《数值分析》课程简介

合集下载

数值分析

数值分析

《数值分析》精品课程简介
《数值分析》是信息与计算科学专业的一门专业基础课程,该课程详细介绍了应用计算机进行了科学计算的常用算法,是培养学生从事科学计算能力的桥梁。

2005年《数值分析》被评为院级精品课程,课程负责人为张同琦教授。

数值分析精品课程建设小组共有成员8名,涵盖了基础数学、计算数学、应用数学、计算机科学等学科专业,其中有教授2人,副教授2人,讲师4人。

几年来,在学院的大力支持下,按照精品课程建设的要求,遵从教育教学规律,以“提高教学质量和培养优秀人才”为核心,以力求“创新”、加强“实践”,积极探索和实践,形成了“问题---数学模型---解决方法---课程内容---解决问题”为主线的具有专业特色的教学方法。

“精品课程数值分析建设的实践体会”获2008年渭南师范学院优秀教学成果三等奖,信息与计算科学专业的学生自2006年参加全国大学生数学建模竞赛以来,每年都能在全国数建模竞赛中获得省二等奖以上的奖励。

现任教师具有较强的科研能力,最近几年获得院级科研成果奖励的有5人次,主持和参加省级、院级科研项目的有7人次。

近年来在《工程数学学报》、《西北大学学报》等核心刊物发表学术论文30多篇。

数值分析简介

数值分析简介
数值分析如何学习? 理论讲授:算法来历,误差分析
理论是基础
上机实践:算法实现项 :
实践课时远远不够,希望大家充分利用自由 上机时间加强实践,完成实验和习题
在加强实践的同时,请同学们务必重视理论 课程的学习,二者不要偏废。 希望同学们在学习理论的同时,及时复习数 学分析和高等代数知识。只有不断地学习,才 能加深对以前所学知识的理解。
二、计算科学简介
简单地说,使用计算手段研究自然现象和 社会现象的学科均称为计算科学。例如:计 算物理、计算化学、计算生物学、计算经济 学等,学科领域非常宽广,数值分析是基础。 现在,人们把计算称为科学研究的三大方 法之一。 There are three great branches of science: theory, experiment and computation.
――L.N. Trefethen
计算科学发展趋势
计算科学发展趋势与计算机的发展密切相 关。 计算机的发展趋势:多核化,多CPU化, 集群化,高性能化。 计算科学发展趋势:算法并行化。 如何因应?
我们学院已经成立了高性能计算实验室,购买了 浪潮并行计算机,这学期开设一个并行计算讨论班。 希望我们班有同学参加。
[1] 白峰杉,《数值计算引论》,北京:高等教育出版社, 2004.7 [2] 封建湖,聂玉峰,王振海,《数值分析(第四版)导 教· 导学· 导考》,西安:西北工业大学出版社,2003.6 [3] Michael T.Heath ,张威等译,《科学计算导论(第二 版)》,北京:清华大学出版社,2005.10 [4] 薛毅,《数值分析与实验》,北京:北京工业大学出版 社,2005.3 [5] Curtis F.Gerald, Applied Numerical Analysis (Seventh Edition),北京:高等教育出版社,2006.1 [6] 张韵华,符号计算系统 Mathematica 教程,北京:科学 出版社,2001.11 [7] 徐安农, Mathematica 与数学实验,北京:电子工业出 版社,2004.7

《数值分析》教学大纲

《数值分析》教学大纲

《数值分析》教学大纲
一、课程名称:数值分析
二、课程性质:专业选修课
三、授课学时:48学时(实验室32学时)
四、授课对象:计算机专业本科课程学生
五、课程目前:
1.数值分析的定义、内容及其在科学计算中的重要性;
2.数值积分的原理及其应用,包括高斯积分、拉格朗日积分、Lagrange插值法、梯形法等;
3.常微分方程的数值解法,包括隐式Euler方法、欧拉法、Runge-Kutta方法、Adams方法、Lorenz方法等;
4.最优化的原理和算法,包括一阶最优化方法、梯度方法、拟牛顿法、二阶最优化方法及其应用;
5.系统辨识的原理及其应用;
6.数值计算实践,使用MATLAB编程实现数值计算;
六、教学进度安排
第1讲:数值分析的定义、内容及其在科学计算中的重要性
第2讲:数值积分的原理及其应用:高斯积分、拉格朗日积分、Lagrange插值法
第3讲:隐式Euler方法
第4讲:欧拉法
第5讲:Runge-Kutta方法
第6讲:Adams方法
第7讲:Lorenz方法
第8讲:一阶最优化方法、梯度方法和拟牛顿法
第9讲:二阶最优化方法及其应用
第10讲:系统辨识原理及其应用
第11讲:MATLAB编程实现数值计算
七、教学要求
1.熟悉数值分析的定义、内容及其在科学计算中的重要性;。

数值分析课程介绍中文版

数值分析课程介绍中文版

数值分析课程介绍
课程代码(学校统一编制)
课程名称数值分析
英文名称Numerical Analysis
学分: 2 修读期:大三上学期
授课对象:理工科
课程主任:洪晓英、讲师、硕士
课程简介
《Numerical Analysis》是理工科专业基础选修课。

它主要介绍各种数值方法来解决形式比较复杂的各种数学问题。

通过本课程的学习,使学生了解和掌握这门课程所涉及的各种常用的数值计算公式、数值方法的构造原理及适用范围,并通过本课学到一些现代数学的概念,为今后用计算机去有效地解决实际的科研问题及进入现代数学打下基础。

主要包括:(1)引论
(2)线性方程组的求解
(3)插值法与最小二乘法
(4)数值积分与微分
(5)常微分方程的数值解法
(6)逐次逼近法
实践教学环节(如果有)
学习计算方法的过程中,进行重要的实验(上机)是必不可少的。

通过实验一方面加深对计算方法的理解,另一方面培养学生的解决实际问题的能力。

本课程有实验(上机)的教学安排,内容以教材附录中的上机实习参考题为主,共18学时。

要求学生熟悉至少一门数学软件平台(Mathematica/Matleb/Maple)和至少一种编程语言,能够编程实现几种重要的计算方法,至少做有求解足够规模问题的大作业4-5次。

课程考核
课外作业 10%,上机实验 20%;期末闭卷考试 70%。

指定教材
计算机数值方法,施吉林,高等教育出版社,2005年3月,第2版
参考书目
【1】计算方法,易大义,浙江大学出版社,2002年6月,第2版
【2】现代数值计算方法,肖筱南,北京大学出版社,2003年7月,第1版。

数值分析课程教学大纲

数值分析课程教学大纲

数值分析课程教学大纲一、课程简介数值分析课程是计算机科学与工程领域的一门重要基础课程,旨在培养学生使用数值方法解决实际问题的能力。

本课程主要介绍数值计算的基本原理、常用数值方法以及其在实际应用中的使用。

二、教学目标1. 了解数值计算的基本概念与原理;2. 掌握常用数值方法的基本思想和实现过程;3. 能够独立选择和应用合适的数值方法解决实际问题;4. 具备编写简单数值计算程序的基本能力。

三、教学内容1. 数值计算基础1.1 数值误差与有效数字1.2 浮点运算与舍入误差1.3 计算机数制与机器精度2. 插值与逼近2.1 插值多项式的存在唯一性与插值误差2.2 多项式插值的Newton和Lagrange形式2.3 最小二乘逼近与曲线拟合2.4 样条插值与曲线光滑拟合3. 数值积分与数值微分3.1 数值积分的基本概念及Newton-Cotes公式 3.2 数值积分的复化方法3.3 高斯积分公式3.4 数值微分的中心差分与向前向后差分公式4. 解非线性方程4.1 迭代法与收敛性分析4.2 函数单调性与零点存在性4.3 牛顿迭代法及其变形法4.4 非线性方程求根方法的比较与选择5. 数值代数方程组的直接解法5.1 矩阵消元与高斯消元法5.2 LU分解方法5.3 矩阵的特征值与特征向量5.4 线性方程组迭代解法6. 数值优化方法6.1 优化问题的基本概念与分类6.2 单变量优化方法6.3 多变量优化方法6.4 无约束优化算法和约束优化算法四、教学方法1. 授课方式:理论讲解与实例演示相结合。

2. 实践环节:布置数值计算作业,让学生进行编程实现,并分析实验结果。

3. 课堂互动:鼓励学生积极提问,与教师及同学进行讨论与交流。

五、评分与考核1. 平时成绩占40%,包括平时作业和课堂表现。

2. 期中考试占30%。

3. 期末考试占30%。

六、参考教材1. 《数值分析(第3版)》,李庆扬,高等教育出版社。

2. 《数值分析(第6版)》,理查德 L.伯登,麦格劳-希尔教育出版公司。

第一章 数值分析(计算方法)课程介绍

第一章 数值分析(计算方法)课程介绍
则有方程 设人龟起初相距 S ,两者的速度分别为 V 和 v ,
Vt vt S
易得人追上龟所花的时间是
(1)
S t* V v
School of Math. & Phys.
16
North China Elec. P.U.
Numerical Analysis
2014-4-11
J. G. Liu
Numerical Analysis
2014-4-11
J. G. Liu



刘敬刚

主讲:
School of Math. & Phys.
1
North China Elec. P.U.
Numerical Analysis
2014-4-11
J. G. Liu
引例 考虑如下线性方程组 a11 x1 a1n xn b1 a x a x b nn n n n1 1 或者: Ax b
J. G. Liu
参考书目:
1 谷根代等,数值分析与应用,科学出版社,2011 2 钟尔杰.数值分析.高等教育出版社,2004. 3 颜庆津.数值分析.修订版.北京航空航天大学出版 社,2000.
4 李庆扬. 数值分析.清华大学出版社,2001.
5 白峰杉.数值计算引论.高等教育出版社,2004.
6 王能超.计算方法.北京: 高等教育出版社, 2005.
(若是更高阶的
方程组呢?)
若行列式用按行(列)展开的方法计算 , 用克莱姆法则求解(1)需做乘除法的次数: (n 1)(n 1)n! 当方程组阶数较高时,计算量很大,因此克莱姆法则通常仅有 理论上的价值,计算线性方程组的解还要考虑:

《数值分析》课程简介

《数值分析》课程简介

数值分析
(Numerica1Ana1ysis)
总学时:48学时理论:44学时实验(上机、实习等4学时
学分:3
课程主要内容:
数值分析是计算机专业的专业技术基础课,其主要介绍了数值理论、函数逼近、数值微积分、非线性方程求根、线性代数方程组、特征值问题的常用数值法。

它利用计算机使学生将已学的数学和程序设计知识等有关知识有机地结合起来,并应用它解决实际问题。

它要求学生能够评价各种算法的优劣,使用高级语言描述学过的算法并上机调试。

这对于学生从事数值软件的研制与维护是十分有益的。

通过本课程的学习,学生应充分理解数值方法的特点,熟练掌握使用各种数值方法解决数学问题的技巧,为今后结合计算机的应用而解决实际问题打下坚实的基础。

先修课程:
高等数学、线性代数、程序设计及数据结构。

适用专业:
计算机科学与技术
教材:
王能超.《数值分析简明教程》(第二版).北京:高教出版社,2008
教学叁考书:
[1]同济大学计算数学教研室编.《数值分析》.上海:同济大学出版社,1998
[2]易大义,沈云宝,李有法编.《计算方法》.杭州:浙江大学出版社,1989。

数值分析 第1章

数值分析   第1章
13 14
3.计算复杂性尽可能小 从实际需要出发,我们还需要考虑计算量的大小, 即所谓计算复杂性问题。它由以下两个因素决定的: 使用中央处理器 CPU)的时间,主要由四则运算 使用中央处理器( 的时间 主要由四则运算 的次数决定; 占用内存储器的空间,主要由使用的数据量来决 定。
4.要有数值化结果 数值计算的许多方法是建立在离散化的基础上进 行的, 其解决问题的最终结果不是解析解而是数值近似 解。对于给定的数学模型,采用不同的离散手段可以导 致不同的数值方法,应该通过计算机进行数值试验,进 行分析、比较来选定算法。 对新提出的算法,有的在理论上虽然还未证明其 收敛性,但可以从具体试验中发现其规律,为理论证明 提供线索。
x2 =
−b − b 2 − 4ac 2c = 2a −b + b 2 − 4ac
9
来严重影响 应尽量避免 来严重影响,应尽量避免。 例3

在 4 位浮点十进制数下,用消去法解线性方程
⎧0.00003 x1 − 3 x 2 = 0.6 ⎨ x1 + 2 x 2 = 1 . ⎩

2 ×10 =1 . 109 + 109
§1.1
预备知识
一、集合
把一些确定的彼此不相同的事物汇集在一起成为一 个整体,称为集合。 表示方法:描述法;列举法。 分类:有限集;无限集(可列集,不可列集) 。
9
10
可列集(可数集) : 设 A 是无限集,若 A 中的一切元素可以用自然数 编号(即 A 与自然数集 N 一一对应) ,使 A 写成 A={ A { a1 , a2 , a3 ,L an ,L },则称 A 为可列集 (或可数集) 。 否则,称为不可列集。 如:有理数集是可列集,数列构成的集合是可列 集;无理数集、[0,1]中的全体实数构成的集合是不 可列集。

数值分析第一章

数值分析第一章
y * = f ( x *1 , x * 2 , ⋯ , x * n ) 相应的解为
* 可微, x * n ) 设 f 在点 ( x *1 , x可微,,当数据误差较小 2 ,⋯ 解的绝对误差 绝对误差为 时,解的绝对误差为
e ( y * ) = y − y * = f ( x1 , x2 , ⋯ , x n ) − f ( x *1 , x * 2 , ⋯ , x * n )
观测误差 在数学模型中往往有一些观测或实验得来 的物理量,由于测量工具和测量手段的限制, 的物理量,由于测量工具和测量手段的限制,它 们与实际量大小之间必然存在误差, 们与实际量大小之间必然存在误差,这种误差 称为观测误差 称为观测误差. 3 截断误差 由实际问题建立起来的数学模型, 由实际问题建立起来的数学模型,在很多情 况下 要得到准确解是困难内的, 要得到准确解是困难内的,通常要用数值方法求 出它的近似解. 出它的近似解.这种数学模型的精确解与由数值 截断误差,由 方法求出的近似解之间的误差称为截断误差 方法求出的近似解之间的误差称为截断误差 由 于截断误差是数值计算方法固有的,故又称为方 于截断误差是数值计算方法固有的,故又称为方 法误差. 法误差.


数值分析
第一章 数值计算中的误差分析 第二章 线性方程组的直接解法 第三章 线性方程组的迭代解法 第四章 矩阵特征值特征向量的计算 第五章 函数插值 第六章 曲线拟合 第七章 数值积分与数值微分 第八章 非线性方程的数值解法 第九章 常微分方程的数值解法
数值分析
第一章
数值计算中的误差分析
本章的主要内容有:
1、基本运算的误差估计 、
基本运算:指四则运算和常用函数的计算。设数值 基本运算:指四则运算和常用函数的计算。 计算中求解与参量 x

《数值分析》课程教学大纲

《数值分析》课程教学大纲

《数值分析》课程教学大纲课程编号:07054352课程名称:数值分析英文名称:Numerical Analysis课程类型:学科基础课程要求:必修学时/学分:48/3 (讲课学时:40 上机学时:8)适用专业:计算机科学与技术;软件工程一、课程性质与任务“数值分析”是计算机科学与技术、软件工程等相关专业学生的学科基础课,也是其它理、工科专业本科生及研究生的必修或选修课。

数值分析是研究各种数学问题在计算机上通过数值运算,得到数值解答的方法和理论。

随着计算机系统能力的提高和新型数值软件的不断开发,无论在高科技领域还是在传统学科领域,数值分析的理论和方法的作用和影响巨大,是科学工作者和工程技术人员必备的基础知识和工具。

课程的任务是使学生能了解数值分析的基本概念,熟悉常用数值方法的构造原理,了解数值算法复杂性、误差与收敛性分析的基本方法,了解重要数值算法的软件实现过程,使学生系统掌握数值分析的基本概念和分析问题、解决问题的基本方法,为掌握更复杂的现代计算方法打好基础。

内容包括数值计算的基本方法、线性和非线性方程组解法、插值法、数值积分法及微分方程的数值解法。

二、课程与其他课程的联系先修课程:高等数学,线性代数,C语言程序设计,计算基础。

后续课程:人工智能,数字图像处理技术,大数据分析及应用。

三、课程教学目标1.学习使用计算机进行数值计算的基础知识和基本理论知识,能够分辨、选用合适的数值方法解决工程问题。

(支撑毕业能力要求1和2)2. 能掌握常用数值计算方法的构造原理,根据问题设计和综合运用算法设计问题解决方案。

(支撑毕业能力要求1和2)3. 能运用数值算法复杂性、误差与收敛性分析的基本方法初步进行算法分析。

4. 能用计算机语言实现典型的数值计算算法,得到实验技能的基本训练,并具有利用计算机解决常见数学问题的能力;(支撑毕业能力要求4)5.能通过查询阅读文献资料,了解数值分析的前沿和新发展动向,了解数值分析算法原理应用的典型工程领域。

《数值分析》课程思政案例

《数值分析》课程思政案例

《数值分析》课程思政优秀案例一、课程简介计算数学是当代数学科学的重要分支,是伴随着计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机实现其在高科技领域应用的必不可少的纽带和工具。

计算与理论和实验相并列,已经成为当今世界科学活动的第三种手段,这是二十世纪后半叶最重要的科技进步之一。

“数值分析”作为计算数学专业主干课,研究分析利用计算机、通过有效的科学手段求解数学模型,这些模型来源于和人们日常生活密切相关的自然科学及社会科学,如天气预报、飞行器轨道计算、流体运动规律、股票市值及其变异程度、航空公司作业研究及保险精算等。

随着计算科学与技术的进步与发展,数值分析的应用范围已扩大到许多学科领域。

数值分析的主导思想是唯物辨证法,通过分析、解决矛盾并最后将思想付诸实践,因此该门课程与马克思主义哲学一样,具有育人功能。

课程思政元素:文化自信、爱国情怀二、教学目标如同马克思主义哲学,“数值分析”课程在了解和认识事物及其运动规律,遵循由个体特殊事物扩大到一般事物,由个体特殊本质概括归纳出一般事物的共同本质;课程中的学习内容都是从客观存在出发,发现规律,升华抽象为理论;在将其中的理论方法运用到解决实际问题时,依据客观实际判定认识或理论是否正确等。

我国古代数学家刘徽等,近代冯康先生为代表的数学家们都在这个领域中取得了许多世界先进成果,他们的人格魅力、科研成果以及锲而不舍及勇于探索的科学态度,能够增强学生的爱国主义意识和民族自信心。

文化自信:冯康学派对计算数学发展的贡献一、案例(材料)简介冯康先生祖籍浙江绍兴,1920年9月9日出生于江苏南京,6岁迁居苏州。

1939年毕业于省立苏州中学,1944年毕业于中央大学物理系。

1945年起先后在复旦大学物理系、清华大学物理系和数学系任教。

1951年转到刚组建的中国科学院数学研究所,不久便赴苏联斯捷克洛夫数学研究所工作。

1953年回国。

1957年调入中国科学院计算技术研究所。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档