小学奥数一笔画
小学奥数智巧趣题专题--一笔画问题(六年级)竞赛测试.doc

小学奥数智巧趣题专题--一笔画问题(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】判断下列图a、图b、图c能否一笔画.【答案】图a和图c能,图b不能。
【解析】图a能,因为有2个奇点,图b不能,因为图形不是连通的,图c能,因为图中全是奇点。
【题文】邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?【答案】4-1-2-5-8-9-6-10-11-7-4-3【解析】不走重复路,一笔能画出路线图,图中有2个奇点,应该从奇点处出发,下面有一种参考路线:4-1-2-5-8-9-6-10-11-7-4-3。
【题文】判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.评卷人得分【答案】图(1)不能一笔画出,因为图中有4个奇点,连结BD,或者去掉BF都可以使图形能一笔画出。
图(2)不能一笔画出,因为图中有4个奇点,去掉KL,或者BK都可以使图形能一笔画出。
图(3)不能一笔画出,因为图中有4个奇点,去掉AB可以使图形能一笔画出。
【解析】图(1)不能一笔画出,因为图中有4个奇点,连结BD,或者去掉BF都可以使图形能一笔画出。
图(2)不能一笔画出,因为图中有4个奇点,去掉KL,或者BK都可以使图形能一笔画出。
图(3)不能一笔画出,因为图中有4个奇点,去掉AB可以使图形能一笔画出。
一个K(K>1)笔画最少要添加几条连线才能变成一笔画呢?我们知道K笔画有2K个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点。
如左下图中的B,C两个奇点在右下图中都变成了偶点。
所以只要在K笔画的2K个奇点间添加(K-1)笔就可以使奇点数目减少为2个,从而变成一笔画。
【题文】18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?【答案】【解析】欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了。
小学奥数著名问题之——一笔画问题习题集

一笔画问题(教师必备)一、欧拉的一笔画原理是:(1)一笔画必须是连通的(图形的各部分之间连接在一起);(2)没有奇点的连通图形是一笔画,画时可以以任一偶点为起点,最后仍回到这点;(3)只有两个奇点的连通图形是一笔画,画时必须以一个奇点为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形不是一笔画。
利用一笔画原理,七桥问题很容易解决。
因为图中A,B,C,D都是奇点,有四个奇点的图形不是一笔画,所以一个散步者不可能不重复地一次走遍这七座桥。
二、顺便补充两点:(1)一个图形的奇点数目一定是偶数。
因为图形中的每条线都有两个端点,所以图形中所有端点的总数必然是偶数。
如果一个图形中奇点的数目是奇数,那么这个图形中与奇点相连接的端点数之和是奇数(奇数个奇数之和是奇数),与偶点相连的线的端点数之和是偶数(任意个偶数之和是偶数),于是得到所有端点的总数是奇数,这与前面的结论矛盾。
所以一个图形的奇点数目一定是偶数。
(2)有K个奇点的图形要K÷2笔才能画成。
例如:下页左上图中的房子共有B,E,F,G,I,J六个奇点,所以不是一笔画。
如果我们将其中的两个奇点间的连线去掉一条,那么这两个奇点都变成了偶点,如果能去掉两条这样的连线,使图中的六个奇点变成两个,那么新图形就是一笔画了。
将线段GF和BJ去掉,剩下I和E两个奇点(见右下图),这个图形是一笔画,再添上线段GF和BJ,共需三笔,即(6÷2)笔画成。
一个K(K>1)笔画最少要添加几条连线才能变成一笔画呢?我们知道K笔画有2K个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点。
如左下图中的B,C两个奇点在右下图中都变成了偶点。
所以只要在K笔画的2K个奇点间添加(K-1)笔就可以使奇点数目减少为2个,从而变成一笔画。
三、到现在为止,我们已经学会了如何判断一笔画和多笔画,以及怎样添加连线将多笔画变成一笔画,看下面的例题:1.下列图形分别是几笔画?怎样画?2.能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?3.从A点出发,走遍右上图中所有的线段,再回到A点,怎样走才能使重复走的路程最短?4.下图是国际奥林匹克运动会的会标,能一笔画吗?如果能,请你把它画出来。
小学奥数知识讲解-一笔画问题

第一讲一笔画问题小朋友们,你们能把下面的图形一笔画出来吗?如果用笔在纸上连续不断又不重复,一笔画成某种图形,这种图形就叫一笔画。
那么是不是所有的图形都能一笔画成呢?这一讲我们就一起来学习一笔画的规律。
典型例题例【 1】下面这些图形,哪个能一笔画?哪个不能一笔画?( 1)(2)(3)(4)分析图(1)一笔画出,可以从图中任意一点开始画该图,画到同一点结束。
经过尝试后,可以发现图(2)不能一笔画出。
图(3)不是连通的,显然也不能一笔画出。
图(4)也可以一笔画出,且从任何一点出发都可以。
通过观察,我们可以发现一个几何图形中和一点相连通的线的条数不同。
由一点发出有偶数条线,那么这个点叫做偶点。
相应的,由一点出发有奇数条数,则这个点叫做奇点。
再看图( 1)、(4),其中每一点都是偶点,都可以一笔画,且可以从任意一点画起。
而图(2)有 4 个奇点, 2 个偶点,不能一笔画成。
这样我们发现,一个图形能否一笔画和这个图形奇点,偶点的个数有某种联系,到底存在什么样的关系呢,我们再看一个例题。
例【 2】下面各图能否一笔画成?(1)(2)(3)分析图(1)从任意一点出都可以一笔画成,因为它的每一个点都是与两条线相连的偶点。
关于图(2),经过反复试验,也可找到画法:由 A B C AD C。
图中 B、D 为偶点, A、C 为奇点,即图中有两个奇点,两个偶点。
要想一笔画,需从奇点出发,回到奇点。
经过尝试,图( 3)无法一笔画成,而图中有 4 个奇点, 5 个偶点。
解图( 1)、(2)可以一笔画。
这样我们可以发现能否一笔画和奇点、偶点的数目有着紧密的关系。
如果图形只有偶点,可以以任意一点为起点,一笔画出。
如果只有两个奇点,也可以一笔画出,但必须从奇点出发,由另一点结束。
如果图形的奇点个数超过两个,则图形不能一笔画出。
例【 3】下面的图形,哪些能一笔画出?哪些不能一笔画出?分析图( 1)有两个奇点,两个偶点,可以一笔画,须由 A 开始或由 B 开始到 B 结束或到 A 结束。
六年级下册数学讲义-小学奥数精讲精练:-第八讲-一笔画问题

第八讲一笔画问题一、一笔画问题问题1 你能一笔画出一个“田”字吗?所谓一笔画出的意思就是在一张纸上(不允许折叠)笔不离纸,而且每一笔划(或称线段)只能画一次,不准重复.对于“串”字或“品”字呢?结果会怎样?(参看图 8-1)通过各种尝试发现,“田”字总也不能一笔画成,而“串”字却可以一笔画成.由于“品”字中的三个“口”字不连在一起,显然也不能一笔画成.我们把那些能一笔画成的图形叫一笔画.一笔画问题主要讨论什么样的图形可以一笔画成.例 1 下列图形哪些能一笔画成?哪些不能一笔画成?经过尝试,你会发现,图 8-2(a)、(c)、(e)是可以一笔画成的.而且图(c)、(e)可从任意一点出发,一笔画成回到出发点,而图(a)只能从A (或D)点出发,一笔画成到 D(或A)点结束.如果图形非常复杂,用这种逐一尝试的方法,则所花的时间较多,且有时还无法下结论.有没有一种简便的判断方法呢?下面就来研究这个问题.上面研究的图形都是由点和线段(或弧)组成的,在数学中叫做图.图形中的点叫图的结点,线段(或弧)叫做图的边.作为一个图,其图形还必须满足以下条件:(1)每条边都有两个端点(可以重合)作为结点;(2)各条边之间互不相交.一个图完全由它的结点和边的个数以及它们相互连结的情况来确定,而与边的曲直长短无关.图中与一个结点相连结的边的条数称为这个结点的度数.度数为偶数的结点叫做偶结点.例如,图 8-3 中结点 C、D、E 都是偶结点.度数为奇数的结点叫做奇结点.例如,图 8-3 中结点A、B、F、G 都是奇结点.任何两点间都有线连接的图称作连通图.(如图8-3 中D 与G 可通过DB、BA、AG 连接)观察例 1 中的五个图,其结点的奇偶性可列成下表:从表中可以发现,一个图能否一笔画成,与图的奇结点的个数有密切联系, 人们总结出如下规律:一个图若是一笔画必定是个连通图.一个连通图,若没有奇结点(即全是偶结点),那么这个图一定可以一笔画成,而且可以从任一偶结点出发,一笔画成回到出发点.一个连通图,若只有两个奇结点,那么这个图也可以一笔画成.而且只能从某一奇结点出发一笔画成,到另一奇结点结束.一个图,若奇结点个数多于两个,那么这个图就不能一笔画成. 例 2判断下列各图是否能一笔画出来.解:其中(b)、(d)、(e)三个图无奇结点,所以可从任一点出发,一笔画成, 并且回到出发点;(a)、(f)两图各有两个奇结点,所以可从其中一个奇结点出发,一笔画成,到另一个奇结点结束;而图(C)的八个结点都是奇结点,所以不能一笔画出来.当作练习,请把例 2 中能够一笔画的图一笔画出来.二、七桥问题和欧拉定理问题 2 七桥问题.关于一笔画,曾有一个颇为著名的哥尼斯堡七桥问题.事情发生在 18 世纪的哥尼斯堡,有一条河流从这个城市穿过,河中有两个小岛 A、B,河上有七座桥连结两个小岛及河的两岸(参看图 8-5),那里的居民在星期日有散步的习惯.有的人想,能不能一次走遍七座桥,每座桥只走过一次,最后回到出发点?这个问题似乎不难,谁都想试一试,但谁也没有找到答案.后来有人写信请教著名的瑞士数学家欧拉.欧拉的头脑比较冷静,千百人的失败使他猜想:也许那样的走法根本就不存在.1936 年他证明了自己的猜想.欧拉解决七桥问题的方法独特,思想新颖,非常富有启发性.他用点表示小岛和两岸,用连结两点的线段表示连结相应两地的桥,得到由七条线段连结四个点而成的图形(参看图8-5(b)).这样七桥问题就变成了一个一笔画问题:能不能一笔画出这个图形,并且最后返回起点?前面我们虽然通过对例 1 的分析归纳出了一个连通图是否能一笔画出来的三条结论,但并没有证明,没有说明这是为什么.下面我们简要说明其中的道理.一个连通图能否一笔画成主要是与结点的边数(也称度数)有关.假定某个图能一笔画成,如果结点 P 不是起点或终点,而是中间点,那么 P 一定是个偶结点.因为无论何时通过一条边进入 P,由于不能重复,必须从另一条边离开 P,因此与 P 连结的边一定成对出现,所以 P 是偶结点.如果一个结点 Q 是奇结点,那么在一笔画中只能是起点或终点.由此可以看出,在一个一笔画中,奇结点个数至多只能有两个.由于哥尼斯堡七桥问题相应的图中有四个奇结点,所以不能一笔画成.也就是说,七桥问题无解,证实了欧拉的猜想.欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题, 而且得到并证明了更为广泛的上述有关一笔画的三条结论,人们通常称之为欧拉定理.1736 年,欧拉在圣彼得堡科学院作了一次报告,公布了他关于七桥问题的研究成果.欧拉在研究中提出了一种新颖的数学问题及思想方法,它标志着一门崭新的数学学科——图论的诞生.对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路.例如,图 8-6(a)中的图无奇结点,可以从 A 点出发,一笔画成回到 A 点, 其路线为A→D→E→H→D→G→H→I→F→E→B→F→C→B→A.图8-6(b)中的图有两个奇结点 C 和E,可以从E 出发一笔画成,到 C 结束.其路线为E→D→C→B→A→C.这两条路线都是欧拉路.应当注意:一个图如果存在欧拉路,那么不一定是唯一的.人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路.具有欧拉回路的图叫做欧拉图.例如,图 8-6(a)所表示的路线就是一条欧拉回路,因此相应的图就是一个欧拉图.例3 图8-7 是一公园的平面图,线段表示路径,要使游客走遍每条路且不重复, 问出入口应设在哪里?分析与解:这个问题实质上是一个一笔画问题.图中只有两个奇结点 C 和E,因此,只要把出入口分别设在这两个奇结点处,游客就能由入口进入公园,不重复地走遍每条路,然后从出口处离开公园.例4 能否一笔画出一条曲线,使它和图 8-8 中的八条线段都只相交一次(不准在端点处相交)?分析与解:尝试几次后,会感到很难下结论.事实上,直接寻找答案并不容易.我们可从七桥问题得到启示.原图形把平面分成了五个部分,分别用 A、B、C、D、E 五个点表示.两个点之间的连线正好用来表示与相应的线段相交一次,如图 8 -8(b).于是,问题就变成了图 8-8(b)中所表示的图能否一笔画成.因为图中A、B、C、D 都是奇结点,因此,它不能一笔画成,即不存在符合题目要求的曲线.例 5 图 8-9 表示一个展览馆的平面图,其中共有五个展览室,每个展览室都有一个门通向室外.能否设计一条参观路线,一次不重复地穿过每一个门并能回到原地.分析与解:如果用 A、B、C、D、E 表示展览室,用F 表示室外,用连线表示相应的门,那么图 8-9(a)就变成了图 8-9(b)于是问题就转化为判断图 8-9(b)是否为欧拉图.由图中可以看出,点 C、D、E、F 都是奇给点,因而图 8-9(b)不具有欧拉回路.所以不是欧拉图.也就是说,不存在题中所要求的那种参观路线.可以进一步考虑,关闭了哪两个门之后,就能设计出符合题中要求的参观路线了?为此,只要使图 8-9(b)变为欧拉图,即使它的奇结点个数为 O 即可.例如抹去线段CD 和EF 后的图就没有奇结点了.也就是说,如果关闭 C、D 之间和E、F 之间的两个门,就能设计出一条参观路线,一次不重复的穿过每一个门,并能回到原地.请你试一试,同时想一想,是否还存在其它的答案,一共有几种?习题八1.判断下列各图是否能一笔画成.2.一个花园的小径如图 8-11 所示,散步者能否不重复地一次走遍全部小径?3.图8-12 中A、B、C、D 是四个防空洞,相邻防空洞之间有地道相通,且每个防空洞各有一条地道与地面相通,能否找到一条路线不重复地走遍所有地道?4.用剪刀能否一次连续剪下图 8-13 所示的纸上的 3 个正方形和2 个三角形?5.一只蚂蚁,从图 8-14 右上角长方形中 P 点出发爬行,它要越过这图中16 条线段.每条线段只能通过一次,且不能通过线段的端点,你认为存在这样的路线吗?806.图8-15 表示一个有九个展室的展览馆平面图,每相邻的展室之间都有一道门相通,能否设计一条参观路线,从入口进去,每道门只通过一次,再由出口出去?如果能,则标出参观路线;如果不能,则考虑至少要增开几道门就可设计出符合要求的路线,并标出“新门”的位置.。
小学奥数 奇妙的一笔画 精选练习例题 含答案解析(附知识点拨及考点)

所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空例题精讲知识点拨4-1-5.奇妙的一笔画【关键词】华杯赛,六年级,初赛,第10题【解析】最少需要3种颜色的旗子。
因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。
小学奥数奇妙的一笔画题库教师版

奇妙的一笔画例题精讲所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形,一定不能一笔画.多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成.【例 1】我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点哪些点是奇点【解析】奇点:J D H F偶点:A E B C G I【例 2】判断下列图a、图b、图c能否一笔画.【解析】图a能,因为有2个奇点,图b不能,因为图形不是连通的,图c能,因为因为图中全是奇点【例 3】下面图形能不能一笔画成若果能,应该怎样画【解析】图1能因为图中全是偶点,图2能因为图中全是偶点,图3不能因为有4个奇点.【例 4】下面的图形,哪些能一笔画出哪些不能一笔画出【解析】第1个能,2、3不能【例 5】下图中不能一笔画成,请你在下图中添加最少的线段,将其改成一笔画的图形,并画出路线图.【解析】不能一笔画出,因为图中有E H G F四个奇点,连结EH就可以使图形一笔画出.【例 6】下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁该怎样爬【解析】要想不重复爬出,需要图形能一笔画出,由于图中有两个奇点,所以应该从奇点出发才能一笔画出图形,所以甲蚂蚁能够.【例 7】能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形【解析】可以.【例 8】下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里【解析】要想不重复,需要路线能一笔画出,由于图中有两个奇点,所以入口和出口应该分别放在两个奇点出,即F和I点.【例 9】邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适【解析】不走重复路,一笔能画出路线图,图中有2个奇点,应该从奇点处出发,下面有一种参考路线:4-1-2-5-8-9-6-【例 10】观察下面的图,看各至少用几笔画成【解析】图(1)有8个奇点,所以要4笔画出,图(2)有12个奇点,所以要一笔画出,图(3)能一笔画出.【例 11】判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.【解析】图(1)不能一笔画出,因为图中有4个奇点,连结BD,或者去掉BF都可以使图形能一笔画出.图(2)不能一笔画出,因为图中有4个奇点,去掉KL,或者BK都可以使图形能一笔画出.图(3)不能一笔画出,因为图中有4个奇点,去掉AB可以使图形能一笔画出.一个K(K>1)笔画最少要添加几条连线才能变成一笔画呢我们知道K笔画有2K个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点.如左下图中的B,C两个奇点在右下图中都变成了偶点.所以只要在K笔画的2K个奇点间添加(K-1)笔就可以使奇点数目减少为2个,从而变成一笔画.【例 12】18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功【解析】欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了.而图B中有4个奇点显然不能一笔画出.【巩固】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥【解析】能【例 13】右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出【解析】将图形中的6个区域看成6个点,每个门看成连结他们的线段,显然6个点都是偶点,所以有人能一次不重复的走过所有的门.【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门如果不能,请说明理由.如果能,应从哪开始走【解析】不能【例 14】一条小虫沿长6分米,宽4分米,高5分米的长方体的棱爬行.如果它只能进不能退,并且同一条棱不能爬两次,那么它最多能爬多少分米【解析】8个定点都是奇点,所以至少需要4笔.多画长和高能保证总路程最长,为A-B-G-H-A-D-C-F-E-D总长为6×4+5×4 +4×1=48分米.【巩固】一只木箱的长、宽、高分别为5,4,3厘米(见右图),有一只甲虫从A点出发,沿棱爬行,每条棱不允许重复,则甲虫回到A点时,最多能爬行多少厘米【解析】最多34厘米【例 15】如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到【解析】可以将图中的五个小厅以及厅外的部分都抽象成点,为方便解题,给它们分别编号.这时,连通厅与厅之间的门就相当于各点之间的连线.于是题目中餐厅的平面图就抽象成为一个连通的图形,求穿形路线的问题就转化成一笔画的问题.在抽象出的图形中,我们可以找到四个奇点,即①、④、③和厅外,所以图形不能一笔画出也就是说,从入口进入不可能一次不重复的穿过所有的门.但根据一笔画问题的知识,只要关闭门,把③、④变为偶点,就可以办到,可行路线如下图:B【例 16】在3×3的方阵中每个小正方形的边长都是100米.小明沿线段从A点到B 点,不许走重复路,他最多能走多少米【解析】这道题大多数同学都采用试画的方法,实际上可以用一笔画原理求解.首先,图中有8 个奇点,在8 个奇点之间至少要去掉4 条线段,才能使这8 个奇点变成偶点;其次,从A点出发到B 点,A,B 两点必须是奇点,现在A,B 都是偶点,必须在与A,B 连接的线段中各去掉1 条线段,使A,B 成为奇点.所以至少要去掉6 条线段,也就是最多能走1800 米,走法如图【例 17】一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短全程多少千米【解析】图中共有8 个奇点,必须在8 个奇点间添加4 条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画.在距离最近的两个奇点间添加一条连线,如左下图中虚线所示,共添加4 条连线,这4 条连线表示要重复走的路,显然,这样重复走的路程最短,全程30 千米.走法参考右下图(走法不唯一).。
一笔画(奥数)

一笔画【知识要点】1.概念:一笔画是指笔不离开纸,而且每条线都只画一次不准重复而画成的图形。
2.分类:图中的点可分两大类:(1)双数点:从这点出发的线的数目是双数的,叫双数点。
(2)单数点:从这点出发的线的数目是单数的,叫单数点。
3.规律:一个图形能否一笔画成,关键在于图中单数点的多少。
(1)凡是图形中没有单数点的一定可以一笔画成。
(2)凡是图形中只有两个单数点,一定可以一笔画成,画时必须从一个单数点为起点,最后以另一单数点为终点。
(3)凡是图形中单数点的个数多于两个时,此图肯定是不能一笔画成。
【题目】1 判断下面图形中哪些点是单数点哪些点是双数点。
2 下列图形中各有几个单数点?能一笔画成吗?3 判断下面图形能不能一笔画成?如果能,应该怎样画?A4下面图形能不能一笔画成?这什么?5 如图是一个大型花池中小路的平面图,你能否不重复地一次走完所有的小路?进出口应设在什么地方?6 将下图加上最少的线改成一笔画的图形。
7.将下图去掉最少的线改成一笔画图形。
8.下图中的线段代表小路,请小朋友想一想,能够不重复地爬遍小路的甲蚂蚁还是乙蚂蚁?该怎么爬?9.为迎接2008年奥运会在北京召开,你能一笔画出奥运会的五环图案吗?10.下图是一个公园的平面图,应怎样走才能使游客走通每条路而不重复,设计一条最佳路线。
11 一个公园的平面图如下,请你设计好入口、出口,并给出一条浏览路线,要求走遍每一条路且不重复。
12.如图,是一个公园的平面图,请你设计好入口、出口,并给出一种游玩路线,要求走遍每一条路且不重复。
13.如图,是一个名画展厅的平面图,要使参观者不重复地走遍每一条画廊,问:出口、入口应设在哪里?14.黑色的鱼与白色的鱼所能游动的河道如下图所示。
黑色的鱼在A点位置,白色的鱼在B点位置。
哪条鱼能不重复地游遍所有的河道?15.能用一根铁丝弯成下面的图形吗?16.一个邮递员投递信件要走的街道如图,为节约时间,他想自己设计一条线路,可以不重复的走遍每一条街道,你能帮帮他吗?17.一只蚂蚁要想不重复的爬遍每一条线路,应从哪里出发,到哪里结束?18.你能用一笔画成4条线段把下图的9个点都连起来吗?19.下图能否一笔画成?如果能,应怎样画?20.如图,在一个六面体的顶点A和B处各有一只蜗牛,它们比赛看谁能不重复地爬遍每一棱线到达C点。
最新小学奥数一笔画ppt课件

图1
图2
图3
连通的图形有可能一笔画
图4
图5
你能用一笔画出下列图形吗?
两条相交的线处都有一个交点。
数一数下列图形各有几个交点?
(4 )个
( 2 )个
(9 )个
( 5 )个
交点分为两种
(1)从这点出发的线的数目 是双数的,叫双数点(偶点)。 (2)从这点出发的线的数目 是单数的,叫单数点(奇点)。
3.酸性回流可脱羧。
F6 5
1
N7 8 HN
OO
43
12
N
OH HCl H2O
盐酸环丙沙星*
化学名:1-环丙基-6-氟-1,4-二氢-4 -氧代-7-(1-哌嗪基)-3-喹啉羧酸盐 酸盐水合物
OO F
OH
N
N
N H3C
氧氟沙星**:1)抗菌活性比右旋体强8-128倍, 比消旋体强2倍;
合 喹诺酮类 成 磺胺类及抗菌增效剂 抗 抗结核药及其他 菌 抗真菌药
药
抗病毒药
按结构可分为三类: 三环胺类:盐酸金刚烷胺(P492) 核苷及其类似物 多肽类
喹诺酮类药物的发展√
Ⅰ. 抗菌谱窄(抗G-菌),易产生耐药性, 作用时间短,毒性大,以萘啶酸和吡咯米 酸为代表(62-69年)
Ⅱ. 广谱(抗G-菌、抗G+菌和绿脓杆菌), 不易产生耐药性,毒副作用小,以吡哌酸 为代表,用于泌尿道、肠道感染和耳鼻喉 感染(70-77年)
CH3
OH OH
H3C
H3CO
O
O
OH CH3 O
N N N
利福喷丁√区别
抗菌谱同利福平,作用强2-10倍
O ONa OH 2H 2O
NH2
对氨基水杨酸钠√
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲乙两个邮递员去送信,两人以同样的速 度走遍所有的街道,甲从A点出发,乙从 B点出发,最后都回到邮局(C)。如果 要选择最短的线路,谁先回到邮局?
乙
邮 局
甲
根据今天学习知识,先判断下列图 形能不能一笔画成?再想一想该从 哪里开始画?最后再动手画画看。
脑筋急转弯: 想一想 一笔能写出1000吗?
我们刚才画的图形都有几个交点? 几பைடு நூலகம்双数点?几个单数点?
一个图形能否一笔画成,关键在于图 中单数点的多少。 (1)凡是图形中没有单数点的一定可以 一笔画成。 (2)凡是图形中只有一个或者两个单数 点,一定可以一笔画成。画时必须从一个 单数点为起点,以另一单数点为终点。 (3)凡是图形中单数点的个数多于两个 时,此图肯定是不能一笔画成。
一笔画问题
你能一笔画出来吗?
不重复的路
——一笔画
“一笔画”是指笔不 离开纸,而且每条线 都只画一次不准重复 而画成的图形。
“ 一笔 画 ”是一种 有 趣的数学游戏,那么什 么样的图形可以一笔画 成呢?试一试,画一画, 发挥你的想象力,发现 一笔画的规律。
下列图形能否一笔画
不连通的图形不能一笔画
下列哪些图形能一笔画出来,哪些不能?
判断下列图形能否一笔画
图1
图3
图5
图2
图4
图6
观察下列图形,完成统计表
图1
图2
图3
图4
图5
图6
图7
图8
观察下列图形,完成统计表
可以一笔画的图形
图形序号 奇点个数 偶点个数
不能一笔画的图形
图形序号 奇点个数 偶点个数
图1
图2
图3
图4
图5
图6
图7
图8
下图是一个公园的平面图,要使游 人走遍每一条路不重复,出口和入 口应设在哪儿?
图1 图2 图3
连通的图形有可能一笔画
图4 图5
你能用一笔画出下列图形吗?
两条相交的线处都有一个交点。
数一数下列图形各有几个交点?
( 4 )个
( 2 )个
( 9 )个
( 5 )个
交点分为两种
( 1 )从这点出发的线的数目 是双数的,叫双数点(偶点)。 ( 2 )从这点出发的线的数目
是单数的,叫单数点(奇点)。