2019-2020年高考数学一轮复习必备 第12课时:第二章 函数-函数的单调性教案
2019版一轮复习理数通用版第二单元 函数的概念及其性质
第二单元函数的概念及其性质教材复习课“函数”相关基础知识一课过函数的基本概念1.函数与映射的概念函数映射两集合A,B 设A,B是非空的数集设A,B是非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x),x∈A 对应f:A→B(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x 的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素是:定义域、值域和对应关系.3.表示函数的常用方法列表法、图象法和解析法.4.分段函数在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应关系,这种函数称为分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.1.若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是()答案:B2.下列函数中,与函数y=x相同的函数是()A.y=x2x B.y=(3x2)32C.y=lg 10x D.y=2log2x解析:选C A .y =x 2x =x (x ≠0)与y =x 的定义域不同,故不是相同的函数;B .y =(3x 2)32=|x |与y =x 的对应关系不相同,故不是相同的函数;C .y =lg 10x =x 与y =x 的定义域、值域与对应关系均相同,故是相同的函数;D .y =2log 2x 与y =x 的对应关系不相同,故不是相同的函数. 3.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >1,2+16x ,x ≤1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=( ) A .-2 B .4 C .2D .-1解析:选A 因为函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >1,2+16x ,x ≤1,所以f ⎝⎛⎭⎫14=2+1614=4, 则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=f (4)=log 124=-2. 4.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.[清易错]1.解决函数有关问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,A ,B 若不是数集,则这个映射便不是函数.1.(2018·合肥八中模拟)已知函数f (x )=2x +1(1≤x ≤3),则( ) A .f (x -1)=2x +2(0≤x ≤2) B .f (x -1)=2x -1(2≤x ≤4) C .f (x -1)=2x -2(0≤x ≤2) D .f (x -1)=-2x +1(2≤x ≤4)解析:选B 因为f (x )=2x +1,所以f (x -1)=2x -1.因为函数f (x )的定义域为[1,3],所以1≤x -1≤3,即2≤x ≤4,故f (x -1)=2x -1(2≤x ≤4).2.下列对应关系:①A ={1,4,9},B ={-3,-2,-1,1,2,3},f :x →x 的平方根; ②A =R ,B =R ,f :x →x 的倒数; ③A =R ,B =R ,f :x →x 2-2;④A ={-1,0,1},B ={-1,0,1},f :A 中的数平方. 其中是A 到B 的映射的是( ) A .①③ B .②④ C .③④D .②③解析:选C 由映射的概念知①中集合B 中有两个元素对应,②中集合A 中的0元素在集合B 中没有对应,③④是映射.故选C.函数定义域的求法 函数y =f (x )的定义域1.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.解析:由⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0⇒⎩⎪⎨⎪⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2]. 答案:(0,2]2.函数y =lg(1-2x )+x +3的定义域为________.解析:由题意可知⎩⎪⎨⎪⎧1-2x >0,x +3≥0,求解可得-3≤x <0,所以函数y =lg(1-2x )+x +3的定义域为[-3,0). 答案:[-3,0)[清易错]1.求复合型函数的定义域时,易忽视其满足内层函数有意义的条件.2.求抽象函数的定义域时,易忽视同一个对应关系后的整体范围. 1.(2018·辽宁锦州模拟)已知函数f (x 2-3)=lgx 2x 2-4,则f (x )的定义域为________. 解析:设t =x 2-3(t ≥-3),则x 2=t +3,所以f (t )=lgt +3t +3-4=lg t +3t -1,由t +3t -1>0,得t >1或t <-3,因为t ≥-3,所以t >1,即f (x )=lg x +3x -1的定义域为(1,+∞).答案:(1,+∞)2.已知函数f(x)的定义域为[0,2],则函数g(x)=f(2x)+8-2x的定义域为________.解析:因为函数f(x)的定义域为[0,2],所以对于函数f(2x),0≤2x≤2,即0≤x≤1,又因为8-2x≥0,所以x≤3,所以函数g(x)=f(2x)+8-2x的定义域为[0,1].答案:[0,1]函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D 上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(3)对于任意的x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值A.y=2-x B.y=xC.y=log2x D.y=-1 x解析:选B由题知,只有y=2-x与y=x的定义域为R,且只有y=x在R上是增函数.2.函数f(x)=|x-2|x的单调减区间是()A.[1,2]B.[-1,0]C.[0,2]D.[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.作出函数f (x )的图象如图,则结合图象可知函数的单调减区间是[1,2].3.(2018·长春质量检测)已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( )A .(-∞,1]B .(-∞,-1]C .[-1,+∞)D .[1,+∞)解析:选A 因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1. 4.已知定义在R 上的函数f (x )为增函数,当x 1+x 2=1时,不等式f (x 1)+f (0)>f (x 2)+f (1)恒成立,则实数x 1的取值范围是( )A .(-∞,0) B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,1D .(1,+∞)解析:选D 若f (x 1)+f (0)>f (x 2)+f (1), 则f (x 1)-f (x 2)>f (1)-f (0). 又由x 1+x 2=1,则有f (x 1)-f (1-x 1)>f (1)-f (0). 又由函数f (x )为增函数,则不等式f (x 1)+f (0)>f (x 2)+f (1)恒成立可以转化为⎩⎪⎨⎪⎧x 1>1,1-x 1<0,解得x 1>1.5.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:2[清易错]1.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f (x )在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f(x)=1 x.1.函数f(x)=x1-x在()A.(-∞,1)∪(1,+∞)上是增函数B.(-∞,1)∪(1,+∞)上是减函数C.(-∞,1)和(1,+∞)上是增函数D.(-∞,1)和(1,+∞)上是减函数解析:选C函数f(x)的定义域为{x|x≠1}.f(x)=x1-x=11-x-1,根据函数y=-1x的单调性及有关性质,可知f(x)在(-∞,1)和(1,+∞)上是增函数.2.设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为________.答案:[-1,1],[5,7]函数的奇偶性1.定义及图象特征奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数关于原点对称2(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).(3)既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域D是关于原点对称的非空数集.(4)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.1.下列函数中的偶函数是()A.y=2x-12x B.y=x sin xC.y=e x cos x D.y=x2+sin x解析:选B 因为f (-x )=(-x )si n (-x )=x sin x =f (x ),即函数f (x )是偶函数,故选B. 2.定义在R 上的奇函数f (x )满足f (x -2)=f (x +2),且当x ∈[-2,0]时,f (x )=3x -1,则f (9)=( )A .-2B .2C .-23D.23解析:选D 因为f (x )是定义在R 上的奇函数,所以当x ∈[0,2]时,f (x )=-f (-x )=-3-x+1;设x -2=t ,则x =t +2,则f (x -2)=f (x +2)可化为f (t )=f (t +4),即函数f (x )是周期为4的周期函数,则f (9)=f (1)=23.3.(2018·绵阳诊断)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:选A ∵f (x )是偶函数,∴f (x )=f (|x |),∴f (|2x -1|)<f ⎝⎛⎭⎫13,再根据f (x )的单调性,得|2x -1|<13,解得13<x <23,故选A. 4.若函数f (x )(x ∈R )是奇函数,函数g (x )(x ∈R )是偶函数,则( ) A .函数f (x )-g (x )是奇函数 B .函数f (x )·g (x )是奇函数 C .函数f [g (x )]是奇函数 D .函数g [f (x )]是奇函数解析:选B 因为函数f (x )(x ∈R )是奇函数,函数g (x )(x ∈R )是偶函数, 所以f (-x )=-f (x ),g (-x )=g (x ),所以f (-x )·g (-x )=-f (x )·g (x ),故f (x )·g (x )是奇函数.[清易错]1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断分段函数奇偶性时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.1.已知函数f (x )=x 2-m是定义在区间[-3-m ,m 2-m ]上的奇函数,则( )A .f (m )<f (1)B .f (m )>f (1)C .f (m )=f (1)D .f (m )与f (1)大小不能确定解析:选A 由题意可知-3-m +m 2-m =0, 所以m =3或m =-1, 又因为函数f (x )=x 2-m是定义在区间[-3-m ,m 2-m ]上的奇函数,所以2-m 是奇数,且2-m >0,所以m =-1,则f (x )=x 3,定义域为[-2,2]且在[-2,2]上是增函数, 所以f (m )<f (1).2.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 2(-x ),x <0的奇偶性为________.解析:∵x ≠0,故f (x )的定义域关于原点对称. 当x >0时,-x <0, ∴f (-x )=log 2x =f (x ). 当x <0时,-x >0, f (-x )=log 2(-x )=f (x ). 故f (-x )=f (x ),∴f (x )为偶函数. 答案:偶函数函数的周期性1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫作f (x )的最小正周期.3.重要结论周期函数的定义式f (x +T )=f (x )对定义域内的x 是恒成立的,若f (x +a )=f (x +b ),则函数f (x )的周期为T =|a -b |.若在定义域内满足f (x +a )=-f (x ),f (x +a )=1f (x ),f (x +a )=-1f (x )(a >0).则f (x )为周期函数,且T =2a 为它的一个周期.4.对称性与周期的关系(1)若函数f (x )的图象关于直线x =a 和直线x =b 对称,则函数f (x )必为周期函数,2|a -b |是它的一个周期.(2)若函数f (x )的图象关于点(a,0)和点(b,0)对称,则函数f (x )必为周期函数,2|a -b |是它的一个周期.(3)若函数f (x )的图象关于点(a,0)和直线x =b 对称,则函数f (x )必为周期函数,4|a -b |是它的一个周期.1.已知函数f (x )=⎩⎪⎨⎪⎧sin x 4π,x >0,f (x +2),x ≤0,则f (-5)的值为( )A .0 B.22C .1D. 2解析:选B 由f (x )=⎩⎪⎨⎪⎧sin x 4π,x >0,f (x +2),x ≤0,可得f (-5)=f (1)=si n π4=22.2.已知定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x +1)=f (1-x ),且当x ∈[0,1]时,f (x )=log 2(x +1),则f (31)=( )A .0B .1C .-1D .2解析:选C 由f (-x )=-f (x )可得函数f (x )是奇函数,所以f (x +1)=f (1-x )=-f (x -1).令x -1=t ,则x =t +1,所以f (t +2)=-f (t ), 则f (t +4)=-f (t +2)=f (t ), 即函数f (x )的最小正周期为4.又因为当x ∈[0,1]时,f (x )=log 2(x +1),所以f (31)=f (31-4×8)=-f (1)=-log 2(1+1)=-1.3.(2018·晋中模拟)已知f (x )是R 上的奇函数,f (1)=2,且对任意x ∈R 都有f (x +6)=f (x )+f (3)成立,则f (2 017)=________.解析:∵f (x )是R 上的奇函数,∴f (0)=0,又对任意x ∈R 都有f (x +6)=f (x )+f (3), ∴当x =-3时, 有f (3)=f (-3)+f (3)=0, ∴f (-3)=0,f (3)=0, ∴f (x +6)=f (x ),周期为6. 故f (2 017)=f (1)=2. 答案:2[清易错]在利用周期性定义求解问题时,易忽视定义式f (x +T )=f (x )(T ≠0)的使用而致误.已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=________.解析:由已知,可得f (x +4)=f [(x +2)+2]=-1f (x +2)=-1-1f (x )=f (x ).故函数f (x )的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3, ∴f (2.5)=2.5. ∴f (105.5)=2.5. 答案:2.5 一、选择题1.函数f (x )=lg(x -1)-4-x 的定义域为( ) A .(-∞,4] B .(1,2)∪(2,4] C .(1,4]D .(2,4]解析:选C 由题意可得⎩⎪⎨⎪⎧x -1>0,4-x ≥0,解得1<x ≤4,所以函数f (x )的定义域为(1,4].2.(2017·唐山期末)已知f (x )=x +1x -1,f (a )=2,则f (-a )=( )A .-4B .-2C .-1D .-3解析:选A ∵f (a )=a +1a -1=2,∴a +1a =3.f (-a )=-a -1a-1=-⎝⎛⎭⎫a +1a -1=-3-1=-4. 3.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a 的值为( )A .-3B .±3C .-1D .±1解析:选D 当a ≥0时,f (a )=a ,由已知得a +1=2,得a =1;当a <0时,f (a )=-a ,由已知得-a +1=2,得a =-1,综上,a =±1.故选D.4.下列几个命题正确的个数是( )(1)若方程x 2+(a -3)x +a =0有一个正根,一个负根,则a <0;(2)函数y =x 2-1+1-x 2是偶函数,但不是奇函数; (3)函数f (x +1)的定义域是[-1,3],则f (x 2)的定义域是[0,2];(4)若曲线y =|3-x 2|和直线y =a (a ∈R )的公共点个数是m ,则m 的值不可能是1. A .1 B .2 C .3D .4解析:选B (1)由根与系数的关系可知,(1)正确;(2)函数y =x 2-1+1-x 2的定义域为{-1,1},值域为{0},显然该函数既是奇函数也是偶函数,(2)错误;(3)函数f (x +1)的定义域是[-1,3],所以0≤x +1≤4,则函数f (x )的定义域是[0,4],对于函数f (x 2)可得0≤x 2≤4,则-2≤x ≤2,即f (x 2)的定义域是[-2,2],(3)错误;(4)由二次函数的图象,易知曲线y =|3-x 2|和直线y =a (a ∈R )的公共点个数可能是0,2,3,4,(4)正确.故选B.5.如果二次函数f (x )=3x 2+2(a -1)x +b 在区间(-∞,1)上是减函数,则( ) A .a =-2 B .a =2 C .a ≤-2D .a ≥2解析:选C 函数f (x )的对称轴方程为x =-a -13, 由题意知-a -13≥1,即a ≤-2.6.(2018·天津模拟)若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是( )A .f (x )=(x -1)2B .f (x )=e xC .f (x )=1xD .f (x )=l n (x +1)解析:选C 根据条件知,f (x )在(0,+∞)上单调递减. 对于A ,f (x )=(x -1)2在(1,+∞)上单调递增,排除A ; 对于B ,f (x )=e x 在(0,+∞)上单调递增,排除B ; 对于C ,f (x )=1x 在(0,+∞)上单调递减,C 正确;对于D ,f (x )=l n (x +1)在(0,+∞)上单调递增,排除D.7.已知函数f (x )=log 13(x 2-ax +3a )在[1,+∞)上单调递减,则实数a 的取值范围是( )A .(-∞,2]B .[2,+∞) C.⎣⎡⎦⎤-12,2 D.⎝⎛⎦⎤-12,2解析:选D 令t =g (x )=x 2-ax +3a ,易知y =log 13t 在其定义域上单调递减,要使f (x )=log 13(x 2-ax +3a )在[1,+∞)上单调递减,则t =g (x )=x 2-ax +3a 在[1,+∞)上单调递增,且t =g (x )=x 2-ax +3a >0,即⎩⎪⎨⎪⎧ --a 2≤1,g (1)>0,所以⎩⎪⎨⎪⎧a ≤2,a >-12,即-12<a ≤2. 8.(2018·长春调研)已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=( )A.23 B .-23C.43D .-43解析:选C f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=xx 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43,故选C.二、填空题9.f (x )=a si n x -b log 3(x 2+1-x )+1(a ,b ∈R ),若f (lg(log 310))=5,则f (lg(lg 3))=________.解析:令g (x )=a sin x -b log 3(x 2+1-x ), 因为g (-x )=-a sin x -b log 3(x 2+1+x ) =-a sin x -b log 31x 2+1-x=-a sin x +b log 3(x 2+1-x )=-g (x ),所以函数g (x )是奇函数,因为lg(log 310)+lg(lg 3)=lg1lg 3+lg(lg 3)=0,即lg(log 310)与lg(lg 3)互为相反数,f (lg(lg 3))=g (lg(lg 3))+1=-g (lg(log 310))+1=-[f (lg(log 310))-1]+1=-3.答案:-310.设a 为实常数,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=9x +a 2x +7,若f (x )≥a+1对一切x ≥0成立,则a 的取值范围为________.解析:因为y =f (x )是定义在R 上的奇函数,所以当x =0时,f (0)=0,则0≥a +1,所以a ≤-1,又设x >0,则-x <0,所以f (x )=-f (-x )=-⎣⎡⎦⎤9(-x )+a 2-x +7=9x +a 2x -7.由基本不等式得9x +a 2x -7≥29x ·a 2x -7=-6a -7,由f (x )≥a +1对一切x ≥0成立,只需-6a -7≥a +1,即a ≤-87,结合a ≤-1,所求a 的取值范围是⎝⎛⎦⎤-∞,-87. 答案:⎝⎛⎦⎤-∞,-87 11.设f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,a +b ≥0是f (a )+f (b )≥0的________条件(填“充分不必要,必要不充分,充要,既不充分也不必要).解析:因为f (-x )=-x 3+log 2(-x +x 2+1)=-x 3+log 21x +x 2+1=-x 3-log 2(x +x 2+1)=-f (x ),所以函数f (x )是奇函数,易知函数f (x )在R 上是增函数, 因为a +b ≥0,所以a ≥-b ,所以f (a )≥f (-b )=-f (b ),即f (a )+f (b )≥0,反之亦成立, 因此,对任意实数a ,b ,a +b ≥0是f (a )+f (b )≥0的充要条件. 答案:充要12.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x <1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 解析:依题意知:函数f (x )为奇函数且周期为2, 则f (1)+f (-1)=0,f (-1)=f (1),即f (1)=0. ∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52 =f ⎝⎛⎭⎫12+0+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (0) =212-1+20-1 =2-1. 答案:2-1 三、解答题13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求f (x )的解析式; (2)画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1)得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得a =-1,b =1, 所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)f (x )的图象如图所示:14.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积. 解:(1)由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), ∴f (x )是以4为周期的周期函数.∴f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4. (2)由f (x )是奇函数与f (x +2)=-f (x ), 得f [(x -1)+2]=-f (x -1)=f [-(x -1)], 即f (1+x )=f (1-x ).从而可知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示. 设当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S , 则S =4S △OAB =4×⎝⎛⎭⎫12×2×1=4. 高考研究课(一)函数的定义域、解析式及分段函数 [全国卷5年命题分析]考点 考查频度 考查角度 函数的概念 5年1考 函数定义问题分段函数 5年3考分段函数求值及不等式恒成立问题函数的定义域问题[典例] (1)(2018·长沙模拟)函数y =lg (x +1)x -2的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,2)∪(2,+∞)D .[-1,2)∪(2,+∞)(2)若函数f (x )=22+2-x ax a-1的定义域为R ,则a 的取值范围为________.[解析] (1)由题意知,要使函数有意义,需⎩⎪⎨⎪⎧x -2≠0,x +1>0,即-1<x <2或x >2,所以函数的定义域为(-1,2)∪(2,+∞).故选C.(2)因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.[答案] (1)C (2)[-1,0] [方法技巧]函数定义域问题的3种常考类型及求解策略(1)已知函数的解析式:构建使解析式有意义的不等式(组)求解. (2)抽象函数:①若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. ②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. (3)实际问题:既要使构建的函数解析式有意义,又要考虑实际问题的要求. [即时演练]1.函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6]解析:选C 由题意得⎩⎪⎨⎪⎧4-|x |≥0,x 2-5x +6x -3>0,解得2<x <3或3<x ≤4,所以函数的定义域为(2,3)∪(3,4].2.已知函数f (2-x )=4-x 2,则函数f (x )的定义域为( ) A .[0,+∞) B .[0,16] C .[0,4]D .[0,2]解析:选B 由4-x 2≥0可得-2≤x ≤2,令2-x =t ,则0≤t ≤4,函数f (2-x )=4-x 2可化为函数f (t )=4-(2-t )2,0≤t ≤4,所以函数f (x )满足0≤x ≤4,则0≤x ≤16,即函数f (x )的定义域为[0,16].函数解析式的求法函数的解析式是函数的基础知识,高考中重视对待定系数法、换元法、利用函数性质求解析式的考查.题目难度不大,以选择题、填空题的形式出现.知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)(2018·合肥模拟)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,则函数f (x )的解析式为________.[解析] (1)用“待定系数法”解题设所求函数解析式为f (x )=ax 3+bx 2+cx +d , 则f ′(x )=3ax 2+2bx +c ,由题意知⎩⎪⎨⎪⎧f (0)=d =0,f (2)=8a +4b +2c +d =0,f ′(0)=c =-1,f ′(2)=12a +4b +c =3,解得⎩⎪⎨⎪⎧a =12,b =-12,c =-1,d =0,∴f (x )=12x 3-12x 2-x .(2)用“代入法”解题∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1)=-12x 2-12x .(3)用“函数方程法”解题令1x 代替3f (x )+5f ⎝⎛⎭⎫1x =3x +1中的x , 得3f ⎝⎛⎭⎫1x +5f (x )=3x +1,∴⎩⎨⎧3f (x )+5f ⎝⎛⎭⎫1x =3x +1, ①3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ②①×3-②×5得f (x )=1516x -916x +18.[答案] (1)A (2)-12x 2-12x(3)f (x )=1516x -916x +18[方法技巧]求函数解析式的常见方法 待定系数法若已知函数的类型(如一次函数、二次函数),根据函数类型设出函数解析式,根据题设条件,列出方程组,解出待定系数即可换元法已知f (h (x ))=g (x ),求f (x )时,往往可设h (x )=t ,从中解出x ,代入g (x )进行换元,求出f (t )的解析式,再将t 替换为x 即可构造法已知f (h (x ))=g (x ),求f (x )的问题,往往把右边的g (x )整理构造成只含h (x )的式子,用x 将h (x )替换函数方程法已知f (x )满足某个等式,这个等式除f (x )是未知量外,还有其他未知量,如f (-x ),f ⎝⎛⎭⎫1x ,则可根据已知等式再构造其他等式组成方程组,通过解方程组求出f (x )1.如果f ⎝⎛⎭⎫1x =x1-x ,则当x ≠0且x ≠1时,f (x )等于( ) A.1x B.1x -1 C.11-xD.1x -1解析:选B 令1x =t ,得x =1t (t ≠1), ∴f (t )=1t1-1t=1t -1,∴f (x )=1x -1.2.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. 解析:设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧ a =2,5a +b =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. 答案:2x +7分段函数分段函数是一类重要的函数,是高考的命题热点,多以选择题或填空题的形式呈现,试题难度不大,多为低档题或中档题.常见的命题角度有: (1)分段函数求值问题;(2)求参数值或自变量的取值范围; (3)研究分段函数的性质.1.已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥1,e x -1,x <1,则f [f (l n 2)]=________.解析:由题意知,f (l n 2)=e l n2-1=1,所以f [f (l n 2)]=log 22=1. 答案:1角度二:求参数或自变量的取值范围2.设函数f (x )=⎩⎪⎨⎪⎧ 21-x,x ≤1,log 22x ,x >1,则满足f (x )≤2的x 的取值范围是________. 解析:因为f (x )=⎩⎪⎨⎪⎧21-x ,x ≤1,log 22x ,x >1,所以f (x )≤2等价于⎩⎪⎨⎪⎧x ≤1,21-x ≤2或⎩⎪⎨⎪⎧x >1,log 22x≤2,即⎩⎪⎨⎪⎧x ≤1,1-x ≤1或⎩⎪⎨⎪⎧x >1,2x≤4,即0≤x ≤1或x >1,则满足f (x )≤2的x 的取值范围是[0,+∞).答案:[0,+∞)3.已知函数f (x )=⎩⎪⎨⎪⎧1-|x |,x ≤1,x 2-4x +3,x >1,若f (f (m ))≥0,则实数m 的取值范围是( )A .[-2,2]B .[-2,2]∪[4,+∞)C .[-2,2+2]D .[-2,2+2]∪[4,+∞)解析:选D 令f (m )=n ,则f (f (m ))≥0就是f (n )≥0.画出函数f (x )的图象可知,-1≤n ≤1或n ≥3,即-1≤f (m )≤1或f (m )≥3.由1-|x |=-1得,x =2或x =-2.由x 2-4x +3=1得,x =2±2,由x 2-4x +3=3得,x =0或x =4.再根据图象得到,m ∈[-2,2+2]∪[4,+∞).角度三:研究分段函数的性质4.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)解析:选D 因为f (π)=π2+1,f (-π)=-1,所以f (-π)≠f (π),所以函数f (x )不是偶函数,排除A ;因为函数f (x ) 在(-2π,-π)上单调递减,排除B ;函数f (x )在(0,+∞)上单调递增,所以函数f (x )不是周期函数,排除C ;因为x >0时,f (x )>1,x ≤0时,-1≤f (x )≤1,所以函数f (x )的值域为[-1,+∞),故选D.5.已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有两个不同实根,则a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(0,1)D .(-∞,+∞)解析:选A 当x ≤0时,f (x )=2-x -1, 当0<x ≤1时,-1<x -1≤0, f (x )=f (x -1)=2-(x -1)-1.故x >0时,f (x )是周期函数, 如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1). [方法技巧]分段函数问题的3种类型及求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.(3)研究分段函数的性质可根据分段函数逐段研究其性质,也可根据选项利用特殊值法作出判断. 1.(2016·全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:选D 函数y =10lg x 的定义域与值域均为(0,+∞). 函数y =x 的定义域与值域均为(-∞,+∞).函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞). 函数y =2x 的定义域为(-∞,+∞),值域为(0,+∞). 函数y =1x的定义域与值域均为(0,+∞).故选D. 2.(2015·全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12 解析:选C ∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3.∵log 212>1,∴f (log 212)=2log 212-1=122=6. ∴f (-2)+f (log 212)=3+6=9.3.(2015·全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:选A 由于f (a )=-3,①若a ≤1,则2a -1-2=-3,整理得2a -1=-1. 由于2x >0,所以2a -1=-1无解; ②若a >1,则-log 2(a +1)=-3, 解得a +1=8,a =7, 所以f (6-a )=f (-1)=2-1-1-2=-74.综上所述,f (6-a )=-74.4.(2013·全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]解析:选D 当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a +2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=l n (x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,故选D.一、选择题1.(2018·广东模拟)设函数f (x )满足f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,则f (x )的表达式为( )A.21+xB.21+x 2C.1-x 21+x 2D.1-x 1+x解析:选A 令1-x 1+x =t ,则x =1-t 1+t ,代入f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,得f (t )=1+1-t 1+t =21+t ,即f (x )=21+x,故选A.2.函数f (x )=1ln (2x +1)的定义域是( )A.⎝⎛⎭⎫-12,+∞ B.⎝⎛⎭⎫-12,0∪(0,+∞) C.⎣⎡⎭⎫-12,+∞ D .[0,+∞)解析:选B 由题意,得⎩⎪⎨⎪⎧2x +1>0,2x +1≠1,解得-12<x <0或x >0.3.(2018·福建调研)设函数f :R →R 满足f (0)=1,且对任意x ,y ∈R 都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (2 017)=( )A .0B .1C .2 017D .2 018解析:选D 令x =y =0,则f (1)=f (0)f (0)-f (0)-0+2=1×1-1-0+2=2,令y =0,则f (1)=f (x )f (0)-f (0)-x +2,将f (0)=1,f (1)=2代入,可得f (x )=1+x ,所以f (2 017)=2 018.4.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=( ) A .2 B .0 C .1D .-1解析:选A 令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2, ② 联立①②得f (1)=2.5.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2xD .g (x )=-3x 2-2x解析:选B 设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点, ∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x .6.(2018·青岛模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,|log 2x |,x >0,则使f (x )=2的x 的集合是( )A.⎩⎨⎧⎭⎬⎫14,4 B.{}1,4C.⎩⎨⎧⎭⎬⎫1,14D.⎩⎨⎧⎭⎬⎫1,14,4解析:选A 由题意可知,f (x )=2,即⎩⎪⎨⎪⎧ 2x =2,x ≤0或⎩⎪⎨⎪⎧|log 2x |=2,x >0,解得x =14或4,故选A.7.(2018·莱芜模拟)已知函数f (x )的定义域为[3,6],则函数y =f (2x )log 12(2-x )的定义域为( )A.⎣⎡⎭⎫32,+∞ B.⎣⎡⎭⎫32,2 C.⎝⎛⎭⎫32,+∞ D.⎣⎡⎭⎫12,2解析:选B 要使函数y =f (2x )log 12(2-x )有意义,需满足⎩⎪⎨⎪⎧3≤2x ≤6,log 12(2-x )>0,2-x >0⇒⎩⎪⎨⎪⎧32≤x ≤3,2-x <1,2-x >0⇒32≤x <2.故选B. 8.(2018·武汉调研)函数f (x )=⎩⎪⎨⎪⎧sin (πx 2),-1<x <0,e x -1,x ≥0满足f (1)+f (a )=2,则a 的所有可能取值为( )A .1或-22B .-22 C .1D .1或22解析:选A ∵f (1)=e 1-1=1且f (1)+f (a )=2, ∴f (a )=1,当-1<a <0时,f (a )=si n (πa 2)=1, ∵0<a 2<1,∴0<πa 2<π, ∴πa 2=π2⇒a =-22;当a ≥0时,f (a )=e a -1=1⇒a =1. 故a =-22或1. 二、填空题9.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3, 3 ],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2]. 答案:[-1,2]10.已知函数y =lg(kx 2+4x +k +3)的定义域为R ,则实数k 的取值范围是________. 解析:∵函数y =lg(kx 2+4x +k +3)的定义域为R , ∴kx 2+4x +k +3>0对任意实数x 恒成立,若k =0,不等式化为4x +3>0,即x >-34,不合题意;若k ≠0,则⎩⎪⎨⎪⎧k >0,16-4k (k +3)<0,解得k >1.∴实数k 的取值范围是(1,+∞). 答案:(1,+∞)11.具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数.下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.(填序号)解析:对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x -x =-f (x ),满足题意; 对于②,f ⎝⎛⎭⎫1x =1x +x =f (x )≠-f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x>1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1.故f ⎝⎛⎭⎫1x =-f (x ),满足题意.答案:①③12.(2016·北京高考)设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________. 解析:当x ≤a 时,由f ′(x )=3x 2-3=0,得x =±1.如图是函数y =x 3-3x 与y =-2x 在没有限制条件时的图象. ①若a =0,则f (x )max =f (-1)=2. ②当a ≥-1时,f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值,且-2a >(x 3-3x )max ,所以a <-1.答案:①2 ②(-∞,-1) 三、解答题 13.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))与g (f (2)); (2)求f (g (x ))与g (f (x ))的表达式. 解:(1)由已知,g (2)=1,f (2)=3, 因此f (g (2))=f (1)=0,g (f (2))=g (3)=2. (2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.当x >1或x <-1时,f (x )>0, 故g (f (x ))=f (x )-1=x 2-2; 当-1<x <1时,f (x )<0, 故g (f (x ))=2-f (x )=3-x 2.所以g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x >1或x <-1,3-x 2,-1<x <1.14.水库的储水量随时间而变化,现用t 表示时间,以月为单位,以年初为起点,根据历年数据,某水库的储水量(单位:亿立方米)关于t 的近似函数关系式为:v (t )=⎩⎪⎨⎪⎧1240(-t 2+15t -51)e t +50,0<t ≤9,4(t -9)(3t -41)+50,9<t ≤12.(1)该水库的储水量小于50的时期称为枯水期,问:一年内哪几个月份是枯水期? (2)求一年内该水库的最大储水量. (取21的值为4.6计算,e 3的值为20计算) 解:(1)当0<t ≤9时,v (t )=1240(-t 2+15t -51)e t +50<50,即t 2-15t +51>0. 解得t >15+212或t <15-212,从而0<t <15-212≈5.2.当9<t ≤12时,v (t )=4(t -9)(3t -41)+50<50, 即(t -9)(3t -41)<0,解得9<t <413,所以9<t ≤12.综上,0<t <5.2或9<t ≤12,故枯水期分别为:1月,2月,3月,4月,5月,10月,11月,12月.(2)由(1)知,水库的最大蓄水量只能在6~9月份. v ′(t )=1240(-t 2+13t -36)e t =-1240e t (t -4)(t -9), 令v ′(t )=0,解得t =9或t =4(舍去), 又当t ∈(6,9)时,v ′(t )>0,v (t )单调递增; 当t ∈(9,10)时,v ′(t )<0,v (t )单调递减. 所以当t =9时,v (t )的最大值v (9)=1240×3×e 9+50=150(亿立方米), 故一年内该水库的最大蓄水量是150亿立方米.1.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,0≤x ≤1,f (x -1)+m ,x >1在定义域[0,+∞)上单调递增,且对于任意a≥0,方程f (x )=a 有且只有一个实数解,则函数g (x )=f (x )-x 在区间[0,2n ](n ∈N *)上的所有零点的和为( )A.n (n +1)2B .22n -1+2n -1C.(1+2n )22D .2n -1解析:选B 因为函数f (x )=⎩⎪⎨⎪⎧2x -1,0≤x ≤1,f (x -1)+m ,x >1在定义域[0,+∞)上单调递增,所以m ≥1.又因为对于任意a ≥0,方程f (x )=a 有且只有一个实数解,且函数f (x )=⎩⎪⎨⎪⎧2x -1,0≤x ≤1,f (x -1)+m ,x >1在定义域[0,+∞)上单调递增,且图象连续,所以m =1. 如图所示,函数g (x )=f (x )-x 在区间[0,2n](n ∈N *)上的所有零点分别为0,1,2,3, (2), 所以所有的零点的和等于2n (1+2n )2=22n -1+2n -1.2.设函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数,如[-1.5]=-2,[2.5]=2,若直线y =k (x -1)(k <0)与函数y =f (x )的图象只有三个不同的交点,则k 的取值范围为( )A.⎣⎡⎦⎤-12,-13 B.⎝⎛⎭⎫-12,-13 C.⎝⎛⎦⎤-1,-12 D.⎝⎛⎭⎫-1,-12 解析:选C 作出函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,f (x +1),x <0的图象如图所示.因为直线y =k (x -1)(k <0)与函数y =f (x )的图象只有三个不同的交点,所以⎩⎪⎨⎪⎧k (0-1)<1,k (-1-1)≥1,解得-1<k ≤-12.高考研究课(二)函数的单调性、奇偶性及周期性 [全国卷5年命题分析]考点 考查频度 考查角度函数的单调性 5年4考 利用单调性解不等式、比较大小、求最值函数的奇偶性 5年5考 奇偶性的判断及应用求值函数的周期性 未考查函数的单调性高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.,常见的命题角度有:(1)确定函数的单调性; (2)求函数的值域或最值; (3)比较两个函数值; (4)解函数不等式;(5)利用单调性求参数的取值范围.1.(2018·昆明调研)下列函数中,在区间(0,+∞)内单调递减的是( ) A .y =1x -xB .y =x 2-xC .y =l n x -xD .y =e x -x解析:选A 对于选项A ,y =1x 在(0,+∞)内是减函数,y =x 在(0,+∞)内是增函数,则y =1x -x 在(0,+∞)内是减函数;B 、C 选项中的函数在(0,+∞)内的单调性不确定;对于选项D ,y ′=e x -1>0在(0,+∞)内恒成立,故y =e x -x 在(0,+∞)上单调递增,故选A.2.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x 2B .y =(x -1)2C .y =2-x D .y =log 0.5x解析:选A y =x2在区间(0,+∞)上为增函数,A 项符合题意;y =(x -1)2在(0,1)上为减函数,y =2-x ,y =log 0.5x 在(0,+∞)上都是减函数,故B 、C 、D 选项都不符合题意.3.(2018·广东佛山联考)讨论函数f (x )=axx 2-1(a >0)在(-1,1)上的单调性.解:法一:(定义法) 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.又a >0,∴f (x 1)-f (x 2)>0, 故函数f (x )在(-1,1)上为减函数. 法二:(导数法)f ′(x )=(ax )′(x 2-1)-ax (x 2-1)′(x 2-1)2=a (x 2-1)-2ax 2(x 2-1)2=a (-x 2-1)(x 2-1)2=-a (x 2+1)(x 2-1)2.∵a >0,x ∈(-1,1), ∴f ′(x )<0.∴f (x )在(-1,1)上是减函数. [方法技巧]确定函数单调性的常用方法 定义法 先确定定义域,再根据取值、作差、变形、定号的顺序得结论 图象法若函数是以图象形式给出的,或者函数的图象可作出,可由图象的升、降写出它的单调性 导数法先求导,再确定导数值的正负,由导数的正负得函数的单调性函数的单调性相同时,为增函数;单调性不同时为减函数.角度二:求函数的值域或最值 4.函数y =2x 2+2x 的值域为( ) A.⎣⎡⎭⎫12,+∞ B .[2,+∞) C.⎝⎛⎦⎤0,12 D .(0,2]解析:选A 因为x 2+2x ≥-1,且y =2t 是增函数, 所以y =2x 2+2x ≥12,因此函数y =2x 2+2x 的值域是⎣⎡⎭⎫12,+∞.5.(2016·北京高考)函数f (x )=xx -1(x ≥2)的最大值为________.解析:f ′(x )=(x -1)-x (x -1)2=-1(x -1)2, 当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数,故f (x )max =f (2)=22-1=2.答案:2 [方法技巧]利用单调性求函数的最值的关键是准确判断其单调性,而判断方法常用定义法及导数法.角度三:比较两个函数值6.(2017·天津高考)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:选C 由f (x )为奇函数,知g (x )=xf (x )为偶函数.。
(完整word版)2019-2020年高考数学一轮复习第二章函数概念与基本初等函数I2.7函数的图象
1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.2 .图象变换(1)平移变换对称变换①y = f(x)关于X轴对称> y =—f (x);②y = f(x)关于y轴对称> y = f (—X);〜 £ 保留x 轴上方图象r⑤y =f(x) _将x 轴下方图象翻折上去 'y =|f(x)|.保留y 轴右边图象,并作其“ ⑥y =f(x)上上关于y 轴对称的图象上上>y =f(| x|).⑶伸缩变换a >1,横坐标缩短为原来的倍,纵坐标不变① y = f (x) ----------------------------------------------------------->0<a <1,横坐标伸长为原来的倍,纵坐标不变 y = f (ax ).a >1,纵坐标伸长为原来的a 倍,横坐标不变 ② y =f(x) 0<a <1,纵坐标缩短为原来的—a 倍,横坐标不变y = af (x ).【思考辨析】 判断下面结论是否正确(请在括号中打“V”或“ x”)(1) 当 x € (0,+^)时,函数 y =|f (x )| 与 y = f (| x |)的图象相同.(x )⑵ 函数y = af (x )与y = f (ax )( a >0且a * 1)的图象相同.(x )(3) 函数y = f (x )与y =— f (x )的图象关于原点对称.(x )(4) 若函数y = f (x )满足f (1 + x ) = f (1 - x ),则函数f (x )的图象关于直线x = 1对称.(⑸ 将函数y =f ( - x )的图象向右平移1个单位得到函数y =f ( - x - 1)的图象.(xn n③ y = f (x ) 关于原点对称 y =- f (-x );x ④y = a ( a >0 且 a * 1) 关于y = x 对称 ---------- >y = log a x (a >0 且 1).1 .函数f (x) = 2x-4sin x, x€ - y,—的图象大致是(填序号)答案④解析因为函数f(x)是奇函数,所以排除①、②.n n n n n f,(x) = 2-4cos x x € ——,—,令f,(x) = 2 —4cos x= 0 x €,得x =±-3, 所以④正确.2•函数f(x)的图象向右平移1个单位长度,所得图象与曲线y = e x关于y轴对称,则f(x)的解析式为_____________________________ •答案f(x) = e —x—1解析与y= e x图象关于y轴对称的函数为y= e—x.依题意,f(x)图象向右平移一个单位,得y = e—x的图象•••• f(x)的图象由y = e—x的图象向左平移一个单位得到.二f(x) = e—(x+1)= e—x—11 13•为了得到函数y = 4x(2)x的图象,可以把函数y=三广的图象向____________ 平移________的范围是 _________答案(0,1]解析个单位长度.答案右 2 4 .若关于x 的方程| x | = a — x 只有一个解,则实数 a 的取值范围是答案 (0 ,+^)解析 由题意a = | x | + x .令 y = I x | + x =2x , x >0, 0, x <0,图象如图所示,故要使a = |x | + x 只有 则 a >0.5.已知函数 log 2X f (x ) = 2x x > 0 , X W0 ,且关于x 的方程f (x ) — a = 0有两个实根,则实数 a当x W0时,0v2x w 1,所以由图象可知要使方程 f (x) —a= 0有两个实根,即函数y= f (x)与y = a的图象有两个交点,所以由图象可知0v a w 1.题型一作函数的图象例1作出下列函数的图象:(1) y= |ig x| ;⑶ y= x2-2| x| - 1. ig x, x> 1,解(1)y = |lg x| = 作出图象如图1.—ig x, 0<x<1,3 3⑵因y = 1+ ,先作出y=-的图象,将其图象向右平移1个单位,再向上平移x—1 x 1个单位,即得y= 的图象,如图 2.2 x —2x —1x >0 , ⑶y = 2图象如图3. x + 2x — 1 x <0 .引申探究__ 2作函数y = | x — 2x — 1|的图象.思维升华 (1)常见的几种函数图象如二次函数、 反比例函数、指数函数、对数函数、幕函数、形如y = x + m m>0)的函数是图象变换的基础;x (2)掌握平移变换、伸缩变换、对称变换规律,可以帮助我们简化作图过程.作出下列函数的图象.(1) y = |x — 2| ・(X +1);x 2— 2x — 1解 y =2 —x + 2x + 1x > 1 + '2 或 x < 1 — ,;2 1 — :2<x <1 + ;'2 , 如下图⑵y=解⑴当x>2,即x —2>0时,2 1 2 9y = (x—2)( x+ 1) = x —x—2= (x—2)—4;当x<2,即x—2<0 时,2y =—(x —2)( x+ 1) =—x + x + 2/ 1、2 9=—(x—2)+ 4.1 2 9—x— 2 + 4,x<2.这是分段函数,每段函数的图象可根据二次函数图象作出(如图).X -P 2 1 11个单⑵y=± = 1—工,该函数图象可由函数y=— -向左平移3个单位,再向上平移x十3 X十3 x位得到,如下图所示.题型二识图与辨图例2 (1)(xx •课标全国n改编)如图,长方形ABC[的边AB= 2, BC= 1, 示为X的函数f(x),则y=f(x)的图象大致为P沿着边BC CD与DA运动,记/ BOP= x.将动点P到A, B两点距离之和表⑵已知定义在区间[0,2]上的函数y = f (x)的图象如图所示,贝U y = - f (2 —x)的图象为_______ (填序号).答案⑴②(2)②n解析⑴当点P沿着边BC运动,即O w x w 时,在Rt△ POBK PB= OB an / POB= tan x,4在Rt △ PAB中,PA= p AB+ P B 4 + tan 2x,则f (x) = PA^ PE= 4 + tan 2x + tan x,它不是关于x的一次函数,图象不是线段,故排除①和③;n n r 2 n n 厂当点P与点C重合,即x = 7时,由上得f = 4 + tan壬+ tan —= .5 + 1,又当点Pn与边CD的中点重合,即x ="2时,△ PAO W^ PBC是全等的腰长为1的等腰直角三角形,故f ~ = PA^ PB= 2 + 2= 2 2,知f专v f "4,故又可排除④•综上,故②正确.1 O w x wi所以 f (2 — x )=2 — x 1<x <2—1 0w x wi , 故y = —f (2 — x )= 图象应为②. x — 2 1<x W2 .方法二 当 x = 0 时,一f (2 — x ) = — f (2) =— 1;当 x = 1 时,一f (2 — x ) = — f (1) =— 1.观察各图,可知②正确.思维升华 函数图象的识辨可从以下方面入手:(1) 从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2) 从函数的单调性,判断图象的变化趋势;(3) 从函数的奇偶性,判断图象的对称性;⑷从函数的周期性,判断图象的循环往复;(5) 从函数的特征点,排除不合要求的图象.1 (1)(xx •浙江 改编)函数f (x ) = x — - cos x ( —nW xWn 且x 丰0)的图象可能为 入_____ .(填序号)x f (x )= 1 0w x wi ,1<x W2 .当 x €[0,2]时,2 — x € [0,2], ⑵方法由y = f (x )的图象知,⑵现有四个函数:① y = x sin x;②y = x cos x:③y= x|cos x| :④y= x・2x的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号正确的排列应为________ •答案⑴④⑵①④②③1解析⑴••• f(x) =(x-?cos X」f( - x)一f(X),1••• f (x)为奇函数,排除①,②;当x=n时,f(X)= —nV 0,排除③.故④正确.n⑵由于函数y= x sin x是偶函数,由图象知,函数①对应第一个图象;函数y = x cos x是奇函数,且当x =n时,y=—n <0,故函数②对应第三个图象;函数y = x|cos x|为奇函数,故函数③与第四个图象对应;函数y = x・2x为非奇非偶函数,与第二个图象对应.综上可知,正确排序为①④②③.题型三函数图象的应用例3 (1)(xx •安徽)在平面直角坐标系xOy中,若直线y = 2a与函数y = I x—a| —1的图象只有一个交点,贝U a的值为_________ .sin n x, 0< x w 1,⑵已知函数f(x)= 若a, b, c互不相等,且f(a) = f(b) = f(c),log 2 015 X,x>1.则a+ b+ c的取值范围是 ______________ .1答案(1) — 2 (2)(2,2 016)解析(1) T| x—a|》0恒成立,•‘•要使y=2a与y = | x —a| —1只有一个交点,必有2a=—1,1解得a=—2⑵作出函数的图象,直线y= m交函数图象如图,不妨设a<b<c,由正弦曲线的对称性,可1得A( a, m与B(b, m关于直线x=㊁对称,因此a+ b= 1,当直线y = n= 1时,由log 2 015X=1,解得x = 2 015.若满足f (a) = f (b) = f (c),且a, b, c 互不相等,由a<b<c 可得1<c<2 015,因此可得2<a + b+ c<2 016,即a+ b+ c€ (2,2 016).思维升华(1)利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应法则.⑵禾U用函数的图象可解决某些方程和不等式的求解问题,方程f(x) = g(x)的根就是函数f(x)与g(x)图象交点的横坐标;不等式f(x)<g(x)的解集是函数f(x)的图象位于g(x)图象下方的点的横坐标的集合,体现了数形结合思想.1(1)设定义在[—1,7]上的函数y = f(x)的图象如图所示,则关于函数y = f----------------- 的单调区间T x表述正确的是__________ .①在[—1,1]上单调递增;②在(0,1]上单调递减,在[1,3)上单调递增;③在[5,7]上单调递增;④在[3,5]上单调递增.⑵若关于x的不等式2—x2>|x —a|至少有一个负数解,则实数a的取值范围是_________ .9答案⑴②(2) —4,21解析⑴由题图可知,f (0) = f (3) = f (6) = 0,所以函数y= f ------------------ 在x= 0, x= 3, x = 6处T x无定义,故排除①、③、④,故②正确.⑵在同一坐标系中画出函数f(x) = 2 —x , g(x) = | x—a|的图象,如图所示•若a w0,则其临界情况为折线g(x) = |x —a|与抛物线f (x) = 2—x2相切.由2 —x2= x—a可得x2+ x—a—29=0,由A = 1 + 4 •( a+ 2) = 0,解得a=—;若a>0,则其临界情况为两函数图象的交点为49(0,2),此时a= 2.结合图象可知,实数a的取值范围是一4, 2 .一、已知函数解析式确定函数图象典例函数f (x) = 2x + sin x的部分图象可能是_____________思维点拨根据函数的定义域、值域、单调性、奇偶性和特征点确定函数图象.解析方法一••• f ( —x) = - 2x —sin x= —f(x),••• f (x)为奇函数,排除②、③,n又0<x<~2时,f(x)>0 ,排除④,故①正确.方法二••• f '(x) = 2 + cos x>0,• f (x)为增函数,故①正确.答案①温馨提醒⑴确定函数的图象,要从函数的性质出发,禾U用数形结合的思想.(2)对于给出图象的选择性题目,可以结合函数的某一性质或特殊点进行排除.二、函数图象的变换问题典例若函数y=f(x)的图象如图所示,贝U函数y=—f(x+ 1)的图象大致为_______________ .(填序号)思维点拨从y= f(x)的图象可先得到y= —f(x)的图象,再得y=—f(x+ 1)的图象.解析要想由y = f (x)的图象得到y = —f (x + 1)的图象,需要先将y= f (x)的图象关于x轴对称得到y=—f(x)的图象,然后再向左平移一个单位得到y=—f(x+ 1)的图象,根据上述步骤可知③正确.答案③温馨提醒(1)对图象的变换问题,从f(x)到f(ax+ b),可以先进行平移变换,也可以先进行伸缩变换,要注意变换过程中两者的区别.(2) 图象变换也可利用特征点的变换进行确定.三、函数图象的应用典例⑴已知函数f (x) = x| x| —2x,则下列有关f (x)的性质正确的是_______________ .①f(x)是偶函数,递增区间是(0,+^);② f (x)是偶函数,递减区间是(一R, 1);③ f (X) 是奇函数,递减区间是(一1,1);④ f (x)是奇函数,递增区间是(一8, 0).⑵设函数f (x) = | x+ a| , g(x) = x- 1,对于任意的x€ R,不等式f (x) > g(x)恒成立,则实数a的取值范围是__________________ .思维点拨⑴画出函数f (x)的图象观察.(2)利用函数f(x) ,g(x)图象的位置确定a的范围.解析⑴将函数f (x) = x| x| —2x去掉绝对值得f (x)=2x —2x, x>0,2画出函数f(x)的图象,如图,观察得到,—x —2x, x<0,数,递减区间是(一1,1).⑵如图,作出函数f (x) = | x + a|与g(x) = x—1的图象,观察图象可知:当且仅当一a w 1,即卩a>—1时,不等式f(x) >g(x)恒成立, 因此a的取值范围是[—1,+^).答案⑴③(2)[—1, +8)温馨提醒(1)本题求解利用了数形结合的思想,数形结合的思想包括“以形助数”或“以数辅形”两个方面,本题属于“以形助数”,是指把某些抽象的问题直观化、生动化,能够变抽象思维为形象思维,解释数学问题的本质.(2)利用函数图象也可以确定不等式解的情况,解题时可对方程或不等式适当变形,选择合适的函数进行作图.[方法与技巧]1 •列表描点法是作函数图象的辅助手段,要作函数图象首先要明确函数图象的位置和形状:(1)可通过研究函数的性质如定义域、值域、奇偶性、周期性、单调性等;(2)可通过函数图象的变换如平移变换、对称变换、伸缩变换等.2 .合理处理识图题与用图题(1) 识图对于给定函数的图象,要从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.(2) 用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具•要重视数形结合解题的思想方法•常用函数图象研究含参数的方程或不等式解集的情况.[失误与防范]1.函数图象平移的方向和大小:函数图象的每次变换都针对自变量“x ”而言,如从f( —2x)的图象到f ( —2x + 1)的图象是向1右平移2个单位.2 •当图形不能准确地说明问题时,可借助“数”的精确,注重数形结合思想的运用.A组专项基础训练(时间:40分钟)2 小x, x<0,1•函数y = x 的图象大致是__________ .2 —1, x>0答案②解析 当x <0时,函数的图象是抛物线;当 x >0时,只需把y = 2x 的图象在y 轴右侧的部分向下平移1个单位即可.故②正确.2•为了得到函数y = 2「3— 1的图象,只需把函数y =2x 的图象上所有的点向 ________ 平移 _______ 个单位长度,再向 ______ 平移 ______ 个单位长度.答案右 3下 1 —2x — 1 w x W0 ,3.已知f (x )= 厂 则下列函数的图象正确的为 __________ 解析y = 2 向右平移3个单位长度---------- > y = 2 3向下平移1个单位长度 ---------------- > —1.(填序号)寸X 0<x wi答案①②③解析先在坐标平面内画出函数y = f(x)的图象,再将函数y = f(x)的图象向右平移1个单位长度即可得到y=f(x- 1)的图象,因此①正确;作函数y=f(x)的图象关于y轴的对称图形,即可得到y=f(—x)的图象,因此②正确;y = f(x)的值域是[0,2],因此y =|f(x)|的图象与y= f (x)的图象重合,③正确;y = f(| x|)的定义域是[—1,1],且是一个偶函数,当0<x wi时,y= f(| x|) = x,相应这部分图象不是一条线段,因此④不正确.综上所述,①②③正确.4 .已知函数f (x) = | x —2| + 1, g(x) = kx.若方程f (x) = g(x)有两个不相等的实根,则实数k的取值范围是____________ .1答案q,1)解析先作出函数f(x) = |x—2| + 1的图象,如图所示,当直线g(x) = kx与直线AB平行时1斜率为1,当直线g(x) = kx过A点时斜率为2,故f (x) = g(x)有两个不相等的实根时,k的1 范围为(2,1).5 . (xx •北京改编)如图,函数f(x)的图象为折线ACB则不等式f (x) >log 2(x +1)的解集是______________ .答案{x| —1< x < 1}解析令g(x)= y = log 2(x+ 1),作出函数g(x)的图象如图.由x +y=2,y= log 2 x+ 1 , 得x- 1,y= 1.•••结合图象知不等式 f (x) > log 2(x+ 1)的解集为{x| —1<x w 1}.6.已知函数f (x)的图象如图所示,贝U函数g(x) = log寸2f(x)的定义域是_____________ 答案(2,8]解析当f(x)>0时,函数g(x) = log , 2f (x)有意义,由函数f (x)的图象知满足f (x)>0的x € (2,8].7•用min{a, b, c}表示a, b, c 三个数中的最小值•设 f (x) = min{2 x, x+ 2,10 —x}( x>0),则f(x)的最大值为答案6解析f(x) = min{2 x, x + 2,10 -x}( x > 0)的图象如图.令 =4.当x = 4时,f (x)取最大值,f (4) = 6.8 .设f (x) = |lg( x - 1)|,若0<a<b,且f (a) = f ( b),贝U ab的取值范围是 __________________________________________________________________ 答案(4 ,+s)解析由于函数f (x) =|lg( x- 1)|的图象如图所示.由f (a) = f ( b)可得一lg( a-1) = lg( b- 1),解得ab= a+ b>2 ab(由于a<b),所以ab>4.x9. 已知函数f(x)= .1 + x(1) 画出f (x)的草图;(2) 指出f (x)的单调区间.x 1 1解(1)f(x) = = 1 - ,函数f(x)的图象是由反比例函数y =―-1 + X X+ 1 x的图象向左平移1个单位后,再向上平移1个单位得到的,图象如图所示.(2)由图象可以看出,函数f(x)有两个单调递增区间:(-m,- 1) , (- 1,+m).10. 已知函数f(x) = |x2-4x+ 3|.(1)求函数f(x)的单调区间,并指出其增减性;⑵求集合M= {m使方程f (x) = m有四个不相等的实根}.解f(x)=2x- 2 -1 , x €—a, 1] U [3 ,+^ ,2—x-2 +1 , x € 1 , 3 ,作出函数图象如图.x + 2 = 10-x,得x(1)函数的增区间为[1,2] , [3 ,+^);函数的减区间为(—g, 1] , [2,3].(如图) .由⑵在同一坐标系中作出y = f(x)和y= m的图象,使两函数图象有四个不同的交点图知0<m<1 ,/. M= {m|0< n<l}.B 组专项能力提升( 时间:15 分钟)11. _________________________________________________________________ 函数y= f (x)的图象如图所示,则函数y= log f (x)的图象大致是_________________________________答案③ 解析由函数y= f(x)的图象知,当x € (0,2)时,f(x) > 1,所以log f(x) < 0.又函数f (x)在(0,1)上是减函数,在(1,2)上是增函数,所以y= log f(x)在(0,1)上是增函数,在(1,2)上是减函数•结合各图象知,③正确.12. (xx •安徽改编)函数f(x) = ax +b2的图象如图所示,x + c成立的是 ________ •①a>0, b>0, c<0;②a<0, b>0, c>0;③a<0, b>0, c<0;④a<0, b<0, c<0.则下列结论答案③解析 函数定义域为{X |X M — C },结合图象知—c >0,.・. c <0.b令 X = 0,得 f (0) = C 2,又由图象知 f (0)>0 ,••• b >0.bb 令 f (x ) = 0,得 x =—-,结合图象知一->0,「. a <0.a a 13. _____________________________________________________________________________ 设函数y = f (x + 1)是定义在(―汽 0) U (0,+^)上的偶函数,在区间 (一汽 0)上是 减函数,且图象过点(1,0),则不等式(x — 1) f (X ) <0的解集为 _________________________________________________________ . 答案(―汽 0] U (1,2]解析 y =f (x +1)向右平移1个单位得到y = f (x )的图象,由已知可得 f (x )的图象的对称轴 为x = 1,过定点(2,0),且函数在(—g, 1)上递减,在(1 ,+^)上递增,则f (x )的大致图 象如图所示.(—^, 0] U (1,2]2x 2 14. 已知函数f (x ) = x 'x — 1 3,x <2.则实数k 的取值范围是 ___________ .答案(0,1) 解析 画出分段函数f (x )的图象如图所示,结合图象可以看出,若f (x ) =k 有两个不同的实根,也即函数 y = f (x )的图象与y = k 有两个不同 的交点,故k 的取值范围为(0,1).15.给出下列命题:①在区间 (0,+g )上,函数 y= x —1, y = x , y = (x — 1)2, y = x 3中有三个是增函数;②若 log m 3<log n 3<0,则0<n <n <1 ;③若函数f (x )是奇函x >1,不等式(X- 1)f(x) <0可化为f x <0 x <1, 或 由图可知符合条件的解集为 f x > 0. 若关于x 的方程f (x ) = k 有两个不同的实根,数,贝y f(x —1)的图象关于点(1,0)对称;④若函数f(x)= 3x- 2x —3,则方程f(x) = 0有两个实数根,其中正确的命题是 ____________________ .答案②③④解析对于①,在区间(0 ,+^)上,只有y = x, y= x3是增函数,所以①错误.对于②,由1 1 “log m3<log n3<0,可得< <0,即log 3n<log 3n<0,所以0<n<n<1,所以②正确.易知③log 3m log 3n正确.对于④,方程f(x) = 0 即为3x—2x—3= 0,变形得3x= 2x+ 3,令y1 = 3x, y2= 2x + 3, 在同一坐标系中作出这两个函数的图象,如图.由图象可知,两个函数图象有两个交点,所以④正确.。
2019版高考数学一轮复习第二章函数第一节函
数a的取值范围是 ( D ) A.(0,e) C.(0,e] B.(e,+∞) D.[e,+∞)
答案 D 当x≤0时, f(x)=xex,则f '(x)=ex(x+1),
当x<-1时, f '(x)<0,当-1<x≤0时, f '(x)>0, ∵x=-1是函数f(x)的极小值点,也是最小值点,
A.y= C.y=log2x
2 x
B.y=x2 D.y=2x
2 x
答案 A A项,函数y= 的定义域与值域相同,B,C,D项中的函数定义 域与值域均不相同.故选A.
3.(2016北京临川学校期末)函数y= A.(-∞,2) B.(2,+∞)
1 的定义域是 ( log 2 ( x 2)
C )
∴f(x)min=- ,若函数f(x)的值域为 , ,
1 e
1 e
则当x>0时, f(x)min≥- . 当a=0时,显然不符合题意,
1 e
当a≠0时,要满足f(x)min≥- ,
a 0, 只需 4 1 解得a≥e,故选D. , e 4a
定义域 相同,且
全一致,则这两个函数相等,这是判断两函数相等的依据.
(4)函数的表示法 表示函数的常用方法: 解析法 、 图象法 、 列表法 .
3.分段函数
若函数在其定义域内,对于定义域内的不同取值区间,有着不同的 对应关系 ,这样的函数通常叫做分段函数.分段函数虽然由几部分 组成,但它表示的是.
1 2
7 4
C.
4 3
D.-
4 3
答案 B 令t= x-1,则x=2t+2, ∴f(t)=2(2t+2)-5=4t-1,
(新课标)2019届高考数学一轮复习第二章函数的概念、基本初等函数Ⅰ2.4二次函
自查自纠
1.(1)ax2+bx+c (2)a(x-h)2+k (3)a(x-x1)(x-x2) 2 b b 4ac-b 2.(1)- (2) - , (3)向上 向下 2a 4a 2a 4ac-b2 4ac-b2 (4) ,+∞ -∞, 4a 4a b b (5)-∞,-2a -2a,+∞ 增函数 减函数 3.根 端点值 4.端点 顶点 6.{x|x≥0} {x|x≠0} (-∞,0] {y|y≥0} {y|y≥0} {y|y≠0} 奇 偶 奇 非奇非偶 奇 (0,+∞) (1,1) [0,+∞) [0,+∞) (-∞,0)
上是减函数,在 上是增函数;a<0 b ,在-2a,+∞上是________.
3.二次函数、二次方程、二次不等式三者之间的关系 二次函数 f(x)=ax2+bx+c(a≠0)的零点(图象与 x 轴交点的横坐标)是 相应一元二次方程 ax2+bx+c=0 的 ax2+bx+c≥0(或 ax2+bx+c≤0)解集的 4.二次函数在闭区间上的最值 二次函数在闭区间上必有最大值和最小值. 它只能在区间的 处取得,可分别求值再比较大小,最后确定最值. 5.一元二次方程根的讨论(即二次函数零点的分布) 设 x1, x2 是实系数一元二次方程 ax2+bx+c=0(a>0)的两实根, 则 x1, x2 的分布范围与系数之间的关系如表所示. 或二次函数的 ,也是一元二次不等式 .
m<x1<n<x2<p
f(m)>0, ⑤ f(n)<0, f(p)>0.
m<x1=x2<n
Δ =0, ⑥ b m<-2a<n.
⑦ f(m)· f(n)<0.
只有一根在区间(m,n)内
6.幂函数 α (1)定义: 形如 y=x (α∈R)的函数称为幂函数, 其中 x 是自变量, α 是常数. (2)常见的五种幂函数的图象和性质比较 函数 图象 性质 定义 公共 值域 奇偶性 单调性 域 点 ____ 在 R 上单调递 y=x R R 函数 增 在____上单 调递减;在 ____ y=x2 ____ R 函数 ____上单调 递增 ____ 在 R 上单调递 ___ y=x3 R R 函数 增 1 在____上单 ____ ____ ____ y=x2 函数 调递增 在____和 ____ -1 y=x ____上单调 ____ ____ 函数 递减
2019届一轮复习理数:第2单元 教材复习课 “函数”相关基础知识一课过
第 二 单 元
函数的概念及其性质
教材复习课 课过
“函数”相关基础知识一
01 02
知识点一 函数的基本概念 知识点二 函数定义域的求法
03
知识点三 函数的单调性与最值
知识点四 函数的奇偶性 知识点五 函数的周期性 双基过关检测
目 录
04
05
06
[小题速通]
[清易错]
[小题速通]
[方法技巧]增函数Fra bibliotek减函数
图象描述 自左向右看图象是 自 左 向 右 看 图 象 是 上升的 _______
[清易错]
[小题速通]
[清易错]
[清易错]
“双基过关检测”见“函数的概念及其性质” (单击进入电子文档)
谢
谢
观
看
THANK YOU FOR WATCHING
(2021年整理)2019-2020年高考数学一轮复习第二章函数与基本初等函数I2.9函数的应用理
(完整)2019-2020年高考数学一轮复习第二章函数与基本初等函数I2.9函数的应用理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2019-2020年高考数学一轮复习第二章函数与基本初等函数I2.9函数的应用理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2019-2020年高考数学一轮复习第二章函数与基本初等函数I2.9函数的应用理的全部内容。
2019-2020年高考数学一轮复习第二章函数与基本初等函数I2。
9函数的应用理1.几类函数模型函数模型函数解析式一次函数模型f(x)=ax+b (a、b为常数,a≠0)反比例函数模型f(x)=错误!+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,b≠0,a>0且a≠1)对数函数模型f(x)=b log a x+c(a,b,c为常数,b≠0,a〉0且a≠1)幂函数模型f(x)=ax n+b(a,b为常数,a≠0)2.三种函数模型的性质函数性质y=a x(a>1)y=log a x(a〉1)y=x n(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x〉x0时,有log a x<x n<a x【知识拓展】1.解函数应用题的步骤2.“对勾"函数形如f(x)=x+错误!(a〉0)的函数模型称为“对勾"函数模型:(1)该函数在(-∞,-错误!]和[错误!,+∞)上单调递增,在[-错误!,0)和(0,错误!]上单调递减.(2)当x〉0时,x=a时取最小值2错误!,当x〈0时,x=-a时取最大值-2错误!.【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,若按九折出售,则每件还能获利.(√)(2)幂函数增长比直线增长更快.( ×)(3)不存在x0,使( ×)(4)在(0,+∞)上,随着x的增大,y=a x(a〉1)的增长速度会超过并远远大于y=x a(a〉0)的增长速度.( √)(5)“指数爆炸”是指数型函数y=a·b x+c(a≠0,b〉0,b≠1)增长速度越来越快的形象比喻.(×)1.(教材改编)已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到()A.100只 B.200只 C.300只 D.400只答案B解析由题意知100=a log3(2+1),∴a=100。
2019届高考数学一轮复习第二章函数的概念与基本初等函数2-1函数及其表示课件文
2.下列四组函数中,表示相等函数的一组是( ) A.f(x)= x+1· x-1,g(x)= x2-1 B.f(x)= x2,g(x)=( x)2 C.f(x)=xx2--11,g(x)=x+1 D.f(x)=|x|,g(t)= t2
[解析] 在 A 中,由xx-+11≥≥00,, 可知 f(x)的定义域为[1,+ ∞);由 x2-1≥0,可知 g(x)的定义域为(-∞,-1]∪[1,+∞).
第
二 函数的概念与基本初等函数
章
第一节
函数及其表示
高考概览 1.了解构成函数的要素,会求一些简单函数的定义域和值域, 了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当 的方法(如图象法、列表法、解析法)表示函数;3.了解简单的分段 函数,并能简单地应用.(函数分段不超过三段)
吃透教材 夯双基
(2)y=10lgx=x(x>0),其定义域为(0,+∞),值域为(0,+∞)、 y=x 与 y=2x 这两个函数的定义域为 R,显然与已知函数不同, 排除 A、C 选项.y=lgx 的值域为 R,排除 B 选项.经验证 D 选 项符合,故选 D.
[答案] (1)C (2)D
(1)函数的图象特征:与 x 轴垂直的直线与其最多有一个公共 点.利用这个特征可以判断一个图形能否作为一个函数的图象.
因为它们的定义域不同,所以 A 不成立. 在 B 中,f(x)= x2=|x|,其定义域为 R;g(x)=( x)2=x,其 定义域为[0,+∞).它们的解析式和定义域都不同,所以 B 不成 立.
在 C 中,f(x)=xx2--11=x+1,其定义域为{x|x≠1};g(x)=x +1 的定义域为 R.因为它们的定义域不同,所以 C 不成立.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学一轮复习必备 第12课时:第二章 函数-函数的单调性教案
一.课题:函数的单调性
二.教学目标:理解函数单调性的定义,会用函数单调性解决一些问题.
三.教学重点:函数单调性的判断和函数单调性的应用.
四.教学过程:
(一)主要知识:
1.函数单调性的定义;
2.判断函数的单调性的方法;求函数的单调区间;
3.复合函数单调性的判断.
(二)主要方法:
1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集;
2.判断函数的单调性的方法有:(1)用定义;(2)用已知函数的单调性;(3)利用函数的导数.
3.注意函数的单调性的应用;
4.注意分类讨论与数形结合的应用.
(三)例题分析:
例1.(1)求函数的单调区间;
(2)已知若试确定的单调区间和单调性.
解:(1)单调增区间为:单调减区间为,
(2)
222()82(2)(2)g x x x =+---,, 令 ,得或,令 ,或
∴单调增区间为;单调减区间为.
例2.设,是上的偶函数.
(1)求的值;(2)证明在上为增函数.
解:(1)依题意,对一切,有,即
∴对一切成立,则,∴,∵,∴.
(2)设,则12121211()()x x x x f x f x e e e e -=-+
- 212112112211
1()(1)(1)x x x x x x x x x x x e e e e e e e +-++-=--=-,
由,得,,
∴,
即,∴在上为增函数.
例3.(1)(《高考计划》考点11“智能训练第9题”)若为奇函数,且在上是减函数,又,则的解集为.
例4.(《高考计划》考点10智能训练14)已知函数的定义域是的一切实数,对定义域内的任意都有,且当时,
(1)求证:是偶函数;(2)在上是增函数;(3)解不等式.
解:(1)令,得,∴,令,得∴,
∴()(1)(1)()()f x f x f f x f x -=-⋅=-+=,∴是偶函数.
(2)设,则
221111()()()()x f x f x f x f x x -=⋅-221111()()()()x x f x f f x f x x =+-=
∵,∴,∴,即,∴
∴在上是增函数.
(3),∴,
∵是偶函数∴不等式可化为,
又∵函数在上是增函数,∴,解得:,
即不等式的解集为.
例5.函数在上是增函数,求的取值范围.
分析:由函数在上是增函数可以得到两个信息:①对任意的总有;②当时,恒成立. 解:∵函数在上是增函数,∴对任意的有,即919212log (8)log (8)a a x x x x +-
<+-,得
,即,
∵,∴ ,
∵,∴要使恒成立,只要;
又∵函数在上是增函数,∴,
即,综上的取值范围为.
另解:(用导数求解)令,函数在上是增函数,
∴在上是增函数,,
∴,且在上恒成立,得.
(四)巩固练习:
1.《高考计划》考点11,智能训练10;
2.已知是上的奇函数,且在上是增函数,则在上的单调性为 .
五.课后作业:《高考计划》考点1,智能训练4,5, 7,8,12,13,15
2019-2020年高考数学一轮复习必备 第13课时:第二章 函数-反函数教案
一.课题:反函数
二.教学目标:理解反函数的意义,会求一些函数的反函数;掌握互为反函数的函数图象间的关系,会利用与的性质解决一些问题.
三.教学重点:反函数的求法,反函数与原函数的关系.
四.教学过程:
(一)主要知识:
1.反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数;
2.反函数的定义域、值域上分别是原函数的值域、定义域,若与互为反函数,
函数的定义域为、值域为,则,;
3.互为反函数的两个函数具有相同的单调性,它们的图象关于对称.
(二)主要方法:
1.求反函数的一般方法:(1)由解出,(2)将中的互换位置,得,(3)求的值域得的定义域.
(三)例题分析:
例1.求下列函数的反函数:
(1);(2);
(3).
解:(1)由得2211()(1)24y x x =+-≤-,
∴,
∴所求函数的反函数为.
(2)当时,得,当时,
得,
∴所求函数的反函数为.
(3)由得,∴, ∴所求反函数为
13()12()f x x x R -=+-∈. 例2.函数11(,)1ax y x x R ax a -=
≠-∈+的图象关于对称,求的值. 解:由11(,)1ax y x x R ax a -=
≠-∈+得, ∴
11()(1)(1)x f x x a x --=≠-+, 由题知:,,∴.
例3.若既在的图象上,又在它反函数图象上,求的值.
解:∵既在的图象上,又在它反函数图象上,
∴,∴,∴.
例4.(《高考计划》考点12“智能训练第5题”)设函数,又函数与的图象关于对称,求的值. 解法一:由得,∴,,
∴与互为反函数,由,得.
解法二:由得,∴,
∴.
例5.已知函数(定义域为、值域为)有反函数,则方程有解,且的充要条件是满足11()()(0)f x x x B f a --<∈=且.
例6.(《高考计划》考点12“智能训练第15题”)已知,是上的奇函数.(1)求的值,(2)求的反函数,(3)对任意的解不等式.
解:(1)由题知,得,此时
21212112()()021212112x x x x
x x x x f x f x ------+-=+=+=++++,
即为奇函数.
(2)∵,得,
∴121()log (11)1x f x x x -+=-<<-.
(3)∵,∴11111x x x k x ++⎧>⎪-⎨⎪-<<⎩,∴,
①当时,原不等式的解集,
②当时,原不等式的解集.
(四)巩固练习:
1.设,则 .
2.设,函数的反函数和的反函数的图象关于( )
轴对称 轴对称 轴对称 原点对称
3.已知函数,则的图象只可能是 ( )
4.若与的图象关于直线对称,且点在指数函数的图象上,则 .
五.课后作业:《高考计划》考点12,智能训练1,2,3,6,10,12,14。