高中数学对数函数及其性质(一)

合集下载

对数函数及其性质(第一课时)

对数函数及其性质(第一课时)

对数函数及其性质(第一课时)作者:杨继泰来源:《读写算》2011年第10期一、教材学生学习情况分析本小节是《普通高中课程标准实验教科书·数学必修(1)》(人教A版)第二章基本初等函数,第2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。

对数函数是继指数函数之后的又一个重要的初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。

与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。

由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,而且现在的初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。

教师备课必须认识到这一点,在教学中不仅要力求形象教学且要控制要求的拔高,关注学习过程。

二、教学目标1.知识技能①对数函数的概念,熟悉对数函数的图象与性质规律;②掌握对数函数的性质,能初步运用性质解决问题。

2.过程与方法让学生通过观察对数函数的图象,发现并归纳总结对数函数的性质。

3.情感、态度与价值观①培养学生数形结合的思想以及分析推理的能力;②培养学生严谨的科学态度。

三、学法与教学用具1.学法:通过让学生观察、思考、交流、讨论、发现函数的性质;2.教学手段:多媒体计算机辅助教学。

四、教学重点、难点1、重点:理解对数函数的定义,掌握对数函数的图象和性质。

2、难点:底数对图象的影响及对数函数性质的应用。

五、教学过程(一)、设置情境在2.2.1的例6中,考古学家利用估算出土文物或古遗址的年代,对于每一个含量,通过关系式,都有唯一确定的年代与之对应。

同理,对于每一个对数式中的,任取一个正的实数值,均有唯一的值与之对应,所以的函数。

设计意图:体现了对数函数的应用价值和引入对数函数的概念。

(二)、探索新知识一般地,我们把函数(且)叫做对数函数,其中是自变量,函数的定义域是(0,+∞)。

提问:(1)在函数的定义中,为什么要限定且.(2)为什么对数函数(且)的定义域是(0,+∞)。

高中数学:2.2.2对数函数及其性质 (1)

高中数学:2.2.2对数函数及其性质 (1)

2.2.2对数函数及其性质第二课时对数函数及其性质的应用(习题课)比较对数值的大小[例1]比较下列各组数中两个值的大小:(1)log23.4,log28.5;(2)log0.31.8,log0.32.7;(3)log a5.1,log a5.9(a>0,且a≠1).[解](1)考察对数函数y=log2x,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log23.4<log28.5.(2)考察对数函数y=log0.3x,因为它的底数0<0.3<1,所以它在(0,+∞)上是减函数,于是log0.31.8>log0.32.7.(3)当a>1时,y=log a x在(0,+∞)上是增函数,于是log a5.1<log a5.9;当0<a<1时,y=log a x在(0,+∞)上是减函数,于是log a5.1>log a5.9.比较对数值大小时常用的4种方法(1)同底的利用对数函数的单调性.1.比较下列各题中两个值的大小: (1)lg 6,lg 8; (2)log 0.56,log 0.54; (3)log 132与log 152;(4)log 23与log 54.解:(1)因为函数y =lg x 在(0,+∞)上是增函数,且6<8,所以lg 6<lg 8. (2)因为函数y =log 0.5x 在(0,+∞)上是减函数,且6>4,所以log 0.56<log 0.54. (3)由于log 132=1log 213,log 152=1log 215. 又∵对数函数y =log 2x 在(0,+∞)上是增函数,且13>15,∴0>log 2 13>log 2 15,∴1log 213<1log 215.∴log 132<log 152. (4)取中间值1,∵log 23>log 22=1=log 55>log 54,∴log 23>log 54.[例2] (1)已知log a 12>1,求a 的取值范围;(2)已知log 0.7(2x )<log 0.7(x -1),求x 的取值范围. [解] (1)由log a 12>1得log a 12>log a a .求解对数不等式①当a >1时,有a <12,此时无解.②当0<a <1时,有12<a ,从而12<a <1.∴a 的取值范围是⎝⎛⎭⎫12,1.(2)∵函数y =log 0.7x 在(0,+∞)上为减函数, ∴由log 0.72x <log 0.7(x -1) 得⎩⎪⎨⎪⎧2x >0,x -1>0,2x >x -1,解得x >1.∴x 的取值范围是(1,+∞).常见对数不等式的2种解法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式,再借助y =log a x 的单调性求解.2.已知log a (3a -1)恒为正,求a 的取值范围. 解:由题意知log a (3a -1)>0=log a 1. 当a >1时,y =log a x 是增函数,∴⎩⎪⎨⎪⎧ 3a -1>1,3a -1>0,解得a >23,∴a >1;当0<a <1时,y =log a x 是减函数,∴⎩⎪⎨⎪⎧3a -1<1,3a -1>0,解得13<a <23.∴13<a <23. 综上所述,a 的取值范围是⎝⎛⎭⎫13,23∪(1,+∞).有关对数型函数的值域与最值问题[例3] 求下列函数的值域.(1)y =log 2(x 2+4);(2)y =log 12(3+2x -x 2).[解] (1)y =log 2(x 2+4)的定义域是R. 因为x 2+4≥4,所以log 2(x 2+4)≥log 24=2, 所以y =log 2(x 2+4)的值域为[2,+∞). (2)设u =3+2x -x 2=-(x -1)2+4≤4. 因为u >0,所以0<u ≤4.又y =log 12u 在(0,+∞)上为减函数,所以log 12u ≥log 124=-2,所以y =log 12(3+2x -x 2)的值域为[-2,+∞).(1)求对数型函数的值域,一般需根据对数函数的单调性及真数的取值范围求解. (2)求函数的值域时,一定要注意定义域对它的影响,结合函数的单调性求解,当函数中含有参数时,有时需讨论参数的取值.3.已知f (x )=2+log 3x ,x ∈[1,9],求函数y =[f (x )]2+f (x 2)的最大值及此时x 的值. 解:y =[f (x )]2+f (x 2)=(2+log 3x )2+log 3x 2+2=(log 3x )2+6log 3x +6=(log 3x +3)2-3. ∵f (x )的定义域为[1,9], ∴y =[f (x )]2+f (x 2)中,x必须满足⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9,∴1≤x ≤3,∴0≤log 3x ≤1,∴6≤y ≤13. ∴当x =3时,y 取得最大值,为13.[例4] 已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),其中(a >0且a ≠1),设h (x )=f (x )-g (x ).求函数h (x )的定义域,判断h (x )的奇偶性,并说明理由. [解] ∵f (x )=log a (1+x )的定义域为{x |x >-1}, g (x )=log a (1-x )的定义域为{x |x <1},∴h (x )=f (x )-g (x )的定义域为{x |x >-1}∩{x |x <1}={x |-1<x <1}. ∵h (x )=f (x )-g (x )=log a (1+x )-log a (1-x ),∴h (-x )=log a (1-x )-log a (1+x )=-[log a (1+x )-log a (1-x )]=-h (x ), ∴h (x )为奇函数. [一题多变]1.[变条件]若f (x )变为log a 1+x1-x (a >1):求f (x )的定义域.解:因为f (x )=log a 1+x1-x,需有1+x1-x >0,即⎩⎪⎨⎪⎧ 1+x >0,1-x >0,或⎩⎪⎨⎪⎧1+x <0,1-x <0,所以-1<x <1.所以函数f (x )的定义域为(-1,1).2.[变设问]在本例条件下,若f (3)=2,求使h (x )<0成立的x 的集合. 解:∵f (3)=log a (1+3)=log a 4=2,∴a =2. ∴h (x )=log 2(1+x )-log 2(1-x ), ∴h (x )<0等价于log 2(1+x )<log 2(1-x ),对数函数性质的综合应用∴⎩⎪⎨⎪⎧1+x <1-x ,1+x >0,1-x >0,解得-1<x <0.故使h (x )<0成立的x 的集合为{x |-1<x <0}.层级一 学业水平达标1.若lg(2x -4)≤1,则x 的取值范围是( ) A .(-∞,7] B .(2,7] C .[7,+∞)D .(2,+∞)解析:选B ∵lg(2x -4)≤1,∴0<2x -4≤10,解得2<x ≤7,∴x 的取值范围是(2,7],故选B.2.已知log 12m <log 12n <0,则( )A .n <m <1B .m <n <1C .1<m <nD .1<n <m解析:选D 因为0<12<1,log 12m <log 12n <0,所以m >n >1,故选D.3.函数f (x )=|log 12x |的单调递增区间是( )A.⎝⎛⎦⎤0,12 B .(0,1] C .(0,+∞)D .[1,+∞)解析:选D f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.已知实数a =log 45,b =⎝⎛⎭⎫120,c =log 30.4,则a ,b ,c 的大小关系为( ) A .b <c <a B .b <a <c C .c <a <bD .c <b <a解析:选D 由题知,a =log 45>1,b =⎝⎛⎭⎫120=1,c =log 30.4<0,故c <b <a . 5.函数f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1+x 是( ) A .奇函数 B .偶函数 C .既奇又偶函数D .非奇非偶函数解析:选A f (x )定义域为R ,f (-x )+f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1-x +lg ⎝ ⎛⎭⎪⎫1x 2+1+x =lg1(x 2+1)-x 2=lg 1=0,∴f (x )为奇函数,故选A. 6.比较大小: (1)log 22______log 23; (2)log 3π______log π3.解析:(1)因为函数y =log 2x 在(0,+∞)上是增函数,且2>3,所以log 22>log 2 3. (2)因为函数y =log 3x 增函数,且π>3,所以log 3π>log 33=1. 同理1=log ππ>log π3,所以log 3π>log π3. -=-=答案=-=-:(1)> (2)>7.不等式log 13(5+x )<log 13(1-x )的解集为________.解析:由⎩⎪⎨⎪⎧5+x >0,1-x >0,5+x >1-x ,得-2<x <1.-=-=答案=-=-:{x |-2<x <1}8.设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为12,则a =________.解析:∵a >1,∴f (x )=log a x 在[a,2a ]上递增, ∴log a (2a )-log a a =12,即log a 2=12,∴a 12=2,a =4. -=-=答案=-=-:49.已知对数函数f (x )的图象过点(4,2),试解不等式f (2x -3)>f (x ). 解:设f (x )=log a x (a >0且a ≠1), 因为f (4)=2,所以log a 4=2,所以a =2,所以f (x )=log 2x ,所以f (2x -3)>f (x )⇒log 2(2x -3)>log 2x ⇒⎩⎪⎨⎪⎧2x -3>0,x >0,2x -3>x ⇒x >3,所以原不等式的解集为(3,+∞).10.求函数y =log 12(1-x 2)的单调增区间,并求函数的最小值.解:要使y =log 12(1-x 2)有意义,则1-x 2>0,∴x 2<1,则-1<x <1,因此函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,x 增大,t 增大,y =log 12t 减小,∴x ∈(-1,0]时,y =log 12(1-x 2)是减函数;同理当x ∈[0,1)时,y =log 12(1-x 2)是增函数.故函数y =log 12(1-x 2)的单调增区间为[0,1),且函数的最小值y min =log 12(1-02)=0.层级二 应试能力达标1.若a >0,且log 0.25(a 2+1)>log 0.25(a 3+1),则实数a 的取值范围是( )A .(0,1)∪(1,+∞)B .(0,1)C .(1,+∞)D .[1,+∞)解析:选C ∵log 0.25(a 2+1)>log 0.25(a 3+1),∴a 2<a 3,即a 2(1-a )<0,∴a >1,故选C.2.设a =log 54,b =log 53,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <cD .b <a <c解析:选D 由于b =log 53<a =log 54<1<log 45=c ,故b <a <c . 3.关于函数f (x )=log 12(1-2x )的单调性的叙述正确的是( )A .f (x )在⎝⎛⎭⎫12,+∞内是增函数 B .f (x )在⎝⎛⎭⎫12,+∞内是减函数 C .f (x )在⎝⎛⎭⎫-∞,12内是增函数 D ..f (x )在⎝⎛⎭⎫-∞,12内是减函数 解析:选C 由于底数12∈(0,1),所以函数f (x )=log 12(1-2x )的单调性与y =1-2x 的单调性相反.由1-2x >0,得x <12,所以f (x )=log 12(1-2x )的定义域为(-∞,12).因为y =1-2x 在(-∞,+∞)内是减函数,所以f (x )在⎝⎛⎭⎫-∞,12内是增函数,故选C. 4.(2017·全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)解析:选D 由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).5.若y =log (2a -3)x 在(0,+∞)上是增函数,则实数a 的取值范围为________. 解析:由y =log (2a -3)x 在(0,+∞)上是增函数,所以2a -3>1,解得a >2. -=-=答案=-=-:(2,+∞)6.已知f (x )是定义在R 上的偶函数,且在[0,+∞)上为增函数,f ⎝⎛⎭⎫13=0,则不等式f (log 18x )>0的解集为________________.解析:∵f (x )是R 上的偶函数,∴它的图象关于y 轴对称.∵f (x )在[0,+∞)上为增函数,∴f (x )在(-∞,0]上为减函数,做出函数图象如图所示.由f ⎝⎛⎭⎫13=0,得f ⎝⎛⎭⎫-13=0. ∴f (log 18x )>0⇒log 18x <-13或log 18x >13⇒x >2或0<x <12, ∴x ∈⎝⎛⎭⎫0,12∪(2,+∞). -=-=答案=-=-:⎝⎛⎭⎫0,12∪(2,+∞) 7.求函数f (x )=log 2(4x )·log 14x 2,x ∈⎣⎡⎦⎤12,4的值域. 解:f (x )=log 2(4x )·log 14x 2 =(log 2x +2)·⎣⎡⎦⎤-12(log 2x -1) =-12[](log 2x )2+log 2x -2. 设log 2x =t .∵x ∈⎣⎡⎦⎤12,4,∴t ∈[-1,2],则有y =-12(t 2+t -2),t ∈[-1,2], 因此二次函数图象的对称轴为t =-12, ∴它在⎣⎡⎦⎤-1,-12上是增函数,在⎣⎡⎦⎤-12,2上是减函数, ∴当t =-12时,有最大值,且y max =98. 当t =2时,有最小值,且y min =-2.∴f (x )的值域为⎣⎡⎦⎤-2,98.8.已知函数f (x )=log a (1-x )+log a (x +3),其中0<a <1.(1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-4,求a 的值.解:(1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0, 解得-3<x <1,所以函数的定义域为(-3,1).(2)函数可化为:f (x )=log a (1-x )(x +3)=log a (-x 2-2x +3)=log a [-(x +1)2+4], 因为-3<x <1,所以0<-(x +1)2+4≤4. 因为0<a <1,所以log a [-(x +1)2+4]≥log a 4,即f (x )min =log a 4,由log a 4=-4,得a -4=4,所以a =4-14=22.。

对数函数及其性质(第一课时)课件-高一上学期数学人教A版(2019)必修第一册

对数函数及其性质(第一课时)课件-高一上学期数学人教A版(2019)必修第一册


(1)A已.知cab0.3a0.4 ,A.b cB.lobga34ab,cc lBo.g0.a3 4C,b.则b(c a c )C. b Da.bc c a D.b c a
A. c b a B. a b c
C.b a c
D.b c a
例题讲练
(2)设 a log3 , b log2 3 , c log3 2 ,则(
x lxogaloyg(a ya ( 0a且 a0 且 1a),1x),也是x 也以是y以为自y 为变自量变的量函的数函(数其(中其y 中 0y, 0x , Rx ),R ), 根据根我据们我的们认的知认习知惯习,惯我,们我把们x 把 lxogaloyg中a 字y 中母字x 母, xy,对调y 对,调, 写成写y成 lyogaloxg(a 其x (中其x 中 0x, 0y, Ry ).R ).
例题讲练
【练习习 55】】
((11))已已知知ff((xx))的的定定义义域域为为[0[,10],1,] ,则函则数函数f [lof g[l1o(g31(3x)] 的x)定] 的义定域义为域___为____________._____.
22
例题讲练
(2)已知函数 y f [lg(x 1)] 的定义域为 (0,99] ,则函数 y f [log2 (x 2)] 的定义域为__________.
§4.4 对数函数及其性质 (第一课时)
人教版高中数学必修一
课堂引入:
通过前面的学习我们知道,某细胞经过 x 次分裂后,变成的细胞个数 y 2x ,
得由到一由y 个y2指x 数2x函x数x.lo由gglo22gyyy2y2对x 于对任于x意任的意lo细的g2胞细y个胞,数个对数y于,任y 我,意们我的都们细可都胞以可个通以数过通y对过,数对我运数们算运都算可 得到以得唯通到一唯过的一对的数x 与运x 之与算对之得应对到,应唯所,一以所的细以x胞细与分胞之裂分对次裂应数次,所数x以也x细可也胞以可分看以裂出看次以出数细以x胞细也个胞可数个以数y看为y成自为以变自细变胞个 量的数量函的y数函为.数自.变量的函数. 同样同地样,地根,据根指据数指与数对与数对的数关的系关,系由,y由 ayx(aax ( 0a且 a0 且 1a)可1)以可得以到得:到:

人教版高中数学必修一课件:2.2.2 对数函数的图像及其性质(共20张PPT)

人教版高中数学必修一课件:2.2.2 对数函数的图像及其性质(共20张PPT)
y=0.5x 和y= log0.5x 的图象画在一个坐标内 ,观察图象的特点!
(书面作业)
•P73 2,3
19
Thank you!
要善于退,足够的退,退到不失去重 要性的地方就是解决数学问题的诀窍。
20
比较两个同底对数值的大小时:
1.观察底数是大于1还是小于1( a>1时为增函数

2.比较真数值的大小;
0<a<1时为减函数)

3.根据单调性得出结果。
14
•(3) loga5.1与 loga5.9 (a>0,且a≠1)
解: 若a>1 则函数y=log a x在区间(0,+∞)上是增函数;
∵5.1<5.9 ∴ loga5.1 < loga5.9
16
函数 yloga x,ylogb x,ylogc x,ylogd x
C 的图像如图,则 所下 示列式子中正( 确) 的
y ylogb x A .0 a b 1 c d
yloga x B .0 b a 1 d c
x
O
ylogd x C .0 d c 1 b a
2.2.2对数函数的图象与性质
y
x
o 1
1
(一)对数函数的定义 ★ 函数 y = log a x (a>0,且a≠1)叫做对数函数.
其中x是自变量, 定义域是(0,+∞)
想 对数函数解析式有哪些结构特征? 一 ①底数:a>0,且 a≠1 想 ②真数: 自变量x ? ③系数函数?(导学与评价P53) ① y log a x 2 ; ② y log 2 x 1; ③ y 2 log 8 x ; ④ yloxga(x0,且x1); ⑤ ylo5gx.

对数函数及其性质(1)(精)

对数函数及其性质(1)(精)

对数函数及其性质(1)一、教材分析本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。

对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。

与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。

学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。

虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。

二、学生学习情况分析刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。

由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。

教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。

三、设计理念本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。

四、教学目标1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。

五、教学重点与难点重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.六、教学过程设计教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结(一)熟悉背景、引入课题1.让学生看材料:材料1(幻灯):马王堆女尸千年不腐之谜:一九七二年,马王堆考古发现震惊世界,专家发掘西汉辛追遗尸时,形体完整,全身润泽,皮肤仍有弹性,关节还可以活动,骨质比现在六十岁的正常人还好,是世界上发现的首例历史悠久的湿尸。

高中数学对数函数及其性质(一)

高中数学对数函数及其性质(一)

高中数学对数函数及其性质(一)课 型:新授课教学目标:通过具体实例,直观了解对数函数模型所刻画的数量关系,初步明白得对数函数的概念,体会对数函数是一类重要的函数模型.能够用描点法画出对数函数的图象.能依照对数函数的图象和性质进行值的大小比较.培养学生数形结合的意识.用联系的观点分析咨询题. 教学重点:对数函数的图象和性质教学难点:对数函数的图象和性质及应用教学过程:一、复习预备:1. 画出2x y =、1()2x y =的图像,并以这两个函数为例,讲讲指数函数的性质. 2.讨论:t 与P 的关系?〔对每一个碳14的含量P 的取值,通过对应关系log P =,生物死亡年数t 都有唯独的值与之对应,从而t 是P 的函数〕二、讲授新课:1.教学对数函数的图象和性质:① 定义:一样地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function).自变量是x ; 函数的定义域是〔0,+∞〕② 辨析: 对数函数定义与指数函数类似,差不多上形式定义,注意辨不,如:22log y x =,5log (5)y x = 都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制 0(>a ,且)1≠a .③ 探究:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、专门点、单调性、最大〔小〕值、奇偶性.④ 练习:同一坐标系中画出以下对数函数的图象 x y 2log =;0.5log y x =⑤ 讨论:依照图象,你能归纳出对数函数的哪些性质?列表归纳:分类 → 图象 → 由图象观看〔定义域、值域、单调性、定点〕引申:图象的分布规律?2、总结出的表格1. 教学例题例1:〔P71例7〕求以下函数的定义域〔1〕2log a y x = 〔2〕log (4)a y x =- 〔a >0且a ≠1〕例2. 〔P72例8〕比较以下各组数中的两个值大小〔1〕22log 3.4,log 8.5 〔2〕0.30.3log 1.8,log 2.7 〔3〕log 5.1,log 5.9a a 〔a >0,且a ≠1〕三.巩固练习:1、P73页3、4题2.求以下函数的定义域: 0.2log (6)y x =--; y =.3.比较以下各题中两个数值的大小:22log 3log 3.5和; 0.30.2log 4log 0.7和;0.70.7log 1.6log 1.8和; 23log 3log 2和.4. 以下不等式,比较正数m 、n 的大小:3log m <3log n ; 3.0log m >3.0log n ; a log m >a log n (a >1)5. 探究:求定义域y =y =四.小结:对数函数的概念、图象和性质; 求定义域;利用单调性比大小.五、作业P74页7、8、10后记:。

2.2.2对数函数及其性质(一) 新课标高中数学人教A版 必修一 教案

2.2.2对数函数及其性质(一)    新课标高中数学人教A版  必修一  教案

2.2.2 对数函数及其性质(一)(一)教学目标1.知识技能(1)理解对数函数的概念.(2)掌握对数函数的性质.了解对数函数在生产实际中的简单应用.2.过程与方法(1)培养学生数学交流能力和与人合作精神.(2)用联系的观点分析问题.通过对对数函数的学习,渗透数形结合的数学思想.3.情感、态度与价值观(1)通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣.(2)在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质.(二)教学重点、难点1、重点:(1)对数函数的定义、图象和性质;(2)对数函数性质的初步应用.2、难点:底数a对图象的影响.(三)教学方法通过让学生观察、思考、交流、讨论、发现对数函数的图象的特点.(四)教学过程一般式吗?.概念.质,.的图象之间有什么关系?对数函数图象有以下特征对数函数有以下性质相同点:图象都在y轴的右侧,都过点(1,0).不同点:y=log3x的图象是上升=log x的图象是下降的.备选例题例1 求函数)416(log )1(x x y -=+的定义域. 【解析】由⎪⎩⎪⎨⎧≠+>+>-11010416x x x ,得⎪⎩⎪⎨⎧≠-><012x x x . ∴所求函数定义域为{x | –1<x <0或0<x <2}.【小结】求与对数函数有关的定义域问题,首先要考虑真数大于零,底数大于零且不等于1.例2 求函数y = log 2|x |的定义域,并画出它的图象. 【解析】函数的定义域为{x |x ≠0,x ∈R }. 函数解析式可化为y =⎪⎩⎪⎨⎧<->)0()(log )0(log 22x x xx ,其图象如图所示(其特征是关于y 轴对称).x。

对数函数及其性质(第一课时)

对数函数及其性质(第一课时)
恒过定点
(1, 3)

2.对数函数的单调性由底数 a 的大小决定,


a 1
时,函数是增函数;
0 a 1 时,函数是减函数.
(0, ) 上为增函数,
3.若函数 y log(2a1) x 在 则实数 a 的取值范围是
a 1

2.2.2节 对数函数及其性质 例题1:求下列函数的定义域
碳14含量
P
死亡年数
1 2
1 4
1 8
1 16

t
5730 2 5730 3 5730 4 5730

2.2.2节 对数函数及其性质
活动一
请同学们用描点法画出 函数 y log 2 x 与 y log 1 x 的图象
2
2.2.2节 对数函数及其性质
思考1:请同学们根据图象描述对数函数
y log2 x 与 y log 1 x 的关系;
2
思考2:请同学们思考对数函数 y log 4 x 图象 , 并归纳出底数a>1对数函数图象的特征;
2.2.2节 对数函数及其性质
y
函数
o
1
x
y loga x (a 1)
定义域 (0 , ) 值域 R
定点 (1, 0)
当 x 1 时, y 0 当 0 x 1 时, y 0
(2) log (3)
loga 7
思考:
log7 2 与
log3 2
与 log1.5
2.2.2节 对数函数及其性质
课堂小结:
1、利用函数图象直观探究对数函数的性质;
2、运用对数函数的性质,解决一些简单的对 数问题。

【高中数学必修一】2.2.2 对数函数及其性质-高一数学人教版(必修1)(解析版)

【高中数学必修一】2.2.2 对数函数及其性质-高一数学人教版(必修1)(解析版)

一、选择题1.如果对数函数y =log 2x 的图象经过点(a ,–2),则a 的值为A .14B .14-C .4D .–4【答案】A【解析】因为对数函数y =log 2x 的图象经过点(a ,–2),所以log 2a =–2,解得2124a -==.故选A . 2.函数y =lg (|x |+1)的单调性为A .在(–∞,+∞)单调递增B .在(–∞,+∞)单调递减C .在(0,+∞)单调递增D .在(0,+∞)单调递减【答案】C3.如图所示曲线是对数函数y =log a x 的图象,已知a 的取值为43133510,,,,则相应图象C 1,C 2,C 3,C 4中的a 的值依次为A 43133510,,,B 41333105,,,C .43133510,,,D .41333105,,,【答案】C【解析】函数y =log a x 的图象过(a ,1),在平面直角坐标系内作直线y =1,可知在第一象限不同底数的图象逆时针按其底数从大到小排列,则图象C 1,C 2,C 3,C 4中的a 的值由大到小应为C 2,C 1,C 3,C 4,又∵a 的取值为43133510,,,,故C1,C 2,C 3,C 4中的a 的值分别为43133510,,,,故选C . 4.函数21log 21y x =-的反函数的定义域为 A .(–∞,+∞) B .(0,+∞)C .(–∞,0)D .(–∞,0)∪(0,+∞)【答案】A【解析】反函数的定义域即为原函数的值域,由1021x >-得21log 21x ∈-R ,所以函数21log 21y x =-的值域为R ,由于反函数的定义域即为原函数的值域,∴反函数的定义域为R ,故选A . 5.函数y =log 2x 与y =x –2的图象的交点个数为A .0B .1C .2D .3【答案】 C6.函数f (x )=log (2x –1)(2–x )的定义域是A .12⎛⎫+∞ ⎪⎝⎭,B .(–2,2)C .()11122⎛⎫⎪⎝⎭,,D .()12122⎛⎫- ⎪⎝⎭,,【答案】C【解析】由题意,原函数有意义时应满足20210211x x x ->⎧⎪->⎨⎪-≠⎩,解得2121x x x <⎧⎪⎪>⎨⎪≠⎪⎩,∴11122x x <<<<或,∴原函数点的定义域为()11122⎛⎫⎪⎝⎭,,,故选C .7.f (x )=log a (2x +b –1)(a >0,且a ≠1)的图象如下图所示,则a ,b 满足的关系是A .0<a –1<b <1B .0<b <a –1<1C .a –1>b >1D .b >a –1>1【答案】C8.若某对数函数的图象过点(4,2),则该对数函数的解析式为A .y =log 2xB .y =2log 4xC .y =log 2x 或y =2log 4xD .不确定【答案】A【解析】由对数函数的概念可设该函数的解析式为y =log a x (a >0,且a ≠1,x >0),则2=log a 4=log a 22=2log a 2,即log a 2=1,解得a =2.故所求对数函数的解析式为y =log 2x .故选A . 9.函数y =log 0.5(5+4x –x 2)的递增区间是A .(–∞,2)B .(2,+∞)C .(–1,2)D .(2,5)【答案】D【解析】令t =5+4x –x 2>0,得–1<x <5,由t =–x 2+4x +5知,其对称轴为x =2,故内函数在(–1,2)上是增函数,在(2,5)上是减函数.∵函数y =log 0.5t 的在定义域上是减函数,故函数y =log 0.5(–x 2+4x +5)在(2,5)上是增函数.故选D . 二、填空题 10.函数()212log 2y x =-__________,值域是__________.【答案】(21][12)-,,、[0,+∞) 【解析】由题意,要使函数有意义,需满足()2122log 2020x x ⎧-≥⎪⎨⎪->⎩,解得2112x x -<≤-≤<,,故函数的定义域是(21][12)--,,,又()212log 2y x =-≥0,故函数的值域是[0,+∞).故答案为(21][12)--,,、[0,+∞).11.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b –a 的最小值为__________.【答案】2312.若函数y =log a (x +m )+n (a >0,且a ≠1)经过定点(3,–1),则m +n =__________.【答案】–3【解析】若函数y =log a (x +m )+n 恒过定点(3,–1),即–1=log a (3+m )+n ,则311m n +=⎧⎨=-⎩,即21m n =-⎧⎨=-⎩,∴m +n =–3,故答案为:–3.13.已知对数函数f (x )的图象过点(9,2),则函数f (x )=__________.【答案】log 3x【解析】设f (x )=log a x (a >0且a ≠1).因为f (x )的图象过点(9,2),所以f (9)=2,即log a 9=2,则a 2=9,a =±3.又a >0且a ≠1,所以a =3.故答案为:log 3x . 14.y =lg (–x 2+x )的递增区间为__________.【答案】(0,12) 【解析】由–x 2+x >0,可得0<x <1,令t =–x 2+x =–(x –12)2+14,则函数在(0,12)上单调递增;在(12,1)上单调递减,∵y =lg t 在定义域内为增函数,∴y =lg (–x 2+x )的递增区间为(0,12),故答案为:(0,12). 三、解答题15.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,利用图象判断是否有满足f (a )>f (2)的a 值. 【解析】(1)作出函数y =log 3x 的图象如图所示:16.求函数()lg lg 5y x x =-的定义域.【解析】要使函数有意义,需满足lg 050x x ≥⎧⎨->⎩,即1≤x <5,故函数的定义域为[1,5}.17.已知f (x )=log a (a x –1)(a >0,且a ≠1),(1)求其定义域;(2)解方程f (2x )=f –1(x ).【解析】(1)由已知条件,知a x –1>0,即a x >1. 故当a >1时,x >0,当0<a <1时,x <0. 即当a >1时,函数的定义域为(0,+∞), 当0<a <1时,函数的定义域为(–∞,0). (2)令y =log a (a x –1),则该式等价于a y =a x –1, x =log a (a y +1),即f –1(x )=log a (a x +1).又∵f(2x)=f–1(x),∴log a(a2x–1)=log a(a x+1),即a2x–1=a x+1.∴(a x)2–a x–2=0.∴a x=2,或a x=–1(舍去).∴x=log a2.18.求函数y=2lg x+lg(x–1)的定义域和值域.【解析】由题意得,x应满足:10xx>⎧⎨->⎩,解得:x>1,故函数的定义域为(1,+∞),值域为R.19.求不等式log12(x+1)≥log2(2x+1)的解集.。

高中数学课件-2 对数函数及性质(1)

高中数学课件-2  对数函数及性质(1)
分析:log6 9和log7 8的底数和真数都不同,则需要寻找一个中间量。 解:寻找中间量log 6 8 y log6 x在(0, )上是增函数,8 9,则log6 9 log6 8. 根据log6 x与log7 x的图像的位置关系, 可得log 6 8 log 7 8 log6 9 log 7 8.
; 1
(3)y loga (x2 1) 2x 1
义的x的取值范围, 其中需真数大于0, 底数大于0且不等 于1
例3.计算函数值
(1)计算对数函数 y log 3 x对应于x取1,3,27时得函数值;
解: 当 x 1 时,y log3 x log3 1 0,
当 x 2 时,y log3 x log3 3 1, 当x 27 时,y log3 x log3 27 3,
1
1
0
a
h(x) logb x
b
x
(2)左右比较:比较图像 与直线y=1的交点,交点 的横坐标越大,对应的对 数函数的底数越大。
思考:
a<1
c,d的大小与图像的 关系。
(1)上下比较:在 直线x=1的右侧, 0<a<1时,a越小, 图像越靠近x轴。
y (2)左右比较:比较图像 与直线y=1的交点,交点 的横坐标越大,对应的对 数函数的底数越大。
例1.判断下列函数是否为对数函数
(1) y 2 log3 x (3) y log2 x 1
(2)y log3(x 1)
(4) y log x x
判断依据:①形如 y log a x; ②底数 a 满足 a 0, a 1 ;
③真数为 x ,而不是x的函数;
④定义域为 (0,) .
例2:求下列函数的定义域 :

对数函数的概念及其性质[1]1

对数函数的概念及其性质[1]1

对数函数的概念及其性质教学内容《普通高中课程标准数学教科书数学(必修1)》(人教版)P77-78页对数函数及其性质(第一课时)。

设计理念:以素质教育理论为指导,体现新课标要求和“学生是课堂活动的主体,教师是学生活动的引导者、组织者、帮助者”的教学理念。

基于“人人有份”的数学教学思想,坚持面向全体学生,引导学生积极主动地参与获取知识的全部过程,体现了学生为中心的教育教学理念。

以恰时恰点的问题引导数学活动,培养学生的问题意识,孕育创新精神。

学情与教材分析对数函数是我们高中学生必须掌握的又一新的函数模型,它在我们的现实生活中有着重要的作用。

学习难点在于得到对数函数图像和性质及其应用。

学生是在学完对数式的基础上来进一步学习对数函数的,同时又有了指数函数的学习基础和学习思路。

因此我们在学习对数函数时可借助指数函数的学习经验,采用类比的方法来学习对数函数。

同时利用创设问题情境、分组讨论、自由发言等方法激发学生的学习兴趣。

三维目标:一、知识与技能1. 掌握对数函数的概念和图象,理解并记忆对数函数的规律;2. 把握指数函数与对数函数关系的实质.二、过程与方法1.培养学生的数学交流能力和与人合作的精神.2.用联系的观点分析问题,通过对对数函数的学习,渗透数形结合、分类讨论等数学思想.三、情感态度与价值观1.通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣.2.在教学过程中,培养学生观察能力、逻辑思维能力、归纳能力,分析探究能力和解决实际问题的能力;培养学生倾听,接受别人意见的优良品质,体验数形结合的和谐美。

教学重点:理解对数函数的定义,掌握对数函数的图象和性质。

[解决方法] 注重指数函数与对数函数的图象和性质的对比,遵循特殊到一般的认知规律,利用特殊函数增加感性认识。

教学难点:⑴底数a对对数函数的影响;解决方法:对比分析⑵定义域对对数函数的影响; 解决方法:例题剖析教学用具:多媒体课件(对数函数的图形变化及性质的动态演示)三角板(列表总结性质)学法指导:对比研究法、发现法、归纳法、讲练结合法。

DL教育 最新高考 高中数学课件(可改)第二章 2.2.2对数函数及其性质(一)

DL教育 最新高考 高中数学课件(可改)第二章 2.2.2对数函数及其性质(一)

反思与感悟
解析答案
跟踪训练4 画出函数y=|lg(x-1)|的图象.
解析答案
返回
达标检测
1.下列函数为对数函数的是( C ) A.y=logax+1(a>0且a≠1) B.y=loga(2x)(a>0且a≠1) C.y=log(a-1)x(a>1且a≠2) D.y=2logax(a>0且a≠1)
3.两个函数图象的对称性
ห้องสมุดไป่ตู้
(1) 特例
函数 y=ax 与函数 y=(1a)x 的图象关于 y 轴对称
推广 函数 y=f(x)与函数 y=f(-x)的图象关于 y 轴对称
(2) 特例
推广
函数y=logax与函数y=log 1 x 的图象关于x轴对称 a
函数y=f(x)与函数y=-f(x)的图象关于x轴对称
解析答案
类型二 对数函数的定义域 例2 求下列函数的定义域: (1)y=loga(9-x2); 解 由9-x2>0,得-3<x<3, ∴函数y=loga(9-x2)的定义域是{x|-3<x<3}. (2)y=log2(16-4x). 解 由16-4x>0,得4x<16=42, 由指数函数的单调性得x<2, ∴函数y=log2(16-4x)的定义域为{x|x<2}.
反思与感悟
解析答案
跟踪训练 3 设 a=log3π,b=log2 3,c=log3 2,则( A )
A.a>b>c
B.a>c>b
C.b>a>c
D.b>c>a
解析 ∵a=log3π>1,b=12log23,
则12<b<1,c=12log32<12,∴a>b>c.
解析答案
类型四 对数函数的图象 例4 画出函数y=lg|x-1|的图象.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:对数函数及其性质(一)
课 型:新授课 教学目标:
通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.能够用描点法画出对数函数的图象.能根据对数函数的图象和性质进行值的大小比较.培养学生数形结合的意识.用联系的观点分析问题. 教学重点:对数函数的图象和性质
教学难点:对数函数的图象和性质及应用 教学过程:
一、复习准备:
1. 画出2x y =、1
()2
x y =的图像,并以这两个函数为例,说说指数函数的性质.
2.
讨论:t 与P 的关系?(对每一个碳14的含量P 的取值,通过对应关系log
P =,
生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数) 二、讲授新课:
1.教学对数函数的图象和性质:
① 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function).
自变量是x ; 函数的定义域是(0,+∞)
② 辨析: 对数函数定义与指数函数类似,都是形式定义,注意辨别,如:22log y x =,5log (5)y x = 都不是对数函数,
而只能称其为对数型函数;对数函数对底数的限制 0(>a ,且)1≠a .
③ 探究:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?
研究方法:画出函数的图象,结合图象研究函数的性质.
研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.
④ 练习:同一坐标系中画出下列对数函数的图象 x y 2log =;0.5log y x =
⑤ 讨论:根据图象,你能归纳出对数函数的哪些性质?
列表归纳:分类 → 图象 → 由图象观察(定义域、值域、单调性、定点)
引申:图象的分布规律?
2、总结出的表格
1. 教学例题
例1:(P71例7)求下列函数的定义域
(1)2
log a y x = (2)log (4)a y x =- (a >0且a ≠1)
例2. (P72例8)比较下列各组数中的两个值大小
(1)22log 3.4,log 8.5
(2)0.30.3log 1.8,log 2.7
(3)log 5.1,
log 5.9a a (a >0,且a ≠1)
三.巩固练习: 1、P73页3、4题
2.求下列函数的定义域: 0.2log (6)y x =--; y =.
3.比较下列各题中两个数值的大小:
22log 3log 3.5和; 0.30.2log 4log 0.7和;0.70.7log 1.6log 1.8和; 23log 3log 2和.
4. 已知下列不等式,比较正数m 、n 的大小:
3log m <3log n ; 3.0log m >3.0log n ; a l o g m >a log n (a >1)
5. 探究:求定义域y =y =.
四.小结:
对数函数的概念、图象和性质; 求定义域;利用单调性比大小. 五、作业P74页7、8、10
后记:。

相关文档
最新文档