 变式训练:比较3sin ,2sin ,1sin 大小 。
高中数学第一章1.4.2正弦函数余弦函数的性质第2课时问题导学案新人教A版必修
![高中数学第一章1.4.2正弦函数余弦函数的性质第2课时问题导学案新人教A版必修](https://img.taocdn.com/s3/m/ee58a971172ded630a1cb63c.png)
B.0
C.- 1
D .- 1- 3
迁移与应用
求下列函数的值域:
(1)y= cos2x+ 2sin x- 2;
ππ (2)y= cos2x- sin x, x∈ - 4, 4 .
1.形如 y= asin x+ b 的函数最值或值域问题,一般利用正弦函数的有界性求解. 2.形如 y= Asin(ωx+ φ)或 y=Acos(ωx+ φ)的最值或值域问题,要注意 ωx+φ的范围,结 合相应函数的单调性求解. 3.形如 y= Asin2x+ Bsin x+C 或 y=Acos2x+ Bcos x+ C(或可化为此形式 )的函数转化为 二次函数求解. 三、正弦、余弦函数的对称性
活动与探究 3
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
π 函数 f (x)= sin x- 4 的图象的一条对称轴是 ( )
π A. x=4
π B. x= 2
π C. x=-
4
π D .x=-
2
迁移与应用
π
函数 y= cos 2x+ 3 图象的一个对称中心是 (
3π 应 x 的集合为 x x=2kπ+2 , k∈ Z .
π 当 sin x = 1 , 即 x = 2k π+ 2 , k ∈ Z 时 , y 有 最 小 值 1 , 相 应 x 的 集 合 为
π x x= 2kπ+2, k∈ Z .
x
x
(2)令 z= ,∵- 1≤ cos z≤1,∴ y= cos 的最大值为 1,最小值为- 1.
π
2π
π
5. x= 12 解析: 由已知 ω=π,∴ω= 2,∴ f(x)= sin(2x+ 3).
必修四 1.4.2 正弦函数、余弦函数的性质 导学案
![必修四 1.4.2 正弦函数、余弦函数的性质 导学案](https://img.taocdn.com/s3/m/eb69abc86137ee06eff91871.png)
1.4.2正弦函数、余弦函数的性质【课标要求】1.了解三角函数的周期性,会求一些三角函数的周期.2.借助图象理解正弦函数、余弦函数的性质,会讨论一些简单三角函数的奇偶性、单调性、最值等问题.【考纲要求】【学习目标叙写】1.通过自主学习,会求一些三角函数的周期2.通过合作交流,会讨论一些简单三角函数的奇偶性、单调性、最值等问题.【使用说明及方法指导】1.限时10—15分钟,独立完成预习案内容,书写规范。
2.找出自己的疑惑和需要讨论的问题准备课上讨论质疑。
【预习案】1.sin(α+2kπ)=______,cos(α+2kπ)=_______.(k∈Z)2.正弦函数y=sin x,x∈[0,2π]的五个关键点为___________________________________.3.余弦函数y=cos x,x∈[0,2π]的五个关键点为【探究案】探究一:正、余弦函数的周期性研究正、余弦函数的周期性,可根据定义f(x+T)=f(x),T一般为最小正周期例一求下列函数的周期:(1)y=sin 2x+3; (2)y=2cos(13x-π4); (3)y=|sin x|.探究二:正、余弦函数的奇偶性正、余弦函数的奇偶性,要根据奇偶函数的定义、性质和三角诱导公式来判定.例二判断下列函数的奇偶性:(1)y=sin x+tan x;(2)f(x)=sin(3x4+3π2);(3)f (x )=1+sin x -cos 2x1+sin x; (4)f (x )=1-cos x +cos x -1.【拓展1】 若本例(4)改为f (x )=1-cos x ,其奇偶性如何?探究三:正、余弦函数的单调性要结合正、余弦函数的图象和周期性,求解单调区间.例三 求函数y =2sin(π4-x )的单调区间.【拓展1】 求函数y =2sin(x +π4)的单调区间.探究四:正、余弦函数的定义域、值域及最值此类问题主要利用它们的有界性:|sin x |≤1,|cos x |≤1(x ∈R).例四 (1)求函数y =2sin(x +π3),x ∈[π6,π2]的值域;(2)求函数y =11+sin x的定义域、值域和最值.【拓展1】 求函数y =cos2x +2sin x -2,x ∈R 的值域.【二次备课】。
高中数学必修四1.4.2正弦函数、余弦函数的性质(二)学案新人教A版必修4
![高中数学必修四1.4.2正弦函数、余弦函数的性质(二)学案新人教A版必修4](https://img.taocdn.com/s3/m/89610f50f90f76c660371a52.png)
二.探究与发现
【探究点一】正、余弦函数的定义域、值域 正弦曲线:
余弦曲线:
由正、余弦曲
线很
容易看出正弦函数、余弦函数的定义域都是实数集
R,值域都是
.
对于正弦函数 y= sin x ,x∈R 有:
当且仅当 x=
时,取得最大值
对于余弦函数 y= cos x ,x∈R 有:
1;当且仅当 x=
时,取得最小值- 1.
(即
同则增,异则减 ) 求解.
余弦函数 y= Acos( ω x+φ ) 的单调区间类似可求.
请同学们根据上面介绍的方法,写出求函数
1π y= sin -2x+ 3 单调递增区间的求法.
例 1.利用三角函数的单调性,比较下列各组数的大小.
(1)sin
-π18 与 sin
-
π 10
;
(2)sin 196 °与 cos 156 °;
(2)cos 870 °与 sin 980 °.
1π 例 2.求函数 y= 1+ sin - 2x+ 4 ,x∈[ - 4π , 4π] 的单调减区间.
小结
确定函数 y= Asin( ω x+ φ) 或 y= Acos( ω x+φ ) 单调区间的基本思想是整体换元思想,即将 ω x+ φ 视为一个整体.若 x 的系数为负,通常利用诱导公式化为正数再求解.有时还应兼顾 函数的定义域.
当 x∈ __________ 时,曲线逐渐上升,是增函数, 1;
当 x∈ __________ 时,曲线逐渐下降,是减函数,
sin x 的值由- 1 增大到 sin x 的值由 1 减小到-
1.
推广到整个定义域可得: 当 x∈ ___________________________ 时,正弦函数 y= sin x 是增函数,函数值由- 1 增大到 1; 当 x∈ ___________________________ 时,正弦函数 y= sin x 是减函数,= cos x ,x∈[ - π , π ] 的图象如图所示: 观察图象可知: 当 x∈ __________ 时,曲线逐渐上升,是增函数, cos x 的值由- 1 增大到 1;
高中数学 1.4.2正弦函数、余弦函数的性质(二)学案 新
![高中数学 1.4.2正弦函数、余弦函数的性质(二)学案 新](https://img.taocdn.com/s3/m/409e557ec8d376eeafaa312b.png)
第一章 三角函数三角函数 1.4 三角函数的图象与性质 1.4.2 正弦函数、余弦函数的性质(二)1.理解正弦函数、余弦函数的性质:奇偶性和单调性. 2.利用正弦函数、余弦函数的图象确定相应的奇偶性和单调性. 3.利用正弦函数、余弦函数的单调性与函数有关的单调区间.基础梳理一、正弦函数和余弦函数的单调性正弦函数和余弦函数都是周期函数,而对于周期函数,只要弄清楚它在一个周期内所具有的性质,便可以推知它在整个定义域内所具有的性质.对于正弦函数,结合图象知函数在区间⎣⎢⎡⎦⎥⎤-π2,π2上单调递增,在区间⎣⎢⎡⎦⎥⎤π2,3π2上单调递减.根据函数的周期性,我们推知:正弦函数在每个闭区间⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π(k ∈Z)上都是增函数,其函数值从-1增加到+1;在每个闭区间⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π(k ∈Z)上都是减函数,其函数值从+1减小到-1.同样,余弦函数在每个闭区间[-π+2k π,2k π](k ∈Z)上都是增函数,其函数值从-1增加到+1;在每个闭区间[2k π,π+2k π](k ∈Z)上都是减函数,其函数值从+1减小到-1.思考应用1.正弦函数、余弦函数是单调函数吗?能否说“正弦函数在第一象限是增函数”? 解析:正弦函数、余弦函数都不是定义域上的单调函数.“正弦函数在第一象限是增函数”也是错误的,因为在第一象限,即使是终边相同的角,它们也可以相差2π的整数倍.二、正弦函数和余弦函数的奇偶性根据诱导公式sin(-x )=-sin x ,cos(-x )=cos x ,可知正弦函数是奇函数,余弦函数是偶函数.从正弦函数y =sin x 的图象和余弦函数y =cos x 的图象上也可以看出,正弦函数是奇函数,余弦函数是偶函数.思考应用2.从正、余弦函数的奇偶性可知正弦函数y =sin x 的图象关于原点对称,余弦函数y =cos x 的图象关于y 轴对称,正、余弦函数的图象还有其他对称轴和对称中心吗?解析: 利用正、余弦函数的周期性和图象可以得出:正弦曲线y =sin x 既是中心对称图形,又是轴对称图形.其对称中心坐标是(k π,0)(k ∈Z),对称轴方程是x =k π+π2(k ∈Z);同理,余弦曲线y =cos x 既是中心对称图形,又是轴对称图形.其对称中心坐标是⎝ ⎛⎭⎪⎫k π+π2,0(k ∈Z)对称轴方程是x =k π(k ∈Z).自测自评1.函数:①y =x 2sin x ;②y =sin x ,x ∈[0,2π];③y =sin x ,x ∈[-π,π];④y =x cos x 中,奇函数的个数为(C )A .1个B .2个C .3个D .4个 解析:①③④是奇函数.故选C.2.使y =sin x 和y =cos x 均为减函数的一个区间是(B ) A.⎝ ⎛⎭⎪⎫0,π2 B.⎝ ⎛⎭⎪⎫π2,π C.⎝ ⎛⎭⎪⎫π,3π2 D.⎝ ⎛⎭⎪⎫3π2,π 解析:由y =sin x ,x ∈[0,2π]与y =cos x ,x ∈[0,2π]的图象知:y =sin x 和y =cos x 的均为减函数的一个区间是:⎝ ⎛⎭⎪⎫π2,π,故选B. 3.函数y =|sin x |的一个单调增区间(C )A.⎝ ⎛⎭⎪⎫-π4,π4B.⎝ ⎛⎭⎪⎫π4,3π4C.⎝ ⎛⎭⎪⎫π,3π2D.⎝ ⎛⎭⎪⎫3π2,2π4.有下列命题:①y =sin x 的递增区间是⎣⎢⎡⎦⎥⎤2k π,2k π+π2(k ∈Z);②y =sin x 在第一象限是增函数;③y =sin x 在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数.其中正确的个数是(A )A .1个B .2个C .3个D .0个解析:①y =sin x 的递增区间是⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ).②函数的单调性是相对于某一区间来说的,与所在象限无关.③正确.故选A.基础提升 1.下列命题正确的是(D )A .y =sin x 在[0,π]内是单调函数B .在第二象限内,y =sin x 是减函数,y =cos x 也是减函数C .y =cos x 的增区间是[0,π]D .y =sin x 在区间⎣⎢⎡⎦⎥⎤π2,π上是减函数2.已知函数f (x )=sin ⎝⎛⎭⎪⎫x -π2(x ∈R),下面结论错误的是 (D )A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )是奇函数解析:由函数的f (x )=sin ⎝⎛⎭⎪⎫x -π2=-cos x (x ∈R)可以得到函数f (x )是偶函数,选择D.3.函数y =sin ⎝ ⎛⎭⎪⎫x +π4在下列区间是增函数的是(B )A.⎣⎢⎡⎦⎥⎤-π2,π2B.⎣⎢⎡⎦⎥⎤-3π4,π4C .[-π,0]D.⎣⎢⎡⎦⎥⎤-π4,3π4 解析:由2k π-π2≤x +π4≤2k π+π2,得2k π-3π4≤x ≤2k π+π4(k ∈Z),函数的增区间为⎣⎢⎡⎦⎥⎤2k π-3π4,2k π+π4.令k =0,得B 正确.故选B.4.若α,β均为锐角且α+β>π2,则(A )A .sin α>cos βB .sin α<cos βC .sin α>sin βD .cos α<c os β解析:由题意0<π2-β<α<π2,∴sin ⎝ ⎛⎭⎪⎫π2-β<sin α,即sin α>cos β.故选A.5.设函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫x +π3(x ∈R),则f (x )(A )A .在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数B .在区间⎣⎢⎡⎦⎥⎤-π,-π2上是减函数 C .在区间⎣⎢⎡⎦⎥⎤π8,π4上是增函数D .在区间⎣⎢⎡⎦⎥⎤π3,5π6上是减函数解析:作函数y =sin ⎝⎛⎭⎪⎫x +π3的图象,并将图象在x 轴下方的部分对折到x 轴的上方,观察图象可知答案选A.6.判断函数f (x )=sin ⎝ ⎛⎭⎪⎫3x 4+3π2的奇偶性.分析:判断函数的奇偶性,首先要看定义域是否关于原点对称,再看f (-x )与f (x )的关系.解析:∵x ∈R,f (x )=sin ⎝ ⎛⎭⎪⎫3x 4+3π2=-cos 3x 4,∴f (-x )=-cos 3(-x )4=-cos 3x4=f (x ),∴函数f (x )=sin ⎝ ⎛⎭⎪⎫3x 4+3π2为偶函数. 巩固提高7.函数y =3cos 2x -4cos x +1,x ∈⎣⎢⎡⎦⎥⎤π3,2π3的最小值是(D )A .-13 B.154C .0D .-14解析:y =3⎝ ⎛⎭⎪⎫cos x -232-13,∵x ∈⎣⎢⎡⎦⎥⎤π3,2π3, ∴cos x ∈⎣⎢⎡⎦⎥⎤-12,12.当cos x =12时,y 取到最小值为y min =3×⎝ ⎛⎭⎪⎫12-232-13=-14.故选D.8.函数y =cos x 在区间[-π,a ]上为增函数,则a 的取值范围是________. 解析:∵y =cos x 在[-π,0]上是增函数,在[0,π]上是减函数,∴只有-π<a ≤0时,满足已知.故a 的取值范围是(-π,0].答案:(-π,0]9.求函数y =3cos ⎝ ⎛⎭⎪⎫2x +π3+2的单调区间.解析:由2k π-π≤2x +π3≤2kx (k ∈Z)得k π-23x ≤x ≤k π-π6(k ∈Z).∴函数的单调增区间是⎣⎢⎡⎦⎥⎤k π-2π3,k π-π6(k ∈Z). 由2k π≤2x +π3≤2k π+π(k ∈Z)得∴函数的单调减区间是⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z).10.若函数f (x )=a -b sin x 的最大值为32,最小值为-12,求函数g (x )=-4a sin bx的最值和最小正周期.解析:当b >0时,由题意得⎩⎪⎨⎪⎧a +b =32,a -b =-12,解得a =12,b =1.∴g (x )=-2sin x .此时函数g (x )的最大值为2,最小值为-2,最小正周期为2π. 当b <0时,由题意得⎩⎪⎨⎪⎧a -b =32,a +b =-12,解得a =12,b =-1.∴g (x )=2sin x .此时函数g (x )最大值为2,最小值为-2,最小正周期为2π.1.求y =A sin(ωx +φ)的单调区间,首先把x 的系数化为正的,再利用整体代换,将ωx +φ代入相应不等式中,求解相应变量的取值范围.2.判断函数的奇偶性时,必须先检查函数的定义域是否关于原点的对称区间,再验证f (-x )与f (x )的关系,进而判断函数的奇偶性.。
高中数学《正弦函数、余弦函数的性质(二)》导学案
![高中数学《正弦函数、余弦函数的性质(二)》导学案](https://img.taocdn.com/s3/m/d64f94480a1c59eef8c75fbfc77da26925c596df.png)
∴cos 150°>cos 170°,即cos 870°>sin 980°.
三、课堂练习
1.y=2sin(3x+ )的值域是()
A.[-2,2]B.[0,2]C.[-2,0]D.[-1,1]
解析因为sin(3x+ )∈[-1,1],所以y∈[-2,2].答案A
2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断.
五、作业布置
课后作业:各班结合自己情况布置
六、教学反思
3.函数f(x)= cos(2x- )的单减区间是________.
解析令2kπ≤2x- ≤π+2kπ,k∈Z,得 +kπ≤x≤ +kπ,k∈Z,
即f(x)的单减区间是[ +kπ, +kπ](k∈Z).
答案[ +kπ, +kπ](k∈Z)
4.函数y=cos(x+ ),x∈[0, ]的值域是________.
即 +kπ≤x≤π+kπ,(k∈Z),
故y=cos 2x的单增区间是[ +kπ,π+kπ](k∈Z),则当k=0时为[ ,π],故选D.答案D
(2)求函数y=1+sin ,x∈[-4π,4π]的单调减区间.
解y=1+sin =-sin +1.
由2kπ- ≤ x- ≤2kπ+ (k∈Z).
解得4kπ- ≤x≤4kπ+ π(k∈Z).又∵x∈[-4π,4π],
∴cos π<cos ,即cos <cos .
【训练2】比较下列各组数的大小:
(1)sin 与sin ;(2)cos 870°与sin 980°.
解(1)siy=sinx在 上是增函数,
高中数学 1.4.2正弦函数、余弦函数的性质第二课时教案 新人教A版必修4 学案
![高中数学 1.4.2正弦函数、余弦函数的性质第二课时教案 新人教A版必修4 学案](https://img.taocdn.com/s3/m/ae466218974bcf84b9d528ea81c758f5f61f295d.png)
某某省某某市馆陶县第一中学高中数学正弦函数、余弦函数的性质第二课时教案新人教A版必修4【教学目标】1、会利用正、余弦函数的单调区间求与弦函数有关的单调区间及函数值域。
2、能根据正弦函数和余弦函数图象确定相应的对称轴、对称中心。
3、通过图象直观理解奇偶性、单调性,并能正确确定弦函数的单调区间。
【教学重点】正弦、余弦函数的主要性质(包括单调性、值域、奇偶性、对称性)。
【教学难点】利用正、余弦函数的单调区间求与弦函数有关的单调区间及函数值域。
【教学过程】一、复习相关知识1、填写下表2、填写下表中的概念其在图象中的体现3、什么是中心对称、轴对称图形?什么是对称中心、对称轴?二、预习提案(阅读教材第37—38页内容,完成以下问题:) 1、观察正余弦曲线:知:正弦函数是函数,余弦函数是 函数。
并用奇偶函数的定义加以证明。
2、判断下列函数的奇偶性:①)(x f =x sin , ②)(x f =x cos , ③x x f sin )(=, ④x x f cos )(=。
3、观察函数y=sinx,x ∈[-2π,23π]的图象,填写下表:x -2π ... 0 (2)π... π (2)3π sinx小结:正弦函数在每一个闭区间 (k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间 (k ∈Z )上都是减函数,其值从1减小到-1.4、观察函数y=cosx,x ∈[-π,π] 的图象,填写下表:x -π …-2π ... 0 (2)π … π cosx小结:余弦函数在每一个闭区间 (k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间 (k ∈Z )上都是减函数,其值从1减小到-1.5、由上可知:正弦函数、余弦函数的值域都是[-1,1].最值情况如下: Ⅰ、对于正弦函数y=sinx(x ∈R ), (1)当且仅当x=,k ∈Z 时,取得最大值1.(2)当且仅当x=,k ∈Z 时,取得最小值-1.Ⅱ、对于余弦函数y=cosx(x ∈R ),(1)当且仅当x= ,k ∈Z 时,取得最大值1.(2)当且仅当x=,k ∈Z 时,取得最小值-1.6、观察正余弦曲线,解读正、余弦函数的对称性:正、余弦函数既是轴对称图形又是中心对称图形。
高中数学必修4教案 1.4.2正弦函数、余弦函数的性质(2)
![高中数学必修4教案 1.4.2正弦函数、余弦函数的性质(2)](https://img.taocdn.com/s3/m/c54eb219da38376bae1fae01.png)
=2+2=-2+2-2,2](1)y =cosx +1,x ∈R ;(2)y =-3sin 2x ,x ∈R .例2数y =sin (21x +3π),x ∈[-2π,2π]的单调递增区间.解:令Z =21x +3π.函数y =sin Z 的单调递增区间是[2π-+2k π,2π+2k π].由-2π+2k π≤21x +3π≤2π+2k π,得35π-+4k π≤x ≤3π+4k π,k ∈Z .由x ∈[-2π,2π]可知,-2π≤35π-+4k π且3π+4k π≤2π,于是121-≤k ≤125,由于k ∈Z ,所以35π-≤x ≤3π,而[35π-,3π][-2π,2π], 因此,函数y =sin (2x +3π),x ∈[-2π,2π]的单调递增区间是[35π-, 3π].五 当堂测试 课本本节练习 解答:1.(1)(2k π,(2k +1)π),k ∈Z ;(2)( (2k -1)π,2k π),k ∈Z ; (3)(-2π+2k π,2π+2k π),k ∈Z ;(4)(2π+2k π,23π+2k π),k ∈Z . 点评:只需根据正弦曲线、余弦曲线写出结果,不要求解三角不等式,要注意结果及体会数形结合思想方法的灵活运用.2.(1)不成立.因为余弦函数的最大值是1,而cosx =23>1. (2)成立.因为sin 2x =0.5,即sinx =±22,而正弦函数的值域是[-1,1],±22∈[-1,1]. 点评:比较是学习的关键,反例能加深概念的深刻理解.通过本题准确理解正弦、数的最大值、最小值性质.3.(1)当x ∈{x |x =2π+2k π,k ∈Z }时,函数取得最大值2;当x ∈{x |x =2π-+2k π,k ∈Z }时,函。
高中数学 (1.4.2 正弦函数、余弦函数的性质)教案 新人教A版必修4
![高中数学 (1.4.2 正弦函数、余弦函数的性质)教案 新人教A版必修4](https://img.taocdn.com/s3/m/5017fa5a192e45361066f5ac.png)
1.4.2 正弦函数、余弦函数的性质整体设计教学分析对于函数性质的研究,在高一必修中已经研究了幂函数、指数函数、对数函数的图象与性质.因此作为高中最后一个基本初等函数的性质的研究,学生已经有些经验了.其中,通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想方法的应用.由于三角函数是刻画周期变化现象的重要数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期区间上的性质,那么就完全清楚它在整个定义域内的性质.正弦、余弦函数性质的难点,在于对函数周期性的正确理解与运用,以下的奇偶性,无论是由图象观察,还是由诱导公式进行证明,都很容易.单调性只要求由图象观察,不要求证明,而正弦、余弦函数的最大值和最小值可以作为单调性的一个推论,只要注意引导学生利用周期进行正确归纳即可.三维目标1.通过创设情境,如单摆运动、波浪、四季变化等,让学生感知周期现象;理解周期函数的概念;能熟练地求出简单三角函数的周期,并能根据周期函数的定义进行简单的拓展运用.2.通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物.重点难点教学重点:正弦、余弦、正切函数的主要性质(包括周期性、单调性、奇偶性、最值或值域);深入研究函数性质的思想方法.教学难点:正弦函数和余弦函数图象间的关系、图象变换,以及周期函数概念的理解,最小正周期的意义及简单的应用.课时安排2课时教学过程第1课时导入新课思路 1.人的情绪、体力、智力都有周期性的变化现象,在日常生活和工作中,人们常常有这样的自我感觉,有的时候体力充沛,心情愉快,思维敏捷;有的时候却疲倦乏力,心灰意冷,反应迟钝;也有的时候思绪不稳,喜怒无常,烦躁不安,糊涂健忘,这些感觉呈周期性发生,贯穿人的一生,这就是人体节律.这种有规律性的重复,我们称之为周期性现象.请同学们举出生活中存在周期现象的例子,在学生热烈的争论中引入新课.思路2.取出一个钟表,实际操作,我们发现钟表上的时针、分针和秒针每经过一周就会重复,这是一种周期现象.我们这节课要研究的主要内容就是周期现象与周期函数.那么我们怎样从数学的角度研究周期现象呢?在图形上让学生观察正弦线“周而复始”的变化规律,在代数式上让学生思考诱导公式:sin(x+2kπ)=sinx又是怎样反映函数值的“周而复始”的变化规律的.要求学生用日常语言叙述这个公式,通过对图象、函数解析式的特点的描述,使学生建立在比较牢固的理解周期性的认知基础上,来理解“周而复始”变化的代数刻画,由此引出周期函数的概念.推进新课新知探究提出问题问题①正弦函数、余弦函数是周期函数吗?如果是,又是怎样周期性变化的?问题②阅读教材并思考:怎样从代数的角度定义周期函数?活动:教师可先引导学生查阅思考上节学过的正弦函数图象,让学生观察正弦线的变化规律,有什么新的发现?再让学生描述这种规律是如何体现在正弦函数的图象上的,即描述正弦函数图象是如何体现“周而复始”的变化规律的.通过研究图象,学生很容易看出正弦函数、余弦函数是周期函数.怎样变化呢?从图1中也能看出是每隔2π就重复一次.对问题①,学生对正弦函数是周期函数是没有疑问的,至于怎样描述,学生一时很难回答.教师可引导学生思考讨论,正弦函数图象是怎样重复出现的?对于回答对的学生给予肯定,鼓励继续探究.对于找不到思路的学生给予提示,指导其正确的探究思路.图1问题②,从图象上能够看出,但关键是怎样对“周而复始”的变化规律作出代数描述,这对学生有一定的难度.在引入正式定义之前,可以引导学生先从不同角度进行描述.例如:对于函数f(x)自变量每增加或减少一个定值(这样的定值可以有很多个),函数值就重复出现,那么这个函数就叫做周期函数.教师也可以引导点拨学生从诱导公式进行描述.例如:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,k∈Z.这表明,正弦函数、余弦函数在定义域内自变量每增加(k>0时)或减少(k<0时)一个定值2kπ,它的函数值就重复出现,所以正弦函数、余弦函数都是周期函数.还可以通过类比奇函数、偶函数、周期函数的研究方法来加深理解周期性概念.如果函数f(x)对于其定义域内的每一个值,都有:f(-x)=-f(x),那么f(x)叫做奇函数;f(-x)=f(x),那么f(x)叫做偶函数;f(x+T)=f(x),其中T是非零常数,那么f(x)叫做周期函数.从上述定义可以看到,函数的性质是对函数的一种整体考察结果,反映了同一类函数的共同特点,它们可以从代数角度得到统一刻画.这种共同特点还可以从函数的图象上得到反映.讨论结果:①正弦函数、余弦函数是周期函数,每隔2π就重复一次.②略.定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数.非零常数T叫做这个函数的周期.如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π.提出问题①怎样正确理解三角函数是周期函数的定义?并举例说明.②通过探求思考怎样求一些简单三角函数的周期?活动:对问题①,学生一时可能难于理解周期的代数刻画.教师在引导学生阅读、讨论、思考问题时可多举些具体例子,以使抽象概念具体化.如常数函数f(x)=c(c为常数,x∈R)是周期函数,所有非零实数T都是它的周期.同时应特别强调:(1)对周期函数与周期定义中的“当x取定义域内每一个值时”这句话,要特别注意“每一个值”的要求.如果只是对某些x 有f(x+T)=f(x),那么T就不是f(x)的周期.例如,分别取x 1=2k π+4π(k∈Z ),x 2=6π,则由sin(2k π+4π+2π)≠sin(2k π+4π),sin(6π+2π)≠sin 6π,可知2π不是正弦函数的周期.又如sin(30°+120°)=sin30°,但不是对所有x 都有f(x+120°)=f(x),所以120°不是f(x)的周期.(2)从上述定义还可以看到周期函数的周期不唯一,例如2π,4π,6π,8π,……都是它的周期,有无穷多个,即2k π(k∈Z ,k≠0)都是正弦函数的周期.这一点可以从周期函数的图象上得到反映,也可以从代数上给以证明:设T 是函数f(x)的周期,那么对于任意的k∈Z ,k≠0,kT 也是函数f(x)的周期.(3)对于周期函数来说,如果所有的周期中存在着一个最小的正数,就称它为最小正周期.但周期函数不一定存在最小正周期,例如,对于常数函数f(x)=c(c 为常数,x∈R),所有非零实数T 都是它的周期,由于T 可以是任意不为零的常数,而正数集合中没有最小值,即最小正数是不存在的,所以常数函数没有最小正周期.(4)正弦函数中,正周期无穷多,2π是最小的一个,在我们学习的三角函数中,如果不加特别说明,教科书提到的周期,一般都是指最小正周期.对问题②,教师要指导学生紧扣定义,可先出一些简单的求周期的例子,如:若T 是f(x)的周期,那么2T 、3T 、…呢?怎样求?实际上,由于T 是f(x)的周期,那么2T 、3T 、…也是它的周期.因为f(x+2T)=f(x+T+T)=f(x+T)=f(x).这样学生就会明白,数学中的周期函数,其实就是在独立变量上加上一个确定的周期之后数值重复出现的函数.讨论结果:①略.②定义法、公式法和图象法.应用示例思路1例1 求下列函数的周期:(1)y=3cosx,x∈R ;(2)y=sin2x,x∈R ; (3)y=2sin(2x -6π),x∈R . 活动:教师引导学生紧扣定义,一切从定义出发来求.(1)因为3cos(x+2π)=3cosx,根据周期函数的定义可知,原函数的周期为2π.有的学生可能会提出π是不是呢?让学生自己试一试,加深对概念的理解.因为3cos(x+π)=-3cosx≠3cosx,所以π不是周期.(2)教师引导学生观察2x,可把2x 看成一个新的变量u,那么cosu 的最小正周期是2π,就是说,当u 增加到u+2π时,函数cosu 的值重复出现,而u+2π=2x+2π=2(x+π),所以当自变量x 增加到x+π且必须增加到x+π时函数值重复出现.因为sin2(x+π)=sin(2x+2π),所以由周期函数的定义可知,原函数的周期为π.(3)因为2sin [21(x+4π)-6π]=2sin [(2x -6π)+2π]=2sin(2x -6π). 所以由周期函数的定义可知,原函数的周期为4π.解:(1)周期为2π;(2)周期为π;(3)周期为4π.点评:通过本例我们看到函数周期的变化仅与自变量的系数有关,关键是让学生认识到,f(x+T)=f(x)中,T 是相对于自变量x 而言的,让学生总结归纳一下这些函数的周期与解析式中哪些量有关.一般地,函数y=Asin(ωx+φ)(其中A 、ω、φ为常数,A≠0,ω>0,x∈R )的周期为T=ωπ2.可以按照如下的方法求它的周期:y=Asin(ωx+φ+2π)=Asin [ω(x+ωπ2)+φ]=Asin(ωx+φ). 于是有f(x+ωπ2)=f(x),所以其周期为ωπ2.例如,在第(3)小题,y=2sin(21x-6π),x∈R 中,ω=21,所以其周期是4π.由上述解法可以看到,思考的基本依据还是y=sinx 的周期为2π.根据这个结论,我们可以由这类函数的解析式直接写出函数的周期.如例3中的第(3)小题:T=ωπ2=4π.这是求简单三角函数周期的最基本方法,即公式法.变式训练1.已知f(x)是周期为5的周期函数,且f(1)=2 007,求f(11).解:因为5是函数f(x)在R 上的周期,所以f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2 007.2.已知奇函数f(x)是R 上的函数,且f(1)=2,f(x+3)=f(x),求f(8).解:由题意知,3是函数f(x)的周期,且f(-x)=-f(x),所以f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2.思路2例1 判断函数f(x)=2sin 2x+|cosx |,x∈R 的周期性.如果是周期函数,最小正周期是多少?活动:本例的难度较大,教师可引导学生从定义出发,结合诱导公式,寻求使f(x+T)=f(x)成立的T 的值.学生可能会很容易找出4π,2π,这的确是原函数的周期,但是不是最小正周期呢?教师引导学生选其他几个值试试.如果学生很快求出,教师给予表扬鼓励;如果学生做不出,教师点拨学生的探究思路,主要让学生自己讨论解决.解:因为f(x+π)=2sin 2(x+π)+|cos(x+π)|=2sin 2x+|cosx |=f(x).所以原函数是周期函数,最小正周期是π.点评:本题能很容易判断是周期函数,但要求的是“最小正周期”,那就要多加小心了.虽然将4π,2π带入公式后也符合要求,但还必须进一步变形,即f(x)中的x 以x+π代替后看看函数值变不变.为此需将π, 2π等都代入试一试.实际上,在f(x)=2sin 2x+|cosx |,x∈R 中,学生应看到平方与绝对值的作用是一样的,与负号没有关系.因而π肯定是原函数的一个周期.变式训练1.求函数y=2sin31(π-x)的周期. 解:因为y=2sin 31(π-x)=-2sin(31x-3π), 所以周期T=6π.2.证明正弦、余弦函数的最小正周期是2π.证明:(反证法)先证正弦函数的最小正周期是2π.由于2π是它的一个周期,所以只需证明任意一个小于2π的正数都不是它的周期.假设T 是正弦函数的周期,且0<T<2π,那么根据周期函数的定义,当x 取定义域内的每一个值时,都有sin(x+T)=sinx.令x=2π, 代入上式,得sin(2π+T)=sin 2π=1, 但sin(2π+T)=cosT,于是有cosT=1. 根据余弦函数的定义,当T∈(0,2π)时,cosT<1.这说明上述cosT=1是不可能的.于是T 必须等于2π,即正弦函数的最小正周期是2π.同理可证,余弦函数的最小正周期也是2π.知能训练课本本节练习解答:1.成立.但不能说12°是正弦函数的一个周期,因为此等式不是对x 的一切值都成立. 例如sin(20°+120°)≠sin20°.点评:理解周期函数概念中“当x 取定义域内每一个值时”的“每一个值”的含义. 2.(1)38π; (2)2π; (3)2π; (4)6π. 点评:利用周期函数的图象和定义求周期,体会周期与自变量x 的系数有关.3.可以先在一个周期的区间上研究函数的其他性质,再利用函数的周期性,将所研究的性质扩展到整个定义域.点评:了解如何利用函数的周期性来认识周期函数的其他性质.可让学生课堂讨论,然后归纳总结.课堂小结由学生回顾本节所学的数学知识有哪些?〔周期函数的概念,最小正周期的定义,正弦、余弦函数的周期性,y=Asin(ωx+φ)(ω>0)的周期〕.并思考总结本节都用了哪些数学方法?(观察与归纳,特殊到一般,定义法,数形结合,辩证的观点)作业1.课本习题 A 组3,B 组3.2.预习正弦函数、余弦函数的奇偶性.设计感想1.本节课的设计思想是:在学生的探究活动中突破正弦、余弦函数的周期性这个教学难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.如果学生一开始没有很好的理解,那么,以后有些题就会很难做.通过探究让学生找出周期这个规律性的东西,并明确知识依附于问题而存在,方法为解决问题的需要而产生.将周期性概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更高的广度.2.本节设计的特点是从形到数、由特殊到一般、由易到难,这符合学生的认知规律.让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启导.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续探讨函数的周期性的规律及一般三角函数的周期的求法.3.根据本节课的特点可考虑分层推进、照顾全体.对优等生,重在引导他们进行一题多解,多题合一,变式思考的训练,培养他们求同思维、求异思维能力,以及思维的灵活性、深刻性与创造性,鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.(设计者:郑吉星)第2课时导入新课思路1.(类比导入)我们在研究一个函数的性质时,如幂函数、指数函数、对数函数的性质,往往通过它们的图象来研究.先让学生画出正弦函数、余弦函数的图象,从学生画图象、观察图象入手,由此展开正弦函数、余弦函数性质的探究.思路2.(直接导入)研究函数就是要讨论函数的一些性质,y=sinx,y=cosx是函数,我们当然也要探讨它们的一些性质.本节课,我们就来研究正弦函数、余弦函数最基本的几条性质.请同学们回想一下,一般来说,我们是从哪些方面去研究一个函数的性质的呢(定义域、值域、奇偶性、单调性、最值)?然后逐一进行探究.推进新课新知探究提出问题①回忆并画出正弦曲线和余弦曲线,观察它们的形状及在坐标系中的位置;②观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的定义域各是什么;③观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的值域各是什么;由值域又能得到什么;④观察正弦曲线和余弦曲线,函数值的变化有什么特点?⑤观察正弦曲线和余弦曲线,它们都有哪些对称?(1)(2)图2活动:先让学生充分思考、讨论后再回答.对回答正确的学生,教师可鼓励他们按自己的思路继续探究,对找不到思考方向的学生,教师可参与到他们中去,并适时的给予点拨、指导. 在上一节中,要求学生不仅会画图,还要识图,这也是学生必须熟练掌握的基本功.因此,在研究正弦、余弦函数性质时,教师要引导学生充分挖掘正弦、余弦函数曲线或单位圆中的三角函数线,当然用多媒体课件来研究三角函数性质是最理想的,因为单位圆中的三角函数线更直观地表现了三角函数中的自变量与函数值之间的关系,是研究三角函数性质的好工具.用三角函数线研究三角函数的性质,体现了数形结合的思想方法,有利于我们从整体上把握有关性质.对问题①,学生不一定画准确,教师要求学生尽量画准确,能画出它们的变化趋势.对问题②,学生很容易看出正弦函数、余弦函数的定义域都是实数集R 〔或(-∞,+∞)〕. 对问题③,学生很容易观察出正弦曲线和余弦曲线上、下都有界,得出正弦函数、余弦函数的值域都是[-1,1].教师要引导学生从代数的角度思考并给出证明.∵正弦线、余弦线的长度小于或等于单位圆的半径的长度,∴|sinx |≤1,|cosx |≤1,即-1≤sinx≤1,-1≤cosx≤1.也就是说,正弦函数、余弦函数的值域都是[-1,1].对于正弦函数y=sinx(x∈R ),(1)当且仅当x=2π+2k π,k∈Z 时,取得最大值1. (2)当且仅当x=-2π+2k π,k∈Z 时,取得最小值-1. 对于余弦函数y=cosx(x∈R ),(1)当且仅当x=2k π,k∈Z 时,取得最大值1.(2)当且仅当x=(2k+1)π,k∈Z 时,取得最小值-1.对问题④,教师可引导、点拨学生先截取一段来看,选哪一段呢?如图3,通过学生充分讨论后确定,选图象上的[-2π,23π](如图4)这段.教师还要强调为什么选这段,而不选[0,2π]的道理,其他类似.图3图4这个变化情况也可从下表中显示出来: x-2π … 0 … 2π … π … 23π sinx -1↗ 0 ↗ 1 ↘ 0 ↘ -1 就是说,函数y=sin x,x∈[-2π,23π].当x∈[-2π,2π]时,曲线逐渐上升,是增函数,sinx 的值由-1增大到1; 当x∈[2π,23π]时,曲线逐渐下降,是减函数,sinx 的值由1减小到-1. 类似地,同样可得y=cosx,x∈[-π,π]的单调变化情况.教师要适时点拨、引导学生先如何恰当地选取余弦曲线的一段来研究,如图5,为什么选[-π,π],而不是选[0,2π].图5引导学生列出下表: x-π … -2π … 0 … 2π … π cosx -1 ↗ 0 ↗ 1 ↘ 0 ↘ -1 结合正弦函数、余弦函数的周期性可知:正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k∈Z )上都是减函数,其值从1减小到-1. 余弦函数在每一个闭区间[(2k-1)π,2k π](k∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k+1)π](k∈Z )上都是减函数,其值从1减小到-1.对问题⑤,学生能直观地得出:正弦曲线关于原点O 对称,余弦曲线关于y 轴对称.在R 上,y=sinx 为奇函数,y=cosx 为偶函数.教师要恰时恰点地引导,怎样用学过的知识方法给予证明?由诱导公式:∵sin(-x)=-sinx,cos(-x)=cosx,∴y=sinx 为奇函数,y=cosx 为偶函数.至此,一部分学生已经看出来了,在正弦曲线、余弦曲线上还有其他的对称点和对称轴,如正弦曲线还关于直线x=2π对称,余弦曲线还关于点(2π,0)对称,等等,这是由它的周期性而来的.教师可就此引导学生进一步探讨,为今后的学习打下伏笔.讨论结果:①略.②定义域为R .③值域为[-1,1],最大值都是1,最小值都是-1.④单调性(略).⑤奇偶性(略).当我们仔细对比正弦函数、余弦函数性质后,会发现它们有很多共同之处.我们不妨把两个图象中的直角坐标系都去掉,会发现它们其实都是同样形状的曲线,所以它们的定义域相同,都为R ,值域也相同,都是[-1,1],最大值都是1,最小值都是-1,只不过由于y 轴放置的位置不同,使取得最大(或最小)值的时刻不同;它们的周期相同,最小正周期都是2π;它们的图象都是轴对称图形和中心对称图形,且都是以图象上函数值为零所对应的点为对称中心,以过最值点且垂直于x 轴的直线为对称轴.但是由于y 轴的位置不同,对称中心及对称轴与x轴交点的横坐标也不同.它们都不具备单调性,但都有单调区间,且都是增、减区间间隔出现,也是由于y 轴的位置改变,使增减区间的位置有所不同,也使奇偶性发生了改变.应用示例思路1例1 数有最大值、最小值吗?如果有,请写出取最大值、最小值时的自变量x 的集合,并说出最大值、最小值分别是什么.(1)y=cosx+1,x∈R ;(2)y=-3sin2x,x∈R .活动:通过这道例题直接巩固所学的正弦、余弦的性质.容易知道,这两个函数都有最大值、最小值.课堂上可放手让学生自己去探究,教师适时的指导、点拨、纠错,并体会对应取得最大(小)值的自变量为什么会有无穷多个.解:(1)使函数y=cosx+1,x∈R 取得最大值的x 的集合,就是使函数y=cosx,x∈R 取得最大值的x 的集合{x|x=2k π,k∈Z };使函数y=cosx+1,x∈R 取得最小值的x 的集合,就是使函数y=cosx,x∈R 取得最小值的x 的集合{x|x=(2k+1)π,k∈Z }.函数y=cosx+1,x∈R 的最大值是1+1=2,最小值是-1+1=0.(2)令Z =2x,使函数y=-3sin Z ,Z ∈R 取得最大值的Z 的集合是{Z |Z =-2π+2k π,k∈Z }, 由2x=Z =-2π+2k π,得x=-4π+k π. 因此使函数y=-3sin2x,x∈R 取得最大值的x 的集合是{x|x=-4π+k π,k∈Z }. 同理,使函数y=-3sin2x,x∈R 取得最小值的x 的集合是{x|x=4π+k π,k∈Z }. 函数y=-3sin2x,x∈R 的最大值是3,最小值是-3.点评:以前我们求过最值,本例也是求最值,但对应的自变量x 的值却不唯一,这从正弦函数的周期性容易得到解释.求解本例的基本依据是正弦函数、余弦函数的最大(小)值的性质,对于形如y=Asin(ωx+φ)+B 的函数,一般通过变量代换(如设Z =ωx+φ化归为y=Asin Z +B 的形式),然后进行求解.这种思想对于利用正弦函数、余弦函数的其他性质解决问题时也适用.例2 函数的单调性,比较下列各组数的大小: (1)sin(-18π)与sin(-10π);(2)cos(523π-)与cos(417π-). 活动:学生很容易回忆起利用指数函数、对数函数的图象与性质进行大小比较,充分利用学生的知识迁移,有利于学生能力的快速提高.本例的两组都是正弦或余弦,只需将角化为同一个单调区间内,然后根据单调性比较大小即可.课堂上教师要让学生自己独立地去操作,教师适时地点拨、纠错,对思考方法不对的学生给予帮助指导.解:(1)因为2π-<10π-<18π-<0,正弦函数y=sinx 在区间[2π-,0]上是增函数,所以sin(18π-)>sin(10π-). (2)cos(523π-)=cos 523π=cos 53π,cos(417π-)=cos 417π=cos 4π. 因为0<4π<53π<π,且函数y=cosx,x∈[0,π]是减函数,所以cos 4π>cos 53π,即cos(523π-)<cos(417π-). 点评:推进本例时应提醒学生注意,在今后遇到的三角函数值大小比较时,必须将已知角化到同一个单调区间内,其次要注意首先大致地判断一下有没有符号不同的情况,以便快速解题,如本例中,cos4π>0,cos 53π<0,显然大小立判. 例3 函数y=sin(21x+3π),x∈[-2π,2π]的单调递增区间. 活动:可以利用正弦函数的单调性来求所给函数的单调区间.教师要引导学生的思考方向: 把21x+3π看成Z ,这样问题就转化为求y=sin Z 的单调区间问题,而这就简单多了. 解:令Z =21x+3π.函数y=sin Z 的单调递增区间是 [2π-+2k π,2π+2k π]. 由-2π+2k π≤21x+3π≤2π+2k π,得35π-+4k π≤x≤3π+4k π,k∈Z . 由x∈[-2π,2π]可知,-2π≤35π-+4k π且3π+4k π≤2π,于是121-≤k≤125,由于k∈Z ,所以k=0,即35π-≤x≤3π,而[35π-,3π][-2π,2π], 因此,函数y=sin(2x +3π),x∈[-2π,2π]的单调递增区间是[35π-, 3π]. 点评:本例的求解是转化与化归思想的运用,即利用正弦函数的单调性,将问题转化为一个关于x 的不等式问题.然后通过解不等式得到所求的单调区间,要让学生熟悉并灵活运用这一数学思想方法,善于将复杂的问题简单化.思路2例1 求下列函数的定义域: (1)y=xsin 11+;(2)y=cosx . 活动:学生思考操作,教师提醒学生充分利用函数图象,根据实际情况进行适当的指导点拨,纠正出现的一些错误或书写不规范等.解:(1)由1+sinx≠0,得sinx≠-1,即x≠23π+2k π(k∈Z ). ∴原函数的定义域为{x |x≠23π+2k π,k∈Z }. (2)由cosx≥0,得2π-+2k π≤x≤2π+2k π(k∈Z ). ∴原函数的定义域为[2π-+2k π,2π+2k π](k∈Z ). 点评:本例实际上是解三角不等式,可根据正弦曲线、余弦曲线直接写出结果.本例分作两步,第一步转化,第二步利用三角函数曲线写出解集.例2 在下列区间中,函数y=sin(x+4π4π)的单调增区间是( ) A.[2π,π] B.[0,4π] C.[-π,0] D.[4π,2π] 活动:函数y=sin(x+4π)是一个复合函数,即y=sin[φ(x)],φ(x)=x+4π,欲求y=sin(x+4π)的单调增区间,因φ(x)=x+4π在实数集上恒递增,故应求使y 随φ(x)递增而递增的区间.也可从转化与化归思想的角度考虑,即把x+4π看成一个整体,其道理是一样的. 解:∵φ(x)=x+4π在实数集上恒递增,又y=sinx 在[2k π-2π,2k π+2π](k∈Z )上是递增的,故令2k π-2π≤x+4π≤2k π+2π. ∴2k π-43π≤x≤2k π+4π. ∴y=sin(x+4π)的递增区间是[2k π-43π,2k π+4π]. 取k=-1、0、1分别得[411π-,47π]、[43π-,4π]、[45π,49π], 对照选择肢,可知应选B.答案:B点评:像这类题型,上述解法属常规解法,而运用y=Asin(ωx+φ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,若本题运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.当然作为选择题还可利用特殊值、图象变换等手段更快地解出.解题规律:求复合函数单调区间的一般思路是:(1)求定义域;(2)确定复合过程,y=f(t),t=φ(x);(3)根据函数f(t)的单调性确定φ(x)的单调性;(4)写出满足φ(x)的单调性的含有x 的式子,并求出x 的范围;(5)得到x 的范围,与其定义域求交集,即是原函数的单调区间.结论:对于复合函数的单调性,可以直接根据构成函数的单调性来判断.变式训练1.如果函数f(x)=sin(πx+θ)(0<θ<2π)的最小正周期是T,且当x=2时取得最大值,那么( )A.T=2,θ=2π B.T=1,θ=π C.T=2,θ=π D.T=1,θ=2π 解:T=ππ2=2,又当x=2时,sin(π·2+θ)=sin(2π+θ)=sin θ,要使上式取得最大值,可取θ=2π. 答案:A。
高中数学 第1章 三角函数 1.4.2 正弦函数、余弦函数的性质(第二课时)导学案 新人教A版必修4
![高中数学 第1章 三角函数 1.4.2 正弦函数、余弦函数的性质(第二课时)导学案 新人教A版必修4](https://img.taocdn.com/s3/m/49819d59dd3383c4ba4cd2de.png)
1.4.2 正弦函数、余弦函数的性质(第二课时)[教材研读]预习课本P37~40,思考以下问题1.正、余弦函数的单调区间分别是什么?2.正、余弦函数的最值分别是多少?取最值时自变量x的值是多少?[要点梳理]正弦函数、余弦函数的图象和性质[自我诊断]判断(正确的打“√”,错误的打“×”)1.正弦函数、余弦函数在定义域内都是单调函数.( ) 2.存在x ∈R 满足sin x = 2.( )3.在区间[0,2π]上,函数y =cos x 仅当x =0时取得最大值1.( ) [答案] 1.× 2.× 3.×题型一 正、余弦函数的单调性思考:正弦函数在定义域上是增函数,而余弦函数在定义域上是减函数,这种说法对吗? 提示:不正确.正弦函数在每个闭区间⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z )上是增函数,并不是在整个定义域上是增函数,同样的,余弦函数在闭区间[2k π,2k π+π](k ∈Z )上是减函数,并不是在整个定义域上是减函数.求函数y =2sin ⎝⎛⎭⎪⎫x -π3的单调区间.[思路导引] 将x -π3看成一个整体解题.[解] 令z =x -π3,则y =2sin z .∵z =x -π3是增函数,∴y =2sin z 单调递增(减)时,函数y =2sin ⎝⎛⎭⎪⎫x -π3也单调递增(减).由z ∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),得x -π3∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),即x ∈⎣⎢⎡⎦⎥⎤2k π-π6,2k π+5π6(k ∈Z ), 故函数y =2sin ⎝ ⎛⎭⎪⎫x -π3的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π6,2k π+5π6(k ∈Z ).同理可求函数y =2sin ⎝ ⎛⎭⎪⎫x -π3的单调递减区间为⎣⎢⎡⎦⎥⎤2k π+5π6,2k π+11π6.求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)的函数的单调区间时,若ω为负数,则要先把ω化为正数.当A >0时,把ωx +φ整体放入y =sin x 或y =cos x 的单调增区间内,求得的x 的范围即函数的增区间;整体放入y =sin x 或y =cos x 的单调减区间内,可求得函数的减区间.当A <0时,上述方法求出的区间是其单调性相反的区间.[跟踪训练]求函数y =3sin ⎝⎛⎭⎪⎫π3-2x 的单调递减区间.[解] ∵y =3sin ⎝ ⎛⎭⎪⎫π3-2x =-3sin ⎝⎛⎭⎪⎫2x -π3, ∴y =3sin ⎝ ⎛⎭⎪⎫2x -π3是增函数时,y =3sin ⎝ ⎛⎭⎪⎫π3-2x 是减函数.∵函数y =sin x 在⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π(k ∈Z )上是增函数,∴-π2+2k π≤2x -π3≤π2+2k π,即-π12+k π≤x ≤5π12+k π(k ∈Z ).∴函数y =3sin ⎝⎛⎭⎪⎫π3-2x 的单调递减区间为⎣⎢⎡⎦⎥⎤-π12+k π,5π12+k π(k ∈Z ).题型二 三角函数值的大小比较 思考:利用三角函数的单调性比较大小sin ⎝ ⎛⎭⎪⎫-π18________sin ⎝ ⎛⎭⎪⎫-π10(填“<”或“>”)提示:因为-π2<-π10<-π18<0,正弦函数y =sin x 在区间⎣⎢⎡⎦⎥⎤-π2,0上是增函数,所以sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-810,故填>.比较下列各组数的大小:(1)sin250°与sin260°;(2)cos 15π8与cos 14π9.[思路导引] 利用三角函数的单调性比较.[解] (1)∵函数y =sin x 在⎣⎢⎡⎦⎥⎤π2,3π2上单调递减,且90°<250°<260°<270°, ∴sin250°>sin260°.(2)cos 15π8=cos ⎝ ⎛⎭⎪⎫2π-π8=cos π8, cos 14π9=cos ⎝ ⎛⎭⎪⎫2π-4π9=cos 4π9. ∵函数y =cos x 在[0,π]上单调递减, 且0<π8<4π9<π,∴cos π8>cos 4π9,∴cos 15π8>cos 14π9.比较三角函数值大小的方法(1)比较两个同名三角函数值的大小,先利用诱导公式把两个角化为同一单调区间内的角,再利用函数的单调性比较.(2)比较两个不同名的三角函数值的大小,一般应先化为同名的三角函数,后面步骤同上.[跟踪训练]比较下列各组数的大小. (1)cos ⎝ ⎛⎭⎪⎫-π8与cos 13π7; (2)sin194°与cos160°. [解] (1)∵cos ⎝ ⎛⎭⎪⎫-π8=cos π8,cos 13π7=cos ⎝ ⎛⎭⎪⎫2π-π7=cos π7,而0<π8<π7<π2,且y =cos x 在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴cos π8>cos π7.即cos ⎝ ⎛⎭⎪⎫-π8>cos 13π7.(2)∵sin194°=sin(90°+104°)=cos104°, 而0°<104°<160°<180°, 且y =cos x 在[0,π]上单调递减. ∴cos104°>cos160°. 即sin194°>cos160°. 题型三 正、余弦函数的最值思考:正弦函数在⎣⎢⎡⎦⎥⎤-π2,3π2上函数值的变化有什么特点?余弦函数在[0,2π]上函数值的变化有什么特点?提示:y =sin x 在⎣⎢⎡⎦⎥⎤-π2,π2上,曲线逐渐上升,是增函数,函数值y 由-1增大到1;在⎣⎢⎡⎦⎥⎤π2,3π2上,曲线逐渐下降,是减函数,函数值y 由1减小到-1.y =cos x 在[0,π]上,曲线逐渐下降,是减函数,函数值由1减小到-1,在[π,2π]上,曲线逐渐上升,是增函数,函数值由-1增大到1.(1)求函数y =3-2sin x 的最大值和最小值,并分别写出使这个函数取得最大值和最小值时x 的集合.(2)求函数y =2sin 2x +2sin x -12,x ∈⎣⎢⎡⎦⎥⎤π6,5π6的值域.[思路导引] (1)利用正弦函数的值域确定函数的最值;(2)利用变量代换转化为二次函数求值域,注意变量的范围.[解] (1)因为-1≤sin x ≤1,所以当sin x =-1,即x =2k π+3π2,k ∈Z 时,y 取得最大值5,相应的自变量x 的集合为⎩⎨⎧⎭⎬⎫x |x =2k π+3π2,k ∈Z .当sin x =1,即x =2k π+π2,k ∈Z 时,y 取得最小值1,相应的自变量x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2k π+π2,k ∈Z. (2)令t =sin x ,因为x ∈⎣⎢⎡⎦⎥⎤π6,5π6,所以12≤sin x ≤1,即12≤t ≤1.所以y =2t 2+2t -12=2⎝ ⎛⎭⎪⎫t +122-1,∵以t 为自变量的二次函数在[12,1]上单调递增,∴1≤y ≤72,所以原函数的值域为⎣⎢⎡⎦⎥⎤1,72. [变式] 将(2)中函数改为y =2cos 2x +2sin x -12,其他条件不变,结果如何?[解] y =2cos 2x +2sin x -12=2(1-sin 2x )+2sin x -12=-2sin 2x +2sin x +32=-2⎝⎛⎭⎪⎫sin x -122+52.∵x ∈⎣⎢⎡⎦⎥⎤π6,5π6,∴sin x ∈⎣⎢⎡⎦⎥⎤12,1.所以32≤y ≤52.故原函数的值域⎣⎢⎡⎦⎥⎤32,52.求三角函数值域或最值的常用方法(1)可化为单一函数y =A sin(ωx +φ)+k 或y =A cos(ωx +φ)+k ,其最大值为|A |+k ,最小值为-|A |+k (其中A ,ω,k ,φ为常数,A ≠0,ω≠0).(2)可化为y =A sin 2x +B sin x +C 或y =A cos 2x +B cos x +C (A ≠0),最大、最小值可利用二次函数在定义域上的最大值、最小值的求法来求.(换元法)[跟踪训练] 求下列函数的值域:(1)y =cos ⎝ ⎛⎭⎪⎫x +π6,x ∈⎣⎢⎡⎦⎥⎤0,π2;(2)y =cos 2x -4cos x +5.[解] (1)由y =cos ⎝ ⎛⎭⎪⎫x +π6,x ∈⎣⎢⎡⎦⎥⎤0,π2可得x +π6∈⎣⎢⎡⎦⎥⎤π6,2π3,函数y =cos x 在区间⎣⎢⎡⎦⎥⎤π6,2π3上单调递减,所以函数的值域为⎣⎢⎡⎦⎥⎤-12,32. (2)令t =cos x ,则-1≤t ≤1. ∴y =t 2-4t +5=(t -2)2+1, ∴t =-1时,y 取得最大值10,t =1时,y 取得最小值2.所以y =cos 2x -4cos x +5的值域为[2,10].课堂归纳总结1.本节课的重点是正弦函数和余弦函数的性质,难点是正、余弦函数的最值问题的求解.2.要重点掌握函数性质的应用 (1)正、余弦函数的单调性,见典例1; (2)三角函数值的大小比较,见典例2; (3)正、余弦函数的最值,见典例3. 3.本节课的易错点有以下两处(1)求函数y =A sin(ωx +φ)的单调区间时,如果ω<0,应先利用诱导公式将其转化为正值,如典例1的跟踪训练.(2)求函数y =A sin 2x +B sin x +C 的值域时,易忽视正弦函数y =sin x 的有界性,如典例3(2).1.函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6的一个递减区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2B .[-π,0]C.⎣⎢⎡⎦⎥⎤-2π3,2π3D.⎣⎢⎡⎦⎥⎤π2,2π3[解析] ∵2k π+π2≤x +π6≤2k π+3π2,k ∈Z ,∴2k π+π3≤x ≤2k π+4π3,k ∈Z .令k =0得π3≤x ≤4π3.又∵⎣⎢⎡⎦⎥⎤π2,2π3⊆⎣⎢⎡⎦⎥⎤π3,4π3 ∴函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6的一个递减区间为⎣⎢⎡⎦⎥⎤π2,2π3.故选D.[答案] D2.函数y =2sin 2x +2cos x -3的最大值是( ) A .-1 B .1 C .-12D .-5[解析] 由题意,得y =2sin 2x +2cos x -3=2(1-cos 2x )+2cos x -3=-2⎝ ⎛⎭⎪⎫cos x -122-12. ∵-1≤cos x ≤1,∴当cos x =12时,函数有最大值-12.[答案] C3.下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11°[解析] ∵sin168°=sin(180°-12°) =sin12°,cos10°=sin(90°-10°)=sin80°.由正弦函数的单调性得sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.[答案] C4.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin ⎝⎛⎭⎪⎫2x +π2 B .y =cos ⎝ ⎛⎭⎪⎫2x +π2 C .y =sin ⎝ ⎛⎭⎪⎫x +π2 D .y =cos ⎝⎛⎭⎪⎫x +π2 [解析] 由周期为π,则排除C 、D.A 中y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos2x 在⎣⎢⎡⎦⎥⎤π4,π2上单调递减,符合题意.而B 中y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin2x 在⎣⎢⎡⎦⎥⎤π4,π2上单调递增,则不符题意,故选A.[答案] A5.函数y =13sin ⎝ ⎛⎭⎪⎫π6-x (x ∈[0,π])的单调递增区间为________. [解析] ∵y =13sin ⎝ ⎛⎭⎪⎫π6-x =-13sin ⎝ ⎛⎭⎪⎫x -π6 ∴函数的单调增区间即为t =sin ⎝⎛⎭⎪⎫x -π6的单调递减区间为2k π+π2≤x -π6≤2k π+3π2∴2k π+2π3≤x ≤2k π+5π3,k ∈Z 且x ∈[0,π],当k =0时,-2π3≤x ≤5π3, 而⎣⎢⎡⎦⎥⎤2π3,5π5∩[0,π]=⎣⎢⎡⎦⎥⎤2π3,π,∴y =13sin ⎝ ⎛⎭⎪⎫π6-x (x ∈[0,π])的单调递增区间为 ⎣⎢⎡⎦⎥⎤2π3,π. [答案] ⎣⎢⎡⎦⎥⎤2π3,π。
人教版高中数学全套教案导学案142正弦余弦函数的性质
![人教版高中数学全套教案导学案142正弦余弦函数的性质](https://img.taocdn.com/s3/m/a83a441c284ac850ac0242bf.png)
1.4.2正弦、余弦函数的性质教学目标: 1、知识与技能掌握正弦函数和余弦函数的性质. 2、过程与能力目标通过引导学生观察正、余弦函数的图像,从而发现正、余弦函数的性质,加深对性质的理解.并会求简单函数的定义域、值域、最小正周期和单调区间. 3、情感与态度目标渗透数形结合思想,培养学生辩证唯物主义观点.、偶性和单调性。
教学重点:正、余弦函数的周期性;正、余弦函数的奇正、余弦函数周期性的理解与应用;正、余弦函数奇、偶性和单调性的理解与应教学难点:用。
)正弦、余弦函数的性质(一教学过程:一、复习引入:1.问题:(1)今天是星期一,则过了七天是星期几?过了十四天呢?……2)物理中的单摆振动、圆周运动,质点运动的规律如何呢?(2.观察正(余)弦函数的图象总结规律:?3???3自变量???????02?2x2222:][来源函数值00000111??1xsin y–1x?????????52?2?5O ?221?–,Z,X,X,K][科来源学f(x)?sinx性质如下:正弦函数(观察图象) 1?正弦函数的图象是有规律不断重复出现的;2?规律是:每隔2?重复出现一次(或者说每隔2k?,k?Z重复出现)3?这个规律由诱导公式sin(2k?+x)=sinx可以说明来:ZXXK]结论:象这样一种函数叫做周期函数。
文字语言:正弦函数值按照一定的规律不断重复地取得;???Zk?2k x)?sinx?2?kf(x)x?2xf(?k)sin(.时,)总有增加符语言:当(?k2x时,正弦函数的值又重复出现;增加)当自变量1(也即:?x)?sin2kxsin(x?恒成立。
,(2)对于定义域内的任意余弦函数也具有同样的性质,这种性质我们就称之为周期性。
二、讲解新课:f x),如果存在一个非零常数T,使得当x1.周期函数定义:对于函数取定义域内的每(f xf xf x)就叫做周期函数,非零常数(T)那么函数一个值时,都有:叫做这个(+T)=(函数的周期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中数学 1.4.2正弦、余弦函数的性质(2)导学案新人教版必
修4
【学习目标】
知识目标:要求学生能理解三角函数的单调性和对称性;
能力目标:能求出正、余弦函数的单调区间及对称轴、对称中心。
德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神
【重点、难点】
教学重点:正、余弦函数的对称性和单调性; 教学难点:正、余弦函数对称性和单调性的理解与应用。
【知识梳理】
5.单调性
(1)y =sinx 的单调增区间是 ,单调减区间是
(2)y=cosx 的单调增区间是 ,单调减区间是
6.对称性:对称轴、对称中心
(1) y =sinx 取最大值时x取值构成的集合是 ,取最小值时x取值构成的集合是 .
(2)y =sinx 取最大值时x取值构成的集合是 ,取最小值时x取值构成的集合是 .
(3)y=sinx 的对称轴是_______________, y=cosx 的对称轴是 。
(4)y=sinx 的对称中心是_____________,y=cosx 的对称中心是____________。
习题练习:
1. 求函数)321sin(
2π+=x y 的单调区间
变式.(1)求函数)3
x 21(2sin y π--=的单调区间 (2)求函数)42x (cos y π-
=的单调区间
2.有下列命题:①sin y x =的递增区间是[2,2]();2
k k k πππ+∈Z ②sin y x =在第一象限是增函数;③
sin y x =在[,]22
ππ-上是增函数.其中正确的个数是 ( ) A. 1 B. 2 C. 3 D. 0
3.函数2sin y x =-的最大值为____,取得最大值时x 值的集合为______.
4.函数y=sin(3x-3
π)的单调区间____________________;对称轴____________; 对称中心________________。
6. (1)函数f(x)=cos(2x+π3
)图象的对称轴是 ;对称中心是 (2)函数()2sin 23f x x π⎛⎫=+
⎪⎝⎭图象的对称轴是 ;对称中心是 . 7.函数y =sin (2x +
25π)图象的一条对称轴方程是( ) A x =-2π B x =-4π C x =8π D =4
5π 5.若函数()sin f x a b x =-的最大值为3,2最小值为1,2
-求函数()4sin g x a bx =-的最值和最小正
周期.
6.已知函数()2cos().32
x f x π=- (1)求()f x 的单调递增区间;
(2)若[,],x ππ∈-求
()f x 的最大值和最小值.。