【小学二年级奥数讲义】 学习一笔画带答案

合集下载

小学二年级数学奥数 第10讲 学习一笔画(1)

小学二年级数学奥数  第10讲 学习一笔画(1)

第10讲学习一笔画【专题简析】一笔画,就是从图形某点出发,笔不离开纸,而且每条线段都只画一次不重复。

它是一种有趣的数学游戏。

那么,哪些图形不能一笔画成,哪些图形可以一笔画成呢?一个图形能否一笔画成,关键在于单数点的多少,有2个或0个单数点的图形就能够一笔画成,单数点在一笔画中只能作为起点和终点。

【例题1】一些平面图形是由点和线构成的,这里的“线”可以是线段,也可以是一段曲线,请自己画一些图研究每个点和线的连接情况。

思路导航:请小朋友仔细观察下列各图中的点,他们分别与几条线相连。

①②③④(1)与一条线段相连的点有:(2)与两条线段相连的点有:(3)与三条线段相连的点有:(4)与四条线段相连的点有:归纳:把和一条、三条、五条等单数条线连得点叫做单数点;把和两条、四条、六条、八条等双数条线连的点叫双数点,每个图中的点要么是单数点,要么是双数点。

1.任意找一个平面图形,数一数图中有几个单数点,几个双数点。

2.下面图形中有哪几个单数点?B3.数一数下面图形中有几个双数点,分别是哪些点?B【例题2】下面的图形能不能一笔画成?如果能,应该怎样画?(1) O(2)B D(3)【思路导航】图(1)中A 、B 、C 、D 、O 五个点都是双数点,所以这个图形可以一笔画成。

画时可以从任意一点出发。

图(2)中A 、C 、D 、F 四个点都是双数点,B 和E 两个点是单数点,所以这个图形也可以一笔画成。

画时要从单数点出发,最后回到另一个单数点。

图(3)中A 、D 是双数点,B 、C 、E 和F 四个点是单数点,单数点的个数超过了两个,这个图形不能一笔画成。

1.下面的图形能不能一笔画成,如果能,请说明画法,如果不能,请说明理由(1)(2)2.下列图形能一笔画成吗?为什么?3.观察下列图形,哪个图形可以一笔画成?怎么画?【例题3】下图是某地区所有街道的平面图,甲、乙两人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达C.那么两人谁先到达?C思路导航:题中要求两人必须走遍所有街道,最后到达C.仔细观察,可以发现图中有两个单数点:A 、C 。

二年级奥数 学习一笔画(1)

二年级奥数 学习一笔画(1)

第10讲学习一笔画【专题简析】一笔画,就是从图形某点出发,笔不离开纸,而且每条线段都只画一次不重复. 它是一种有趣的数学游戏. 那么,哪些图形不能一笔画成,哪些图形可以一笔画成呢?一个图形能否一笔画成,关键在于单数点的多少,有2个或0个单数点的图形就能够一笔画成,单数点在一笔画中只能作为起点和终点.【例题1】一些平面图形是由点和线构成的,这里的“线”可以是线段,也可以是一段曲线,请自己画一些图研究每个点和线的连接情况.思路导航:请小朋友仔细观察下列各图中的点,他们分别与几条线相连.①②③④(1)与一条线段相连的点有:(2)与两条线段相连的点有:(3)与三条线段相连的点有:(4)与四条线段相连的点有:归纳:把和一条、三条、五条等单数条线连得点叫做单数点;把和两条、四条、六条、八条等双数条线连的点叫双数点,每个图中的点要么是单数点,要么是双数点.练习11.任意找一个平面图形,数一数图中有几个单数点,几个双数点.2.下面图形中有哪几个单数点?B3.数一数下面图形中有几个双数点,分别是哪些点?B【例题2】下面的图形能不能一笔画成?如果能,应该怎样画?AC C (1) O (2)B DF (3)D【思路导航】图(1)中A 、B 、C 、D 、O 五个点都是双数点,所以这个图形可以一笔画成.画时可以从任意一点出发. 图(2)中A 、C 、D 、F 四个点都是双数点,B 和E 两个点是单数点,所以这个图形也可以一笔画成. 画时要从单数点出发,最后回到另一个单数点. 图(3)中A 、D 是双数点,B 、C 、E 和F 四个点是单数点,单数点的个数超过了两个,这个图形不能一笔画成.练习21.下面的图形能不能一笔画成,如果能,请说明画法,如果不能,请说明理由(1)(2)2.下列图形能一笔画成吗?为什么?3.观察下列图形,哪个图形可以一笔画成?怎么画?【例题3】下图是某地区所有街道的平面图,甲、乙两人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达C.那么两人谁先到达?C思路导航:题中要求两人必须走遍所有街道,最后到达C.仔细观察,可以发现图中有两个单数点:A、C. 这就是说:甲可以从A点出发,不重复地走遍所有街道,最后到达C.而B点是双数点,从B点出发的乙则不行. 因此,甲所走的路程正好等于所有街道的总和,而乙所走的路程一定比这个总和多,所以甲最先到达C.解:甲最先到达C.练习3A1.下图是某新村小区主干道平面图. 甲、乙两人同时分别从A 、B 出发,以相同的速度走遍所有的主干道,最后到达C.问谁能最先到达C?2. 甲、乙两辆车同时以相同的速度分别从A 、B 出发,哪辆车能最先行驶完所有的路程?B3.一只蚂蚁分别从A 点和B 点出发,爬遍所有的小路. 如果每次爬行的速度相同,那么从哪一点出发所用的时间少?【例题4】下图(图1)能否一笔画成,若不能,你能用什么方法把它改成能够一笔画成的图形?(1) (2)思路导航:此图共有9个点,其中5个点是双数点,4个点是单数点,由于超过两个单数点,因此不能一笔画成. 要想改为一笔画成,关键在于减少单数点数目(把单数点的个数减少到0或2),所以只要在任意两个单数点间连上线,就可以一笔画,有时也可以将多余的两个单数点间的连线去掉,改成一笔画.解:图(1)有4个单数点,不能一笔画成. 要改成一笔画成,如图(2) 练习41.将下图改成一笔画.1. 2.3.在一个小区中有一些路,每个圆柱表示邮筒(如下图),邮递员叔叔每次送信时,总是没法走过每一条路而又不重复,你知道为什么吗?如果请你给小区加一条路来解决这个问题,你准备把这条路加在哪儿?请你动手画一画.【例题5】邮递员叔叔要给一个居民小区送信(如图),怎么走才能少走重复路,使每天走的路尽可能短?AGH D BF思路导航:图中一共有九个点,其中单数点有2个(点D 和点F ),因此能一次不重复走过所有的路,但必须从这两个单数点中的一个出发,再回到另一个单数点.解:邮递员叔叔只能从点D (或点F )出发,走过所有的路后,再回到点F(或点D) . 练习51.下图是以个小区的中心花园的平面图,你能一次不重复地走完所有的路吗?入口和出口应该设在哪儿呢?2.园林工人在花园里浇花,怎样才能不重复地走遍每条小路?3. 下图是“儿童乐园”平面图,出、入口应分别设在哪里才能不重复地走遍每条路?可以怎么走?D CAB【拓展提高】1、下面的图形能不能一笔画成?为什么?如果能,应该怎样画?2、给下面的图形添一条线,使它能够一笔画成.3、小明和玲玲玩“过木桥”的游戏(如下图),他们谁能不走重复的路?小明玲玲4、在王大爷家的花园中有一些路(如下图),王大爷每次给花浇水时,总是没法走过每一条路而又不重复,你知道为什么吗?如果请你给花园加一条路来解决这个问题,你准备把这条路加在哪儿?请你动手画一画.间隔趣谈【专题简析】两根绳子结起来只要打一个结,两根绳子结成一个圆需要打两个结,一根绳子剪4次被剪成了5段等等,这是日常生活中的比较特殊的问题. 想要做好这类题,需要我们多动脑筋,多动笔画画,才能找到正确的答案. 这一讲是有关绳子打结和剪绳子的问题. 给绳子打结如果不练成一个圆,打结的次数比绳子的根数少1;如果结成1个圆,打结的次数与绳子的根数同样多. 同样,如果是剪绳子,那么剪成的段数比剪得次数多1.【例题1】小刚把4根绳子连起来成一条绳子,一共需要打几个结?思路导航:解这种题,可以画图解答. 如图:打结打结打结从上图中可以看出,4根绳子要结起来成一根绳子,只要打3次结就可以了,可见,打结的次数比绳子的根数少1.解:4-1=3(个)答:小刚把4根绳子连起来成一条绳子,一共需要打3个结练习11.小明把5根绳子连起来成一根长绳,一共需要打几个结?2.把8根绳子连接起来成一根绳子,一共需要打几个结?【例题2】把几根绳子打7个结就能成一个圆?思路导航:根据题意,如图所示:打了7个结,就把一些绳子结成了一个圆,这些绳子应该有7根. 因此,如果把绳子结成圆时,绳子的根数与打结的次数相等.解:把7根绳子打7个结就能成一个圆练习21.丽丽打了8个结就把一些绳子结成一个圆,你知道丽丽拿了几根绳子吗?2.小红拿10根绳子结成一个圆,她打了几个结?3.把20根绳子连接起来成一根绳子,一共需要打几个结?如果要结成一个圆,需要结几次?【例题3】一根10米长的绳子剪了4次,平均每段长多少米?思路导航:10米长的绳子剪了4次,应该剪成了5段. 求平均每段长多少米,也就是要把10平均分成5份,求每份是多少. 210=÷(米),因此平均每段长2米5解:4+1=5(段)210=÷(米)5答:平均每段长2米练习31.一根8米长的绳子,剪了3次,平均每段长多少米?2.一根9分米长的绳子,剪了2次,平均每段长多少分米?3.一根绳子剪了5次后,平均每段长3米,这根绳子原来长多少米?【例题4】一根10米长的绳子,把它剪成2米长的一段,可以剪多少段?要剪几次?思路导航:(1)10米长的绳子,剪成每段2米长,要求可剪多少段,这里求10里面有几个2, ÷(段),可以剪5段.10=52(2)要求剪几次,可以用线段图分析:2米从图中可以看出每一段剪一次,剪最后一次还可以有2段,因此剪的次数比剪得段数少1.即剪得次数=段数-1.解:5÷(段) 5-1=4(次)10=2答:可以剪5段,要剪4次.练习41.一根木材长8米,把它锯成2米长的小段,可以锯成多少段?要锯几次?2.一根12米长的铁丝,把它剪成3米长的小段,可以剪成多少段?要剪多少次?3.一根25米长的电线,剪了4次,可以剪成多少段?平均每段长多少米?【例题5】小兰在桌上摆小棒,先摆了1根,然后每隔7厘米放1根,在距离第一根42厘米处,共放了几根?思路导航:每隔7厘米放一根,42里有几个7就有几段,42÷7=6(段),小棒的根数比段数多1,6+1=7(根).解 :42÷7+1=7(根)答:共放了7根.练习51.小灰灰把贝壳放在桌上,先放一个,然后每隔4厘米放一个,从第1个到20厘米处,一共可以放多少个?2.小红把几枝铅笔放在桌上,每两枝之间相隔8厘米,从第一根到最后一根之间相隔64厘米,你知道放了几枝铅笔吗?3.小美在桌上摆了1颗珠子,然后每隔5厘米放1颗,在距第一颗35厘米处放的是第几颗?练习题答案练习11.4个2.7个练习21.8根2.10个3.19个 20次练习31.2米2.3分米3.18米练习41.8÷2=4(段)4-1=3(次)2.12÷3=4(段) 4-1=3(次)3.4+1=5(段) 25÷5=5(米)练习51.20÷4+1=6(个)2.64÷8+1=9(枝)3.35÷5+1=8(颗)。

小学二年级奥数下册第五讲 一笔画问题习题+答案

小学二年级奥数下册第五讲 一笔画问题习题+答案

第五讲一笔画问题一天,小明做完作业正在休息,收音机中播放着轻松、悦耳的音乐.他拿了支笔,信手在纸上写了“中”、“日”、“田”几个字.突然,他脑子里闪出一个念头,这几个字都能一笔写出来吗?他试着写了写,“中”和“日”可以一笔写成(没有重复的笔划),但写到“田”字,试来试去也没有成功.下面是他写的字样.(见下图)这可真有意思!由此他又联想到一些简单的图形,哪个能一笔画成,哪个不能一笔画成呢?下面是他试着画的图样.(见下图)经过反复试画,小明得到了初步结论:图中的(1)、(3)、(5)能一笔画成;(2)、(4)、(6)不能一笔画成.真奇怪!小明发现,简单的笔画少的图不一定能一笔画得出来.而复杂的笔画多的图有时反倒能够一笔画出来,这其中隐藏着什么奥秘呢?小明进一步又提出了如下问题:如果说一个图形是否能一笔画出不决定于图的复杂程度,那么这事又决定于什么呢?能不能找到一条判定法则,依据这条法则,对于一个图形,不论复杂与否,也不用试画,就能知道是不是能一笔画成?先从最简单的图形进行考察.一些平面图形是由点和线构成的.这里所说的“线”,可以是直线段,也可以是一段曲线.而且为了明显起见,图中所有线的端点或是几条线的交点都用较大的黑点“●”表示出来了.首先不难发现,每个图中的每一个点都有线与它相连;有的点与一条线相连,有的点与两条线相连,有的点与3条线相连等等.其次从前面的试画过程中已经发现,一个图能否一笔画成不在于图形是否复杂,也就是说不在于这个图包含多少个点和多少条线,而在于点和线的连接情况如何——一个点在图中究竟和几条线相连.看来,这是需要仔细考察的.第一组(见下图)(1)两个点,一条线.每个点都只与一条线相连.(2)三个点.两个端点都只与一条线相连,中间点与两条线连.第一组的两个图都能一笔画出来.(但注意第(2)个图必须从一个端点画起)第二组(见下图)(1)五个点,五条线.A点与一条线相连,B点与三条线相连,其他的点都各与两条线相连.(2)六个点,七条线.(“日”字图)A点与B点各与三条线相连,其他点都各与两条线相连.第二组的两个图也都能一笔画出来,如箭头所示那样画.即起点必需是A点(或B点),而终点则定是B点(或A点).第三组(见下图)(1)四个点,三条线.三个端点各与一条线相连,中间点与三条线相连.(2)四个点,六条线.每个点都与三条线相连.(3)五个点,八条线.点O与四条线相连,其他四个顶点各与三条线相连.第三组的三个图形都不能一笔画出来.第四组(见下图)(1)这个图通常叫五角星.五个角的顶点各与两条线相连,其他各点都各与四条线相连.(2)由一个圆及一个内接三角形构成.三个交点,每个点都与四条线相连(这四条线是两条线段和两条弧线).(3)一个正方形和一个内切圆构成.正方形的四个顶点各与两条线相连,四个交点各与四条线相连.(四条线是两条线段和两条弧线).第四组的三个图虽然比较复杂,但每一个图都可以一笔画成,而且画的时候从任何一点开始画都可以.第五组(见下图)(1)这是“品”字图形,它由三个正方形构成,它们之间没有线相连.(2)这是古代的钱币图形,它是由一个圆形和中间的正方形方孔组成.圆和正方形之间没有线相连.第五组的两个图形叫不连通图,显然不能一笔把这样的不连通图画出来.进行总结、归纳,看能否找出可以一笔画成的图形的共同特点,为方便起见,把点分为两种,并分别定名:把和一条、三条、五条等奇数条线相连的点叫做奇点;把和两条、四条、六条等偶数条线相连的点叫偶点,这样图中的要么是奇点,要么是偶点.提出猜想:一个图能不能一笔画成可能与它包含的奇点个数有关,对此列表详查:从此表来看,猜想是对的.下面试提出几点初步结论:①不连通的图形必定不能一笔画;能够一笔画成的图形必定是连通图形.②有0个奇点(即全部是偶点)的连通图能够一笔画成.(画时可以任一点为起点,最后又将回到该点).③只有两个奇点的连通图也能一笔画成(画时必须以一个奇点为起点,而另一个奇点为终点);④奇点个数超过两个的连通图形不能一笔画成.最后,综合成一条判定法则:有0个或2个奇点的连通图能够一笔画成,否则不能一笔画成.能够一笔画成的图形,叫做“一笔画”.用这条判定法则看一个图形是不是一笔画时,只要找出这个图形的奇点的个数来就能行了,根本不必用笔试着画来画去.看看下面的图可能会加深你对这条法则的理解.从画图的过程来看:笔总是先从起点出发,然后进入下一个点,再出去,然后再进出另外一些点,一直到最后进入终点不再出来为止.由此可见:①笔经过的中间各点是有进有出的,若经过一次,该点就与两条线相连,若经过两次则就与四条线相连等等,所以中间点必为偶点.②再看起点和终点,可分为两种情况:如果笔无重复地画完整个图形时最后回到起点,终点和起点就重合了,那么这个重合点必成为偶点,这样一来整个图形的所有点必将都是偶点,或者说有0个奇点;如果笔画完整个图形时最后回不到起点,就是终点和起点不重合,那么起点和终点必定都是奇点,因而该图必有2个奇点,可见有0个或2个奇点的连通图能够一笔画成.习题五1.下面的各个小图形都是由点和线组成的.请你仔细观察后回答:①与一条线相连的有哪些点?②与二条线相连的有哪些点?③与三条线相连的有哪些点?④与四条线或四条以上的线相连的有哪些点?2.若把与奇数条线相连的点叫做奇点,把与偶数条线相连的点叫偶点,那么请你回答:①有0个奇点(即全部是偶点)的图形有哪些?②有2个奇点的图形有哪些?③有4个或4个以上奇点的图形有哪些?④连通图形有哪些?不连通图形有哪些?3.如果笔在纸上连续不断、又不重复地一笔画成的图形叫一笔画,自己动笔实际画画看,然后回答:①哪些图形能够一笔画成?②哪些图形不能一笔画成?4.把以上各向联系起来看,进行归纳,找出规律然后回答:①如果把各部分连结在一起的图形叫做连通图形,那么能一笔画出的图形必定是连通图形;而不是连通图形必定不能一笔画出.这句话说得对吗?②有0个奇点(即全部是偶点)的连通图形一定可以一笔画出来(画时可以以任一点为起点,最后必能回到该点),这句话对吗?③只有两个奇点的连通图形也能一笔画出来,但要注意画时必须以一个奇点为起点,而以另一个奇点为终点,这句话对吗?④奇点个数超过两个的图形不能一笔画出来.这句话对吗?5.从画图过程的角度,进一步理解所发现的一些规律.习题五解答1.解:见下图①与一条线相连的点有:(在图中画成黑点,下同.)②与两条线相连的点有:③与三条线相连的点有:④与四条及四条以上的线相连的点有:2.解:①有0个奇点(即全部是偶点)的图形是:(1)、(5)、(10);②有2个奇点的图形是:(2)、(3)、(6)、(7);③有4个奇点的图形是:(4)、(9)有6个奇点的图形是:(8).④(1)~(10)是连通图形,(11)不是连通图形.3.解:①一笔画有:(1)、(5)、(10)、(2)、(3)、(6)、(7).②不能一笔画出的图形是:(4)、(8)、(9)、(11).4.解:①对;②对;③对;④对.5.解:(略)请看书.。

高斯小学奥数含答案二年级(下)第08讲 一笔画

高斯小学奥数含答案二年级(下)第08讲 一笔画

第八讲一笔画前续知识点:二年级第一讲;XX模块第X讲后续知识点:X年级第X讲;XX模块第X讲把里面的人物换成相应红字标明的人物.这里是小区平面图,我从哪个入口进去,才能一次不重复地走遍小区的所有小路,尽快地把口罩送给每个朋友呢?由于空气污染严重,哥哥让我给朋友们去送口罩,以防大家得病。

墨莫墨莫一笔画,是指从连通图的一点出发,笔不离纸,每条线都只画一次,不能重复.一笔画能解决很多实际问题.那么什么样的图形能够一笔画成,什么样的图形不能一笔画成呢?试着画一画下面的图形吧!例题1观察下列图形,能一笔画成的打“√”,不能一笔画成的打“×”.()()()()()()【提示】动手画一画,你知道什么样的图形一定不能一笔画成吗?练习1观察下列图形,能一笔画成的打“√”,不能一笔画成的打“×”.()()()()()()()()我们画了这么多图形,不难发现,不连通的图形一定不能一笔画成,能一笔画成的图形必定是连通图.连通图,指的是如果一个图形中的任意两点都是连通的,那么这个图形就是连通图.一个图形可以一笔画成,除了必须是连通图,还有没有其它的规律和特点呢?我们一起找找吧!首先,我们先来认识下面的两个名词:从一点出发的线条数目是奇数,如1、3、5、7、……我们称它为奇点. 从一点出发的线条数目是偶数,如2、4、6、8、……我们称它为偶点.奇点、偶点的个数与一个图形能否一笔画成有什么关系呢?我们来看一看下面的题目吧!【例题2】下面的各个图形都是由点和线组成的.请你仔细观察后回答,各图中的交叉点分别有几个奇点?几个偶点?能否一笔画成?能的在“( )”里打“√”,不能的在“( )”里打“×”.【提示】从某一点发出奇数条线,这个点是奇点;从某一点发出偶数条线,这个点是偶点.【练习2】下面的各个图形都是由点和线组成的.请你仔细观察后回答,各图中的交叉点分别有几个奇点?几个偶点?能否一笔画成?能的在“( )”里打“√”,不能的在“( )”里打“×”.(1) (2) (3)(4) 奇点数: ( ) ( ) ( ) ( ) 偶点数: ( ) ( ) ( ) ( ) 能否一笔画成:( ) ( ) ( ) ( )奇点数: ( ) ( ) ( ) ( ) 偶点数: ( ) ( ) ( ) ( )能否一笔画成:( ) ( ) ( ) ( )(1) (2)(3) (4)通过对上题的观察,相信大家都发现了规律.有0个奇点的连通图能够一笔画成.画时可以以任一点为起点,最后一定能以这个点为终点画完此图. 有2个奇点的连通图能够一笔画成.画时必须以一个奇点为起点,另一个奇点为终点画完此图. 有2个以上奇点的连通图不能一笔画成.根据以上规律,我们可以通过奇点个数来正确判断哪些图形能一笔画成,哪些图形不能一笔画成.我们就用学到的知识来解决生活中的一笔画问题吧!例题3草地上有许多小路,丁丁和月月分别站在A 、B 两个路口.谁能够一次不重复地走遍所有小路?【提示】谁的出发点是奇点?练习3花园里有许多崎岖的小路,小乖要浇花,它想一次不重复地走完每条小路.该从哪个路口出发呢?AB CDE例题4小河中有4个小岛,小岛之间建有六座桥.淘淘能一次不重复地走遍所有的小桥吗?【提示】先把实际地图画成“点线图”,然后数数奇点的个数吧!练习4蘑菇园的小朋友们要去游乐场玩,他们可以从6个入口进出游乐场.他们从哪个入口出发,才能一次不重复地走遍游乐场内的所有小路?我们已经可以正确判断哪些图形可以一笔画成,哪些不能一笔画成.如果不能一笔画成,可不可以通过增添或删除一些线的方法,让它变成可以一笔画成的图形呢?例题5AB C D EFG下面的“蝴蝶”能一笔画成吗?如果不能,按照如下要求把它改成能一笔画成的图形.(1)在图1中,去掉一条线;(2)在图2中,添加一条线.图1图2【提示】在两个奇点之间去掉或添加线.例题6甲乙两个不同公司的快递员去送货,两人都要以同样的速度走遍所有的街道(阴影部分),甲从A点出发,乙从B点出发,最后都回到C点.如果都选择最短的线路,谁先回到C点?ABC【提示】先把实际道路图画成“点线图”,再判断各个交叉点中有哪些是奇点.课堂内外七桥问题德国有一个城市叫哥尼斯堡.城中有一条小河,河中有两个小岛,还有7座桥把这两个小岛和陆地连接起来,如下图所示.人们经常在这里游玩,他们在游玩的时候提出这样一个问题:能不能一次不重复地走遍所有的小桥呢?作业1. 观察下列图形,能一笔画成的打“√”,不能一笔画成的打“×”.2. 下面每幅图中的交叉点分别有几个奇点?能否一笔画成呢?能的在“( )”里打“√”,不能的在“( )”里打“×”.( ) ( ) ( )( ) ( ) ( )小岛 小岛3. 菲菲周末去郊外的公园玩,公园里有许多崎岖的小路.她想不重复地一次走完每条小路,可以从哪个路口出发?4. 小熊、灰鼠、小象和小猪要分别从东、南、西、北四个入口去果园采果子,谁能不重复地一次走遍所有小路?5. 下面的图形能一笔画成吗?如果不能,按照如下要求将其改成能一笔画成的图形.(1)在图1中去掉一条线;(2)在图2中添加一条线.图1图2北CD E F G HBA 奇点数: ( ) ( ) ( ) ( ) 能否一笔画:( ) ( ) ( ) ( )(1) (2) (3) (4)第八讲 一笔画1.例题1答案:×,√,√,×,×,√详解:第(1)个图形是非连通图,不能一笔画;其它都是连通图,依次尝试判断即可. 2.例题2答案:如图所示:详解:把交叉点是奇点的圈起来,如图所示:有0个奇点和2个奇点的连通图能够一笔画成;2个奇点以上的连通图不能一笔画成.一个图形能否一笔画成与偶点数无关. 3.例题3 答案:月月详解:图中B 点和E 点是奇点,其它交叉点都是偶点.有2个奇点的图形,一笔画的特征是:从图形的一个奇点出发,回到另一个奇点.只有从奇点的路口出发,才能一次不重复地走遍所有小路.美羊羊站在B 点的路口上,所以能够一次不重复地走遍所有小路. 4.例题4 答案:不能详解:把图中的小岛看成点,把桥看成线,得到“点线图”,如图所示,有4个交叉点,这4个交叉点都是奇点,这个图形不能一笔画成.所以淘淘不能一次不重复地走遍所有的小桥.5.例题5答案:如图所示:(答案不唯一)奇点数: (0) (2) (2) (4) 偶点数: (4) (4) (5) (5) 能否一笔画成: (√) (√) (√) (×)详解:图中有4个奇点,不能一笔画成.去掉或添加一条线使得奇点个数减少,那么就在2个奇点之间去掉或添加线. 6.例题6 答案:甲详解:先把这个送货路线图画成“点线图”,如图所示,A 、C 是奇点.所以,甲从A 点出发回到C 点,可以一次不重复的走遍所有的街道;而乙要走遍所有的街道,其中必有重复.所以甲先回到C 点.7.练习1答案:√,√,√,×,×,√,√简答:第2个图形和第5个图形是非连通图,不能一笔画成;其它是连通图,依次尝试判断即可. 8.练习2答案:如图所示:简答:先把交叉点是奇点的圈起来,一一数出来,再判断能否一笔画成.(1) (2)(3)(4)奇点数: (0) (2) (2) (6) 偶点数: (3) (2) (3) (1) 能否一笔画成: (√) (√) (√) (×)9. 练习3答案:A 点或F 点简答:图中A 点和F 点是奇点,其它交叉点都是偶点.有2个奇点的图形,一笔画的特征是:从图形的一个奇点出发,回到另一个奇点.只有从奇点的路口出发,才能一次不重复地走遍所有小路.所以小乖应该从A 点或F 点出发.10. 练习4答案:C 或D简答:把图中的平面图画成“点线图”,如图所示,C 点和D 点是奇点,所以蘑菇园的小朋友们从C 或D 入口出发,才能一次不重复地走遍游乐场内的所有小路.11. 作业1 答案:×,×,√,×,√,√简答:第1个图形是非连通图,不能一笔画成;其它是连通图,依次尝试判断即可.12. 作业2答案:如图所示:简答:先把交叉点是奇点的圈起来,一一数出来,再判断能否一笔画成.13. 作业3答案:A 或B简答:观察图形可知,图中只有A 和B 两个奇点,其余的都是偶点.走时必须从一个奇点出发到另一个奇点结束,也就是从A 出发,从B 离开,或者从B 出发,从A 离开.14. 作业4答案:灰鼠和小熊简答:先根据果园的平面图画出点线图,如下图所示.观察下图中共有9个交叉点,其中7个点是偶点,只有两奇点数: (2) (4) (0) (4) 能否一笔画: (√) (×) (√) (×)(1) (2) (3) (4)E个点(北、西)是奇点,所以只有在北门和西门的小动物可以不重复地一次走遍所有的小路.15.作业5答案:不能简答:在任意两个奇点之间添一条线或去一条线,如下图所示,都可以改成能一笔画成的图形(答案不唯一).小猪(东)小象(南)。

高斯小学奥数含答案二年级(下)第08讲 一笔画

高斯小学奥数含答案二年级(下)第08讲 一笔画

第八讲一笔画前续知识点:二年级第一讲;XX模块第X讲后续知识点:X年级第X讲;XX模块第X讲把里面的人物换成相应红字标明的人物.这里是小区平面图,我从哪个入口进去,才能一次不重复地走遍小区的所有小路,尽快地把口罩送给每个朋友呢?由于空气污染严重,哥哥让我给朋友们去送口罩,以防大家得病。

墨莫墨莫一笔画,是指从连通图的一点出发,笔不离纸,每条线都只画一次,不能重复.一笔画能解决很多实际问题.那么什么样的图形能够一笔画成,什么样的图形不能一笔画成呢?试着画一画下面的图形吧!例题1观察下列图形,能一笔画成的打“√”,不能一笔画成的打“×”.()()()()()()【提示】动手画一画,你知道什么样的图形一定不能一笔画成吗?练习1观察下列图形,能一笔画成的打“√”,不能一笔画成的打“×”.()()()()()()()()我们画了这么多图形,不难发现,不连通的图形一定不能一笔画成,能一笔画成的图形必定是连通图.连通图,指的是如果一个图形中的任意两点都是连通的,那么这个图形就是连通图.一个图形可以一笔画成,除了必须是连通图,还有没有其它的规律和特点呢?我们一起找找吧!首先,我们先来认识下面的两个名词:从一点出发的线条数目是奇数,如1、3、5、7、……我们称它为奇点. 从一点出发的线条数目是偶数,如2、4、6、8、……我们称它为偶点.奇点、偶点的个数与一个图形能否一笔画成有什么关系呢?我们来看一看下面的题目吧!【例题2】下面的各个图形都是由点和线组成的.请你仔细观察后回答,各图中的交叉点分别有几个奇点?几个偶点?能否一笔画成?能的在“( )”里打“√”,不能的在“( )”里打“×”.【提示】从某一点发出奇数条线,这个点是奇点;从某一点发出偶数条线,这个点是偶点.【练习2】下面的各个图形都是由点和线组成的.请你仔细观察后回答,各图中的交叉点分别有几个奇点?几个偶点?能否一笔画成?能的在“( )”里打“√”,不能的在“( )”里打“×”.(1) (2) (3)(4) 奇点数: ( ) ( ) ( ) ( ) 偶点数: ( ) ( ) ( ) ( ) 能否一笔画成:( ) ( ) ( ) ( )奇点数: ( ) ( ) ( ) ( ) 偶点数: ( ) ( ) ( ) ( )能否一笔画成:( ) ( ) ( ) ( )(1) (2)(3) (4)通过对上题的观察,相信大家都发现了规律.有0个奇点的连通图能够一笔画成.画时可以以任一点为起点,最后一定能以这个点为终点画完此图. 有2个奇点的连通图能够一笔画成.画时必须以一个奇点为起点,另一个奇点为终点画完此图. 有2个以上奇点的连通图不能一笔画成.根据以上规律,我们可以通过奇点个数来正确判断哪些图形能一笔画成,哪些图形不能一笔画成.我们就用学到的知识来解决生活中的一笔画问题吧!例题3草地上有许多小路,丁丁和月月分别站在A 、B 两个路口.谁能够一次不重复地走遍所有小路?【提示】谁的出发点是奇点?练习3花园里有许多崎岖的小路,小乖要浇花,它想一次不重复地走完每条小路.该从哪个路口出发呢?AB CDE例题4小河中有4个小岛,小岛之间建有六座桥.淘淘能一次不重复地走遍所有的小桥吗?【提示】先把实际地图画成“点线图”,然后数数奇点的个数吧!练习4蘑菇园的小朋友们要去游乐场玩,他们可以从6个入口进出游乐场.他们从哪个入口出发,才能一次不重复地走遍游乐场内的所有小路?我们已经可以正确判断哪些图形可以一笔画成,哪些不能一笔画成.如果不能一笔画成,可不可以通过增添或删除一些线的方法,让它变成可以一笔画成的图形呢?例题5AB C D EFG下面的“蝴蝶”能一笔画成吗?如果不能,按照如下要求把它改成能一笔画成的图形.(1)在图1中,去掉一条线;(2)在图2中,添加一条线.图1图2【提示】在两个奇点之间去掉或添加线.例题6甲乙两个不同公司的快递员去送货,两人都要以同样的速度走遍所有的街道(阴影部分),甲从A点出发,乙从B点出发,最后都回到C点.如果都选择最短的线路,谁先回到C点?ABC【提示】先把实际道路图画成“点线图”,再判断各个交叉点中有哪些是奇点.课堂内外七桥问题德国有一个城市叫哥尼斯堡.城中有一条小河,河中有两个小岛,还有7座桥把这两个小岛和陆地连接起来,如下图所示.人们经常在这里游玩,他们在游玩的时候提出这样一个问题:能不能一次不重复地走遍所有的小桥呢?作业1. 观察下列图形,能一笔画成的打“√”,不能一笔画成的打“×”.2. 下面每幅图中的交叉点分别有几个奇点?能否一笔画成呢?能的在“( )”里打“√”,不能的在“( )”里打“×”.( ) ( ) ( )( ) ( ) ( )小岛 小岛3. 菲菲周末去郊外的公园玩,公园里有许多崎岖的小路.她想不重复地一次走完每条小路,可以从哪个路口出发?4. 小熊、灰鼠、小象和小猪要分别从东、南、西、北四个入口去果园采果子,谁能不重复地一次走遍所有小路?5. 下面的图形能一笔画成吗?如果不能,按照如下要求将其改成能一笔画成的图形.(1)在图1中去掉一条线;(2)在图2中添加一条线.图1图2北CD E F G HBA 奇点数: ( ) ( ) ( ) ( ) 能否一笔画:( ) ( ) ( ) ( )(1) (2) (3) (4)第八讲 一笔画1.例题1答案:×,√,√,×,×,√详解:第(1)个图形是非连通图,不能一笔画;其它都是连通图,依次尝试判断即可. 2.例题2答案:如图所示:详解:把交叉点是奇点的圈起来,如图所示:有0个奇点和2个奇点的连通图能够一笔画成;2个奇点以上的连通图不能一笔画成.一个图形能否一笔画成与偶点数无关. 3.例题3 答案:月月详解:图中B 点和E 点是奇点,其它交叉点都是偶点.有2个奇点的图形,一笔画的特征是:从图形的一个奇点出发,回到另一个奇点.只有从奇点的路口出发,才能一次不重复地走遍所有小路.美羊羊站在B 点的路口上,所以能够一次不重复地走遍所有小路. 4.例题4 答案:不能详解:把图中的小岛看成点,把桥看成线,得到“点线图”,如图所示,有4个交叉点,这4个交叉点都是奇点,这个图形不能一笔画成.所以淘淘不能一次不重复地走遍所有的小桥.5.例题5答案:如图所示:(答案不唯一)奇点数: (0) (2) (2) (4) 偶点数: (4) (4) (5) (5) 能否一笔画成: (√) (√) (√) (×)详解:图中有4个奇点,不能一笔画成.去掉或添加一条线使得奇点个数减少,那么就在2个奇点之间去掉或添加线. 6.例题6 答案:甲详解:先把这个送货路线图画成“点线图”,如图所示,A 、C 是奇点.所以,甲从A 点出发回到C 点,可以一次不重复的走遍所有的街道;而乙要走遍所有的街道,其中必有重复.所以甲先回到C 点.7.练习1答案:√,√,√,×,×,√,√简答:第2个图形和第5个图形是非连通图,不能一笔画成;其它是连通图,依次尝试判断即可. 8.练习2答案:如图所示:简答:先把交叉点是奇点的圈起来,一一数出来,再判断能否一笔画成.(1) (2)(3)(4)奇点数: (0) (2) (2) (6) 偶点数: (3) (2) (3) (1) 能否一笔画成: (√) (√) (√) (×)9. 练习3答案:A 点或F 点简答:图中A 点和F 点是奇点,其它交叉点都是偶点.有2个奇点的图形,一笔画的特征是:从图形的一个奇点出发,回到另一个奇点.只有从奇点的路口出发,才能一次不重复地走遍所有小路.所以小乖应该从A 点或F 点出发.10. 练习4答案:C 或D简答:把图中的平面图画成“点线图”,如图所示,C 点和D 点是奇点,所以蘑菇园的小朋友们从C 或D 入口出发,才能一次不重复地走遍游乐场内的所有小路.11. 作业1 答案:×,×,√,×,√,√简答:第1个图形是非连通图,不能一笔画成;其它是连通图,依次尝试判断即可.12. 作业2答案:如图所示:简答:先把交叉点是奇点的圈起来,一一数出来,再判断能否一笔画成.13. 作业3答案:A 或B简答:观察图形可知,图中只有A 和B 两个奇点,其余的都是偶点.走时必须从一个奇点出发到另一个奇点结束,也就是从A 出发,从B 离开,或者从B 出发,从A 离开.14. 作业4答案:灰鼠和小熊简答:先根据果园的平面图画出点线图,如下图所示.观察下图中共有9个交叉点,其中7个点是偶点,只有两奇点数: (2) (4) (0) (4) 能否一笔画: (√) (×) (√) (×)(1) (2) (3) (4)E个点(北、西)是奇点,所以只有在北门和西门的小动物可以不重复地一次走遍所有的小路.15.作业5答案:不能简答:在任意两个奇点之间添一条线或去一条线,如下图所示,都可以改成能一笔画成的图形(答案不唯一).小猪(东)小象(南)。

小学二年级奥数:一笔画问题

小学二年级奥数:一笔画问题

我们刚才画的图形都有几个交点? 几个双数点?几个单数点?
一个图形能否一笔画成,关键在于图 中单数点的多少。 (1)凡是图形中没有单数点的一定可以 一笔画成。 (2)凡是图形中只有一个或者两个单数 点,一定可以一笔画成。画时必须从一个 单数点为起点,以另一单数点为终点。 (3)凡是图形中单数点的个数多于两个 时,此图肯定是不能一笔画成。
图1 图2 图3
连通的图形有可能一笔画
图4 图5
你能用一笔画出下列图形吗?
两条相交的线处都有一个交点。
数一数下列图形各有几个交点?
(ቤተ መጻሕፍቲ ባይዱ4 )个
( 2 )个
( 9 )个
( 5 )个
交点分为两种
( 1 )从这点出发的线的数目 是双数的,叫双数点(偶点)。 ( 2 )从这点出发的线的数目
是单数的,叫单数点(奇点)。
甲乙两个邮递员去送信,两人以同样的速 度走遍所有的街道,甲从A点出发,乙从 B点出发,最后都回到邮局(C)。如果 要选择最短的线路,谁先回到邮局?

邮 局

根据今天学习知识,先判断下列图 形能不能一笔画成?再想一想该从 哪里开始画?最后再动手画画看。
脑筋急转弯: 想一想 一笔能写出1000吗?
一笔画问题
你能一笔画出来吗?
不重复的路
——一笔画
“一笔画”是指笔不 离开纸,而且每条线 都只画一次不准重复 而画成的图形。
“ 一笔 画 ”是一种 有 趣的数学游戏,那么什 么样的图形可以一笔画 成呢?试一试,画一画, 发挥你的想象力,发现 一笔画的规律。
下列图形能否一笔画
不连通的图形不能一笔画
下列哪些图形能一笔画出来,哪些不能?
判断下列图形能否一笔画

小学奥数知识讲解之 一笔画问题

小学奥数知识讲解之 一笔画问题

第一讲一笔画问题小朋友们,你们能把下面的图形一笔画出来吗?如果用笔在纸上连续不断又不重复,一笔画成某种图形,这种图形就叫一笔画。

那么是不是所有的图形都能一笔画成呢?这一讲我们就一起来学习一笔画的规律。

典型例题例【1】下面这些图形,哪个能一笔画?哪个不能一笔画?(1)(2)(3)(4)分析图(1)一笔画出,可以从图中任意一点开始画该图,画到同一点结束。

经过尝试后,可以发现图(2)不能一笔画出。

图(3)不是连通的,显然也不能一笔画出。

图(4)也可以一笔画出,且从任何一点出发都可以。

通过观察,我们可以发现一个几何图形中和一点相连通的线的条数不同。

由一点发出有偶数条线,那么这个点叫做偶点。

相应的,由一点出发有奇数条数,则这个点叫做奇点。

再看图(1)、(4),其中每一点都是偶点,都可以一笔画,且可以从任意一点画起。

而图(2)有4个奇点,2个偶点,不能一笔画成。

这样我们发现,一个图形能否一笔画和这个图形奇点,偶点的个数有某种联系,到底存在什么样的关系呢,我们再看一个例题。

例【2】下面各图能否一笔画成?(1)(2)(3)分析图(1)从任意一点出都可以一笔画成,因为它的每一个点都是与两条线相连的偶点。

关于图(2),经过反复试验,也可找到画法:由A B C AD C。

图中B、D为偶点,A、C为奇点,即图中有两个奇点,两个偶点。

要想一笔画,需从奇点出发,回到奇点。

经过尝试,图(3)无法一笔画成,而图中有4个奇点,5个偶点。

解图(1)、(2)可以一笔画。

这样我们可以发现能否一笔画和奇点、偶点的数目有着紧密的关系。

如果图形只有偶点,可以以任意一点为起点,一笔画出。

如果只有两个奇点,也可以一笔画出,但必须从奇点出发,由另一点结束。

如果图形的奇点个数超过两个,则图形不能一笔画出。

例【3】 下面的图形,哪些能一笔画出?哪些不能一笔画出?分析 图(1)有两个奇点,两个偶点,可以一笔画,须由A 开始或由B 开始到B 结束或到A 结束。

小学二年级奥数--一笔画问题(1)

小学二年级奥数--一笔画问题(1)

二年级奥数一笔画问题(1)知识定位一笔画的问题源于著名的“哥德斯堡七桥问题,故事发生在18世纪的哥德斯堡城。

流经那里的一条河中优两个小岛,还有七座桥把这两个小岛与河岸联系起来,那里风景优美,游子众多,在这美丽的地方,人们议论着一个有趣的问题:一个游人怎样才能不重复地一次走遍七座桥,最后又回到出发点呢?一笔画问题就是从这个问题演变而来的,也是小学奥数中较为经典较为有趣的内容。

知识梳理1. 什么是一笔画?就是指能一笔画出的话,也就是说笔不离纸能一次把它画出来,图上的每条边都要画到而且不能重复。

2. 什么是奇点,什么是偶数奇点就是表示从这个点出发的线段为奇数条;偶数就是表示从这个点出发的线段为偶数条。

3.判断可以一笔画的原则:(1)图形为连通图,(2)奇数点的个数为0或者2.4. 怎么画一笔画奇数点个数为0的时候,起点与终点在任意的同一个点上。

当奇数点个数为2的时候,起点与终点分别在两个奇点上。

5. 判断几笔画笔画数=奇点数/2例题精讲【题目】你能试着用一笔把下列图形画出来吗?如果可以,说说你是怎样画的?【题目】下图中,说一说哪些点是偶点,哪些点是奇点,再画一画看看它们能不能一笔画出?【题目】下列图形能一笔画成吗?为什么?并试着画一画。

【题目】下图中的每一个图形,最少需要几笔画出?【题目】奥迪车的标志是四个环扣在一起的样子:这个图形能不能一笔画画出呢?A.能B.不能C.不确定D.以上答案都不对【题目】下图中有( )个奇点?【选项】A.7个B.6个C.5个D.4个【题目】下列图形能一笔画成吗?下面说法正确的是( )【选项】A.能一笔画出,因为有偶数个奇点。

B.能一笔画出,因为没有奇点。

C.不能一笔画出,因为有6个奇点。

D.不能一笔画出,因为有4个奇点。

【题目】下面这座小屋子能不能一笔画出呢?下面说法正确的是( )【选项】A.可以一笔画,我已经画出来啦 B.不可以一笔画,画不出来C.不清楚可不可以一笔画D.以上答案都不对【题目】( )笔才能画出?【选项】A.4 B.2 C.3 D.1。

【小学二年级奥数讲义】学习一笔画带答案

【小学二年级奥数讲义】学习一笔画带答案

【小学二年级奥数讲义】学习一笔划【专题简析】一笔划,就是从图形某点出发,笔不走开纸,并且每条线段都只画一次不重复。

它是一种风趣的数学游戏。

那么,哪些图形不可以一笔划成,哪些图形能够一笔划成呢?一个图形可否一笔划成,重点在于单数点的多少,有 2 个或 0 个单数点的图形便可以一笔划成,单数点在一笔划中只好作为起点和终点。

【例题 1】一些平面图形是由点和线组成的,这里的“线”能够是线段,也能够是一段曲线,请自己画一些图研究每个点和线的连结状况。

思路导航:请小朋友认真察看以下各图中的点,他们分别与几条线相连。

①②③④(1)与一条线段相连的点有:(2)与两条线段相连的点有:(3)与三条线段相连的点有:(4)与四条线段相连的点有:概括:把和一条、三条、五条等单数条线连得点叫做单数点;把和两条、四条、六条、八条等双数条线连的点叫双数点,每个图中的点要么是单数点,要么是双数点。

练习 11.随意找一个平面图形,数一数图中有几个单数点,几个双数点。

2.下边图形中有哪几个单数点?AB D C答案:AD3.数一数下边图形中有几个双数点,分别是哪些点?GA E DB F CH答案:ABCDEF【例题 2】下边的图形能不可以一笔划成?假如能,应当如何画?A C AB C(1)O(2)B DD E FA B CC(3)DE F【思路导航】图(1)中 A 、 B 、C、D 、 O 五个点都是双数点,所以这个图形能够一笔划成。

画时能够从随意一点出发。

图(2)中 A 、 C、D 、 F 四个点都是双数点, B 和 E 两个点是单数点,所以这个图形也能够一笔划成。

画时要从单数点出发,最后回到另一个单数点。

图(3)中 A 、 D 是双数点, B、C、 E 和 F 四个点是单数点,单数点的个数超出了两个,这个图形不可以一笔划成。

练习 21.下边的图形能不可以一笔划成,假如能,请说明画法,假如不可以,请说明原因(1)(2)答案:图( 1)能够一笔划成,因为单数点有两个图( 2)不可以一笔划成,因为单数点大于两个2.以下图形能一笔划成吗 ?为何?答:图( 1)能够一笔划成,因为单数点个数为零图( 2)不可以够画成,因为单数点只有一个图( 3)不可以够画成,单数点个数大于两个3.察看以下图形,哪个图形能够一笔划成?怎么画?图( 1)单数点个数为0,能够一笔划出图( 2)单数点个数为 4 个,不可以够一笔划出图( 3)单数点 2 个,能够画出【例题 3】以下图是某地域全部街道的平面图,甲、乙两人同时分别从 A 、B 出发,以同样的速度走遍BC A思路导航:题中要求两人一定走遍全部街道,最后抵达 C.认真察看,能够发现图中有两个单数点: A 、C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 【小学二年级奥数讲义】 学习一笔画
【专题简析】
一笔画,就是从图形某点出发,笔不离开纸,而且每条线段都只画一次不重复。

它是一种有趣的数学游戏。

那么,哪些图形不能一笔画成,哪些图形可以一笔画成呢?
一个图形能否一笔画成,关键在于单数点的多少,有2个或0个单数点的图形就能够一笔画成,单数点在一笔画中只能作为起点和终点。

【例题1】
一些平面图形是由点和线构成的,这里的“线”可以是线段,也可以是一段曲线,请自己画一些图研究每个点和线的连接情况。

思路导航:请小朋友仔细观察下列各图中的点,他们分别与几条线相连。

① ② ③ ④
(1)
与一条线段相连的点有:
(2)
与两条线段相连的点有:(3)
与三条线段相连的点有:
(4)
与四条线段相连的点有:
归纳:把和一条、三条、五条等单数条线连得点叫做单数点;把和两条、四条、六条、八条等双数条线连的点叫双数点,每个图中的点要么是单数点,要么是双数点。

练习1
1.任意找一个平面图形,数一数图中有几个单数点,几个双数点。

相关文档
最新文档