第14章 协整与误差修正模型.

合集下载

协整方程(CE)与误差修正模型(VECM)

协整方程(CE)与误差修正模型(VECM)

人民币实际有效汇率对我国经济影响的实证研究巴曙松,王群2009-09-29摘要:本文试从理论上给出实际汇率变动对产业结构调整的三种传导途径,并从有效汇率的角度出发,通过协整模型、Granger因果检验和脉冲响应方法对实际有效汇率对我国产业、就业结构的影响进行实证分析。

结果表明,人民币实际有效汇率的升值提升了我国第三产业的比重并增加了该产业就业人数,在一定程度上促进了农村劳动力的转移,同时相应地对第二产业的就业造成了负面影响。

总体上来看,人民币有效汇率的上升将有助于长期改善我国的产业结构,但短期会造成一定的就业压力。

关键词:实际汇率,产业结构,就业结构,传导途径2008年以来,伴随着次级抵押贷款危机下全球金融市场的动荡,我国经济不仅面临着恶劣的国际环境、国内经济增长的周期性回落,同时还面临着以产业重组、产业升级和放松管制为重点的产业结构调整。

随着近年来我国对外贸易依存度的不断上升,产业结构调整的动力则不可忽略地受到对外贸易部门发展的影响。

实际汇率作为一种非贸易品和贸易品相对价格,则是影响外贸企业的重要因素之一,从而影响了不同产业之间的资源配置,进而对产业结构的调整产生影响。

因此,在开放型经济条件下,实际汇率成为考察国内产业结构和就业结构调整的重要影响因素之一。

而对该影响作用的分析和研究,不仅有助于加深对产业结构调整的宏观把握,而且将对汇率政策的制定起到一定的指导作用。

另外,在2005年7月21日我国实行了汇率制度改革以后,如何通过人民币有效汇率这一衡量人民币整体水平的汇率指标来把握汇率政策,也引起了学者的普遍关注和研究,本文正是依据人民币实际有效汇率的数据,分析人民币的升值对我国产业结构和就业结构带来的影响。

一、研究背景不论是关于汇率对一国就业影响的研究,还是其对产业结构影响的研究,都是近几年才被国内外学者广泛关注的。

其中对就业影响的研究较多,但得到的结果却不尽相同:Frenkel(2004)运用线性回归模型研究了实际汇率对阿根廷、巴西、智利和墨西哥4国的影响,得出实际汇率的变动对就业有显著影响,且实际汇率变动对失业率变动影响有滞后效应等结论。

协整与误差修正模型的研究

协整与误差修正模型的研究

协整与误差修正模型的研究第一部分协整理论概述 (2)第二部分误差修正模型介绍 (4)第三部分协整与误差修正关系 (7)第四部分模型构建与检验方法 (9)第五部分实证分析应用案例 (13)第六部分结果解释与经济含义 (16)第七部分模型局限性与改进方向 (18)第八部分研究展望与未来趋势 (22)第一部分协整理论概述协整理论概述在经济学和金融学中,我们常常遇到时间序列数据之间的长期均衡关系。

然而,在实际经济活动中,这种均衡关系并不总是能够得到严格的保持,而是存在着一定程度的波动和偏差。

为了解决这一问题,经济学家们提出了协整理论。

协整理论是指两个或多个非平稳的时间序列之间存在一种长期稳定的关系。

换言之,即使各时间序列本身是随机游走的过程,它们之间也可能存在一个稳定的线性组合,使得这个组合呈现出平稳性质。

协整理论的发展为研究经济变量之间的长期动态关系提供了一个强有力的工具。

协整理论的核心思想是由 Engle 和Granger 于1987 年提出的。

他们认为,如果两个非平稳的时间序列之间存在协整关系,则这两个时间序列可以通过一个线性组合达到长期均衡状态,且这个线性组合具有零均值、有限方差和恒定自相关等特性。

在这个意义上,我们可以将协整关系看作是一种长期均衡关系的表现形式。

为了检验两个时间序列之间是否存在协整关系,Engle 和 Granger 提出了一种两步法:首先检验每个时间序列是否为非平稳过程;然后,如果这两个时间序列都是非平稳过程,再通过回归分析来检验它们之间是否存在协整关系。

这种方法被称为 Engle-Granger 两步协整检验。

除了 Engle-Granger 两步协整检验之外,还有许多其他的方法可以用来检验协整关系,例如 Johansen 检验和 Pedroni 检验等。

这些方法都可以有效地帮助我们确定不同时间序列之间的协整关系。

协整理论不仅用于检验不同时间序列之间的长期均衡关系,还可以用于构建误差修正模型。

14 协整与误差修正模型

14 协整与误差修正模型
武汉大学经济学系数量经济学教研室《2010实验教改项目组》编制
四、预测2004年的人均居民消费CONSP 预测2004年的人均居民消费 年的人均居民消费CONSP
预测2004年的人均国内生产总值 年的人均国内生产总值GDPP (一)预测 年的人均国内生产总值 1. 建立 建立LOGGDPP的ARMA模型 的 模型 2. 运用 运用ARMA模型预测 模型预测GDPP 模型预测 (二) 预测2004年的人均居民消费 预测 年的人均居民消费CONSP 年的人均居民消费 1. 运用误差修正模型(eq_log_ecm); 运用误差修正模型( ); 2. 比较:直接对 比较:直接对consp和gdpp进行 进行OLS回归再预测; 回归再预测; 和 进行 回归再预测 • 根据预测值与实际值的相差程度,比较2种模型预测的效 根据预测值与实际值的相差程度,比较 种模型预测的效 从统计资料中得知, 果(从统计资料中得知,2004年人均居民消费实际值为 年人均居民消费实际值为 2155.1元)。 元
CONSP: Level-None Level-
武汉大学经济学系数量经济学教研室《2010实验教改项目组》编制
CONSP: 1st difference-Trend and Intercept difference-
武汉大学经济学系数量经济学教研室《2010实验教改项目组》编制
CONSP: 1st difference-Intercept difference-
武汉大学经济学系数量经济学教研室《2010实验教改项目组》编制
二、协整检验:Engle-Granger检验 协整检验:Engle-Granger检验
• 第二步:对该式残差序列进行 第二步:对该式残差序列进行ADF检验 检验 • genr e1=resid

协整分析与误差修正模型

协整分析与误差修正模型

单整阶数是使序列平稳而差分的次数。一般 而言,表示存量的数据,如以不变价格测算的 资产总值、储蓄余额等存量数据经常表现为2阶 单整I(2) ;以不变价格表示的消费额、收入等 流量数据经常表现为1阶单整I(1) ;而像利率、 收益率等变化率的数据则经常表现为0阶单整
I(0) 。
时间序列 的平稳性检验方法—单位根检验
因此计量经济模型的建立首先要进行经济变 量之间是否具有协整关系的检验。因此现代计量 经济建模的步骤一般包括: 一、经济(金融)变量的平稳性检验 二、经济(金融)变量的协整检验 三、协整方程及误差修正模型的建立及实证结
果分析
一、经济变量的平稳性检验
在建模过程中广泛使用的是时间序列数据,因此 这里我们称为时间序列的平稳性检验。 设时间序列 {Xt}满足下列条件: (1)均值E ( Xt )是与t无关的常数 (2)方差Var( Xt )是与t无关的常数
若所构建模型估计结果不能通过上述某个方面的 检验,我们有必要考虑前面几个步骤是否存在 问题并重新建立模型;若能通过检验,则可进 一步进行计量模型的应用阶段。
步骤5:模型应用。若模型能够通过检验,则说 明所构建的计量模型具有适用性,这样就可以 将模型应用于特定的研究。通常所构建的模型 主要有以下三个方面的应用:
2.统计检验在于检验模型的统计性质。主要 包括拟合优度检验、整体方程的显著性检验 和变量的显著性检验。 3.计量经济学检验,包括模型的序列相关性 检验、异方差性检验和多重共线性检验等。 4.模型预测检验,主要检验模型参数估计量 的稳定性,模型是否可以用于样本观测值以 外的范围;如果建模的目的用于对未来进行 预测,还要做模型的预测性能检验)。
因此,判断一个序列是否平稳,可以通过检验 是
否严格小于1来实现。也就是说: 原假设H0: =1,备选假设H1: < 1 从方程两边同时减去 yt-1 得,

“协整与误差修正模型”基本内容

“协整与误差修正模型”基本内容

“协整与误差修正模型”基本内容Abstract本部分我们要介绍时间序列计量经济学模型中的“协整与误差修正模型”内容。

对于时间序列数据而言,若其为非平稳的,那么我们无法使用经典的回归模型,而若变量之间是协整关系(即它们之间有着长期稳定的关系),那么经典的回归模型方法仍然是valid。

简单差分未必能解决非平稳时间序列的所有问题,因此误差修正模型也就应运而生了。

Problem:对于时间序列数据,如果通过平稳性检验为非平稳序列,能否建立经典计量经济学模型?Answer:需要对模型采用的非平稳时间序列进行协整检验。

一、长期均衡关系与协整经济理论指出,某些经济变量间确实存在着长期均衡关系这种均衡关系意味着经济系统不存在破坏均衡的内在机制。

假设和之间的长期“均衡关系”由下式描述:其中,是随机干扰项。

值得注意的是,在期末,存在下述三种情形之一:(1) 等于它的均衡值,即.(2) 小于它的均衡值,即.(3) 大于它的均衡值,即.注意到,如果正确地提示了与之间的长期稳定的"均衡关系",则意味着对其均衡点的偏离从本质上来说是"临时性"的,这个时候自然假设随机干扰项必须是平稳序列。

另外,非平稳的时间序列,它们的线性组合也可能成为平稳的。

Definition3.1一般地,如果序列都是阶单整的,存在向量,使得,其中,则认为序列是阶协整,记为,为协整向量。

注:(1)如果两个变量都是单整变量,只有它们的单整阶相同时,才有可能协整;(2)三个以上的变量,如果具有不同的单整阶,有可能经过线性组合构成低阶单整变量。

阶协整的经济意义:两个变量,虽然具有各自的长期波动规律,但是如果它们是阶协整的,则它们之间存在着一个长期稳定的比例关系。

二、协整的检验1.两变量的Engle-Granger检验(1987年恩格尔和格兰杰提出的两步检验法/EG检验法)(1,1)阶协整最令人关注,EG检验法正是为了检验两个均呈现1阶单整的变量是否为协整的。

单整,协整,误差修正模型

单整,协整,误差修正模型

单整玉米价格指数x 淀粉价格指数y对玉米价格指数x做ADF检验Trend and intercept因为有趋势和截距的ADF的统计量的p值=0.7748>0.05,接受原假设,有单位根存在InterceptNone有截距和无截距,也无趋势的ADF统计量值的p值都大于0.05,接受原假设,存在单位根,原有时间序列非平稳。

一阶差分Trend and intercept一阶差分既有趋势又有截距的ADF统计量的p值<0.05,拒绝原假设,一阶差分是平稳的,即玉米价格指数x是一阶单整。

对淀粉价格指数y做ADF检验Trend and intercept因为有趋势和截距的ADF的统计量的p值=0.7817>0.05,接受原假设,有单位根存在interceptNone有截距和无截距,也无趋势的ADF统计量值的p值都大于0.05,接受原假设,存在单位根。

原有时间序列非平稳。

一阶差分Trend and intercept一阶差分既有趋势又有截距的ADF统计量的p值<0.05,拒绝原假设,一阶差分是平稳的,即淀粉价格指数y是一阶单整。

由于,玉米价格指数x,淀粉价格指数y都是一阶单整,所以可能存在协整关系协整检验首先将玉米价格指数x对淀粉价格指数y做回归从图中可知,玉米价格指数x对淀粉价格指数有显著的解释意义,两者之间是正相关关系。

玉米价格指数每增加一个单位,导致淀粉价格指数增加1.438个单位。

AEG检验对得到的残差进行单位根检验Trend and intercept残差的有趋势和截距的ADF的统计量为-2.568>-2.87,有单位根存在,非平稳。

intercept截距的ADF的统计量的p值为0.1362>0.05,接受原假设,有单位根存在,非平稳。

.None’无截距,无趋势的ADF的统计量的p值为0.015<0.05,拒绝原假设,序列平稳。

说明残差序列是I(0),平稳的。

时间序列的协整检验与误差修正模型讲义

时间序列的协整检验与误差修正模型讲义

时间序列的协整检验与误差修正模型讲义时间序列的协整检验与误差修正模型是在经济学和金融学中广泛使用的方法,用于分析两个或多个变量之间的长期稳定关系。

本讲义将介绍协整检验的基本概念和步骤,并讨论误差修正模型的理论背景和实际应用。

一、协整检验1. 概念与原理协整是指两个或多个变量之间存在长期稳定的关系,即它们的线性组合是平稳的。

协整关系可以用来解释一个变量对另一个变量的影响,并提供长期均衡关系的信息。

协整检验的基本原理是利用单位根检验方法,测试变量是否存在单位根(非平稳性)。

如果变量存在单位根,则它们是非平稳的;如果变量不存在单位根,则它们是平稳的。

如果变量之间存在协整关系,它们的线性组合将是平稳的。

2. 协整检验的步骤协整检验的一般步骤如下:- 收集数据并绘制时间序列图,观察变量之间的趋势和关系;- 进行单位根检验,常用的方法包括ADF检验、Phillips-Perron检验等;- 如果变量存在单位根,则进行差分,直到变量变为平稳的;- 应用最小二乘法等方法,估计协整关系方程;- 进行残差平稳性检验,确保协整关系的合理性;- 如果协整关系存在,可以进行模型的进一步分析与应用。

二、误差修正模型(Error Correction Model, ECM)1. 概念与原理误差修正模型是一种动态模型,用于解释协整关系的调整速度和误差纠正机制。

在误差修正模型中,除了协整关系的线性组合外,还引入了误差修正项,用于捕捉变量之间的短期非平衡关系。

误差修正项反映了系统离开长期均衡后的调整速度,通过估计误差修正项的系数,可以判断系统是否有趋向于均衡的能力。

当误差修正项的系数为负数且显著时,表示系统具有自我修复的能力;当系数为零时,表示系统处于长期均衡状态;当系数为正数时,表示系统趋向于进一步偏离均衡。

2. ECM模型的应用误差修正模型可以用于解释和预测时间序列数据的长期和短期动态变化。

它在经济学和金融学中有广泛的应用,如货币供给与通货膨胀、利率与消费支出、汇率与经济增长等领域。

协整和误差修正模型

协整和误差修正模型

在式(5.4.3)两端减去 yt-1,在右边加减 2xt-1 得到 :
yt 0 (1 1) yt1 2xt (2 3 )xt1 ut
(5.4.7)
利用 2 + 3 = k1 (1 - 1), 0 = k0 (1 - 1),式
(5.4.7)又可改写成
yt (1 1)( yt1 k0 k1xt1) 2xt ut
(5.4.8)
令 = 1-1,则式(5.4.8) 可写成
yt ( yt1 k0 k1xt1) 2xt ut
(5.4.9) 上式称为误差修正模型 (error correction model,
简记ECM)。当长期平衡关系是 y* = k0 + k1x* 时,误 差修正项是如 (yt - k0- k1xt) 的形式,它反映了 yt 关于 xt 在第 t 时点的短期偏离。一般地,由于式(5.4.3)中
| 1|<1 ,所以误差项的系数 = ( 1-1) < 0,通常称
为调整系数,表示在 t-1 期 yt-1 关于 k0 + k1xt-1 之间
利用ADF的协整检验方法来判断残差序列是否平稳, 如果残差序列是平稳的,则回归方程的设定是合理的, 说明回归方程的因变量和解释变量之间存在稳定的均衡 关系。反之,说明回归方程的因变量和解释变量之间不 存在稳定均衡的关系,即便参数估计的结果很理想,这 样的一个回归也是没有意义的,模型本身的设定出现了 问题,这样的回归是一个伪回归。
y1t 2 y2t 3 y3t k ykt ut
模型估计的残差为Biblioteka uˆt y1t ˆ2 y2t ˆ3 y3t ˆk ykt
(2)检验残差序列ût是否平稳,也就是判断序列 ût是否含有单位根。通常用ADF检验来判断残差序列 ût是否是平稳的。

时间序列的协整检验与误差修正模型

时间序列的协整检验与误差修正模型

时间序列的协整检验与误差修正模型时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。

协整检验是在时间序列数据中,判断变量之间是否存在长期平衡关系的一种方法。

误差修正模型是在协整关系已经验证的基础上,建立起变量之间的因果关系,对短期的偏离进行修正的模型。

协整检验的原理是基于单位根检验的思想,判断时间序列是否为平稳序列。

平稳序列是指序列的均值和方差不随时间发生变化。

如果两个变量都是非平稳序列,但它们的线性组合是平稳序列,那么可以认为这两个变量是协整的。

常用的协整检验方法有Engle-Granger方法和Johansen方法。

Engle-Granger方法是一种直观简单的协整检验方法。

它的步骤如下:首先,分别对两个变量进行单位根检验,确认它们是否为非平稳序列。

然后,对两个变量进行线性回归,得到残差序列。

接下来,对残差序列进行单位根检验,确认它是否为平稳序列。

最后,如果残差序列是平稳序列,则可以判断两个变量之间存在协整关系。

协整检验完成后,接下来可以建立误差修正模型。

误差修正模型是基于协整关系的基础上建立起来的,以短期的偏离修正为核心。

它的核心假设是,在长期平衡关系的约束下,两个变量之间的短期偏离可以通过一个修正项来消除。

误差修正模型的基本形式是多元线性回归模型,其中包含自变量、因变量以及一个误差修正项。

误差修正模型的估计和推断可以使用最小二乘法或最大似然法等统计方法进行。

通过对误差修正模型的估计和推断,可以对变量之间的因果关系进行分析。

同时,误差修正模型还可以用于预测和决策分析。

综上所述,时间序列的协整检验与误差修正模型是分析变量之间长期关系的重要工具。

协整检验可以判断变量是否具有长期平衡关系,而误差修正模型则可以分析变量之间的短期调整过程。

这些方法在经济学、金融学、管理学等领域都有广泛的应用。

时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。

ECM误差修正模型

ECM误差修正模型

协整与误差修正模型在处理时间序列数据时,我们还得考虑序列的平稳性。

如果一个时间序列的均值或自协方差函数随时间而改变,那么该序列就是非平稳的。

对于非平稳的数据,采用传统的估计方法,可能会导致错误的推断,即伪回归。

若非平稳序列经过一阶差分变为平稳序列,那么该序列就为一阶单整序列。

对一组非平稳但具有同阶的序列而言,若它们的线性组合为平稳序列,则称该组合序列具有协整关系。

对具有协整关系的序列,我们算出误差修正项,并将误差修正项的滞后一期看做一个解释变量,连同其他反映短期波动关系的变量一起。

建立误差修正模型。

建立误差修正模型的步骤如下:首先,对单个序列进行单根检验,进行单根检验有两种:ADF(Augument Dickey-Fuller)和DF(Dickey-Fuller)检验法。

若序列都是同阶单整,我们就可以对其进行协整分析。

在此我们只介绍单个方程的检验方法。

对于多向量的检验参见Johensen协整检验。

我们可以先求出误差项,再建立误差修正模型,也可以先求出向量误差修正模型,然后算出误差修正项。

补充一点的是,误差修正模型反映的是变量短期的相互关系,而误差修正项反映出变量长期的关系。

下面我们给出案例分析。

案例分析在此,我们考虑从1978年到2002年城镇居民的人均可支配收入income与人均消费水平consume的关系,数据来自于《中国统计年鉴》,如表8.1所示。

根据相对收入假设理论,在一定时期,人们的当期的消费水平不仅与当期的可支配收入、而且受前期的消费水平的影响,具有一定的消费惯性,这就是消费的棘轮效应。

从这个理论出发,我们可以建立如下(8.1)式的模型。

同时根据生命周期假设理论,消费者的消费不仅与当期收入有关,同时也受过去各项的收入以及对将来预期收入的限制和影响。

从我们下面的数据分析中,我们可以把相对收入假设理论与生命周期假设理论联系起来,推出如下的结果:当期的消费水平不仅与当期的可支配收入有关,而且还与前期的可支配收入、前两期的消费水平有关。

协整检验及误差修正模型

协整检验及误差修正模型

协整检验及误差修正模型设随机向量t X 中所含分量均为d 阶单整,记为t X I(d )。

如果存在一个非零向量β,使得随机向量()~t t Y X I d b =-β,0b >,则称随机向量t X 具有d ,b 阶协整关系,记为tX CI(d ,b ),向量β被称为协整向量。

特别地,t y 和t x 为随机变量,并且t y ,~(1)t x I ,当01()~I(0)t t t y x εββ=-+,即t y 和t x 的线性组合与I(0)变量有相同的统计性质,则称t y 和t x 是协整的,()01,ββ称为协整系数。

更一般地,如果一些I(1)变量的线性组合是I(0),那么我们就称这些变量是协整的。

用Eviews5.1来分析1978年到2002年中国农村居民对数生活费支出序列{ln }t y 和对数人均纯收入{ln t x }序列之间的关系。

1、对两个数据序列分别进行平稳性检验:(1)做时序图看二者的平稳性首先按前面介绍的方法导入数据,在workfile 中按住ctrl 选择要检验的二变量,击右键,选择open —as group ,此时他们可以作为一个数据组被打开。

点击“View ”―“graph ”—“line ”,对两个序列做时序图见图8-1,两个序列都呈上升趋势,显然不平稳,但二者有大致相同的增长和变化趋势,说明二者可能存在协整关系。

但若要证实二者有协整关系,必须先看二者的单整阶数,如果都是一阶单整,则可能存在协整关系,若单整地阶数不相同,则需采取差分的方式,将他们变成一阶单整序列。

图8-1 ln t x 和ln t y 时序图(2)用ADF 检验分别对序列ln t x 和ln t y 进行单整检验双击每个序列,对其进行ADF 单位根检验,有两种方法。

方法一:“view ”—“unit root test ”;方法二:点击菜单中的“quick ”―“series statistic ”―“unit root test ”。

ECM误差修正模型

ECM误差修正模型

协整与误差修正模型在处理时间序列数据时,我们还得考虑序列的平稳性。

如果一个时间序列的均值或自协方差函数随时间而改变,那么该序列就是非平稳的。

对于非平稳的数据,采用传统的估计方法,可能会导致错误的推断,即伪回归。

若非平稳序列经过一阶差分变为平稳序列,那么该序列就为一阶单整序列。

对一组非平稳但具有同阶的序列而言,若它们的线性组合为平稳序列,则称该组合序列具有协整关系。

对具有协整关系的序列,我们算出误差修正项,并将误差修正项的滞后一期看做一个解释变量,连同其他反映短期波动关系的变量一起。

建立误差修正模型。

建立误差修正模型的步骤如下:首先,对单个序列进行单根检验,进行单根检验有两种:ADF (Augument Dickey-Fuller )和DF(Dickey-Fuller)检验法。

若序列都是同阶单整,我们就可以对其进行协整分析。

在此我们只介绍单个方程的检验方法。

对于多向量的检验参见Johensen 协整检验。

我们可以先求出误差项,再建立误差修正模型,也可以先求出向量误差修正模型,然后算出误差修正项。

补充一点的是,误差修正模型反映的是变量短期的相互关系,而误差修正项反映出变量长期的关系。

下面我们给出案例分析。

案例分析在此,我们考虑从1978年到2002年城镇居民的人均可支配收入income 与人均消费水平consume 的关系,数据来自于《中国统计年鉴》,如表8.1所示。

根据相对收入假设理论,在一定时期,人们的当期的消费水平不仅与当期的可支配收入、而且受前期的消费水平的影响,具有一定的消费惯性,这就是消费的棘轮效应。

从这个理论出发,我们可以建立如下(8.1)式的模型。

同时根据生命周期假设理论,消费者的消费不仅与当期收入有关,同时也受过去各项的收入以及对将来预期收入的限制和影响。

从我们下面的数据分析中,我们可以把相对收入假设理论与生命周期假设理论联系起来,推出如下的结果:当期的消费水平不仅与当期的可支配收入有关,而且还与前期的可支配收入、前两期的消费水平有关。

多元时间序列分析:协整与误差修正模型.

多元时间序列分析:协整与误差修正模型.

同样地,检验残差项是否平稳的 DF与ADF检验临界值 要比通常的 DF与 ADF检验临界值小,而且该临界值还受 到所检验的变量个数的影响。
表9.3.2给出了MacKinnon(1991)通过模拟试验得到的不 同变量协整检验的临界值。
表 9.3.2 样本 容量 25 50 100 ∝ 多变量协整检验 ADF 临界值 变量数=4 显著性水平 0.01 0.05 0.1 -5.43 -4.56 -4.15 -5.02 -4.32 -3.98 -4.83 -4.21 -3.89 -4.65 -4.1 -3.81 变量数=6 显著性水平 0.01 0.05 0.1 -6.36 -5.41 -4.96 -5.78 -5.05 -4.69 -5.51 -4.88 -4.56 -5.24 -4.7 -4.42 变量数=3 显著性水平 0.01 0.05 0.1 -4.92 -4.1 -3.71 -4.59 -3.92 -3.58 -4.44 -3.83 -3.51 -4.30 -3.74 -3.45
t 的单整性的检验方法仍然是DF检验或者ADF检验。 e
由于协整回归中已含有截距项,则检验模型中无需 再用截距项。如使用模型1
et et 1 i et i t
i 1 p
进行检验时,拒绝零假设H0:=0,意味着误差项et是 平稳序列,从而说明X与Y间是协整的。 需要注意是,这里的DF或ADF检验是针对协整回 t 而非真正的非均衡误差t进行的。 归计算出的误差项 e 而OLS法采用了残差最小平方和原理,因此估计量 是向下偏倚的,这样将导致拒绝零假设的机会比实际 情形大。 于是对et平稳性检验的DF与ADF临界值应该比正常 的DF与ADF临界值还要小。
检验程序:
对于多变量的协整检验过程,基本与双变量情形相同, 即需检验变量是否具有同阶单整性,以及是否存在稳定的线 性组合。 在检验是否存在稳定的线性组合时,需通过设置一个变 量为被解释变量,其他变量为解释变量,进行OLS估计并检 验残差序列是否平稳。 如果不平稳,则需更换被解释变量,进行同样的 OLS 估 计及相应的残差项检验。 当所有的变量都被作为被解释变量检验之后,仍不能得 到平稳的残差项序列,则认为这些变量间不存在( d,d )阶 协整。

协整方程(CE)与误差修正模型(VECM)

协整方程(CE)与误差修正模型(VECM)

人民币实际有效汇率对我国经济影响的实证研究巴曙松,王群2009-09-29摘要:本文试从理论上给出实际汇率变动对产业结构调整的三种传导途径,并从有效汇率的角度出发,通过协整模型、Granger因果检验和脉冲响应方法对实际有效汇率对我国产业、就业结构的影响进行实证分析。

结果表明,人民币实际有效汇率的升值提升了我国第三产业的比重并增加了该产业就业人数,在一定程度上促进了农村劳动力的转移,同时相应地对第二产业的就业造成了负面影响。

总体上来看,人民币有效汇率的上升将有助于长期改善我国的产业结构,但短期会造成一定的就业压力。

关键词:实际汇率,产业结构,就业结构,传导途径2008年以来,伴随着次级抵押贷款危机下全球金融市场的动荡,我国经济不仅面临着恶劣的国际环境、国内经济增长的周期性回落,同时还面临着以产业重组、产业升级和放松管制为重点的产业结构调整。

随着近年来我国对外贸易依存度的不断上升,产业结构调整的动力则不可忽略地受到对外贸易部门发展的影响。

实际汇率作为一种非贸易品和贸易品相对价格,则是影响外贸企业的重要因素之一,从而影响了不同产业之间的资源配置,进而对产业结构的调整产生影响。

因此,在开放型经济条件下,实际汇率成为考察国内产业结构和就业结构调整的重要影响因素之一。

而对该影响作用的分析和研究,不仅有助于加深对产业结构调整的宏观把握,而且将对汇率政策的制定起到一定的指导作用。

另外,在2005年7月21日我国实行了汇率制度改革以后,如何通过人民币有效汇率这一衡量人民币整体水平的汇率指标来把握汇率政策,也引起了学者的普遍关注和研究,本文正是依据人民币实际有效汇率的数据,分析人民币的升值对我国产业结构和就业结构带来的影响。

一、研究背景不论是关于汇率对一国就业影响的研究,还是其对产业结构影响的研究,都是近几年才被国内外学者广泛关注的。

其中对就业影响的研究较多,但得到的结果却不尽相同:Frenkel(2004)运用线性回归模型研究了实际汇率对阿根廷、巴西、智利和墨西哥4国的影响,得出实际汇率的变动对就业有显著影响,且实际汇率变动对失业率变动影响有滞后效应等结论。

时间序列的协整和误差修正模型

时间序列的协整和误差修正模型

时间序列的协整和误差修正模型时间序列分析中,协整和误差修正模型是两个重要的概念。

协整是指两个或多个时间序列之间的长期关系,而误差修正模型是一种用来修正时间序列中的误差的模型。

协整是经济学家提出的一个概念,用来解决时间序列数据存在的非平稳性的问题。

在实际应用中,有很多时间序列数据是非平稳的,即其均值和方差不随时间变化而保持不变。

然而,这些非平稳的时间序列之间可能存在长期的关系,也就是说它们会随着时间变化而趋于稳定。

这种关系可以通过协整分析来检验和建模。

协整模型的一种常见形式是误差修正模型(Error Correction Model,ECM)。

误差修正模型是建立在协整模型的基础上的,它可以用来描述时间序列数据之间的长期关系,并且考虑了这些时间序列数据之间的短期变动。

在误差修正模型中,如果两个时间序列之间存在协整关系,那么它们之间的生成误差(随机扰动)会导致它们之间的偏离程度逐渐回归到长期均衡的水平。

因此,误差修正模型是通过引入误差修正项来解决协整关系中存在的短期波动的问题。

误差修正模型的基本思想是,当两个时间序列之间存在协整关系时,如果它们之间的误差超过一定的阈值,那么它们之间的误差就会被修正回长期均衡的水平。

这种修正过程可以通过引入一个误差修正项来实现,从而使得模型具备误差修正的能力。

总之,协整和误差修正模型是对时间序列数据进行建模和分析的重要工具。

协整可以用来检验和描述时间序列之间的长期关系,而误差修正模型则是在协整的基础上引入修正项,用来处理时间序列之间的短期波动。

这些方法在经济学和金融学等领域中具有广泛的应用价值。

协整和误差修正模型是时间序列分析中非常重要的概念。

协整是指两个或多个非平稳时间序列之间存在的长期关系,而误差修正模型则是通过引入误差修正项来描述时间序列的短期波动。

在实际应用中,许多经济和金融时间序列是非平稳的,即它们的均值和方差会随时间变化而发生变动。

这种非平稳性可能会导致误导性的统计结果,因为传统的统计方法要求时间序列数据是平稳的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档