盾构机推力计算
(完整word版)盾构土压力计算
城市地铁盾构施工土压力选择随着北京2008年申奥成功,我国的城市地铁施工必将走向了一个崭新的一页。
城市地铁盾构施工具有快速、安全、对地面建筑物影响小等诸多优点,已经被越来越多的人们所认可。
在城市地铁盾构施工中,如何设置合理的土压,对于控制地表沉降有着至关重要的意义。
一、土压平衡复合式盾构机三种工况的简要介绍土压平衡复合式盾构有三种工况,即敞开式、半敞开式、土压平衡三种掘进模式。
地层围岩条件较好时,螺旋输送机伸入土仓,螺旋输送机的卸料口完全打开,土仓内不保持土压,维持刀盘、土仓、螺旋输送机之间的完全敞开,实现敞开式模式掘进。
当围岩稳定性变坏,工作面有坍塌时或有坍塌的可能,或地下涌水不能得到有效控制时,缩回螺旋输送机,关闭螺旋输送机的卸料口,压入压缩空气,土仓会被压力封闭,控制地下水的涌出,防止坍塌的进一步发生,即可实现半敞开式掘进模式;若水压力大或工作面不能达到稳定状态,则先停止螺旋输送机的出碴,切削下来的碴土充满土仓。
与此同时,用螺旋输送机排土机构,进行与盾构推进量相应的排土作业,掘进过程中,始终维持开挖土量与排土量的平衡来维持仓内碴土的土压力。
以土仓内的碴土压力抗衡工作面的土体压力和水压力,以保持工作面的土体的稳定,防止工作面的坍塌和地下水的涌出,从而使盾构机在不松动的围岩中掘进,确保不产生地层损失,实现土压平衡掘进模式。
二、掘进土压力的设定在选择掘进土压力时主要考虑地层土压,地下水压(孔隙水压),预先考虑的预备压力2.1 地层施工土压在我国铁路隧道设计规范中,根据大量的施工经验,在太沙基土压力理论的基础上,提出以岩体综合物性指标为基础的岩体综合分类法,根据隧道的埋资深度不同,将隧道分为深埋隧道和浅埋隧道。
再根据隧道的具体情况采用不同的计算方式进行施工土压计算。
2.1.1 深埋隧道与浅埋隧道的确定深、浅埋隧道的判定原则一般以隧道顶部覆盖层能否形成“自然拱” 为原则。
深埋隧道围岩松动压力值是根据施工坍方平均高度(等效荷载高度)确定的。
盾构机的关键参数计算方法8
盾构机的关键参数计算方法1.1.1.1盾构机总推力计算根据隧道工程条件,盾构主要参数计算按盾构在最大土压和水压位置进行计算。
根据招标文件和地质堪察报告按盾顶埋深22m,地下水位埋深按2m,盾构穿越地层按粉质粘土地层进行核定。
1、计算参数管片内径:Φ5500mm管片外径:Φ6200mm管片厚度:350mm管片宽度:1500mm覆土厚度:20m水头压力:200kPa土容重:粘土γ=19.1kN/m3,粉土γ=19.9kN/m3土的侧压力系数:0.5盾构机重量:331.7t盾构机盾壳长度:9.55m管片外径:Φg=6200mm盾构尾部的外径为:Φ6390mm盾体直径为:D 0=6410mm钢与土的摩擦系数μ1=0.3车轮与钢轨之间的摩擦系数μ2=0.2每一先行刀的容许负荷pr=150kN后配套系统G1=160t最大推力F:42,000kN额定扭矩:5316 kNm脱困扭矩:6934 kNm2、盾构荷载计算松动圈土压,见图2.1.6-1。
按覆土厚度H0=22m计算,H1=1m,H2=12m.H3=9m①Pe1=(γ-10)H2+(γ-10)H3 +γ*H1=219.3kPa ②Pe2=Pe1-64.5=153.8kPa③④ ⑤⑥ ⑦ ⑧ ⑨图2.1.6-1 荷载计算简图3、盾构机总推力计算盾构的总推进力必须大于各种推进阻力的总和,否则盾构无法向前推进。
包括盾构外围与土的摩擦力、盾构推进阻力(正面阻力)、由先行刀挤压阻力、管片与盾尾的密封阻力、后方台车的牵引阻力。
1.1.1.2盾壳与土体的摩擦力(1)、盾构外围与土的摩擦力)4()(221101011w q p q p LD w Lp D F e e e e w ++++=+=πμπμkN 6.11047)331742.1481048.1533.21955.9*41.6*14.3(3.0==++++kPa p q e e 1045.0*208*11===λkPa Pe q e 2.1485.0*2195.0*45.6*12*)145.6*)10((2=+=+-=λγkPaL D G p g 02.62)0.8*45.6/(10*320*/0===11e e q qf =22e e q qf =kpa qf w 2101=kpa qf w 2752=(2)、盾构推进阻力(正面阻力)kNqf qf qf qf D F w e w e 1383922752108.1533.219*40881.41*14.32*42211202=+++=+++π=(3)、由先行刀挤压产生的阻力kN n p F r 2700150*18*3=== (4)、管片与盾尾的密封阻力kN W M F S C 8.1418.92.51.55.5)5.5-6.22.6(41416.323.04=⨯⨯⨯⨯⨯⨯÷⨯⨯=⨯=MC -管件与钢板刷之间的摩擦阻力,取0.3 WS-压在盾尾内部2环管片的自重 (5)、后方台车的牵引阻力kN G F 3201600*2.0*=125==μ 所需最大推力kN F F F F F F 4.280483208.1412700138396.1104754321max =++++=++++=安全系数5.14.28048/42000/=max ==F F α 根据分项计算推力的安全系数达到1.5,可以满足掘进的需要。
盾构机推力扭矩计算依据
6.34m土压平衡d1型地铁盾构(液压系统)计算书Ф6340土压平衡d1型盾构推力扭矩计算书2.设计依据Φ6.34m土压平衡盾构掘进机的设计根据上海地区的软土地质条件和工程条件进行,土质主要包括灰色淤泥质粘土层、灰色粘土层、粉质粘土、砂质粉土等。
2.1 地质条件隧道需穿越的地层主要是灰色淤泥质粘土层、灰色粘土层、灰色粉质土层,其特点:饱和、流塑,属高压缩性土,受扰动后沉降大,易发生流砂。
(见图一)其主要力学指标:a.平均值:N=2~8b.内摩擦角:Φ=7.5°~19.5°c.凝聚力:C=4.0~25.0kpad.渗透系数:K V20=1.77×10-5~1.58×10-4cm/secK H20=2.02×10-5~2.49×10-4cm/sec3.2 推进系统3.2.1盾构的载荷条件及盾构总推力3.2.1.1盾构的载荷条件盾构在地下推进时,盾构壳体所受荷载基本有以下几种:垂直土压、水平土压、地下水压、土体抗力、自重、地面荷载、施工荷载、其它荷载。
P g—自重抵抗土压(kN/m2);P w1—顶部垂直水压(kN/m2);P w2—底部垂直水压(kN/m2);q e1—顶部土体侧压(kN/m2);q e2—底部土体侧压(kN/m2);q w1—顶部侧向水压(kN/m2);q w2—底部侧向水压(kN/m2);q fe1—顶部水平土压(kN/m2);q fe2—底部水平土压(kN/m2);q fw1—顶部水平水压(kN/m2);q fw2—底部水平水压(kN/m2)。
其中q fe1=q e1,q fe2=q e2,q fw1=q w1,q fw2=q w2。
垂直土压:P e1=W0+γt H0+γ'H w(1)式中:W0—地面荷载(kN/m2);H0—地下水位高度(m);H w—H-H0;H—覆土厚度(m);γt—地下水位上部的土体容重(kN/m2);γ'—地下水位下部的土体容重(kN/m2)。
盾构机推力和扭矩计算
盾构机推力和刀盘扭矩的地层适应性评价1、推力计算盾构的推力应包含以下几个部分:1)盾壳和土层的摩擦力 FM其中μ为盾壳和土体间的摩擦系数,根据经验值取0.25。
计算得:FM=8074KN2)盾构推进正时面推进阻力其中Di 为盾构机内径Ps 为设计掘削土压(kN/m2)设计掘削土压Ps=地下水压+土压+预压其中地下水压在粘土层处相对于隧道中部的水头最大约11.5m ,那么水压力为115kN/m 2;土压按静止土压力计算:Po=Ko γH上式中:Po—静止土压力H—覆土厚度Ko—静止土压系数Ko=1-sin φ式中:φ—有效内摩擦角经计算Po=127 kN/m2预压力一般取30 kN/m2Ps=115+127+30=272kN/m2M BA S NL F F F +F +F =+∑()[]4/11h h V V M P P P P L D F +++⨯⨯⨯=πμBA F 214BA i s F D p π==9109.3 KN3)盾尾密封的摩擦力(经验值,周向每米密封的摩擦力) (管片外径6.4m )4)拖拉后配套的力 FNL (经验值)5)总推力计算ΣF=17943.3KN在盾构上坡和转弯时盾构的推力按直线水平段的1.5倍考虑,盾构的实际推力应为:ΣF=17943.3×1.5=26914.95KN盾构机实际配备推力:S -488/S -698盾构机实际推力分别为34210KN 和50668KN 。
均能满足盾构的实际需要.2、扭矩计算1)刀具切削扭矩推进速度:刀盘转速: (根据类似工程选取经验值) 刀盘每转切深:岩土的抗压强度: ;刀盘直径: Dd=6.68mT 1=0.5x[100x0.0667x(6.68x0.5)2]=37.2KNm214BA i s F D p π=2S 'F i s F D π=S'10/F KN m=KN F NL 750=h m V /8.4max =rpm n 2.1=cm n V h 67.6/max ==100u q KPa =()[]2max 15.05.0⨯⨯⨯⨯=d u D h q T2)刀盘自重产生的主轴承旋转反力矩:其中:刀盘自重:主轴承滚动半径:滚动摩擦系数:3)刀盘推力荷载产生的旋转阻力矩 其中:推力载荷 ;刀盘不开口率: a=0.4;刀盘半径;P t =0.4x3.14x3.34x102=428KNT 3=428x1.3x0.004=2.23KN.m4)密封装置摩擦力矩式中:密封与钢之间的摩擦系数:;密封的推力:;密封数:密封的安装半径:5)刀盘前表面上的摩擦力矩; g R G T μ⨯⨯=12570G KN =m R 3.1=004.0=g μ2570 1.30.00429.6.T KN m=⨯⨯=g t R P T μ⨯⨯=3d t P R P ⨯⨯⨯=2παm R 14.32=()1/2102/d h h P P P KN m =+=2142m m m R n F T ⨯⨯⨯⨯=μπ2.0=m μKPa F m 5.1=3=n m R m 25.11=mKN T m .8.825.135.12.02214=⨯⨯⨯⨯=π()d p P R T ⨯⨯⨯⨯⨯=32532μπα其中土层和刀盘间的摩擦系数:;T5=2/3x(0.7x3.14x0.15x3.343x102)=835KN.m6)刀盘圆周的摩擦反力矩其中刀盘边缘宽度:;刀盘圆周土压力:T 6=2x3.14x6.68x0.45x205x0.15=580KN.m7)刀盘背面的摩擦力矩刀盘背面的摩擦力矩由土腔室内的压力所产生,假定土仓室内的土压力为Pd8)刀盘开口槽的剪切力矩其中土的抗剪应力:在切削腔内,由于碴土含有水,取C=15KPa ,内摩擦角为 T 8=2/3x3.14x23x3.343x(1-0.7)=538KN.m9)刀盘土仓内的搅动力矩T 9其中刀盘支撑柱直径:;刀盘支撑柱长度;支撑柱数量刀盘支撑柱外端半径:;刀盘支撑柱内端半径:所以,刀盘总扭矩15.0=p μp z d P B D T μπ⨯⨯⨯⨯=26m B 45.0=()11/4205z h h v v P P P P P KPa =+++=()3722722.94.3p d T R P KN m απμ=⨯⨯⨯⨯⨯=()απτ-⨯⨯⨯⨯=132328R C T 15102523d C C P tg tg KPa τφ=+=+⨯︒=︒=5φ()b d z b n r r P L T ⨯+⨯⨯⨯=2/219φm b 6.0=φm L z 1.1=4=b n m r 4.12=m r 7.01=()m KN T .5.44442/7.04.136.1601.16.09=⨯+⨯⨯⨯=,此为额定扭矩。
盾构推进计算
5.1 盾构推进力⑴、盾构推力盾构机推进必须确保盾构足够的推力来维持和平衡土压平衡压力T1、开挖阻力H、盾壳与围岩摩擦阻力飞、后配配套牵引力等等。
通常,上述值比盾构推力要低,盾构推进油缸的配置受管片形式的影响,盾构机一般必须保证盾构圆周压力均等(有时盾构底部压力稍高),避免盾构油缸尾部衬垫作用在管片接缝处,为保证这些,一般盾构机都安装了超出正常配置的额外推进油缸,然后降低盾构系统工作压力,该压力在正常推进时采用,只有在艰难地层时才采用额外推力。
①计算原理盾构千斤顶应有足够的推力克服盾构推进时所遇到的阻力,这些阻力主要有:a、盾构四周与地层间的摩擦阻力或粘结力F i ;b、盾构刀具切入土层产生在切削刀盘上的推进阻力F2;c、开挖面正面作用在切削刀盘上的推进阻力F3d、盾尾处盾尾板与衬砌间的摩擦阻力F4;e、盾构后面台车的牵引力F5;以上各种推进阻力的总和用下式表示,在使用时,须考虑各种盾构机械的具体情况,并留出一定的富裕量,即为盾构千斤顶的总推力。
地层所需推力F b=F 水土压力+F 摩擦力1+F 摩擦力 2 +F 牵引力+F 切入力其中:F 水土压力—刀盘表面水土压力F 摩擦力1—盾构克服上部土体摩擦力所需推力F 摩擦力2—盾构克服与围岩间摩擦力所需推力F 切入力—开挖所需推力(刀具)切入力F 牵引力—后配套牵引推力R—盾构半径(mD—隧道深度(mL—盾构长度(mF r—盾构与土层间摩擦系数(0.25)W—土体比重(20kN/m3)W t —盾构重量( t )W—后配套重量(t)F rb—后配套与管片间摩擦系数A—单把刀具表面积C o —土体粘滞系数S r —土体内摩擦角1 )、作用在盾构上的平均土压力地层所需推力F b=E F=F 水土压力+F 摩擦力1+F 摩擦力2+F 牵引力+F 切入力=941t+706t+100t+161.3=1908.3tF 水土压=(R2xn) x最大土压平衡压力23= (3.17 xn)x 3kN/m=9233 kN=941tF 水土压=D x Wx L x (2 xnx R+ 4) x F r3= 20x20 kN/m x 7.5 x (2 xnx 3.7m-4) x 0.25=6933 kN=706tF 摩擦力2=W t x F r=220t x 0.25=80tF 牵引力=W b x F rb=100 x 0.2=20t2F 切入力二刀具数量x A x (D x W x tan (450+S/2)+2 xG xtan(450+S r/2))2=73 x 0.0094 m2x (30 x 20 kN/m3 x tan (62.50)+23x 30 kN/m3x tan(62.50)) =1596.81 kN=161.3t=941t+706t+80t+20t+161.3t=1908.3t 实际配备装机推力系统最大压力350bar 时:3892t 设计准则:最大突破压力大于2.0 X所需推力最大操作推力大于1.5 X所需推力⑵、刀盘扭矩切削刀盘装备扭矩要考虑围岩条件、盾构要型式、盾构机构造和盾构机直径等因素来确定,总扭矩N b=N1+N2+N3+N4式中:N—开挖阻力矩;N 2—切削刀盘正面,外围面及后面围岩间的摩擦阻力矩;N 3—机械及驱动阻力矩;N 4—开挖土砂搅拌混合阻力矩;根据实例可知刀盘装备转矩与盾构机直径大小有很大关系,一般可按下式计算:N b=D3X2.0式中:D——盾构直径(m土压平衡连续开挖所需最大扭矩:N b=D3X 2.0=6.34 3X2.0=509.9tm(约5500kN-m)实际配备装机扭矩:N=593.1tm 一般在盾构推进中,盾构机的设计推进都比实际推进要大得多,盾构的实际推进与地表土质、地面载荷、周围环境而密切的关系,当地面周围的环境比较空旷,对地面的沉降要求不高(不在+10〜-30 )时,在盾构机械性能(最大推进力和最大扭矩范围内)允许的前提下,可适当的提高盾构的推进力,加大施工进度。
硬岩地层盾构机推力计算
1、盾体的摩擦力F1=0.25πDL(2P a+2K0P a+K0γD)×μ1+W×μ1式中:D——盾构机直径L——主机长度W——盾构机主机重量(KN)γ——掘削断面上的土体浮重度(KN/m³)K0——掘削断面上土体的静止土压系数,取值0.5μ1——地层与盾构机外壳间摩擦系数,通常取μ1=0.5tanφφ——掘削断面上土体的摩擦角(°)n Pa——作用在盾构机上顶部的竖直土压强度(kpa),Pa=∑γiHii=1 n—地表至盾构机外壳上顶区域内的不同浮重度的土层数γi——第i层的浮重度(KN/m³)H i——第i层的厚度F1=0.25×3.14×6.45×9.135×(2×300+2×0.5×300+0.5×20×6.45)×0.31+3100×0.31≈14790KN2、盾尾与管片间的摩擦力F2=n1×Ws×μ2+π×D0×b×p2×n2×μ3n1——盾尾内管片环数Ws——1环管片的重量(Kn)μ2——管片与盾尾间的摩擦系数μ3——管片与盾尾密封刷的摩擦系数D0——管片外径b——盾尾密封刷与管片的接触长度n2——盾尾密封刷的层数p2——盾尾密封刷内油脂压力F2=2×282×0.3+3.14×6.2×0.1×300×4×0.15=520KN3、开挖面的支撑力开挖面的支撑力按公式(3)计算,对于土压平衡盾构计算公式如下×P SF3=π×D24式中:P S——设计掘进土压,此处去200KPaF3=3.14×6.45²×200/4=6532KN4、后配套拖车的拖拉力后配套的拖拉力由公式(4)计算F4=W4×μ4式中W4——后备套的自重(KN)μ4——后备套拖车与轨道的摩擦系数F4=1500×0.15=225KN5、刀具上的推力现按照轨道方式计算推力,滚刀共40刃,按每把单刃滚刀的最大承载力按250KN计算。
盾构机计算书
φ6340mm隧道掘进机型号TM634 PMX设计计算书株式会社小松制作所地下建机事业本部小松(中国)投资有限公司2010年4月目录页数1、计算条件 (3)1.1工程条件 (3)1.2地质条件 (3)1.3计算模型 (4)1.4盾构机规格 (5)2、盾构机刀盘所需扭矩计算 (5)2.1 计算条件 (5)2.2 各参数的计算 (6)2.3 所需扭矩计算 (7)3、盾构机掘进时所需推力计算 (8)3.1 计算条件 (8)3.2 各参数的计算 (9)3.3 推力计算 (10)4、盾构机壳体强度计算 (11)4.1 计算条件 (11)4.2 各参数的计算 (11)4.3 土荷载计算 (12)4.4 盾构机壳体水平方向变位量的计算 (13)4.5 载荷的计算 (13)4.6 弯曲扭矩[M]及轴力[N]的计算结果 (14)4.7 盾构机壳体应力σ的计算结果 (15)5、切削刀具寿命的计算 (19)5.1 地质概况 (19)5.2 地质计算模型化 (19)5.3 主切削刀计算 (19)5.3.1 磨损高度与运转距离的关系 (19)5.3.2主切削刀、刮刀的磨损系数 (20)5.3.3刀具磨损计算公式 (21)5.3.4刀具磨损计算结果 (22)6、三排园柱滚子轴承计算 (23)6.1 盾构机规格 (23)6.2 载荷计算 (24)6.2.1土载荷的计算 (24)6.2.2 作用与三排园柱滚柱轴承上的载荷的计算 (24)6.3、三排园柱滚柱轴承寿命计算: (25)6.3.1三排园柱滚柱轴承规格 (25)6.3.2 三排园柱滚柱轴承寿命计算 (25)1、计算条件:1.1、工程条件:(1) 隧道长度 m(2) 隧道最小转弯半径 250m(3) 盾构机开挖直径φ6340m m(4) 管片外径φ6200m m(5)管片内径φ5500m m(6)管片宽度 1200mm(7)管片厚度 350mm(8)分块数 5+1块(9)管片重量 4.5t / 块(10)隧道坡度‰1.2、地质条件:(1)土质淤泥质粘土、粘土、粉质粘土、砂质粉土、粉砂、中粗砂(2)隧道覆土厚度 5~30 m(3)地下水位GL- 0.5 m(4)间隙水压 MPa(5)透水系数 cm/sec(6)标准贯入值(N值)(7)内摩擦角 deg(8)粘着力 kN/cm2(9)含水率(W%)(10)地面负荷 6 tf/m2(11)地层反力系数 kN/m21.3、计算模型说明:由于整个计算全部采用在埋深30m ,承受最大水压力,因此计算偏与安全。
盾构机推力和扭矩计算
盾构机推力和刀盘扭矩的地层适应性评价1、推力计算盾构的推力应包含以下几个部分:1)盾壳和土层的摩擦力 FM其中μ为盾壳和土体间的摩擦系数,根据经验值取0.25。
计算得:FM=8074KN2)盾构推进正时面推进阻力其中Di 为盾构机内径Ps 为设计掘削土压(kN/m2)设计掘削土压Ps=地下水压+土压+预压其中地下水压在粘土层处相对于隧道中部的水头最大约11.5m ,那么水压力为115kN/m 2;土压按静止土压力计算:Po=Ko γH上式中:Po—静止土压力H—覆土厚度Ko—静止土压系数Ko=1-sin φ式中:φ—有效内摩擦角经计算Po=127 kN/m2预压力一般取30 kN/m2Ps=115+127+30=272kN/m2M BA S NL F F F +F +F =+∑()[]4/11h h V V M P P P P L D F +++⨯⨯⨯=πμBA F 214BA i s F D p π==9109.3 KN3)盾尾密封的摩擦力(经验值,周向每米密封的摩擦力) (管片外径6.4m )4)拖拉后配套的力 FNL (经验值)5)总推力计算ΣF=17943.3KN在盾构上坡和转弯时盾构的推力按直线水平段的1.5倍考虑,盾构的实际推力应为:ΣF=17943.3×1.5=26914.95KN盾构机实际配备推力:S -488/S -698盾构机实际推力分别为34210KN 和50668KN 。
均能满足盾构的实际需要.2、扭矩计算1)刀具切削扭矩推进速度:刀盘转速: (根据类似工程选取经验值) 刀盘每转切深:岩土的抗压强度: ;刀盘直径: Dd=6.68mT 1=0.5x[100x0.0667x(6.68x0.5)2]=37.2KNm214BA i s F D p π=2S 'F i s F D π=S'10/F KN m=KN F NL 750=h m V /8.4max =rpm n 2.1=cm n V h 67.6/max ==100u q KPa =()[]2max 15.05.0⨯⨯⨯⨯=d u D h q T2)刀盘自重产生的主轴承旋转反力矩:其中:刀盘自重:主轴承滚动半径:滚动摩擦系数:3)刀盘推力荷载产生的旋转阻力矩 其中:推力载荷 ;刀盘不开口率: a=0.4;刀盘半径;P t =0.4x3.14x3.34x102=428KNT 3=428x1.3x0.004=2.23KN.m4)密封装置摩擦力矩式中:密封与钢之间的摩擦系数:;密封的推力:;密封数:密封的安装半径:5)刀盘前表面上的摩擦力矩; g R G T μ⨯⨯=12570G KN =m R 3.1=004.0=g μ2570 1.30.00429.6.T KN m=⨯⨯=g t R P T μ⨯⨯=3d t P R P ⨯⨯⨯=2παm R 14.32=()1/2102/d h h P P P KN m =+=2142m m m R n F T ⨯⨯⨯⨯=μπ2.0=m μKPa F m 5.1=3=n m R m 25.11=mKN T m .8.825.135.12.02214=⨯⨯⨯⨯=π()d p P R T ⨯⨯⨯⨯⨯=32532μπα其中土层和刀盘间的摩擦系数:;T5=2/3x(0.7x3.14x0.15x3.343x102)=835KN.m6)刀盘圆周的摩擦反力矩其中刀盘边缘宽度:;刀盘圆周土压力:T 6=2x3.14x6.68x0.45x205x0.15=580KN.m7)刀盘背面的摩擦力矩刀盘背面的摩擦力矩由土腔室内的压力所产生,假定土仓室内的土压力为Pd8)刀盘开口槽的剪切力矩其中土的抗剪应力:在切削腔内,由于碴土含有水,取C=15KPa ,内摩擦角为 T 8=2/3x3.14x23x3.343x(1-0.7)=538KN.m9)刀盘土仓内的搅动力矩T 9其中刀盘支撑柱直径:;刀盘支撑柱长度;支撑柱数量刀盘支撑柱外端半径:;刀盘支撑柱内端半径:所以,刀盘总扭矩15.0=p μp z d P B D T μπ⨯⨯⨯⨯=26m B 45.0=()11/4205z h h v v P P P P P KPa =+++=()3722722.94.3p d T R P KN m απμ=⨯⨯⨯⨯⨯=()απτ-⨯⨯⨯⨯=132328R C T 15102523d C C P tg tg KPa τφ=+=+⨯︒=︒=5φ()b d z b n r r P L T ⨯+⨯⨯⨯=2/219φm b 6.0=φm L z 1.1=4=b n m r 4.12=m r 7.01=()m KN T .5.44442/7.04.136.1601.16.09=⨯+⨯⨯⨯=,此为额定扭矩。
盾构关键参数详细计算
第七节 关键参数的计算1.地质力学参数选取MCZ3-HG-063A 7-7-1,作为该标段盾32.5m ,盾构机壳体计算38.75m ,地下稳定水位2.5m 。
地质要素表 表7-7-1隧道基本上在<4-1>、<5Z-2>和<6Z-2>地层中穿过,为相对的隔水地层。
按上述条件对选用盾构的推力、扭矩校核计算如下:2.盾构机的总推力校核计算:土压平衡式盾构机的掘进总推力F ,由盾构与地层之间的摩擦阻力F 1、刀盘正面推进阻力F 2、盾尾内部与管片之间的摩擦阻力F 3组成,即按公式F=( F 1+F 2+F 3).K c式中:K c ——安全系数, 2.1 盾构地层之间的摩擦阻力F1计算可按公式 F1= *D*L*CC —凝聚力,单位kN/m 2 ,查表7-7-1,取C= 30.6kN/m2L—盾壳长度,9.150mD—盾体外径,D=6.25m得: F1=π*D*L*⋅C=3.14159⨯6.25⨯9.15⨯30.6= 5498 kN2.2 水土压力计算D——盾构壳体计算外径,取6.25m;L——盾构壳体长度,9.15m;pe1——盾构顶部的垂直土压。
按全覆土柱计算,为校核计算安全,采用岩土的天然密度ρ值计算。
qfe1——盾构机拱顶受的水平土压;qfe1=λ×pe1pe2——盾构底部的垂直土压。
按全覆土柱计算,为校核计算安全,采用岩土的天然密度ρ值计算。
qfe2——盾构底部的水平土压。
qfe2=λ×pe2qfw1——盾构顶部的水压qfw2——盾构底部的水压λ——侧压系数,取0.37;计算qfe1 qfe2qfw1qfw2pe1=12×1.95×9.8+13×1.88×9.8+(32.5-12-13)×1.91×9.8 =609.2kN/m2pe2=609.2 +6.25×1.91×9.8=726.2 kN/m2qfe1=0.37×609.2=225.4 kN/m2qfe2=0.37×726.2=268.7 kN/m2qfW1=(32.5-2.5) ×9.8=294 kN/m2qfW2=294+6.25×9.8=355.3 kN/m22.3 盾构机前方的推进阻力F 2作用于盾构外周和正面的水压和土压见图7-7-2所示。
反力架计算
反力架计算反力架计算书一、盾牌推力根据地铁五号线宋家庄-刘家盾构机总推力的施工经验,设计盾构机总推力为2000t 能满足施工的要求。
二、为简化计算,假设以下内容:通过简化计算,盾构始发时需要反力架提供后座力约2000t,下图为反力架简化受力点,杆件受集中荷载,每点约为500t。
在计算截面弯曲应力时,所以构件均简化为一端固定,一端简支的情况进行验算,然后再考虑超静定的外加力。
三、图纸说明1.图纸中所有尺寸均以mm计;2.图中所有构件所用钢板厚度均为30mm或20mm,无其他厚度的钢板。
杆体材料为20mm厚钢板,杆端钢板厚度为30mm。
3.图中所示各杆件的机械连接均采用m30长度l=150mm强度等级为10.9的高强度螺栓进行连接,所示螺栓孔孔径均为32mm。
经计算,1根m30的高强螺栓(10.9级)的抗剪强度为:n=0.9x2x0.35x355=223.65kn≈22t;4.根据实践经验,对柱和底梁进行了加固,避免使用时变形,再次使用时影响配合效果。
柱和梁采用同一截面。
经计算,截面a的惯性矩为:iz=8.42x10mm,wz=2.8x10mm,ymax=300mm。
5.箱形杆件在满足双面焊接的情况下必需进行双面焊接,在不能满足双面焊时,九4七34123钢板的焊缝应做成30°斜槽进行塞焊。
焊缝高度不小于20mm,有效焊缝高度不小于14mm。
经计算,1m焊缝的抗剪承载力和抗拉承载力为329t,反力框架与预埋件之间的焊缝长度为12.8m,满足施工要求。
(计算如下:有效焊缝长度为1m,he=0.7hf=0.7)×20=14mmn=бfHelp=235n/mm2×14mm×1000mm=3.29×106n=329t,即每米高度20mm的焊缝承载力为329t。
)6.本卷共有5幅图纸,部分细节略去。
请仔细阅读图纸;四、预埋件抗拔力、抗剪力计算1、预埋件自身抗拔力计算:lw=18×(15cm-1cm)×2=5.04m垂直于焊缝长度的力:n=5.04×329t=1658t实际施工中设三块1.4×1.4的预埋板用于抗拔和抗剪,总抗拔力(抗剪力)f=3n=4974t,满足要求。
盾构机推力扭矩计算依据
“ 6.34m 土压平衡di型地铁盾构(液压系统)①6340 土压平衡di型盾构推力扭矩计算书2.设计依据①6.34m 土压平衡盾构掘进机的设计根据上海地区的软土地质条件和工程条件进行,土质主要包括灰色淤泥质粘土层、灰色粘土层、粉质粘土、砂质粉土等。
2.1 地质条件隧道需穿越的地层主要是灰色淤泥质粘土层、灰色粘土层、灰色粉质土层,其特点:饱和、流塑,属高压缩性土,受扰动后沉降大,易发生流砂。
(见图一)其主要力学指标:a. 平均值:N= 2〜8b. 内摩擦角:①二7.5 °〜19.5 °c. 凝聚力:C= 4.0 〜25.0kpad .渗透系数:©0= 1.77 X 10一5〜1.58 x 10_4cm/sec- 5 -4K H20=2.02 X 10-5〜2.49 X 10-4cm/sec3.2 推进系统3.2.1 盾构的载荷条件及盾构总推力3.2.1.1 盾构的载荷条件盾构在地下推进时,盾构壳体所受荷载基本有以下几种:垂直土压、水平土压、地下水压、土体抗力、自重、地面荷载、施工荷载、其它荷载。
图四给出了盾构外周以及正面受力情况,盾构受力主要由土压和水压构成。
地面荷载由实际情况来定,计算时一般取20kN/m3。
丫 t —地下水位上部的土体容重 (kN/m 2); 丫 ’一地下水位下部的土体容重 (kN/m 2)。
土体抗力的计算与垂直土压的计算相似水平土压(土体侧压)的计算可把垂直土压乘上侧压系数q e =X P e水压通常指地下水位以下的静止水压,即(3)依据上述情况可以计算盾构在推进过程中的受力进而可以计算盾构推进所需推力P g —自重抵抗土压 (kN/m 2); P w1 —顶部垂直水压 (kN/m 2);P w2—底部垂直水压 (kN/m 2); q e1 —顶部土体侧压 (kN/m 2); q e2 —底部土体侧压 (kN/m 2); q w1—顶部侧向水压 (kN/m 2);q w2—底部侧向水压 (kN/m 2); q fe1 —顶部水平土压 (kN/m 2);q fe2 底部水平土压(kN/m 2); q fw1 —顶部水平水压 (kN/m 2);q fw2 —底部水平水压 2(kN/m )。
盾构机反力架计算书
盾构机反力架计算书太平桥站盾构始发反力架支撑计算书一、工程情况说明二、反力架及支撑示意图12中板反力架底板反力架底板2-2侧墙121-1计算说明:1、根据以往施工情况,始发盾构机推力按照800T进行计算,其中底部千斤顶油压按照200bar,两侧按照140bar,顶部千斤顶不施加推力;2、通过管片和基准钢环调节,每组千斤顶所在区域按照均布荷载进行计算;3、水平支撑采用200mm及250mm宽翼缘H型钢,分别支撑与车站底板及侧墙上,斜撑采用200mm宽翼缘H型钢,45度角撑于车站底板上;4、反力架经几次始发使用,梁自身抗弯和抗剪无问题,本次不予计算。
三、力学模型图A44.7t/mDC89.4t/mB44.7t/m盾构机在顶推过程中反力架提供盾构向前掘进的反力,通过焊接在反力架上的型钢支撑,将力传递到车站结构上。
为保证反力架能够提供足够的反力,以确保前方地层不会发生较大沉降。
要求型钢支撑强度足够。
四、计算步骤1、模型简化假设千斤顶推力平均分配到四个支撑边,即每边承受200t的压力。
2、轴力验算1)底边σ1F/AF/(8A12A2)2000000/(8642829218)28.6M Pa200mmH型钢截面面积A1=6428mm2250mmH型钢截面面积A2=9128mm2σ1σma某210MPa2)右侧边σ2F/AF/(10A1)2000000/(106428)31.1MPaσ2σma某210MPa3)顶边σ3F/AF/(4A1)2000000/(46428)77.8MPaσ3σma某210MPa4)左侧边σ42F/A2F/(62A1)22000000/(626428)51.9MPaσ4σma某210MPa综上,支撑抗压能力满足要求。
3、斜撑螺栓抗剪能力检算对于支撑于底板的斜撑,采用螺栓加焊接钢板的形式固定于底板,每个斜撑底部有13个φ20螺栓。
τ4F4200000054.4MPa23313A33313π20螺栓许用切应力τ100MPa,可知,螺栓抗剪能力满足要求。
盾构选型及参数计算方法
盾构选型及参数计算方法盾构选型及参数计算方法1.1、序言盾构是一种专门用于隧道工程的大型高科技综合施工设备,它具有一个可以移动的钢结构外壳(盾壳),盾构内装有开挖、排土、拼装和推进等机械装置,进行土层开挖、碴土排运、衬砌拼装和盾构推进等系列操作,使隧道结构施工一次完成。
它具有开挖快、优质、安全、经济、有利于环境保护和降低劳动强度的优点,从松散软土、淤泥到硬岩都可应用,在相同条件下,其掘进速度为常规钻爆法的4~10倍。
较长地下工程的工期对经济效益和生态环境等方面有着重大影响,而且隧道工程掘进工作面又常常受到很多限制,面对进度、安全、环保、效益等这些问题,使用盾构机无疑是最好的选择。
些外,对修建穿越江、湖、海底和沼泽地域隧道,采用盾构法施工,也具有十分明显的技术和经济优势。
采用盾构法施工,盾构的选型及配置是隧道施工中关键环节之一,盾构选型应根据工程地质水文情况、工期、经济性、环境保护、安全等综合考虑。
盾构的选型及配置是一种综合性技术,涉及地质、工程、机械、电气及控制等方面。
1.2盾构机选型主要原则1.2.1盾构的选型依据盾构选型主要应考虑以下几个因素:1)工程地质、水文条件及施工场地大小。
2)业主招标文件中的要求。
3)管片设计尺寸与分块角度。
4)盾构的先进性、适应性与经济性。
5)盾构机厂家的信誉与业绩。
6)盾构机能否按期到达现场。
1.2.2 盾构的型式1)敞开式型盾构敞开式型盾构是指盾构内施工人员可以直接和开挖面土层接触,对开挖面工况进行观察,直接排除开挖面发生的故障。
这种盾构适用于能自立和较稳定的土层施工,对不稳定的土层一般要辅以气压或降水,使土层保持稳定,以防止开挖面坍塌。
有人工开挖盾构、半机械开挖盾构、机械开挖盾构。
2)部分敞开式型盾构部分敞开式型盾构是在盾构切口环在正面安装挤压胸板或网格切削装置,支护开挖面土层,即形成挤压盾构或网格盾构,施工人员可以直接观察开挖面土层工况,开挖土体通过网格孔或挤压胸板闸门进入盾构。
盾构掘进主要参数计算方式
盾构掘进主要参数计算方式Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】目录1、纵坡隧道纵坡:隧道底板两点间数值距离除以如图所示:隧道纵坡=(200-100)/500=2‰注:规范要求长达隧道最小纵坡>=%,最大纵坡=<%2、土压平衡盾构施工土压力的设置方法根据上述对地层土压力、水压力的计算原理分析,笔者总结出在土压平衡盾构的施工过程中,土仓内的土压力设置方法为:a 、根据隧道所处的位置以及隧道的埋深情况,对隧道进行分类,判断出隧道是属于深埋隧道还是浅埋隧道(一般来说埋深在2倍洞径以下时,算作是浅埋段,2倍以上算深埋);b 、根据判断的隧道类型初步计算出地层的竖向压力;c 、根据隧道所处的地层以及隧道周边地地表环境状况的复杂程度,计算水平侧向力;d 、根据隧道所处的地层以及施工状态,确定地层水压力;e 、根据不同的施工环境、施工条件及施工经验,考虑~的压力值作为调整值来修正施工土压力;f 、根据确定的水平侧向力、地层的水压力以及施工土压力调整值得出初步的盾构施工土仓压力设定值为: σ初步设定=σ水平侧向力+σ水压力+σ调整 式中,σ初步设定- 初步确定的盾构土仓土压力; σ水平侧向力-水平侧向力; σ水压力 -地层水压力; σ调整 -- 修正施工土压力。
g 、根据经验值和半经验公式进一步对初步设定的土压进行验证比较,无误时应用施工之中;h 、根据地表的沉降监测结果,对施工土压力进行及时调整,得出比较合理的施工土压力值。
深埋隧道土压计算深埋隧道σ水平侧向力= q ××ω q —水平侧向力系数见表1i=,当B>5m ,取i=;S —围岩级别,如Ⅲ级围岩,则S=3浅埋隧道的土压计算 2.2.1主动土压力与被动土压力 盾构隧道施工过程中,刀盘扰动改变了原状天然土体的静止弹性平衡状态,从而使刀盘附近的土体产生主动土压力或被动土压力。
土压盾构相关参数计算
盾构关键参数的计算1.1 说明盾构工作过程的力学参数计算是一个非常复杂的问题,由于地质因素、土层改良方法、掘进参数等一系列因素的影响,在盾构参数计算方法上存在很多不确定因素。
至今应用的盾构参数计算方法在很大程度上只是处于研究、探索阶段,甚至很大程度上是一些经验性的计算方法。
以下的计算在参考盾构生产厂家提供的有关计算资料及其它相关文献资料的基础上,根据南京地铁三号线地质勘察报告,结合我单位南京地铁二号线盾构施工经验,按照盾构厂商提供的设计方案来进行关键参数的校核计算。
1.2 推力计算1.2.1 盾构外荷载的确定由于盾构工程沿线的隧道埋深差别很大,在埋深最深处的隧道顶部的覆土厚度约为33m ,而在较浅处的隧道顶部距地面约为9.3m 。
根据常用算法,盾构的外部荷载将按照最大埋深处的松动土压和两倍盾构直径的全土柱高产生的土压计算,并取两者中的最大值作为盾构计算的外部荷载。
在新庄站—市政府站区间最大埋深位置在K19+342处,此处隧道处于全断面岩层中,上部覆土为②-1b2-3、②-1c2-3、②-2b4、③-1h1-2、③-2b2、③-3e1、③-3a1-2地层,埋深约33m ,所以对盾构计算取此断面埋深为最大埋深值。
软土计算中地质参数均按照此断面的③-3a1-2号地层选取如下:岩土容重:3/9.18m KN =γ 岩土的内摩擦角:φ=17.60土的粘结力: c=47KN/m2覆盖层厚度: mH 33max =地面荷载:2020/P KN m =水平侧压力系数:45.0=λ盾构外径:m D 4.6= 盾构主机长度: m L 38.7= 盾构主机重量: W=350t 经验土压力系数:01K =松动土压(泰沙基公式)计算:()()()()1010/0/0111/B H tg K B H tg K s e P e tg K B c B P φφφγ--⨯+-⨯⨯-⨯=其中B1=R ×ctg[(45°+φ/2)/2] =3.2×ctg[(45°+17.6°/2)/2] =6.3m代入上式得 P5=︒⨯.617)3.6/319.18(3.6tg -×[1-e -1×tg17.6°×(33/6.3)]+20×e -1×tg17.6°×(33/6.3)=228.7(KN/m 2)计算两倍掘进机直径的全土柱土压: Pq=γ×2×D=18.9×2×6.4=242(KN/m2)q sP P >qP ∴取作为计算的数据。
盾构法施工方法加固方案及强度计算
(b)刀盘正面的侧向土压力
(4)盾构在地层中沿设计轴线推进,在推进的同时不 断出土和安装衬砌管片; (5)及时的向衬砌背后的空隙注浆,防止地层移动和 固定衬砌环的位置; (6)盾构进入终端工作井并被拆除,如施工需要,也 可穿越工作井再向前推进。
碴土储舱和料斗 龙门吊车
泥浆处理设备
车站
竖井
皮带运输机
盾构机
电瓶车 斗车 泥浆注入车 管片运输车螺旋输送机
盾构法施工方法、加固方案及强度计算
一、概述
盾构施工法是“使用盾构机在地下掘进,在护盾 的保护下,在机内安全的进行开挖和衬砌作业,从 而构筑成隧道的施工方法”。 其施工主要步骤为: (1)在盾构法隧道的起始端和终端各建一个工作井; (2)盾构在起始端工作井内安装就位; (3)依靠盾构千斤顶推力将盾构从起始工作井的墙 壁开孔处推出。
2 0
Cu Dd
D
Cu
D
2
(
2
)
M 3 ——滑移圆弧线CD段的抗滑力矩
M 3
0
Cut Dd
D
CutD 2
式中 Cu ——加固前土体地粘结力; Cut ——加固后土体地粘结力; H ——上覆土体的高度;
sin 1 t
D
抗滑移的安全系数K2
K2
M M
1.5
2.盾构的掘进 (1)盾构千斤顶总推力与刀盘扭矩计算 ①土压平衡式盾构 a.盾构千斤顶总推力 推进土压平衡式盾构所需克服的阻力有:
泥水加压式盾构按泥浆系统压力控制方式可分为 直接控制型(日本型)和间接控制型(德国型)两种 基本类型。 ①直接控制型(日本型)泥水加压式盾构的泥浆压 力控制由一套自动控制泥浆平衡的装置来实现。
清水槽
P1 泥浆调整槽
盾构尺寸和盾构千斤顶推力的确定[详细]
• 六、二次注浆
• 需要进行二次注入的情形主要有:①一次注入 后未充填到部位的完全充填;②一次注入浆液 的体积缩减部分的补充注入;③为了提高抗渗 透等施工效果而进行的注入,
• 1、工作井
• 为便于进行盾构安装和拆卸,在盾构施工段的始 端和终端,建造的竖井或基坑,
• 始发工作井
在盾构施工的始端,满足盾构掘进机安装和 出洞施工的要求,并用于运送人员、管片、材料、 设备、出渣,
• 接收工作井
在盾构施工的终端,盾构隧道掘进完成后进 入接收井,满足盾构拆卸或转场吊装移位的工作 空间要求,
第七节 盾构法施工的出洞进洞技术
出洞——盾构机从始发工作井开始向隧道内推 进时叫出洞;
进洞——盾构机从隧道内到达接收井时叫进洞; 盾构机出洞、进洞是盾构法施工的重要环节, 需确定的技术方案包括:
工作井设计与施工 工作井洞门的形式 洞门的加固
洞内设备布置等.
盾构进洞 盾构出洞
• 一、 盾构机工作井
• 淤泥层、黏土层中使用双液型浆液的小于50%;
• 砂层、淤泥层,使用砂浆中添加纸浆纤维的浆液 比例占 10%(速凝),
• (2)单液型浆液——土体稳定,无须壁后注浆一定 与掘进同时进行,对于砂砾层地下水含量大的地 层来说,应选定不易被水稀释的浆液,
目前施工中使用最多的石灰膏浆液材料配合比见表
注浆材料配合比 (体积比 )
井下安装盾构
盾构推进进洞
• 2、工作井建筑尺寸
• 作为拼装和拆卸用的竖井,其建筑尺寸应根据盾 构拼装、拆卸及施工来确定,满足盾构装、拆的 施工工艺要求,
推力及土压计算
盾构机主要参数:1、粘土2、覆土H 15米3、土体单位体积质量W1 2.1 t/m³4、内摩擦角φ 0 deg5、地面荷载 1.0t/㎡6、侧方土压系数 K1 0.77、松弛土的粘着力 c 4.905KN/㎡8、盾构机外径d 8.83m9、盾构机内径 r 4.44m10、盾构机长度 L 9.9m11、盾构机质量G 750吨12、掘削断面积A 61.9㎡13、刀盘半径4.415m14、后配套质量GB 155.7 t15、牵引系数μ 0.516、管片外径 Ds 8.5m17、盾尾密封数 n 4道18、盾尾密封挤压力 PT 0.00314MN/m19、管片与盾尾密封的摩擦阻力μs 0.3重要参数计算:(1)松弛高度计算松弛高度:考虑地面负载: H1=H+S/WO 15.5m考虑全覆土,松弛高度:H2=H1= 15.5m松弛宽度:B=r*cos(45-φ/2)+ r{1+sin(45-φ/2})*tan(45-φ/2) 10.84m(2) 土压计算作用在盾体的土压为上部土压P1、侧压P2、及下部土压P的平均值P1=H2*W1=325500paP2=K1*(H2+r)*W1=293100paP3=P1+G/(d*L)=409100pa平均土压P=(P1+P2+P3+P2)/4=330200pa=3.302bar(3)推力计算盾构机由盾体外周摩擦阻力、胸板所受的土压与水压、后续设备的牵引力、管片与盾尾密封的摩擦阻力组成。
a.克服盾体外周摩擦阻力的推力F1=ňdLc =13463KNb.克服胸板所受的土压与水压F2=A*P2=181400KNc.克服后续设备的牵引力F3=μ*GB=1278.5KNd.克服管片与盾尾密封的摩擦阻力F4=ňDs*μs*n*PT=100.48KN推进时所需的推力F=F1+F2+F3+F4=32922KN=3292.2t。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Φ6250复合盾构机的推力和扭矩计算盾构机的推力和扭矩计算包括软土和硬岩两种情况进行。
一、在软土中掘进时盾构机的推力和扭矩的计算地层参数按〈6〉岩石全风化带选取,由于岩土体中基本无水,所以水压力的计算按水土合算考虑。
选取可能出现的最不利受力情况埋深断面进行计算。
根据线路的纵剖面图,〈6〉层埋深不大,在确定盾构机拱顶处的均布围岩竖向压力P e 时,可直接取全部上覆土体自重作为上覆土地层压力。
盾构机所受压力:Pe =γh+ P 0P 01= P e + G/DLP 1=P e ×λP 2=(P+γ.D) λ式中:λh γ为土容重,γG 为盾构机重,D 为盾构机外径,D=6.25 m ; L 为盾构机长度,L=8.32 m ; P 0为地面上置荷载,P 0=2 t/m 2; P 01为盾构机底部的均布压力;P 1为盾构机拱顶处的侧向水土压力;P 2为盾构机底部的侧向水土压力;P e =1.94×12.8+2=26.83 t/m 2 P 01=26.83+340/(6.25×8.32)=33.37t/m 2 P 1=26.83×0.47=14.89t/m 2P 2 =(26.83+1.94×6.25)×0.47=18.3t/m 21、盾构推力计算盾构的推力主要由以下五部分组成:54321F F F F F F ++++=式中:F 1为盾构外壳与土体之间的摩擦力 ;F 2为刀盘上的水平推力引起的推力F 3为切土所需要的推力;F 4为盾尾与管片之间的摩阻力F5为后方台车的阻力πμ.)(4121011DL P P P P F e +++=3.0=μμ数,计算时取:土与钢之间的摩擦系式中:t F 23.11443.032.825.63.1889.1437.3383.26411=⨯⨯⨯+++⨯=π)( )(d P D F 224π= 为水平土压力式中:d P ,)(2D h P d +=λγ m D h 93.15228.68.122=+=+ 2/52.1493.1594.147.0m t P d =⨯⨯=t F 48.44552.1428.64/22=⨯=)(π)(C D F 234/π= 式中:C 为土的粘结力,C=4.5t/m 2t F 06.1385.425.6423=⨯⨯=)(πc c W F μ=4式中:W C 、μC 为两环管片的重量(计算时假定有两环管片的重量作用在盾尾内,当管片容重为2.5t/m 3,管片宽度按1.5m 计时,每环管片的重量为24.12t ),两环管片的重量为48.24t 考虑。
μC =0.3t F 47.143.024.484=⨯=θμθcos sin 5h g h G G F +⋅=式中:G h 为盾尾台车的重量,G h ≈160t ;θ为坡度,tg θ=0.025μg 为滚动摩阻,μg =0.05t F 00.12116005.0025.01605=⨯⨯+⨯≈盾构总推力:t F 24.175400.1247.1406.13848.44523.1144=++++=7.8.2.1.2盾构的扭矩计算盾构配备的扭矩主要由以下九部分组成。
在进行刀盘扭矩计算时:987654321M M M M M M M M M M ++++++++=式中:M 1为刀具的切削扭矩;M 2为刀盘自重产生的旋转力矩M 3为刀盘的推力荷载产生的旋转扭矩;M 4为密封装置产生的摩擦力矩 M 5为刀盘前表面上的摩擦力矩 ;M 6为刀盘圆周面上的摩擦力矩M 7为刀盘背面的摩擦力矩 ;M 8为刀盘开口槽的剪切力矩M 9为刀盘土腔室内的搅动力矩a .刀具的切削扭矩M 1⎰=001R Chrdr M )(2120m a x 1R h C M Γ= 式中:C г:土的抗剪应力,C г=C+P d ×tg φ=4.5+14.52×tg20°=9.78t/m 2h max :刀盘每转的最大切削深度,h max =8cm/转R 0:最外圈刀具的半径,R 0=3.14mm t M ⋅=⨯⨯⨯=-83.3)14.310878.9(21221 b .刀盘自重产生的旋转力矩M 2M 2=GR μg式中:G :刀盘自重,计算时取刀盘的自重为G=55tR :轴承的接触半径,计算时取为R=2.6mμg :滚动摩擦系数,计算时取为μg =0.004M 2=55×2.6×0.004=0.57t ﹒mc .刀盘的推力荷载产生的旋转扭矩M 3M 3=W p R g μz W p =απR c 2P d式中:W p :推力荷载 ;α:刀盘封闭系数,α=0.70R g :轴承推力滚子接触半径,R g =1.25m;R c :刀盘半径,R c =3.14 μz :滚动摩擦系数,μz =0.004 ;P d :水平土压力,P d =14.52t/m 2W p =0.70π×3.142×14.52=312.83t ;M 3=312.83×1.25×0.004=1.56 t ﹒m d .密封装置产生的摩擦力矩M 4M 4=2πμm F (n 1R m12+n 2R m22)式中:μm :密封与钢之间的摩擦系数,μm =0.2;F :密封的推力,F=0.15t/m n 1 、n 2 :密封数,n 1=3 n 2=3;R m1、R m2:密封的安装半径,R m1=1.84m R m2=2.26m ;M 4= 2π×0.2×0.15×(3×1.842+3×2.262)=4.80 t ·me .刀盘前表面上的摩擦力矩M 5)(3235d P P R M απμ= 式中:α:刀盘开口率,α=0.30;μP :土层与刀盘之间的摩擦系数,μP =0.15 R :刀盘半径,R=3.14mm t M ⋅=⨯⨯⨯=96.41)52.1414.315.030.0(3235π f .刀盘圆周面上的摩擦力矩M 6M 6=2πR 2BP Z μP式中:R :刀盘半径,R=3.14m ;B :刀盘宽度,B=0.775mP Z :刀盘圆周土压力P Z =(P e +P 01+P 1+P 2)/4=(26.83+33.37+14.89+18.3)/4=23.35t/m 2M 6=2π×3.142×0.775×23.35×0.15=167.09t ·mg .刀盘背面的摩擦力矩M 7M 7=2/3[(1-α)πR 3μP ×0.8P d ]M 7=2/3(0.70×π×3.143×0.15×0.8×14.52)=78.33t ·mh .刀盘开口槽的剪切力矩M 8απτ3832R C M ⋅= 式中:C τ:土的抗剪应力,因碴土饱和含水,故抗剪强度降低,可近似地 取C=0.01Mpa=1 t/m 2,φ=5°;C τ=C+P d ×tg φ=1+14.52×tg5=2.27 t/m 2 m t M ⋅=⨯⨯⨯⨯=88.4530.014.327.23238π i .刀盘土腔室内的搅动力矩M 9M 9=2π(R 12-R 22)LC τ式中:d 1 :刀盘支撑梁外径,d 1=4.8m ; d 2 :刀盘支撑梁内径,d 2=3.84 m L :支撑梁长度, L=0.8 mM 9=2π(2.4 2-1.922)×0.8×2.06=21.46 t ·m刀盘扭矩M 为M 1~M 9之和M=3.83+0.57+1.56+4.80+41.96+167.09+78.33+45.88+21.46=365.48t ·m7.8.2.2在硬岩中掘进时盾构机的推力和扭矩的计算地质参数按照<9>层选取,<9>层为岩石微风化带.盘形单刃滚刀的参数如下:直径 d=43.2cm(17英寸),R=21.6cm刃角 α=60°每转切深 h=1 cm刀盘直径 D=6.28m盘形滚刀刀间距, B m =2htg φ/2式中:φ为岩石的自然破碎角,查表选取φ=155°B m =2×1×tg155/2=9.5cm ≈10cm7.8.2.2.1盾构推力的计算硬岩具有完全自稳能力。
在硬岩中掘进时,盾构机的拱顶、两侧、底部所受的压力均很小,对盾构机的推进影响不大,盾构机的推力主要消耗在滚刀贯入岩石所需要的推力上,所以可以近似的把滚刀贯入岩石的力看成盾构机的推力,其它在选取盾构机推力的富裕量时进行统筹考虑。
根据力平衡原理和能量守恒原理计算盘形滚刀的滚压推力,每个盘形滚刀的推力F 总=mF 力式中: F 力为单个滚刀贯入岩石所需要的力m 为刀盘上安装的盘形滚刀(单刃)的数量22)35()5.13424.15.0φθtg h Rh h r R K F i i d -=(压力 式中:K d 为岩石的滚压系数,查表取K d =0.55R 压为岩石的抗压强度,R 压=62.3Mpa=623kg/cm 2r i 为盘形滚刀的刃角半径;r i =8cmθi 为盘形滚刀的半刃角;θi =30°φ为岩石的自然破碎角,φ=155°t tg F 64.242155116.2121)3530()5.1862355.03424.15.0=-⨯⨯⨯⨯⨯⨯⨯⨯=(力 m= D /(2×B m )式中:D 为刀盘的外径,D= 6.28mB m 为滚刀的刀间距,B m =10cmm = 6.28/(2×10×10-2)=31本盾构机设计双刃滚刀19把,合计单刃滚刀38把,满足需要。
盾构机的总推力:F 总=mF 力=38×24.64=936.32t7.8.2.2.2盾构扭矩的计算硬岩掘进的扭矩主要由以下三部分组成:321T T T T ++=式中:T 1为刀盘滚动阻力矩计算T 2为石碴提升所需要的扭矩T 3为克服刀盘自重所需要的扭矩a .刀盘滚动阻力矩计算T 1∑==mi i m m FB T 11式中:F 为单刃滚刀的滚动力力P hR h F -=243ξ 式中:ξ为与被滚压岩石自由面条件和形状有关的换算系数,ξ=0.8P 力=F 压=24.64h 为每转切深,h =1cmR 为盘形滚刀的半径,R=6.21 mm27.264.2416.21218.043=⨯-⨯⨯⨯=F B m 为盘形滚刀刀间距,B m =10cm=0.1mm t m T i i ⋅=⨯⨯=∑=99.2041.027.24211b .石碴提升所需要的扭矩T 2T 2=q πR 2h μ1R式中:q 为石碴容重,q=2.59t/m 3R=3.14 mH=1 mm/nμ1为刀盘系数,μ1=0.70T2=2.59×π×3.142×0.01×0.70×3.14=1.75tc.克服刀盘自重所需要的扭矩T3T3=W1μ1R式中:W1为刀盘自重,W1=55 tμ1=0.70R=3.14mT3=55×0.70×3.14=120.51t·m硬岩掘进所需要的力矩T= 204.99+1.75 +120.51= 327.25t·m7.8.2.3推力和扭矩的选取及验证软土中掘进:推力F=1754.24t,扭矩T=365.48t·m硬岩中掘进:推力F=936.32t,扭矩T=327.25 t·m由于盾构在施工中经常需要纠偏、转向,因此盾构的推力实际上要比计算出来的大,按照经验数据,盾构实际配备的推力为计算值的1.5倍。