数学运算之和差倍问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学运算之和差倍问题
和差倍问题
(一)核心要点提示:
和、差倍问题是已知大小两个数的和(或差)与它们的倍数关系,求大小两个数的值。

(和+差)÷2=较大数
(和-差)÷2=较小数
较大数一差=较小数
这一题型应作为一个基本常识掌握,以加快解题的速度。

(二)例题与解析:
1、甲班和乙班共有图书160本。

甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?
解析:设乙班的图书本数为l份,则甲班图书为乙班的3倍,那么甲班和乙班图书本数的和相当于乙班图书本数的4倍。

还可以理解为4份的数量是160本,求出1份的数量也就求出了乙班的图书本数,然后再求甲班的图书本数。

用下图表示它们的关系:
解:乙班:160÷(3十1)=40(本)
甲班:40×3=120(本)
或160—40=120(本)
2、河东小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的,现知道五、六年级共有25幅画,求其它年级的画共有多少幅?
解析:由“其中有16幅画不是六年级的,有15幅画不是五年级的”可知五年级比六年级多16-15=1(幅)画,又知“五、六年级共有25幅画”,根据和差问题的数量关系可知五年级有(25+1)÷2=13(幅)画,因此,其它年级的画共有16-13=3(幅)。

3、有50名学生参加联欢会,第一个到会的女生同每个男生握过手,第二个到会的女生只差1个男生没握过手,第三个到会的女生只差2个男生没握过手,如此等等,最后一个到会的女生和7个男生握过手,那么这50名学生中有几名男生?
解析:从题目中已经知道参加联欢会的男生和女生共有50名。

因此,如果能知道男生人数与女生人数的差,即可按和差问题的数量关系求出男生有多少人。

为了使题目中的条件更容易分析,我们不妨将女生的顺序反过来,从后往前看。

也就是说:最后一个到会的女生同7个男生握过手;倒数第二个到会的女生同8个男生握过手;倒数第三个到会的女生同9个男生握过手,如此等等,第一个到会(即倒数最后一个)的女生同全部男生握过手。

由此,立即可知,男生人数比女生的人数多6个人。

因此,男生人数为(50+6)÷2=28(人)
转载自:/thread-154465-1-1.html "和差倍问题"例题详解
2.三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。

分析:要点:先把一,二小组看成一个整体!把第三小组看成一个整体,我们把这种方法叫“化三为二”即把三个问题转换成二个问题,先求出第一,二小组的人数,再求出第一小组的人数。

这也是一个和差问题。

解:(180+20)÷2=100(人)——第一,二小组的人数
(100-2)÷2=49(人)——第一小组的人数
综合:[(180+20)÷2-2]÷2=49(人)——第一小组的人数
答:第一小组的人数是49人。

4.在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3倍,那么差等于多少?
分析:这是一个和倍问题。

减数是差的3倍,那么被减数就是差的4倍,所以被减数、减数与差的和就是差的8倍,应该等于120,所以差=120÷8=15。

解:120÷(1+3+1+2)=15 答:差等于15。

6.有50名学生参加联欢会,第一个到会的女同学同全部男生握过手,第二个到会的女生只差一个男生没握过手,第三个到会的女生只差2个男生没握过手,以此类推,最后一个到会的女生同7个男生握过手。

问这些学生中有多少名男生?
分析:这是和差问题。

我们可以这样想:如果这个班再多6个女生的话,最后一个女生就应该只与1个男生握手,这时,男生和女生一样多了,所以原来男生比女生多(7-1)6个人!男生人数就是:
解:(50+6)÷2=28(人)。

答:男生人数是2 8人。

注:还有一种解法,7+6+5+4+3+2+1=28(人)
我的分析方法还不能说得很清楚。

请大家指正。

8.甲、乙、丙共有100本课外书。

甲的本数除以乙的本数,丙的本数除以甲的本数,商都是5,余数也都是1。

那么乙有多少本书?
分析:这是和倍问题。

看懂题后可以这样理解,“甲、乙、丙3个数是100,甲是乙的5倍多1,丙是甲的5倍多1,求甲、乙、丙各是几?”。

即:乙是1倍;甲是乙的5倍多1;丙是乙的(5×5)倍多(1×5+1)6。

那么100减去(1+6)的差对应(1+5+5×5)倍,这样可求出乙是多少。

解:[100-1-(1×5+1)]÷(1+1×5+1×5×5)=91÷31=3(本)答:乙有3本书。

10.有货物108件,分成四堆存放在仓库时,第一堆件数的2倍等于第二堆件数的一半,比第三堆的件数少2,比第四堆的件数多2.问每堆各存放多少件?
分析:如果我们把第一堆看成1倍,那么可以算出第二堆就是(2×2)4倍,第三堆是2倍多2件,第四堆是2倍少2件,那么一共就刚好是1+4+2+2=9倍(第三堆和第四堆刚好一个多2件一个少2件正好抵消),那么1倍就是108÷9=12件,第二堆就是12×4=48件,第三堆就是12×2+2=26件,第四堆就是12×2-2=22件。

解:(108+2-2)÷(1+2×2+2+2)=108÷9=12(件)——第一堆
12×2×2=48(件)——第二堆;12×2+2=26(件)——第三堆;12×2-2=22(件)——第四堆;
答:每堆各有12件、48件、26件、22件。

12.用中国象棋的车,马,炮分别表示不同的自然数。

如果:车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于多少?
分析:这是一个差倍问题。

依题有,马是1倍,车是马的2倍,炮是车的4倍,所以炮与马的倍数差是(2×4-1)7倍,而炮与马的两数差是56,根据差倍问题的公式就可分别求出车、马、炮的值。

解:56÷(8-1)=8——马;
8×2=16——车
16×4=64——炮
8+16+64=88——车+马+炮答:车、马、炮的和是88
14.甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减
少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。

问:甲、乙原计划每天自学多少分钟?
分析:差倍问题。

原来时间相同,现甲多半小时,乙少半小时,现在的两数差是(30+30)60分钟,现在的差数差是(6-1)5倍,这样可求出现乙每天自学的时间,加上30分钟,可得原计划每天自学时间。

解:(30+30)÷(6-1)+30=12+30=42(分钟)答:原计划每天自学42分钟。

涉及4个或4个以上的对象,已知数量关系,不便直接运用,与其它知识相关联的复杂和差倍问题。

【典型问题】
1. 四年级有4个班,不算甲班其余三个班的总人数是131人;不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人,问这四个班共有多少人?解答:用131+134=265,这是1个甲、丁和2个乙、丙的总和,因为乙、丙两班的总人数比甲、丁两班的总人数少1人,所以用265-1=264就刚好是3个乙、丙的和,264÷3=88,就是说乙丙的和是88,那么甲丁和是88+1=89,所以四个班的和是88+89=177人.
2. 有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?
解答:大家想想,我如果把4个数全加起来是什么?实际上是每个数都加了3遍!大家一定要记住这种思想!(45+46+49+52)÷3=64就是这四个数的和,题目要求最小的数,我就用64减去52(某三个数和最大的)就是最小的数,等于12.
3. 在一个两位数之间插入一个数字,就变成一个三位数。

例如:在72中间插入数字6,就变成了762。

有些两位数中间插入数字后所得到的三位数是原来两位数的9倍,求出所有这样的两位数。

解答:对于这个题来说,首先要判断个位是多少,这个数的个位乘以9以后的个位还等于原来的个位,说明个位只能是0或5!先看0,很快发现不行,因为20×9=180,30×9=270,40×9=360等等,不管是几十乘以9,结果百位总比十位小,所以各位只能是5。

略作计算,不难发现:15,25,35,45是满足要求的数
4. 某班买来单价为0.5元的练习本若干,如果将这些练习本只给女生,平均每人可得15本;如果将这些练习本只给男生,平均每人可得10本。

那么,将这些练习本平均分给全班同学,每人应付多少钱?
解答:对于这种问题,如果给一个学过工程问题的学生来做的话,简直太简单了,但工程问题是六年级的内容,四年级的学生怎么办呢?我们可以这样考虑:我就假设班上有2个女生(动动脑筋,为什么不假设成有1个女生?),那么就一共有30个练习本,进而推出有3个男生,用30÷(2+3)=6,说明每人应该有6个练习本,所以每人要付3元钱.
5. 动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得12粒;如只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒,那么平均分给三群猴子,每只可得多少粒?
解答:和上个题目一样我想找到1个数,它既是12的倍数,又是15的倍数,还要是20的倍数。

你能找到吗?可以找到最小的是60,那么我就假设共有60粒花生,那么可以算出来第一群猴子有5个,第二群猴子有4个,第三群猴子有3个,那就一共有5+4+3=12只猴子,60÷12=5,所以每个猴子是5粒.
6. 一个整数,减去它被5除后余数的4倍是154,那么原来整数是多少?
解答:首先,被除数除以除数,余数肯定小于除数。

所以在这个题里,余数肯定不大于4,这就确定了原来整数只能是:154+4×0,154+4×1,154+4×2,154+4×3,154+4×4中的
一个,检验一下,很快得到结果是154+4×2=162.
7. 若干名家长(爸爸或妈妈,他们都不是老师)和老师陪同一些小学生参加某次数学竞赛,已知家长和老师共有22人,家长比老师多,妈妈比爸爸多,女老师比妈妈多2人,至少有1名男老师,那么在这22人中,爸爸有多少人?
解答:家长比老师多,所以老师少于22÷2=11人,也就是不超过10人,家长就不少于12人。

在至少12个家长中,妈妈比爸爸多,所以妈妈要多于12÷2=6人,也就是不少于7人。

因为女老师比妈妈多2人,所以女老师不少于9人,但老师最多就10个,并且还至少有1个男老师,所以老师必须是10个(9个女老师,1个男老师),家长12个人中,有7个妈妈,那么爸爸就有12-7=5人.
8. 一次数学考试共有20道题,规定:答对一题得2分,答错一题扣1分,未答的题不计分。

考试结束后,小明共得23分,他想知道自己做错了几道题,但只记得未答的题的数目是个偶数。

请你帮助小明计算一下,他答错了多少道题?
解答:20个题,如果全部做对的话,可以得20×2=40分。

如果不答1道题的话就要少2分,如果做错一道的话就要少3分。

小明得了23分,比总分少40-23=17分。

因为没有做的题是偶数,所以我们可以先想想如果有0道题没答的话,17分都是做错了少的,可是17÷3=5…2,不可能!再考虑如果有2道题没做的情况,2道题没做就少4分,还有17-4=13分是因为做错了少的,13÷3=4…1,也不可能!考虑4道题没做的话,就少了8分,还有17-8=9分是因为做错了少的,9÷3=3,所以有3道题是做错的.
9. 某种商品的价格是:每一个1分钱,每五个4分钱,每九个7分钱,小赵的钱至多能买50个,小李的钱至多能买500个。

小李的钱比小赵的钱多多少分钱?
解答:先在脑袋里算一下,是不是九个7分钱最合算啊?先看小赵:50÷9=5…5,所以他有5×7+4=39分钱;再看小李:500÷9=55…5,所以他有55×7+4=389分钱,那么小李就比小赵多389-39=350分钱。

千万不要认为用(500-50)÷9×7=350就可以了,比如我把500换成400,方法就不对了!
10. 某幼儿园的小班人数最少,中班有27人,大班比小班多6人。

春节分桔子25箱,每箱不超过60个,不少于50个,桔子总数的个位数字是7。

若每人分19个,则桔子数不够,现在大班每人比中班每人多分一个,中班每人比小班每人多分一个,刚好分完。

问这时大班每人分多少桔子?小班有多少人?(本题是本讲中最难的问题!!!)
解答:首先桔子的个数在1250(=25×50)和1500(=25×60)之间。

下面大家帮我看以下两种分桔子的办法的区别是多少?(1)大班每人a+1个,中班每人a个,小班每人a-1个;(2)无论大中小班,每人a个。

在第一种分法中,我让大班的孩子每人都拿出来1个去补给小班的孩子,每人补1个,因为大班人比小班多6人,所以最后就还多6个桔子。

如果我从所有桔子中拿出6个来,就可以使得原题中的第一种分法变为我的第二种分法。

因为桔子的总数个位是7,减去6后的个位是1,这么多桔子可以分给所有的孩子,并且让每人一样多,所以总的人数和每人所分到的桔子数都是奇数!!
但很明显每人19个是不够的,所以只能是每人17个,15个,13个等等,15个当然不可能了(因为任何数乘以15后,各位不是5就是0),下面我们来看看可不可能是13个或更少:至少有1250个桔子,1250÷13=96…2,那么至少有96人,那么大班与小班和起来就至少96-27=69人。

可是小班人最少不会超过中班的27人,所以大班小班和起来不应该超过27+(27+6)=60人,这与我刚才的结果是矛盾的!所以每人不可能是13个或者更少,这就说明了每人应该是17个苹果。

现在总的苹果数个位是7-6=1,每人17个苹果,所以总的人数个位应该是3!!再看:1250÷17=73…9,1500÷17=88…4,这时就可以找到总人数一定是83。

因为如果是73的话,桔子还没有分完。

所以大班小班共有83-27=56人,用和差问题的公式可以很快得到小班人数
是:(56-6)÷2=25人.
11. 一个正方体木块放在桌子上,每一面都有一个数,位于对面两个数的和都等于13,小张能看到顶面和两个侧面,看到的三个数和为18;小李能看到顶面和另外两个侧面,看到的三个数的和为24,那么贴着桌子的这一面的数是多少?
解答:大家先想想,我如果用18加上24的话,得到是哪几个面的和?是4个侧面和2个顶面的和!四个侧面的和应该是:13+13=26,这时就可以计算出顶面的数是:(18+24-26)÷2=8,于是底面的数是:13-8=5.
12. 左图是一个道路图。

A处有一大群孩子,这群孩子向东或向北走,在从A开始的每个路口,都有一半人向北走,另一半人向东走,如果先后有60个孩子到过路口B,问:先后共有多少个孩子到过路口C?
解答:自己先尝试一下假设A处有1个孩子,2个孩子时有什么问题,发现后来就会出现半个孩子的情况,这是不行的,所以再假设有4个,8个,16个孩子,发现后来还是会出现半个孩子,于是我们就假设A处有32个孩子吧!(自己动动脑筋:为什么是1,2,4,8,16,32这些数?这些数有什么规律吗?)最后经过计算能发现C处有8个孩子经过,B处有10个孩子经过。

但事实上B处有60个孩子经过,所以原来A处就应该是6个32个孩子!所以就有8×6=48个孩子经过C点.
13. 比赛用的足球是由黑、白两色皮子缝制的,其中黑色皮子为正五边形,白色皮子为正六边形,并且黑色正五边形与白色正六边形的边长相等。

缝制的方法是:每块黑色皮子的5条边分别与5块白色皮子的边缝在一起;每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起。

如果一个足球表面上共有12块黑色正五边形皮子,那么,这个足球应有白色正六边形皮子多少块?
解答:先算黑皮子共有多少条边:12×5=60条。

这60条边都是与白皮子缝合在一起的,对于白皮子来说:每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起,所以白皮子所有边的一半是与黑皮子缝合在一起的,那么白皮子就应该一共有60×2=120条边,120÷6=20,所以共有20块白皮子.
14. 5个空瓶可以换1瓶汽水,某班同学喝了161瓶汽水,其中有一些是用喝剩下来的空瓶换的,那么他们至少要买汽水多少瓶?
解答:大致上可以这样想:先买161瓶汽水,喝完以后用这161个空瓶还可以换回32瓶(161÷5=32…1)汽水,然后再把这32瓶汽水退掉,这样一算,就发现实际上只需要买161-32=129瓶汽水。

可以检验一下:先买129瓶,喝完后用其中125个空瓶(还剩4个空瓶)去换25瓶汽水,喝完后用25个空瓶可以换5瓶汽水,再喝完后用5个空瓶去换1瓶汽水,最后用这个空瓶和最开始剩下的4个空瓶去再换一瓶汽水,这样总共喝了:129+25+5+1+1=161瓶汽水.
15. 现有三堆苹果,其中第一堆苹果个数比第二堆多,第二堆苹果个数比第三堆多。

如果从每堆苹果中各取出一个,那么在剩下的苹果中,第一堆个数是第二堆的三倍。

如果从每堆苹果中各取出同样多个,使得第一堆还剩34个,则第二堆所剩下的苹果数是第三堆的2倍。

问原来三堆苹果数之和的最大值是多少?
解答:这种题和第十题一样,好做但是不好讲,关键在于如何能让四年级的学生听明白!
从第一个条件开始:从每堆苹果中各取出一个,在剩下的苹果中,第一堆个数是第二堆的三倍,这时假设第二堆是1份苹果,那么第一堆就是3份苹果,差2份苹果。

再看第二个条件:从每堆苹果中各取出同样多个,使得第一堆还剩34个,第二堆所剩下的苹果数是第三堆的2倍,因为是从每堆苹果中各取出同样多个,所以第二堆还是比第一堆少2份苹果,所以这
个2份应该比34个要少(大家自己考虑一下为什么不能相等?)所以一份最多就16个,于是在第二个条件时,第二堆还有34-16×2=2个,第三堆还有2÷2=1个,所以回到第一个条件时,第二堆应该是1份16个苹果,第三堆少一个是15个,第一堆是3份共16×3=48个苹果,所以在最开始分别有49,17,16个,总共有49+17+16=82个.
转载自:/thread-154544-1-1.html。

相关文档
最新文档