第5课时 全等三角形判定角边角,角角边练习
《三角形全等的判定--角边角-角角边》说课稿-
(1)三边(SSS)
满足全等三角 形的六组条件 中的三组
(2)两边一角 两边、一夹角(SAS)
两边、一对角(不一定) (3)两角一边
(4)三角
一、教材分析 二、教学目标 三、重点难点 四、教学流程
(二)合作交流、解读探究
1.实验验证(探究5),探索新知(角边角)
(1)分组实验,前后桌4位同学为一组,共同完 成实验。
三、重点与难点
一、教材分析 二、教学目标 三、重点难点
【重点】 用角边角、角角边来确定两个三角形全
等, 以及用全等证明角的相等、线段相等。
【难点】 用角边角、角角边来确定两个三角形全等; 证明三角形全等时的规范的书写格式。
一、教材分析 二、教学目标 三、重点难点 四、教学流程
四、教学流程
(一)创设情境, 孕育新知
3.拓展提高
一、教材分析 二、教学目标 三、重点难点 四、教学流程
如图所示,在△ABC和△DEF 中,已有条件 AB=DE,还需要添加两个条件才能使 △ABC≌△DEF,不能添加的一组是()
A. ∠B=∠E BC=EF B. BC=EF AC=DF C. ∠A=∠D ∠B=∠E D. ∠A=∠D BC=EF
一、教材分析 二、教学目标
二、教学目标
【知识技能】 1.让学生在自主探究的过程中得出A.S.A推 导出A.A.S定, 掌握
【过程与方法】 经历探索三角形全等条件的过程, 体会如何 探索、研究问题, 培养学生合作精神, 让学生初 步体会数学中的分类思想。
【情感态度与价值观】 通过画图、比较、验证, 培养学生注重观察、 善于思考、不断总结的良好思维习惯。
1.生活情境设疑,激发学生兴趣
小明在上美术课时,不慎将一块三角形玻璃调色板打破 成如图所示的三块,小明小心翼翼地将三块碎玻璃板捡起, 准备包好拿去玻璃店配制,老师看到后对小明说,如果只你 拿一块去,你看行吗? 你会拿哪一块呢?
七年级数学 用“角边角、角角边”判定三角形全等 同步练习
4.3.2 用“角边角、角角边”判定三角形全等基础训练1.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中一定和△ABC全等的是( )A.甲、乙B.甲、丙C.乙、丙D.乙2.如图,某同学不小心把一块三角形玻璃打碎成三块,现在要到玻璃店配一块与原来完全相同的玻璃,最省事的方法是( )A.带①和②去B.只带②去C.只带③去D.都带去3.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是( )A.∠BAD=∠CADB.∠BAC=99°C.BD=ACD.∠B=45°4.如图,已知∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件可以是( )A.∠E=∠BB.ED=BCC.AB=EFD.AF=CD5.下列条件中,能判定△ABC≌△DEF的是( )A.AB=DE,BC=EF,∠A=∠EB.∠A=∠E,AB=EF,∠B=∠DC.∠A=∠D,∠B=∠E,∠C=∠FD.∠A=∠D,∠B=∠E,AC=DF6.根据图中所给条件,能够判定哪两个三角形全等?( )A.①和②B.②和④C.①和③D.③和④7.如图,AB∥CD,且AB=CD,则△ABE≌△CDE的根据是( )A.只能用ASAB.只能用SSSC.只能用AASD.用ASA或AAS8.如图,∠1=∠2,∠3=∠4,OE=OF,则图中全等的三角形有( )A.1对B.2对C.3对D.4对9.如图,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( )A.1个B.2个C.3个D.4个10.如图,已知∠B=∠ACD,∠ACB=∠D=90°,AC是△ABC和△ACD的公共边,所以就可以判定△ABC≌△ACD.你认为这种说法正确吗?如果不正确,请说明理由.提升训练11.如图,在四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.试说明:△ABC与△DEC全等.12.如图,已知∠CAB=∠DBA,∠CBD=∠DAC. 试说明:BC=AD.13.如图①,在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于点M,BN⊥MN于点N.(1)试说明:MN=AM+BN.(2)如图②,若过点C作直线MN与线段AB相交,AM⊥MN于点M,BN⊥MN 于点N(AM>BN),(1)中的结论是否仍然成立?说明理由.14.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.试说明:OE=OF.参考答案1.【答案】C2.【答案】C3.【答案】A4.【答案】D5.【答案】D6.【答案】D7.【答案】D 8.【答案】B 9.【答案】C10.错解:正确.诊断:用“AAS”判定两个三角形全等时,这两组角与一对边不是仅仅“相等”就可以了,而必须是“对应相等”,即两个三角形中相等的边和角必须有相同的顺序.在△ABC中,AC是锐角∠B的对边,而在△ACD中,AC却是直角∠ADC 的对边,它们之间不存在“对应相等”的关系.正解:不正确.理由:因为AC 虽然是△ABC 和△ACD 的公共边,但不是对应边.11.解:如图,因为∠BCE=∠ACD=90°,所以∠3+∠4=∠4+∠5.所以∠3=∠5.在△ACD 中,∠ACD=90°,所以∠2+∠D=90°.因为∠BAE=∠1+∠2=90°,所以∠1=∠D.在△ABC 和△DEC 中,{∠1=∠D ,∠3=∠5,BC =EC ,所以△ABC ≌△DEC.12.解:因为∠CAB=∠DBA,∠CBD=∠DAC,所以∠DAB=∠CBA.在△ADB 与△BCA 中{∠DBA =∠CAB ,AB =AB ,∠DAB =∠CBA ,所以△ADB ≌△BCA(ASA).所以BC=AD.13.解:(1)因为∠ACB=90°,所以∠ACM+∠BCN=90°.又因为AM ⊥MN,BN ⊥MN,所以∠AMC=∠CNB=90°.所以∠BCN+∠CBN=90°.所以∠ACM=∠CBN.在△ACM 和△CBN 中,{∠ACM =∠CBN ,∠AMC =∠CNB ,AC =BC ,所以△ACM ≌△CBN(AAS).所以MC=NB,MA=NC.因为MN=MC+CN,所以MN=AM+BN.(2)(1)中的结论不成立,结论为MN=AM-BN.理由如下:同理可得△ACM ≌△CBN(AAS),所以CM=BN,AM=CN.因为MN=CN-CM,所以MN=AM-BN.14.解:因为在△ABD 和△CBD 中,{AB =CB ,AD =CD ,BD =BD ,所以△ABD ≌△CBD(SSS).所以∠ABD=∠CBD.又因为OE⊥AB,OF⊥CB,所以∠OEB=∠OFB.在△BOE和△BOF中,{∠EBO=∠FBO,∠OEB=∠OFB,OB=OB,所以△BOE≌△BOF(AAS).所以OE=OF.。
三角形全等的判定方法(5种)例题+练习(全面)
教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1 边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”. 注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在∆ABC和∆ABD中,∠A=∠A,AB=AB,BC=BD,显然这两个三角形不全等. 例1 如图,AC=AD,∠CAB=∠DAB,求证:∆ACB≌∆ADB.例2 如图,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF求证:BF=CE.例3.(1)如图①,根据“SAS”,如果BD=CE, = ,那么即可判定△BDC≌△CEB;(2) 如图②,已知BC=EC,∠BCE=ACD,要使△ABC≌△DEC,则应添加的一个条件为例4.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是;△ABE≌,理由是.例5.如图,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出∠ =∠或∥,就可得到△ABC≌△DEF.例6.如图,已知AB∥DE,AB=DE,BF=CE,求证:△ABC≌△DEF.例7.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E例8.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在△ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是:.(不添加辅助线)例2.如图,已知AD平分∠BAC,且∠ABD=∠ACD,则由“AAS”可直接判定△≌△.例3.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,那么AE= cm.例4.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.例5.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:BC=DC.例6.如图,在△ABC中,D是BC边上的点 (不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1) 你添加的条件是:;(2) 证明:例7.如图,A在DE上,F在AB上,且BC=DC,∠1=∠2=∠3,则DE的长等于 ( ) A.DC B.BCC.AB D.AE+AC【基础训练】1.如图,已知AB=DC,∠ABC=∠DCB,则有△ABC≌_______,理由是_______;且有∠ACB=_______,AC=_______.2.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌_______,理由是_______;△ABF≌_______,理由是_______.3.如图,在△ABC和△BAD中,因为AB=BA,∠ABC=∠BAD,_______=_______,根据“SAS”可以得到△ABC≌△BAD.4.如图,要用“SAS”证△ABC≌△ADE,若AB=AD,AC=AE,则还需条件( ).A.∠B=∠D B∠C=∠EC.∠1=∠2 D.∠3=∠45.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°6.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和ACBE全等吗?请说明理由.7.如图,已知AD与BC相交于点O,∠CAB=∠DBA,AC=BD.求证:(1)∠C=∠D;(2)△AOC≌△BOD.8.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.9.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.10.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.A BC DEF角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS ”. 例1、如图,在△ABC 中,∠ABC =45°,H 是高AD 和高BE 的交点,试说明BH =AC .例2、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm . 求BE 的长.例3、如图, 在△ABC 中, AC ⊥BC, CE ⊥AB 于E, AF 平分∠CAB 交CE 于点F, 过F 作FD ∥BC 交AB 于点D. 求证:AC =AD.例4、如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;(2)求证:BC=2AB.边边边三边分别相等的两个三角形全等,可以简写成“边边边”或“SSS”.例1、如图,在四边形ABCD中,AB=CB,AD=CD.你能说明∠C=∠A吗? 试一试.例2、如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中.BE和DE是否相等? 若相等,请写出证明过程;若不相等,请说明理由.例3.如图,AB=CD ,AE=CF ,BO=DO ,EO=FO .求证:OC=OA .斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL ”。
人教部编版初中数学中考考点专题复习利用“角边角”“角角边”判定三角形全等练习及答案
利用“角边角”“角角边”判定三角形全等1.在△ABC和△A'B'C'中,①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列条件中不能保证△ABC≌△A'B'C'的是().A.①②③B.①②⑤C.①⑤⑥D.①②④2.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是().A.AB=ACB.BD=CDC.∠B=∠CD.∠BDA=∠CDA3.如图,小聪房子上的一块玻璃碎成了三块,他手头没有测量的工具,于是他想带着玻璃去配一块.同学们想一想,小聪需要带着第块玻璃.4.如图,分别过点C,B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为点E,F.求证:BF=CE.5.小刚同学在一次智能大赛中,分别画了三个三角形,不料都被墨迹污染了(如图),他想分别画三个与原来一样的三角形,你认为是否可以,说明你的理由.6.如图,已知△ABC≌△A'B'C',AD,A'D'分别是△ABC和△A'B'C'的高.求证:AD=A'D',并用一句话说明你的结论.7.如图,在△ABC与△DBC中,∠ACB=∠DBC=90°,E为BC的中点,EF⊥AB于点F,且AB=DE.(1)求证:△BCD是等腰直角三角形;(2)若BD=8 cm,求AC的长.★8.如图,∠BCA=∠α,CA=CB,C,E,F分别是直线CD上的三点,且∠BEC=∠CFA=∠α,请提出对EF,BE,AF三条线段数量关系的合理猜想,并证明.★9.如图,A,B,C,D,E,F,M,N是某公园里的八个景点,D,E,B三个景点间的距离相等,A,B,C三个景点间的距离相等.其中D,B,C三个景点在同一直线上,E,F,N,C在同一直线上,D,M,F,A在同一直线上,游客甲从E点出发,沿E→F→N→C→A→B→M游览,游客乙从D点出发,沿D→M→F→A→C→B→N游览.若两人的速度相同,且在各景点游览的时间相同,甲、乙两人谁先游览完?说明理由.参考答案能力提升1.D用①②④时,属于“边边角”,而“边边角”是不能用来判定两个三角形全等的.2.B3.③4.证明:∵CE⊥AF,FB⊥AF,∴∠DEC=∠DFB=90°.∵AD为BC边上的中线,∴BD=CD.又∵∠EDC=∠FDB(对顶角相等),∴△BFD≌△CED(AAS),∴BF=CE.5.解:在三角形(1)中保留了完整的两角与它们的夹边,可以根据“ASA”画出与(1)全等的三角形;在三角形(3)中保留了完整的两边及它们的夹角,可以根据“SAS”画出与(3)全等的三角形;在三角形(2)中只保留了一个角,因此不能画出与(2)全等的三角形.6.证明:∵△ABC≌△A'B'C',∴AB=A'B',∠B=∠B'.∵AD,A'D'分别是△ABC,△A'B'C'的高,∴∠ADB=∠A'D'B'=90°.在△ABD和△A'B'D'中,∴△ABD≌△A'B'D'(AAS).∴AD=A'D'.结论:全等三角形对应边上的高相等.7.(1)证明:∵DE⊥AB,∠CBD=90°,∴∠EDB+∠DBF=∠ABC+∠DBF=90°.∴∠EDB=∠ABC.在△ACB和△EBD中,°∴△ACB≌△EBD(AAS).∴CB=BD,即△BCD是等腰直角三角形.(2)解:由△ACB≌△EBD,有AC=BE,而E为BC的中点,则EB=BC=BD=4(cm).故AC=4 cm.8.解:猜想:EF=BE+AF.证明:∵∠BCE+∠CBE+∠BEC=180°,∠BCE+∠FCA+∠BCA=180°,∠BCA=∠α=∠BEC, ∴∠CBE=∠FCA.∵∠BEC=∠CFA=∠α,CB=CA,∴△BEC≌△CFA(AAS),∴BE=CF,EC=FA,∴EF=EC+CF=BE+FA.创新应用9.解:甲与乙同时游览完.理由如下:由题意,得△EBD和△ABC都为等边三角形,所以DB=EB,BC=BA,∠CBN=∠DBM=60°,∠EBC=∠DBA=120°.在△EBC和△DBA中,所以△EBC≌△DBA,所以EC=DA,∠CEB=∠ADB.在△DBM和△EBN中,所以△DBM≌△EBN,所以BM=BN.所以EC+AC+AB+BM=DA+AC+BC+BN.所以两人所走的路程相等,故同时游览完.。
(完整版)全等三角形的判定常考典型例题及练习
全等三角形的判定一、知识点复习:两边和它们的夹角对应相等的两个三角形全等。
(SAS)在△ABC和△DEF中②:两角和它们的夹边对应相等的两个三角形全等。
(ASA)在△ABC和△DEF中③“角角边”定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)④“边边边”定理:三边对应相等的两个三角形全等。
(SSS )⑤“斜边、直角边”定理:斜边和一条直角边对应相等的两个直角三角形全等。
(HL )在△ABC 和△DEF 中一个三角形共有三条边与三个角,你是否想到这样一问题了:除了上述四种识别法,还有其他的三角形全等识别法吗?比如说“SSA ”、“AAA ”能成为判定两个三角形全等的条件吗?二、常考典型例题分析第一部分:基础巩固1.下列条件,不能使两个三角形全等的是()A.两边一角对应相等 B.两角一边对应相等 C.直角边和一个锐角对应相等 D.三边对应相等2.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙4.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE5.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD6.如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线OC,作法用得的三角形全等的判定方法是()A.SAS B.SSS C.ASA D.HL第二部分:考点讲解考点1:利用“SAS ”判定两个三角形全等1.如图,A 、D 、F 、B 在同一直线上,AD=BF ,AE=BC ,且AE ∥BC .求证:△AEF ≌△BCD .2.如图,AB=AC ,AD=AE ,∠BAC=∠DAE .求证:△ABD ≌△ACE .考点2:利用“SAS ”的判定方法解与全等三角形性质有关的综合问题3.已知:如图,A 、F 、C 、D 四点在一直线上,AF=CD ,AB ∥DE ,且AB=DE ,求证:FEC CBF ∠=∠考点3:利用“SAS ”判定三角形全等解决实际问题4.有一座小山,现要在小山A 、B 的两端开一条隧道,施工队要知道A 、B 两端的距离,于是先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,使CE=CB ,连接DE ,那么量出DE 的长,就是A 、B 的距离,你能说说其中的道理吗?考点4:利用“ASA”判定两个三角形全等5.如图,已知AB=AD,∠B=∠D,∠1=∠2,求证:△AEC≌△ADE.6.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;考点6:利用“ASA”与全等三角形的性质解决问题:7.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC考点7:利用“SSS”证明两个三角形全等8.如图,A、D、B、E四点顺次在同一条直线上,AC=DF,BC=EF,AD=BE,求证:△ABC≌△EDF.考点8:利用全等三角形证明线段(或角)相等9.如图,AE=DF,AC=DB,CE=BF.求证:∠A=∠D.考点9:利用“AAS”证明两个三角形全等10.如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,求证:△ABD≌△ACE.考点10:利用“AAS”与全等三角形的性质求证边相等11.(2017秋•娄星区期末)已知:如图所示,△ABC中,∠ABC=45°,高AE与高BD交于点M,BE=4,EM=3.(1)求证:BM=AC;(2)求△ABC的面积.考点11:利用“HL”证明两三角形全等12.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF。
三角形全等的判定角边角角角边
——洪水未到先筑堤,豺狼未来先磨刀. 一只野狼卧在草上勤奋地磨牙,狐狸看到了,就对它说:天气这么好,大 家在休息娱乐,您也加入我门队伍中吧!野狼没有说话,继续磨牙,把它的牙 齿磨得又尖又利.狐狸奇怪地问道:森林这么静,猎人和猎狗已经回家了,老 虎也不在近处徘徊,又没有任何危险,你何必那么用劲磨牙呢?野狼停下来回 答说:我磨牙并不是为了娱乐,你想想,如果有 一天我被猎人或老虎追逐,到 那时,我想磨牙也来不及了.而平时我就把牙磨好,到那时就可以保护自己了.
三. 已知 如图,△ABC ≌△A’B’C’,AD、
A’D’ 分别是△ABC 和△A’B’C’的高.
试说明AD= A’D’ ,并用一句话说出您的发
现.
A
A’
B
D C B’
D’ C’
全等三角形对应边上的高也相等.
4、△ABC是等腰三角形,AD、BE 分别是∠A、 ∠B 的角平分线,△ABD和△BAE 全等吗?试
来 表 达
AB=A′ B′ ∠B=∠B ′
呢
∴△ABC≌△A’B’C’(ASA)
?
探索 二
A
B
C
D
E
F
在△ABC和△DEF中, ∠A=∠D, ∠B=∠E,BC=EF, △ABC和 △DEF全等吗?为什么?
分析 能否转化为ASA?
证明 ∵ ∠A=∠D, ∠B=∠E[已知]
∴∠C=∠F[三角形内角和定理] 在△ABC和△DEF中
B A′
B′
观察 △A B′ C′ 与′ △ABC 全等吗?怎么验证?
思考 这两个三角形全等是满足哪三个条件?
结论:两角及夹边对应相等的两个三角形全等[ASA].
两角及夹边对应相等的两个三角形全等[ASA].
三角形全等的判定方法(5种)例题+练习(全面)
三角形全等的判定方法(5种)例题+练习(全面)本文讲述了全等三角形的判定方法,重点是边角边和角边角。
边角边指两边及其夹角分别相等的两个三角形全等,可以简写成“SAS”。
需要注意的是,必须是两边及其夹角,不能是两边和其中一边的对角。
例如,在图中的△ABC和△ABD中,虽然有一个角和两边相等,但是这两个三角形不全等。
但是在例1中,如果AC=AD,且∠CAB=∠DAB,则可以证明△ACB≌△ADB。
在例2中,如果AD∥BC,且∠ABC=∠DCB,AB=DC,AE=DF,则可以证明BF=CE。
角边角是指两角及其夹边分别相等的两个三角形全等,可以简写成“ASA”。
例如,在例2中,如果AD平分∠BAC,且∠ABD=∠ACD,则可以直接判定△ABD≌△ACD。
在例3中,如果在Rt△ABC中,BC=2cm,CD⊥AB,且EC=BC,EF=5cm,则可以求出AE的长度。
除了边角边和角边角外,还有三种判定全等三角形的条件。
在例5中,如果在△ABC和△DEF中,AB=DE,BC=EF,且有一个角相等,则可以证明△ABC≌△DEF。
在例6中,如果AB∥DE,AB=DE,BF=CE,则可以证明△ABC≌△DEF。
在例7和例8中,分别是通过角平分线和垂线的判定方法来证明两个三角形全等。
总之,掌握全等三角形的判定方法对于解决几何问题非常重要。
1.如图所示,在三角形ABC中,已知AB=DC,∠ABC=∠DCB。
根据角角边相等可知,∠ACB=∠DCB。
又因为AB=DC,所以BC=AC。
因此,根据SSS(边边边)相等可知,△ABC≌△DCB。
同时,∠ACB=∠DCB,AC=BC=DC。
2.如图所示,在三角形ABD和ABF中,已知AD=AE,∠1=∠2,BD=CE。
根据角角边相等可知,∠ABD=∠BCE。
又因为AD=CE,所以BD=BE。
因此,根据SAS(边角边)相等可知,△ABD≌△BCE。
同时,∠ABD=∠BCE,AD=CE=BE。
全等三角形的判定-角边角-角角边(最新)知识讲解
(1)AC∥BD,CE=DF, AC=BD
(SAS)
( 2) AC=BD, AC∥BD ∠A=∠B (ASA)
( 3) CE=DF,∠AEC=∠BFD ∠C=∠D (ASA)
( 4)∠ C= ∠D,AC=BD ∠A=∠B A
(ASA)
C
F E
D
B
思考:如果两个三角形有两个角 和其中一个角的对边分别对应相 等,那么这两个三角形是否全等?
用符号语言表达为: AB=DE B C
在△ABC与△DEF中 ∠B=∠E
D
BC=EF
E
F
∴△ABC≌△DEF(SAS)
已知:如图,要得到△ABC≌ △ABD,已经隐含 有条件是__A_B_=__A_B__根据所给的判定方法,在下 列横线上写出还需要的两个条件
(1)_A__C_=_A_D__∠__C_A_B_=__∠_D_A_B (SAS)
如果知道两个三角形的两个角及一条边分别对 应相等,这两个三角形一定全等吗?
这时应该有两种不同的情况: (1)两个角及两角的夹边; (2)两个角及其中一角的对边
图24.2.8
探究1 先任意画出一个△ABC,
再画一个△A'B'C',使A'B'=AB, ∠A'=∠A, ∠B' =∠B 。把画好
的△A'B'C'剪下,放到△ABC上, 它们全等吗?
( 2 ) __B_C_=_B__D__A__C_=_A_D____
(SSS)
C
A
B
D
如图,小明不慎将一块 三角形模具打碎为两 块,他是否可以只带其 中的一块碎片到商店 去,就能配一块与原来 一样的三角形模具吗? 如果可以,带哪块去合 适? 你能说明其中理由吗?
全等三角形判定知识点及练习
内容应用格式图例“边边边”(SSS)三边分别相等的两个三角形(可以简写为“边边边”或“”)在△ABC和△A’B’C’中,∵AB= A’B’AC= A’C’BC=B’C’,∴△ABC ≌△A’B’C’(SSS)解题策略在所给的两个三角形中,如果有两边对应相等,而又没有角对应相等时,往往通过寻找或构造另一组边也相等,从而利用“SSS”证明全等。
内容应用格式图例“边角边”(SAS)两边和它们的夹角分别相等的两个三角形全等(可以简写为“边角边”或“”)。
在△ABC和△A’B’C’中,∵AB= A’B’∠B=∠B’BC=B’C’,∴△ABC ≌△A’B’C’(SAS)易错提醒“SAS”中的角必须是两条边的夹角,而不是其中一边的对角,两边和其中一边的对角对应相等的两个三角形全等(填“一定”或“不一定”),如图所示的两个三角形的两组对边及一条边的对角分别相等,很明显这两个三角形不全等。
内容内容“角边角”(ASA)两角和它们的对应相等的两个三角形全等。
简记为“角边角”或“”“角角边”(AAS)两个角和其中一个角的对应相等的两个三角形全等。
简记为“角角边”或“”知识要点1 利用“斜边、直角边”判定三角形全等和一条对应相等的两个直角三角形全等。
可简写成“斜边、直角边”或“”在实际证明中可根据条件灵活运用“SSS”“SAS”“ASA”“AAS”或“HL”来判定直角三角形全等,不要只拘于“HL”。
知识要点2 全等三角形判定方法的灵活运用证明两个三角形全等的条件要使两个三角形全等,至少需要三个条件,其中必有相等的条件,且三个条件必满足一定的对应关系,如下列两种情况就不能判定两个三角形全等;○1三对量不是对应关系;○2“AAA”和“SSA”不能判定全等。
证明两个三角形全等的基本的模型在这些图形中要注意寻找隐含的条件;如:公共边,对顶角,直角相等…方法(作∠AOB的平分线)图例作已知角的平分线(1)作法:○1以点O为圆心,适当长为半径画弧,交OA于点M,交OB 于点N;○2分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在∠AOB的内部相交于点C;○3画射线OC,射线OC即为所求。
三角形全等的判定“角边角与角角边”(6种题型)-2023年新八年级数学题型(人教版)(解析版)
三角形全等的判定“角边角与角角边”(6种题型)【知识梳理】一、全等三角形判定——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .二、全等三角形判定——“角角边” 1.全等三角形判定——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.【考点剖析】题型一:用“角边角”直接证明三角形全等例1.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O .求证:△AEC ≌△BED ;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC ≌△BED (ASA ).【变式1】如图,AB =AD ,∠1,DA 平分∠BDE .求证:△ABC ≌△ADE .【解答】证明:∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,∴∠BAC =∠DAE ,∵AB =AD ,∴∠ADB =∠B ,∵DA 平分∠BDE .∴∠ADE =∠ADB ,∴∠ADE =∠B ,在△ABC和△ADE中,{∠ADE=∠B AB=AD∠BAC=∠DAE,∴△ABC≌△ADE(ASA).【变式2】如图,已知∠1=∠2,∠3=∠4,要证BC=CD,证明中判定两个三角形全等的依据是()A.角角角B.角边角C.边角边D.角角边【分析】已知两角对应相等,且有一公共边,利用全等三角形的判定定理进行推理即可.【解答】解:在△ABC与△ADC中,{∠1=∠2 AC=AC∠3=∠4,则△ABC≌△ADC(ASA).∴BC=CD.故选:B.【变式3】(2022•长安区一模)已知:点B、E、C、F在一条直线上,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF,∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=CF+EC,即BC =EF ,在△ABC 和△DEF 中,{∠B =∠DEFBC =EF ∠ACB =∠F,∴△ABC ≌△DEF (ASA ). 题型二:用“角边角”间接证明三角形全等例2.如图,已知AB ∥CD ,AB =CD ,∠A =∠D .求证:AF =DE .【详解】证明:∵AB //CD ,∴∠B =∠C ,在△ABF 和△DCE 中,A D AB CD BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△DCE (ASA ),∴AF =DE .【变式1】已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【变式2】如图,AB =AC ,AB ⊥AC ,AD ⊥AE ,且∠ABD =∠ACE .求证:BD =CE .【详解】∵AB ⊥AC ,AD ⊥AE ,∴∠BAE +∠CAE =90°,∠BAE +∠BAD =90°,∴∠CAE =∠BAD .又AB =AC ,∠ABD =∠ACE ,∴△ABD ≌△ACE (ASA ).∴BD =CE .【变式3】如图,要测量河两岸相对两点A 、B 间的距离,在河岸BM 上截取BC =CD ,作ED ⊥BD 交AC 的延长线于点E ,垂足为点D .(DE ≠CD )(1)线段 的长度就是A 、B 两点间的距离(2)请说明(1)成立的理由.【解答】解:(1)线段DE 的长度就是A 、B 两点间的距离;故答案为:DE ;(2)∵AB ⊥BC ,DE ⊥BD∴∠ABC =∠EDC =90°又∵∠ACB =∠DCE ,BC =CD∴△ABC ≌△CDE (ASA )∴AB =DE .【变式4】如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【答案与解析】证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【变式5】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN【变式6】如图,已知224m ABC S =△,AD 平分BAC ∠,且AD BD ⊥于点D ,则ADC S =△________2m .【答案】12【详解】解:如图,延长BD 交AC 于点E ,∵AD 平分BAC ∠,AD BD ⊥,∴BAD EAD ∠=∠,90ADB ADE ∠=∠=︒.∵AD AD =,∴()ADB ADE ASA ≌.∴BD DE =.∴ABD AED S S =△△,BCD ECD S S =. ∴12ABD BCD AED ECD ABC S S S S S =++=△△△△△.即12ADC ABC S S =.∵224m ABC S =△,∴212m ADC S =△.故答案为:12.【变式7】(2022秋•苏州期中)如图,△ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE ∥CF .(1)求证:△BDE ≌△CDF ;(2)若AE =13,AF =7,试求DE 的长.【解答】(1)证明:∵AD 是BC 边上的中线,∴BD =CD ,∵BE ∥CF ,∴∠DBE =∠DCF ,在△BDE 和△CDF 中,,∴△BDE ≌△CDF (ASA );(2)解:∵AE =13,AF =7,∴EF =AE ﹣AF =13﹣7=6,∵△BDE ≌△CDF ,∴DE =DF ,∵DE +DF =EF =6,∴DE =3.题型三:用“角角边”直接证明三角形全等例3.如图,在四边形ABCD中,E是对角线AC上一点,AD∥BC,∠ADC=∠ACD,∠CED+∠B=180°.求证:△ADE≌△CAB.【解答】证明:∵∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠DAE=∠ACB,∵∠CED+∠B=180°,∠CED+∠AED=180°,∴∠AED=∠B,在△ADE与△CAB中,{∠DAE=∠ACB ∠AED=∠BAD=AC,∴△ADE≌△CAB(AAS).【变式】(202210块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC 和△CEB 中,∴△ADC ≌△CEB (AAS ); (2)解:由题意得:AD =2×3=6(cm ),BE =7×2=14(cm ),∵△ADC ≌△CEB ,∴EC =AD =6cm ,DC =BE =14cm ,∴DE =DC +CE =20(cm ),答:两堵木墙之间的距离为20cm .题型四:用“角角边”间接证明三角形全等例4、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【变式】已知:如图,90ACB ∠=︒,AC BC =,CD 是经过点C 的一条直线,过点A 、B 分别作AE CD ⊥、 BF CD ⊥,垂足为E 、F ,求证:CE BF =.【答案与解析】证明:∵ CD AE ⊥,CD BF ⊥∴︒=∠=∠90BFC AEC∴︒=∠+∠90B BCF∵,90︒=∠ACB∴︒=∠+∠90ACF BCF∴B ACF ∠=∠在BCF ∆和CAE ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠BC AC B ACE BFC AEC∴BCF ∆≌CAE ∆(AAS )∴BF CE =【总结升华】要证BF CE =,只需证含有这两个线段的BCF ∆≌CAE ∆.同角的余角相等是找角等的好方法.题型五:“边角边”与“角角边”综合应用例5.如图,120CAB ABD ∠+∠=AD 、BC 分别平分CAB ∠、ABD ∠,AD 与BC 交于点O .(1)求AOB ∠的度数;(2)说明AB AC BD =+的理由.【答案】(1)120°;(2)见解析【详解】解:(1)∵AD ,BC 分别平分∠CAB 和∠ABD ,∠CAB +∠ABD =120°,∴∠OAB +∠OBA =60°,∴∠AOB =180°-60°=120°;(2)在AB 上截取AE =AC ,∵∠CAO=∠EAO,AO=AO,∴△AOC≌△AOE(SAS),∴∠C=∠AEO,∵∠C+∠D=(180°-∠CAB-∠ABC)+(180°-∠ABD-∠BAD)=180°,∴∠AEO+∠D=180°,∵∠AEO+∠BEO=180°,∴∠BEO=∠D,又∠EBO=∠DBO,BO=BO,∴△OBE≌△OBD(AAS),∴BD=BE,又AC=AE,∴AC+BD=AE+BE=A B.【变式】如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.【答案】(1)①证明见解析;②证明见解析;(2)DE=AD-BE,证明见解析.【详解】解:(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC 和△CEB 中,CDA BEC DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS ).②证明:由(1)知:△ADC ≌△CEB ,∴AD =CE ,CD =BE ,∵DC +CE =DE ,∴AD +BE =DE .(2)成立.证明:∵BE ⊥EC ,AD ⊥CE ,∴∠ADC =∠BEC =90°,∴∠EBC +∠ECB =90°,∵∠ACB =90°,∴∠ECB +∠ACE =90°,∴∠ACD =∠EBC ,在△ADC 和△CEB 中,ACD CBE ADC BEC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴AD =CE ,CD =BE ,∴DE =EC -CD =AD -BE .题型六:尺规作图——利用角边角或角角边做三角形例6、已知三角形的两角及其夹边,求作这个三角形已知:∠α,∠β和线段c ,如图4-4-21所示.图4-4-21求作:△ABC ,使∠A =∠α,∠B =∠β,AB =c .作法:(1)作∠DAF =∠α;图4-4-224-4-23(2)在射线AF 上截取线段AB =c ;图4-4-24(3)以B 为顶点,以BA 为一边,在AB 的同侧作∠ABE =∠β,BE 交AD 于点C .△ABC 就是所求作的三角形.[点析] 我们这样作出的三角形是唯一的,依据是两角及其夹边分别相等的两个三角形全等. 例7.已知:角α,β和线段a ,如图4-4-29所示,求作:△ABC ,使∠A =∠α,∠B =∠β,BC =a .图4-4-29[解析] 本题所给条件是两角及其中一角的对边,可利用三角形内角和定理求出∠C ,再利用两角夹边作图. 解: 如图4-4-30所示:(1)作∠γ=180°-∠α-∠β;(2)作线段BC =a ;(3)分别以B ,C 为顶点,以BC 为一边作∠CBM =∠β,∠BCN =∠γ;(4)射线BM ,CN 交于点A .△ABC 就是所求作的三角形.图4-4-30【变式】(2022春·陕西·七年级陕西师大附中校考期中)尺规作图已知:α∠,∠β和线段a ,求作ABC ,使A α∠=∠,2B β∠=∠,AB a =.要求:不写作法,保留作图痕迹,标明字母.【详解】解:如图,△ABC即为所求..【过关检测】一、单选题A.带①去B.带②去C.带③去D.①②③都带去【答案】A【分析】根据全等三角形的判定可进行求解【详解】解:第①块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:A.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.≌过程中,先作2.(2023春·广东佛山·七年级校考期中)如图,在用尺规作图得到DBC ABCDBC ABC ∠=∠,再作DCB ACB ∠=∠,从而得到DBC ABC ≌,其中运用的三角形全等的判定方法是( )A .SASB .ASAC .AASD .SSS【答案】B 【分析】根据题意分析可得DBC ABC ∠=∠,DCB ACB ∠=∠,再加上公共边BC BC =,根据AAS ,即可判断DBC ABC ≌.【详解】解:∵得DBC ABC ∠=∠, BC BC =,DCB ACB ∠=∠,∴DBC ABC≌()ASA , 故选:B .【点睛】本题考查了作一个角等于已知角,全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3.(2023春·重庆沙坪坝·七年级重庆一中校考期末)如图,OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥于点M ,点N 是射线OA 上的一个动点,连接PN ,若6PM =,则PN 的长度不可能是( )【答案】D 【分析】如图所示,过点P 作PH OA ⊥于H ,证明POH POM △≌△得到6PH PM ==,由垂线段最短可知PN PH ≥,由此即可得到答案.【详解】解:如图所示,过点P 作PH OA ⊥于H ,∵PM OB ⊥,∴90PHO PMO ==︒∠∠,∵OC 平分AOB ∠,∴POH POM ∠=∠,又∵OP OP =,∴()AAS POH POM △≌△,∴6PH PM ==,由垂线段最短可知PN PH ≥,∵(264036=>,∴6,∴四个选项中,只有D 选项符合题意,故选:D .【点睛】本题主要考查了全等三角形的性质与判定,垂线段最短,实数比较大小,正确作出辅助线构造全等三角形是解题的关键. 4.(2023春·陕西咸阳·七年级统考期末)如图,AD BC ∥,ABC ∠的平分线BP 与BAD ∠的平分线AP 相交于点P ,作PE AB ⊥于点E ,若4PE =,则点P 到AD 与BC 的距离之和为( )A .4B .6C .8D .10【答案】C【分析】如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,先证明AD FG ⊥,由角平分线的定义得到EBP GBP =∠∠,进而证明EBP GBP △≌△得到4PG PE ==,同理可得4PF PE ==,则8FG PF PG =+=,由此即可得到答案.【详解】解:如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,∵AD BC ∥,∴AD FG ⊥,∵PE AB ⊥,∴90PFA PEA PEB PGB ====︒∠∠∠∠,∵BP 平分ABC ∠,∴EBP GBP =∠∠,又∵BP BP =,∴()AAS EBP GBP △≌△,∴4PG PE ==,同理可得4PF PE ==,∴8FG PF PG =+=,∴点P 到AD 与BC 的距离之和为8,故选C .【点睛】本题主要考查了平行线的性质,全等三角形的性质与判定,角平分线的定义,平行线间的距离等等,正确作出辅助线构造全等三角形是解题的关键. 5.(2023春·福建福州·七年级福建省福州第十六中学校考期末)如图,90C ∠=︒,点M 是BC 的中点,DM 平分ADC ∠,且8CB =,则点M 到线段AD 的最小距离为( )A .2B .3C .4D .5【答案】C 【分析】如图所示,过点M 作ME AD ⊥于E ,证明MDE MDC △≌△,得到ME MC =,再根据线段中点的定义得到142ME MC BC ===,根据垂线段最短可知点M 到线段AD 的最小距离为4.【详解】解:如图所示,过点M 作ME AD ⊥于E ,∴90MED C ==︒∠∠,∵DM 平分ADC ∠,∴MDE MDC =∠∠,又∵MD MD =,∴()AAS MDE MDC △≌△,∴ME MC =,∵点M 是BC 的中点,8CB =,∴142ME MC BC ===,∴点M 到线段AD 的最小距离为4,故选:C .【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,垂线段最短等等,正确作出辅助线构造全等三角形是解题的关键.6.(2023·全国·八年级假期作业)如图,点E 在ABC 外部,点D 在ABC 的BC 边上,DE 交AC 于F ,若123∠=∠=∠,AE AC =,则( ).A .ABD AFE △≌△B .AFE ADC ≌△△ C .AFE DFC ≌△△D .ABC ADE △≌△ 【答案】D 【分析】首先根据题意得到BAC DAE ∠=∠,E C ∠=∠,然后根据ASA 证明ABC ADE △≌△.【详解】解:∵12∠=∠,∴12DAC DAC ∠+∠=∠+∠,∴BAC DAE ∠=∠,∵23∠∠=,AFE DFC ∠=∠,∴E C ∠=∠,∴在ABC 和ADE V 中,BAC DAE AC AEC E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABC ADE ≌△△, 故选:D .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.7.(2023·浙江·八年级假期作业)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块)你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带( )A .带①去B .带②去C .带③去D .①②③都带去【答案】B 【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:①、③、④块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去, 只有第②块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的.故选:B .【点睛】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS . 8.(2023春·浙江宁波·七年级校考期末)如图,ABC 的两条高AD 和BF 相交于点E ,8AD BD ==,10AC =,2AE =,则BF 的长为( )A .11.2B .11.5C .12.5D .13【答案】A 【分析】先证明BDE ADC △≌△,可得 6DE DC ==,14BC =,而10AC =,再由等面积法可得答案.【详解】解:∵ABC 的两条高AD 和BF 相交于点E ,∴90ADB ADC BFA ∠=∠=︒=∠,∵AEF BED ∠=∠,∴DBE DAC ∠=∠,∵8AD BD ==,2AE =,∴BDE ADC △≌△,6DE =,∴6DE DC ==,∴14BC =,而10AC =,由等面积法可得:111481022BF ⨯⨯=⨯⨯,解得:11.2BF =;故选A【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,等面积法的应用,证明BDE ADC △≌△是解本题的关键. 9.(2023春·辽宁沈阳·七年级沈阳市第一二六中学校考阶段练习)如图,抗日战争期间,为了炸毁敌人的碉堡,需要测出我军阵地与敌人碉堡的距离.我军战士想到一个办法,他先面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部点B ;然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上;最后,他用步测的办法量出自己与E 点的距离,从而推算出我军阵地与敌人碉堡的距离,这里判定ABC DEF ≌△△的理由可以是( )A . SSSB . SASC . ASAD . AAA【答案】C 【分析】根据垂直的定义和全等三角形的判定定理即可得到结论.【详解】解:∵士兵的视线通过帽檐正好落在碉堡的底部点B ,然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上,∴A D ∠=∠,∵AC BC ⊥,DF EF ^,∴90ACB DFE ∠=∠=︒,∵AC DF =,∴判定ABC DEF ≌△△的理由是ASA . 故选C .【点睛】本题主要考查了全等三角形的应用,分析题意找到相等的角和边判定三角形的全等是解题的关键.10.(2023春·四川达州·八年级统考期末)如图,已知BP 是ABC ∠的平分线,AP BP ⊥,若212cm BPC S =△,则ABC 的面积( )A .224cmB .230cmC .236cmD .不能确定【答案】A【分析】延长AP 交BC 于点C ,根据题意,易证()ASA ABP DBP ≌,因为APC △和DPC △同高等底,所以面积相等,根据等量代换便可得出2224cm ABC BPC S S ==.【详解】如图所示,延长AP ,交BC 于点D ,,∵AP BP ⊥,∴90APB DPB ∠=∠=︒,∵BP 是ABC ∠的角平分线,∴ABP DBP ∠=∠,在ABP 和DBP 中,ABP DBP BP BP APB DPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABP DBP ≌,∴AP DP =,∴ABP DBP S S =△△,∵APC △和DPC △同底等高,∴APC DPC S S =△,∴PBC DPB DPC ABP APC S S S S S =+=+△△△△,∴2224ABC BPC S S cm ==,故选:C .【点睛】本题考查了三角形的角平分线和全等三角形的判定,解题的关键是熟练运用三角形的角平分线和全等三角形的判定.二、填空题 11.(2023·浙江·八年级假期作业)如图,D 在AB 上,E 在AC 上,且B C ∠=∠,补充一个条件______后,可用“AAS ”判断ABE ACD ≌.【答案】BE CD =或AE AD =【分析】由于两个三角形已经具备B C ∠=∠,A A ∠=∠,故要找边的条件,只要不是这两对角的夹边即可.【详解】解:∵B C ∠=∠,A A ∠=∠,∴若用“AAS ”判断ABE ACD ≌,可补充的条件是BE CD =或AE AD =;故答案为:BE CD =或AE AD =.【点睛】本题考查了全等三角形的判定,熟知掌握判定三角形全等的条件是解题的关键.七年级期末)如图,在ABC 中, 【答案】ASA【分析】由AD BC ⊥、AD 平分BAC ∠、AD AD =可得出两个三角形对应的两个角及其夹边相等,于是可以利用ASA 判定这两个三角形全等.【详解】∵AD BC ⊥,∴90BDA CDA ︒=∠=∠.∵AD 平分BAC ∠,∴BAD ∠CAD =∠.在ABD △与ACD 中,BDA CDA AD AD BAD CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABD ACD ≌.故答案为:ASA【点睛】本题考查了三角形全等的判定条件,解题的关键是找到两个三角形对应的边角相等. 13.(2023春·陕西榆林·七年级统考期末)如图,AB CD ⊥,且AB CD =,连接AD ,CE AD ⊥于点E ,BF AD ⊥于点F .若8CE =,5BF =,4EF =,则AD 的长为________.【答案】9【分析】只要证明(AAS)ABF CDE ≌,可得8AF CE ==,5BF DE ==,推出AD AF DF =+即可得出答案.【详解】解:∵AB CD ⊥,CE AD ⊥,BF AD ⊥,∴90AFB CED ∠=∠=︒,90A D ∠+∠=︒,90C D ∠=∠=︒,∴A C ∠=∠,∵AB CD =,∴(AAS)ABF CDE ≌,∴8AF CE ==,5BF DE ==,∵4EF =,∴()8549AD AF DF =+=+−=,故答案为:9.【点睛】本题考查全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 14.(2023春·山东枣庄·七年级统考期末)如图,A ,B 两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF ,且使BF AB ⊥,在BF 上截取BC CD =,过D 点作DE BF ⊥,使E C A ,,在一条直线上,测得16DE =米,则A ,B 之间的距离为______米.【答案】16【分析】根据已知条件可得ABC EDC △≌△,从而得到DE AB =,从而得解.【详解】∵BF AB DE BF ⊥⊥,,∴90B EDC ∠=∠=°,∵90B EDC ∠=∠=,BC CD BCA DCE =∠=∠,,∴()ASA ABC EDC ≌△△,∴DE AB =.又∵16DE =米,∴16AB =米,即A B ,之间的距离为16米.【点睛】此题主要考查全等三角形的应用,解题的关键是熟知全等三角形的判定方法.15.(2023·广东茂名·统考一模)如图,点A 、D 、C 、F 在同一直线上,AB DE ∥,AD CF =,添加一个条件,使ABC DEF ≌△△,这个条件可以是______.(只需写一种情况)【答案】BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =(答案不唯一)【分析】先证明A EDF ∠=∠及AC DF =,然后利用全等三角形的判定定理分析即可得解.【详解】解∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =,理由是∶∵AB DE ∥,∴A EDF ∠=∠,∵AD CF =,∴AD CD CF CD +=+即AC DF =,当BC EF ∥时,有BCA EFD ∠=∠,则() ASA ABC DEF ≌, 当BCA EFD ∠=∠时,则() ASA ABC DEF ≌, 当B E ∠=∠时,则() AAS ABC DEF ≌, 当AB DE =时,则() SAS ABC DEF ≌,故答案为∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =.【点睛】本题考查了对全等三角形的判定定理的应用,掌握全等三角形的判定定理有SAS , ASA , AAS , SSS 是解题的关键. 16.(2023春·上海虹口·七年级上外附中校考期末)如图,有一种简易的测距工具,为了测量地面上的点M 与点O 的距离(两点之间有障碍无法直接测量),在点O 处立竖杆PO ,并将顶端的活动杆PQ 对准点M ,固定活动杆与竖杆的角度后,转动工具至空旷处,标记活动杆的延长线与地面的交点N ,测量点N 与点O 的距离,该距离即为点M 与点O 的距离.此种工具用到了全等三角形的判定,其判定理由是______.【答案】两个角及其夹边对应相等的两个三角形全等【分析】根据全等三角形的判定方法进行分析,即可得到答案.【详解】解:在POM 和PON △中,90OP OPPOM PON ⎪=⎨⎪∠=∠=︒⎩, ()ASA POM PON ∴≌,∴判定理由是两个角及其夹边对应相等的两个三角形全等,故答案为:两个角及其夹边对应相等的两个三角形全等.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题关键.【答案】 = 180BCA α∠+∠=︒【分析】①求出90BEC AFC ∠=∠=︒,CBE ACF ∠=∠,根据AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果;②求出CBE ACF ∠=∠,由AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果.【详解】解:①90BCA ∠=︒,90α∠=︒,90BCE CBE ∴∠+∠=︒,90BCE ACF ∠+∠=︒,CBE ACF ∴∠=∠,在BCE 和CAF V 中,BEC CFACB CA ⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△,BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,②α∠与BCA ∠应满足180BCA α∠+∠=︒,在BCE 中,180180CBE BCE BEC α∠+∠=︒−∠=︒−∠,180BCA α∠=︒−∠,BCA CBE BCE ∴∠=∠+∠,ACF BCE BCA ∠+∠=∠,CBE ACF ∴∠=∠,在BCE 和CAF V 中,CBE ACF BEC CFACB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△, BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,故答案为:=,180BCA α∠+∠=︒.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质、三角形的面积计算、三角形的外角性质等知识;解题的关键是判断出BCE CAF ≌△△. ABC 的角平分线,过点【答案】4【分析】延长CE 与BA 的延长线相交于点F ,利用ASA 证明ABD △和ACF △全等,进而利用全等三角形的性质解答即可.【详解】解:如图,延长CE 与BA 的延长线相交于点F ,90EBF F ∠+∠=︒,90ACF F ∠+∠=︒,EBF ACF ∴∠=∠,在ABD △和ACF △中,EBF ACF AB ACBAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ABD ACF ∴≌, BD CF ∴=,BD Q 是ABC ∠的平分线,EBC EBF ∴∠=∠.在BCE 和BFE △中,BE BECEB FEB ⎪=⎨⎪∠=∠⎩,()ASA BCE BFE ∴≌, CE EF ∴=,2CF CE ∴=,24BD CF CE ∴===.故答案为:4.【点睛】本题主要考查了全等三角形的性质和判定,理解题意、灵活运用全等三角形的判定与性质是解题的关键.三、解答题【答案】(1)见解析(2)5【分析】(1)首先根据垂直判定AB EF ∥,得到ABC F ∠=∠,再利用AAS 证明即可;(2)根据全等三角形的性质可得9AB CF ==,4BC EF ==,再利用线段的和差计算即可.【详解】(1)解:∵CD AB ⊥,EF CE ⊥,∴AB EF ∥,∴ABC F ∠=∠,在ABC 和CFE 中,ACB EAC CE ⎪∠=∠⎨⎪=⎩, ∴()AAS ABC CFE △△≌; (2)∵ABC CFE △△≌, ∴9AB CF ==,4BC EF ==,∴5BF CF BC =−=.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,解题的关键是找准条件,证明三角形全等. 20.(2023春·陕西西安·七年级西安市铁一中学校考期末)如图,A ,C ,D 三点共线,ABC 和CDE 落在AD 的同侧,AB CE ∥,BC DE =,B D ∠=∠.求证:AB CE AD +=.【答案】见解析【分析】证明()AAS ABC CDE ≌,得出AB CD =,BC CE =,即可证明结论.【详解】解:∵AB CE ∥,∴A DCE ∠=∠,∵B D ∠=∠,BC DE =,∴()AAS ABC CDE ≌,∴AB CD =,BC CE =,∴AB CE CD AC AD +=+=.【点睛】本题主要考查了平行线的性质,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法证明ABC CDE △≌△.21.(2022秋·八年级课时练习)已知αβ∠∠,和线段a (下图),用直尺和圆规作ABC ,使A B AB a αβ∠=∠∠=∠=,,.【答案】见解析 【分析】先作出线段AB a =,再根据作与已知角相等的角的尺规作图方法作DAB EBA αβ∠=∠∠=∠,即可得到答案.【详解】解:作法如下图.1.作一条线段AB a =.2.分别以A ,B 为顶点,在AB 的同侧作DAB EBA αβ∠=∠∠=∠,,DA 与EB 相交于点C .ABC 就是所求作的三角形.【点睛】本题主要考查了三角形的尺规作图,熟知相关作图方法是解题的关键.22.(2023春·全国·七年级专题练习)如图,已知ABC ,请根据“ASA”作出DEF ,使DEF ABC ≌.【答案】见解析【分析】先作MEN B ∠=∠,再在EM 上截取ED BA =,在EN 上截取EF BC =,从而得到DEF ABC ≌.【详解】解:如图,DEF 为所作.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定. 23.(2023春·山西太原·七年级校考阶段练习)如图,点B 、F 、C 、E 在同一条直线上,已知FB CE =,AB DE ∥,ACB DFE ∠=∠,试说明:AC DF =.【答案】见解析【分析】利用ASA 定理证明三角形全等,然后利用全等三角形的性质分析求解.【详解】解:∵FB CE =,∴FB FC CE FC +=+,即BC EF =,∵AB DE ∥,∴B E ∠=∠,在ABC 和DEF 中B E BC EF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC DEF ≌△△, ∴AC DF =.【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法:SSS 、SAS 、ASA 、AAS 、HL .三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.(2020秋·广东广州·八年级海珠外国语实验中学校考阶段练习)如图,已知:EC AC =,BCE DCA ∠=∠,A E ∠=∠.求证:AB ED =.【答案】见解析【分析】先求出ACB ECD ∠=∠,再利用“角边角”证明ABC 和EDC △全等,然后根据全等三角形对应边相等证明即可.【详解】证明:∵BCE DCA ∠=∠,∴BCE ACE DCA ACE ∠+∠=∠+∠,即ACB ECD ∠=∠.在ABC 和EDC △中,∵ACB ECD AC ECA E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABC EDC ≌△△.∴AB ED =.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.25.(2023春·福建宁德·七年级校考阶段练习)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△; (2)若10BE =,3BF =,求FC 的长度.【答案】(1)见解析(2)4【分析】(1)由AB DE ∥,得ABC DEF ∠=∠,而AB DE =,A D ∠=∠,即可根据全等三角形的判定定理“ASA ”证明ABC DEF ≌△△; (2)根据全等三角形的性质得BC EF =,则3BF CE ==,即可求得FC 的长度.【详解】(1)解:证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A D AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABC DEF ≌△△; (2)解:由(1)知()ASA ABC DEF ≌△△,∴BC EF =, ∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =−−=−−=,∴FC 的长度是4.【点睛】此题重点考查全等三角形的判定与性质、平行线的性质等知识,根据平行线的性质证明ABC DEF ∠=∠是解题的关键. 26.(2023·浙江·八年级假期作业)如图,ABC 中,BD CD =,连接BE ,CF ,且BE CF ∥.(1)求证:BDE CDF ≌;(2)若15AE =,8AF =,试求DE 的长.【答案】(1)证明见解析(2)72【分析】(1)根据平行线的性质可得BED CFD Ð=Ð,根据全等三角形的判定即可证明;(2)根据全等三角形的性质可得DE DF =,即可求得.【详解】(1)证明:∵BE CF ∥,∴BED CFD Ð=Ð,∵BDE CDF ∠=∠,BD CD =,∴()AAS BDE CDF ≌;(2)由(1)结论可得DE DF =,∵1587EF AE AF =−=−=,∴72DE =.【点睛】全等三角形的判定和性质,熟练掌握平行线的性质,全等三角形的判定和性质是解题的关键. 27.(2023春·江西鹰潭·七年级校考阶段练习)将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=︒,求BED ∠的度数.【答案】(1)见解析(2)36BED ∠=︒【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=︒,即可得解.【详解】(1)解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBE BAC BDEAC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, 所以()AAS ABC DBE ≌. (2)因为ABC DBE ≌△△, 所以BD BA =,BCA BED ∠=∠.在DBC △和ABC 中,DC AC CB CBBD BA =⎧⎪=⎨⎪=⎩, 所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=︒,所以36BED BCA ∠=∠=︒.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等. 28.(2023春·河南驻马店·七年级统考期末)如图,线段AD 是ABC 的中线,分别过点B 、C 作AD 所在直线的垂线,垂足分别为E 、F .(1)请问BDE 与CDF 全等吗?说明理由;(2)若ACF △的面积为10,CDF 的面积为6,求ABE 的面积.【答案】(1)BDE CDF ≌△△,见解析 (2)22【分析】(1)利用AAS 证明三角形全等即可.(2)根据中线性质,得到,ABD ACD ACF CDF CDF ==+=△△△△△BDE △S S S S S S ,结合ABEABD BDE S S S =+△△△计算即可. 【详解】(1)BDE CDF ≌△△,理由如下: ∵AD 是ABC 的中线,∴BD CD =,∵BE AE ⊥,CF AE ⊥,∴90BED CFD ∠=∠=︒,在BDE 和CDF 中,BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS BDE CDF ≌.(2)∵10ACF S =△,6CDF S =△,BDE CDF ≌,∴10616ACD ACF CDF S S S =+=+=△△△,6BDE CDF S S ==,∵BD CD =∴ABD △和ACD 是等底同高的三角形∴16ABD ACD S S ==△△∴16622ABE ABD BDE S S S =+=+=△△△.【点睛】本题考查了三角形全等的判定和性质,中线的性质,三角形面积的计算,熟练掌握三角形全等的判定和性质,中线的性质是解题的关键. 29.(2019·七年级单元测试)(1)求证:等边三角形内的任意一点到两腰的距离之和等于定长.(提示:添加辅助线证明)(2)如图所示,在三角形ABC 中,点D 是三角形内一点,连接DA 、DB 、DC ,若,=∠=∠AB AC ADB ADC ,求证:AD 平分BAC ∠.【答案】(1)详见解析;(2)详见解析.【分析】(1)已知点P 是等边三角形ABC 内的任意一点,过点P 分别作三边的垂线,分别交三边于点D 、点E 、点F .求证PD PE PF ++为定长,即可完成证明;(2)(面积法)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.因为ADB ADC ∠=∠,所以ADE ADF ∠=∠,因此(AAS)ADF ADE ≅,得到AF AE =.进而AFC AEB ≅,得到ABD ACD ∠=∠,因此BAD CAD ∠=∠,即AD 平分BAC ∠.【详解】(1) 已知:等边如图三角形ABC ,P 为三角形ABC 内任意一点,PD ⊥AB, PF ⊥AC, PE ⊥BC, 求证:PD+PE+PF 为定值.证明:如图:过点A 作AG BC ⊥,垂足为点G ,分别连接AP 、BP 、CP .∵ABC ABP BCP CAP S S S S =++, ∴11112222BC AG BC PE AC PF AB PD =++又∵BC=AB=AC∴AG=PE+PF+PD,即PD PE PF AG ++=定长.∴等边三角形内的任意一点到两腰的距离之和等于定长.(2)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.∵ADB ADC ∠=∠,∴ADE ADF ∠=∠,又∵AD=AD∴(AAS)ADF ADE ≅,∴AF AE =∴AFC AEB ≅,∴ABD ACD ∠=∠,∴BAD CAD ∠=∠,即AD 平分BAC ∠.【点睛】本题考查了等边三角形的性质和全等三角形的性质和判定,其中做出辅助线是解答本题的关键.。
第5课时 全等三角形判定角边角,角角边练习精选.
全等三角形(三)AAS 和ASA【知识要点】1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS ):有两角和其中一角的对边对应相等的两个三角形全等. 【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CD例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD. 例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E ,F.求证:AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.AFABDC EO12 3例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征?【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠则△ABC 与△C B A''' . 2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( ) ①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个 D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CDC . AM=CN D. AM ∥CN5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是_________ _________。
全等三角形的判定角边角课件
培养逻辑思维
掌握全等三角形判定定理 对于培养学生的逻辑思维 和推理能力具有重要意义。
角边角判定定理在几何证明中的应用
解决实际问题
角边角判定定理在解决实际问题中发 挥着重要作用,如测量、计算等领域。
提高解题效率
掌握角边角判定定理有助于提高解题 效率,帮助学生更快地解决几何问题。
简化证明过程
使用角边角判定定理可以简化几何证 明的步骤,使证明过程更加简洁明了。
总结词
直角三角形全等判定定理的应用
详细描述
在直角三角形中,如果两个直角边和夹角相等,则两个三角形全等。 这个判定定理可以用于证明两个直角三角形是否全等。
实例分析
假设我们有两个直角三角形ABC和DEF,其中∠C=∠F=90°,AC=DF, AB=DE,并且∠A=∠D。根据角边角判定定理,我们可以得出 △ABC≌△DEF 。
在复杂的几何图形中,识别并证明满足角边 角定理的全等三角形。
练习3
解决涉及角边角定理的实际问题,如测量、 构造等。
05
总结与回顾
全等三角形判定定理的重要性
01
02
03
几何证明的基础
全等三角形判定定理是几 何证明中的基础工具,是 解决各种几何问题的关键。
实际应用
在实际生活中,全等三角 形判定定理的应用也非常 广泛,如建筑设计、机械 制造等领域。
04
角边角判定定理的练习题
基础练习题
01
02
03
04
总结词
理解角边角判定定理的基本应 用
练习1
给出两个三角形,其中一个角 和两条边相等,判断这两个三
角形是否全等。
练习2
根据给定的条件,构造一个全 等三角形。
05全等三角形判定二(SSS,AAS)(基础)知识讲解--苏教版苏科版初二数学八年级数学上册
05 全等三角形的判定二(SSS ,AAS )(基础篇)-知识讲解+答案【学习目标】1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”). 要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表: 已知条件 可选择的判定方法一边一角对应相SAS AAS ASA等两角对应相等ASA AAS两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“边边边”1、(2016•蓝田县一模)如图,在四边形ABCD中,E是BC的中点,连接AC,AE,若AB=AC,AE=CD,AD=CE,则图中的全等三角形有()A.0对B.1对C.2对D.3对【思路点拨】首先证明△ABE≌△AEC,再证明△AEC≌△ADC,△ABE≌△ADC.【答案与解析】解:在△ABE和△AEC中,,∴△ABE≌△AEC(SSS),在△AEC和△ADC中,,∴△ABO≌△ADO(SSS),∴△ABE≌△ADC,故选D【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.举一反三:【高清课堂:379109 全等三角形的判定(一) 同步练习6】【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.【答案】证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边 ∴△ACD≌△BDC(SSS )∴∠CAD =∠DBC (全等三角形对应角相等)类型二、全等三角形的判定4——“角角边”【高清课堂:379110 全等三角形的判定二,例6】2、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【思路点拨】要证AC =AD ,就是证含有这两个线段的三角形△BAC ≌△EAD.【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD 是△ABC 的中线,过C 、B 分别作AD 及AD 的延长线的垂线CF 、BE.求证:BE =CF.【答案】证明:∵AD 为△ABC 的中线∴BD =CD∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD =90°,在△BED 和△CFD 中BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等) ∴△BED ≌△CFD (AAS )∴BE =CF3、(2015春•雅安期末)如图:AB=A ′B ′,∠A=∠A′,若△ABC≌△A′B′C ′,则还需添加的一个条件有( )种.A.1B. 2C.3D.4【思路点拨】本题要证明△ ABC ≌△ A ′B ′C ′,已知了AB=A ′B ′,∠ A=∠ A ′,可用的判别方法有ASA ,AAS ,及SAS ,所以可添加一对角∠B=∠B ′,或∠C=∠C ′,或一对边AC=A ′C ′,分别由已知与所添的条件即可得证.【答案与解析】解:添加的条件可以为:∠B=∠B′;∠C=∠C′;AC=A ′C ′,共3种.若添加∠B=∠B′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B ′C ′(ASA );若添加∠C=∠C′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C′(AAS );若添加AC=A ′C ′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C ′(SAS ).故选C.【总结升华】此题考查了全等三角形的判定,是一道条件开放型问题,需要由因索果,逆向推理,逐步探求使结论成立的条件,解决这类问题要注意挖掘隐含的条件,如公共角、公共边、对顶角相等,这类问题的答案往往不唯一,只有合理即可.熟练掌握全等三角形的判定方法是解本题的关键.类型三、全等三角形判定的实际应用4、“三月三,放风筝”.下图是小明制作的风筝,他根据DE =DF ,EH =FH ,不用度量,就知道∠DEH =∠DFH .请你用所学的知识证明.【答案与解析】证明:在△DEH 和△DFH 中,DE DF EH FH DH DH ⎧⎪⎨⎪=⎩==∴△DEH ≌△DFH(SSS)∴∠DEH =∠DFH .【总结升华】证明△DEH ≌△DFH ,就可以得到∠DEH =∠DFH ,我们要善于从实际问题中抽离出来数学模型,这道题用“SSS ”定理就能解决问题.举一反三:【变式】(2014秋•紫阳县期末)雨伞的中截面如图所示,伞骨AB=AC ,支撑杆OE=OF ,AE=AB ,AF=AC ,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD 与∠CAD 有何关系?说明理由.【答案】解:雨伞开闭过程中二者关系始终是:∠BAD=∠CAD,理由如下:∵AB=AC,AE=AB,AF=AC,∴AE=AF,在△AOE与△AOF中,,∴△AOE≌△AOF(SSS),∴∠BAD=∠CAD.。
七年级数学下册 利用“角边角”“角角边”判定三角形全等习题
1.如图,已知C D⊥AB于点D,BE⊥AC于点E,CD、BE交于点O,且A O平分∠BAC,则图中的全等三角形共有()
A.1对B.2对C.3对D.4对
2.如图,点A在D E上,AC=CE,∠1=∠2=∠3,则DE的长等于()
A.DC B.BC C.AB D.AE+AC
3.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线B D交A C于点D,CE⊥BD,交 BD 的延长线于点E,若B D=8,则C E= .
4.如图,AC⊥BC,AD⊥DB,下列条件中,能使△ABC≌△BAD
的有(把所有正确结论的序号都填在横线上)
①∠ABD=∠BAC;②∠DAB=∠CBA;③∠DAC=∠CBD.
5.如图,点E,H,G,N在一条直线上,∠F=∠M,EH=GN,MH∥FG.求证:△EFG≌△NMH.
6.如图B、C、E三点在同一直线上,AC∥DE,AC=CE,∠ACD=∠B,求证:△ABC≌△CDE.
7.如图,A,B,C三点共线,AE∥BD,BE∥CD,且B是A C中点,求证:BE=CD.
8.如图,已知在四边形ABCD中,点E在A D上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;
(2)若A C=AE,求∠DEC的度数.
答案:
1.D; 2.C; 3.4; 4.①②;。
全等三角形的判定方法50道经典题
全等三角形的判定方法50道经典题全等三角形的判定方法是初中数学中重要的一部分,主要包括以下50道经典题目。
1. 如何通过边长判断两个三角形是否全等?答:如果两个三角形的三条边对应相等,则它们全等。
2. 如果通过角度判断两个三角形是否全等?答:如果两个三角形的三个角度对应相等,则它们全等。
3. 如何通过边角判断两个三角形是否全等?答:如果两个三角形中有一个角相等,并且两边对应相等,则它们全等。
4. 如果两个三角形的底边相等,底边上的高相等,判断它们是否全等。
答:根据边角对应的原理,如果底边和高都相等,则这两个三角形全等。
5. 给定两个相等的边和它们之间的夹角,判断它们所在的两个三角形是否全等。
答:根据边角对应的原理,如果两个相等的边和它们之间的夹角都相等,则这两个三角形全等。
6. 如果两个三角形的一个角相等,并且这个角的两边分别等于另一个三角形的两个角的两边,判断它们是否全等。
答:根据边角边的原理,如果两个三角形的一个角相等,并且这个角的两边分别等于另一个三角形的两个角的两边,则这两个三角形全等。
7. 如何通过勾股定理判断两个三角形是否全等?答:如果两个三角形的两条边的平方和相等,则它们全等。
8. 如果两个三角形的一个角相等,并且两边的比例相等,判断它们是否全等。
答:根据角边角的原理,如果两个三角形的一个角相等,并且两边的比例相等,则这两个三角形全等。
9. 如果两个三角形的两个角相等,并且两边的比例相等,判断它们是否全等。
答:根据角角边的原理,如果两个三角形的两个角相等,并且两边的比例相等,则这两个三角形全等。
10. 给定两个相等的边和它们夹角的正弦值,判断它们所在的两个三角形是否全等。
答:根据正弦定理,如果两个相等的边和它们夹角的正弦值都相等,则这两个三角形全等。
11. 给定两个相等的边和它们夹角的余弦值,判断它们所在的两个三角形是否全等。
答:根据余弦定理,如果两个相等的边和它们夹角的余弦值都相等,则这两个三角形全等。
全等三角形的判定【题目与答案】
全等三角形的判定一、5种判定方法1、SSS(边边边)2、SAS(边角边)3、ASA(角边角)4、AAS(角角边)5、HL(直角三角形专用)二、注意事项【思考】①要证明两个三角形全等,条件中必须要有“边”吗?至少要有几条边?②要证明两个三角形全等,条件中必须要有“角”吗?至少要有几个角?③使用“两边一角”证明两个三角形全等时,对“角”有什么特殊要求?④使用“两角一边”证明两个三角形全等时,对“边”有什么特殊要求?⑤证明两个直角三角形全等,只能使用“HL”来判断吗?1、判定两个三角形是否全等,必须要有边!2、用“两边一角”来判定三角形全等,必须是夹角!3、虽然直角三角形可以用“HL”来判断(也应该优先考虑),但不意味着只能用“HL”来判断,直角三角形虽然是特殊三角形,但是本质上依然是三角形,所以适用于所有三角形的前面4种方法依然适用于直角三角形!三、如何由已知条件寻找所需条件已知条件可判定方法寻找条件两边对应相等(SS)SSS或SAS第三边或两边的夹角对应相等角的另一边对应相等或边的另一邻角对一边及其邻角对应相等(SA)SAS、ASA、AAS应相等或边的对角相等一边及其对角对应相等(SA)AAS另一个角对应相等两角对应相等(AA)ASA、AAS两角的夹边或其中一角的对边对应相等四、隐含条件1、对顶角一定是对应角;2、公共角一定是对应角;3、直角一定是对应角;4、公共边一定是对应边.真题精炼1、(17-18学年汇文月考)如图,沿直线AD折叠,△ACD与△ABD重合,若∠B=58°,则∠CAD=度.2、(17-18学年求真月考)如图所示,由∠D=∠C,∠BAD=∠ABC推得△ABD≌△BAC,所用的判定定理的简称是()A.AAS B.ASA C.SAS D.SSS3、(17-18学年汇文月考)如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件.4、(17-18学年南师江宁月考)如图,12∠=∠,要使ABD△,需添加的一个条件△≌ACD是__________(只添一个条件即可).5、(17-18学年汇文月考)如图,已知B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.6、(17-18学年鼓楼区期末)如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF7、(17-18学年求真月考)如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是()A.BD=CE B.∠ABD=∠ACEC.∠BAD=∠CAE D.∠BAC=∠DAE8、(17-18学年汇文月考)下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边9、(17-18学年栖霞区期中)根据下列已知条件,能够画出唯一△ABC的是()A.AB=5,BC=6,∠A=70°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8,D.∠A=40°,∠B=50°,∠C=90°10、(16-17学年钟英期末)在△ABC中,∠ABC=30°,AB边长为4,AC边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是()A.3个B.4个C.5个D.6个11、(17-18学年南师江宁月考)在下列各组条件中,不能说明ABC △≌DEF △的是().A .AB DE =,B E ∠=∠,C F ∠=∠B .AC DF =,BC EF =,AD ∠=∠C .AB DE =,A D ∠=∠,B E∠=∠D .AB DE =,BC EF =,AC DF=12、(16-17学年致远期中)如图,小明不小心把一块三角形的玻璃摔成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第__________块去配,这是因为这两块玻璃全等,其全等的依据是__________.可以用字母简写)13、(17-18学年溧水区期末)如图,一个三角形被纸板挡住了一部分,我们还能够画出一个与它完全重合的三角形,其原理是判定两个三角形全等的基本事实或定理,本题中用到的基本事实或定理是()A .ASAB .SASC .SSSD .HL14、(17-18学年南师江宁月考)请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出A O B AOB '''∠=∠的依据是().A .SASB .ASAC .AASD .SSS15、(17-18学年汇文月考)如图,点A 、E 、F 、D 在同一直线上,若AB ∥CD ,AB =CD ,AE =FD ,则图中的全等三角形有()A .1对B .2对C .3对D .4对16、(17-18学年联合体期末)如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A、1组B、2组C、3组D、4组17、(16-17学年南外期中)以下四个命题:①有两边和其中一边上的高线对应相等的两个三角形全等;②有两边和第三边上的高线对应相等的两个三角形全等;③有两角和其中一角的角平分线对应相等的两个三角形全等;④两角和第三个角的角平分线对应相等的两个三角形全等.其中真命题有().A.1个B.2个C.3个D.4个18、(17-18学年汇文月考)如图,在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC 交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,③点P在∠AOB的平分线上.正确的是;(填序号)19、(17-18学年汇文月考)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE 的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm20、(17-18学年栖霞区期中)规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB =A 1B 1,AD =A 1D 1,∠A =∠A 1,∠B =∠B 1,∠C =∠C 1;②AB =A 1B 1,AD =A 1D 1,∠A =∠A 1,∠B =∠B 1,∠D =∠D 1;③AB =A 1B 1,AD =A 1D 1,∠B =∠B 1,∠C =∠C 1,∠D =∠D 1;④AB =A 1B 1,CD =C 1D 1,∠A =∠A 1,∠B =∠B 1,∠C =∠C 1.其中能判定四边形ABCD 和四边形A 1B 1C 1D 1全等有()个A .1B .2C .3D .421、(17-18学年求真月考)如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为4,则BE =()A .1B .2C .3D .4AB C DA 1B 1C 1D122、(16-17学年致远期中)已知:如图,AB AD =,C E ∠=∠,BAE DAC ∠=∠.求证:ABC △≌ADE △.23、(17-18学年南师新城月考)已知:如图,AC =AE ,∠1=∠2,AB =AD .求证:BC =DE .24、(17-18学年建邺区期中)如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD .求证BC =AD .25、(17-18学年汇文月考)如图,在△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 交于F .(1)求证:△ABD ≌△ACE .(2)求证:AF 平分∠BAC .BCDA26、(17-18学年汇文月考)(阅读理解题)如图所示,CE⊥AB于点E,BD⊥AC于点D,BD,CE交于点O,且AO平分∠BAC.(1)图中有多少对全等三角形?请一一列举出来(不必说明理由);(2)小明说:欲证BE=CD,可先证明△AOE≌△AOD得到AE=AD,再证明△ADB≌△AEC 得到AB=AC,然后利用等式的性质得到BE=CD,请问他的说法正确吗?如果正确,请按照他的说法写出推导过程,如果不正确,请说明理由;(3)要得到BE=CD,你还有其他思路吗?若有,请写出推理过程.27、(16-17学年南外期中)我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD 和四边形A B C D ''''中,AB A B ''=,BC B C ''=,B B '∠=,C C '∠=∠,现在只需补充一个条件,就可得四边形ABCD ≌四边形A B C D ''''.下列四个条件:①A A '∠=∠;②D D '∠=∠;③''AD A D =;④CD C D ''=(1)其中,符合要求的条件是__________.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD ≌四边形A B C D ''''.全等三角形的判定真题精炼【答案】1、(17-18学年汇文月考)如图,沿直线AD 折叠,△ACD 与△ABD 重合,若∠B =58°,则∠CAD =32度.【解析】解:由题意得:∠B =∠C ,∠ADB =∠ADC =90°,∴∠CAD =90°﹣∠C =32°.故答案为:32.2、(17-18学年求真月考)如图所示,由∠D =∠C ,∠BAD =∠ABC 推得△ABD ≌△BAC ,所用的判定定理的简称是(A )A .AASB .ASAC .SASD .SSS3、(17-18学年汇文月考)如图,△ABC 中,AD ⊥BC 于D ,要使△ABD ≌△ACD ,若根据“HL ”判定,还需要加条件AB=AC.【注意】此题绝对不可以写“BD=CD ”,因为要使用“HL ”,就必须要有“一条直角边、一条斜边”——题目中AD 作为公共边,同时也是“直角边”,所以要找的必须是“斜边”!4、(17-18学年南师江宁月考)如图,12∠=∠,要使ABD △≌ACD △,需添加的一个条件是__________(只添一个条件即可).【答案】BD CD =(或B C ∠=∠,或BAD CAD ∠=∠)【解析】由12∠=∠易得ADC ADB ∠=∠,又知AD AD =,①可添加条件BD CD =⇒由SAS 判定全等;②可添加条件B C ∠=∠或BAD CAD ∠=∠⇒由AAS 判定全等.5、(17-18学年汇文月考)如图,已知B 、E 、F 、C 在同一直线上,BE =CF ,AF =DE ,则添加条件∠AFB =∠DEC 或AB =DC,可以判断△ABF ≌△DCE .【解析】由BE =CF 易得BF=CE 已知两边——BF=CE 和AF =DE要想证明两个三角形全等,只需要再加一组对应边(SSS )或一组对应角(SAS ,必须是夹角)!6、(17-18学年鼓楼区期末)如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB =DE ,要用SAS 证明△ABC ≌△DEF ,可以添加的条件是(C )A.∠A =∠DB .AC ∥DFC .BE =CFD .AC =DF【解析】∵AB //DE ∴∠ABC =∠DEF∴要想使用SAS 来证明△ABC ≌△DEF 就必须保证BC =EF但是题目的4个选项中却没有BC =EF !但是,因为EC 是BC 、EF 的公共部分,所以只需要保证BE =CF 即可!7、(17-18学年求真月考)如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是(B)A.BD=CE B.∠ABD=∠ACEC.∠BAD=∠CAE D.∠BAC=∠DAE【解析】已知“AB=AC,AD=AE”——已知两边,要想保证两个三角形全等 要么再找一条边,要么再找一个角(必须是夹角)!8、(17-18学年汇文月考)下列各条件中,不能作出唯一三角形的是(C)A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边【提示】用“两边一角”来判断时,必须是夹角!9、(17-18学年栖霞区期中)根据下列已知条件,能够画出唯一△ABC的是(C)A.AB=5,BC=6,∠A=70°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8,D.∠A=40°,∠B=50°,∠C=90°10、(16-17学年钟英期末)在△ABC中,∠ABC=30°,AB边长为4,AC边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是(C)A.3个B.4个C.5个D.6个【解析】∵点A与l上的各点连线中,垂线段最短——AD=2(直角三角形中,30°角所对的直角边等于斜边的一半),所以AC最小为2.11、(17-18学年南师江宁月考)在下列各组条件中,不能说明ABC △≌DEF △的是(B ).A .AB DE =,B E ∠=∠,C F ∠=∠B .AC DF =,BC EF =,AD ∠=∠C .AB DE =,A D ∠=∠,B E∠=∠D .AB DE =,BC EF =,AC DF=【解析】A 、C 、D 分别为AAS ,ASA ,SSS ;B 为SSA 不可判定全等.12、(16-17学年致远期中)如图,小明不小心把一块三角形的玻璃摔成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第__________块去配,这是因为这两块玻璃全等,其全等的依据是__________.可以用字母简写)【答案】③,ASA【解析】因为第③块中有完整的两个角及其夹边,利用ASA 可证三角形全等,故应带第③块.13、(17-18学年溧水区期末)如图,一个三角形被纸板挡住了一部分,我们还能够画出一个与它完全重合的三角形,其原理是判定两个三角形全等的基本事实或定理,本题中用到的基本事实或定理是(A)A .ASAB .SASC .SSSD .HL14、(17-18学年南师江宁月考)请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出A O B AOB '''∠=∠的依据是(D).A .SASB .ASAC .AASD .SSS【解析】由作法易得OD O D ''=,OC O C ''=,CD C D ''=,依据SSS 可判定COD △≌C O D '''△,再由全等三角形对应角相等得到COD C O D '''∠=∠,即AOB A O B '''∠=∠.15、(17-18学年汇文月考)如图,点A、E、F、D在同一直线上,若AB∥CD,AB=CD,AE=FD,则图中的全等三角形有(C)A.1对B.2对C.3对D.4对16、(17-18学年联合体期末)如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有(C)A、1组B、2组C、3组D、4组【解析】此题的难度不在于会不会判断,而是能不能快速找全4种组合情况.从4个条件中选3个条件出来,如何才能保证把所有情况都找全——“任选三个条件”的另一层含义也就是“任意不选1个条件”:①不选AB=DE⇒选BC=EF,∠B=∠E,∠C=∠F⇒ASA②不选BC=EF⇒选AB=DE,∠B=∠E,∠C=∠F⇒AAS③不选∠B=∠E⇒选AB=DE,BC=EF,∠C=∠F⇒角不是夹角,错!④不选∠C=∠F⇒选AB=DE,BC=EF,∠B=∠E⇒SAS17、(16-17学年南外期中)以下四个命题:①有两边和其中一边上的高线对应相等的两个三角形全等;②有两边和第三边上的高线对应相等的两个三角形全等;③有两角和其中一角的角平分线对应相等的两个三角形全等;④两角和第三个角的角平分线对应相等的两个三角形全等.其中真命题有(B).A.1个B.2个C.3个D.4个【解析】务必注意“高”的特殊性——高可以在三角形内部、可以在三角形边上也可以在三角形外部!①错误,反例(要否定一个命题,只需要举出一个反例)如下:AC=A’C’,BC=B’C’,AD=A’D’②错误,反例如下:AB=A’B’,AC=A’C’,AD=A’D’③④是正确的.18、(17-18学年汇文月考)如图,在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC 交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,③点P在∠AOB的平分线上.正确的是①②③;(填序号)【解析】解:∵OA=OB,OC=OD,∠O为公共角,∴△AOD≌△BOC,∴∠A=∠B,又∠APC=∠BPD,∴∠ACP=∠BDP,OA﹣OC=OB﹣OD,即AC=BD,∴△APC≌△BPD,∴AP =BP ,连接OP ,即可得△AOP ≌△BOP ,得出∠AOP =∠BOP ,∴点P 在∠AOB 的平分线上.故题中结论都正确.故答案为:①②③.19、(17-18学年汇文月考)如图,在△ABC 中,∠ABC =45°,AC =8cm ,F 是高AD 和BE 的交点,则BF 的长是(C)A .4cmB .6cmC .8cmD .9cm【解析】∵AD ⊥BC ∴∠ADB =90°∵∠ABC =45°∴∠BAD =∠ABC =45°∴AD =BD在Rt △ADC 中,∠DAC +∠C =90°在Rt △BEC 中,∠DBF +∠C =90°∴∠DAC =∠DBF 在△FBD 和△CAD 中,⎪⎩⎪⎨⎧=︒=∠=∠∠=∠AD BD CDA FDB CAD FBD 90∴△FBD ≌△CAD (AAS )∴BF =AC =8cm20、(17-18学年栖霞区期中)规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB =A 1B 1,AD =A 1D 1,∠A =∠A 1,∠B =∠B 1,∠C =∠C 1;②AB =A 1B 1,AD =A 1D 1,∠A =∠A 1,∠B =∠B 1,∠D =∠D 1;③AB =A 1B 1,AD =A 1D 1,∠B =∠B 1,∠C =∠C 1,∠D =∠D 1;④AB =A 1B 1,CD =C 1D 1,∠A =∠A 1,∠B =∠B 1,∠C =∠C 1.其中能判定四边形ABCD 和四边形A 1B 1C 1D 1全等有(C)个A .1B .2C .3D .4【解析】(1)除三角形之外,其他多边形要想全等,就必须同时满足“所有的边对应相等和所有的角对应相等”;(2)题目给的4组条件,看似给的都是3组对应角相等,但是根据四边形内角和为360°,所以其实告诉的是4组对应角相等,所以我们只需要再保证4组对应边对应相等即可;(3)我们在课本上只学习了三角形全等的判定条件,没有学习四边形全等的判定条件——这其实意味着我们要想办法把四边形“转化”为我们熟悉的三角形!怎么办?连接对角线,分别证明对角线两侧的两组三角形对应全等即可!(4)能够保证两个四边形全等是①②③.21、(17-18学年求真月考)如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为4,则BE =(B)A .1B .2C .3D .4AB C DA 1B 1C 1D1【解析】解:如图,过B 点作BF ⊥CD ,与DC 的延长线交于F 点,∵∠ABC =∠CDA =90°,BE ⊥AD ,∴四边形EDFB 是矩形,∠EBF =90°,∴∠ABE =∠CBF ,∵在△BCF 和△BAE中,∴△BCF ≌△BAE (ASA ),∴BE =BF ,∴四边形EDFB 是正方形,∴S 四边形ABCD =S 正方形BEDF =4,∴BE ==2.22、(16-17学年致远期中)已知:如图,AB AD =,C E ∠=∠,BAE DAC ∠=∠.求证:ABC △≌ADE △.【答案】见解析【解析】证明:∵BAE DAC ∠=∠,∴BAE CAE DAC CAE ∠-∠=∠-∠,即BAC DAE ∠=∠,在ABC △和ADE △中,BAC DAE C EAB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC △≌(AAS)ADE △.23、(17-18学年南师新城月考)已知:如图,AC =AE ,∠1=∠2,AB =AD .求证:BC =DE .【解析】∵∠1=∠2∴∠1+∠EAB =∠2+∠EAB ,即∠CAB =∠EAD在△CAB 和△EAD 中,⎪⎩⎪⎨⎧=∠=∠=DA BA EAD CAB EA CA △CAB ≌△EAD (SAS )∴BC =DE24、(17-18学年建邺区期中)如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD .求证BC =AD .【证明】∵AC ⊥BC ,BD ⊥AD ,∴∠C =∠D =90°.在Rt △ABC 和Rt △BAD中,=BA ,=BD .∴Rt △ABC ≌Rt △BAD (HL ).∴BC =AD .B CD A25、(17-18学年汇文月考)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于F.(1)求证:△ABD≌△ACE.(2)求证:AF平分∠BAC.【解析】证明:(1)∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS).(2)∵△ABD≌△ACE,∴AE=AD,在Rt△AEF和Rt△ADF中,,∴Rt△AEF≌Rt△ADF(HL),∴∠EAF=∠DAF,∴AF平分∠BAC.26、(17-18学年汇文月考)(阅读理解题)如图所示,CE⊥AB于点E,BD⊥AC于点D,BD,CE交于点O,且AO平分∠BAC.(1)图中有多少对全等三角形?请一一列举出来(不必说明理由);(2)小明说:欲证BE=CD,可先证明△AOE≌△AOD得到AE=AD,再证明△ADB≌△AEC 得到AB=AC,然后利用等式的性质得到BE=CD,请问他的说法正确吗?如果正确,请按照他的说法写出推导过程,如果不正确,请说明理由;(3)要得到BE=CD,你还有其他思路吗?若有,请写出推理过程.【解析】解:(1)图中有4对全等三角形,有△ADB≌△AEC,△ADO≌△AEO,△AOB≌△AOC,△EOB≌△DOC.(2)正确,理由是:∵AO平分∠BAC,∴∠EAO=∠DAO,∵CE⊥AB,BD⊥AC,∴∠AEO=∠ADO=90°,∴在△AEO和△ADO中∴△AEO≌△ADO(AAS),∴AE=AD,在△ADB和△AEC中∴△ADB≌△AEC(ASA),∴AB=AC,∵AE=AD,∴BE=CD.(3)有,理由是:∵AO 平分∠BAC ,OE ⊥AB ,OD ⊥AC ,∴OE =OD ,∠BEO =∠CDO =90°,在△BEO 和△CDO中∴△BEO ≌△CDO (ASA ),∴BE =CD .27、(16-17学年南外期中)我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD 和四边形A B C D ''''中,AB A B ''=,BC B C ''=,B B '∠=,C C '∠=∠,现在只需补充一个条件,就可得四边形ABCD ≌四边形A B C D ''''.下列四个条件:①A A '∠=∠;②D D '∠=∠;③''AD A D =;④CD C D ''=(1)其中,符合要求的条件是__________.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD ≌四边形A B C D ''''.【解析】(1)①②④(2)选④证明:连接AC 、A C '',在ABC △和A B C '''△中,AB A B B B BC B C ⎧''=⎪⎪'∠=∠⎨⎪''=⎪⎩,∴ABC △≌(SAS)A B C '''△,∴AC A C ''=,ACB A C B '''∠=∠,∵BCD B C D '''∠=∠,∴BCD ACB B C D A C B ''''''∠-∠=∠-∠,∴ACD A C D '''∠=∠.在ACD △和A C D '''△中,AC A C ACD A C D CD C D ⎧''=⎪⎪'''∠=∠⎨⎪''=⎪⎩,∴ACD △≌A C D '''△,∴D D '∠=∠,DAC D A C '''∠=∠,DA D A ''=,∴BAC DAC B A C D A C ''''''∠+∠=∠+∠,即BAD B A D '''∠=∠,∴四边形ABCD 和四边形A B C D ''''中,AB A B ''=,BC B C ''=,AD A D ''=,DC D C ''=,B B '∠=∠,BCD B C D '''∠=∠,D D '∠=∠,BAD B A D '''∠=∠,∴四边形ABCD ≌四边形A B C D ''''.。
三角形全等的判定方法(5种)例题+练习(全面)
教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1 边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”. 注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在∆ABC和∆ABD中,∠A=∠A,AB=AB,BC=BD,显然这两个三角形不全等. 例1 如图,AC=AD,∠CAB=∠DAB,求证:∆ACB≌∆ADB.例2 如图,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF求证:BF=CE.例3.(1)如图①,根据“SAS”,如果BD=CE, = ,那么即可判定△BDC≌△CEB;(2) 如图②,已知BC=EC,∠BCE=ACD,要使△ABC≌△DEC,则应添加的一个条件为例4.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是;△ABE≌,理由是.例5.如图,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出∠ =∠或∥,就可得到△ABC≌△DEF.例6.如图,已知AB∥DE,AB=DE,BF=CE,求证:△ABC≌△DEF.例7.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E例8.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在△ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是:.(不添加辅助线)例2.如图,已知AD平分∠BAC,且∠ABD=∠ACD,则由“AAS”可直接判定△≌△.例3.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,那么AE= cm.例4.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.例5.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:BC=DC.例6.如图,在△ABC中,D是BC边上的点 (不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1) 你添加的条件是:;(2) 证明:例7.如图,A在DE上,F在AB上,且BC=DC,∠1=∠2=∠3,则DE的长等于 ( ) A.DC B.BCC.AB D.AE+AC【基础训练】1.如图,已知AB=DC,∠ABC=∠DCB,则有△ABC≌_______,理由是_______;且有∠ACB=_______,AC=_______.2.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌_______,理由是_______;△ABF≌_______,理由是_______.3.如图,在△ABC和△BAD中,因为AB=BA,∠ABC=∠BAD,_______=_______,根据“SAS”可以得到△ABC≌△BAD.4.如图,要用“SAS”证△ABC≌△ADE,若AB=AD,AC=AE,则还需条件( ).A.∠B=∠D B∠C=∠EC.∠1=∠2 D.∠3=∠45.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°6.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和ACBE全等吗?请说明理由.7.如图,已知AD与BC相交于点O,∠CAB=∠DBA,AC=BD.求证:(1)∠C=∠D;(2)△AOC≌△BOD.8.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.9.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.10.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.A BC DEF角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS ”. 例1、如图,在△ABC 中,∠ABC =45°,H 是高AD 和高BE 的交点,试说明BH =AC .例2、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm . 求BE 的长.例3、如图, 在△ABC 中, AC ⊥BC, CE ⊥AB 于E, AF 平分∠CAB 交CE 于点F, 过F 作FD ∥BC 交AB 于点D. 求证:AC =AD.例4、如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;(2)求证:BC=2AB.边边边三边分别相等的两个三角形全等,可以简写成“边边边”或“SSS”.例1、如图,在四边形ABCD中,AB=CB,AD=CD.你能说明∠C=∠A吗? 试一试.例2、如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中.BE和DE是否相等? 若相等,请写出证明过程;若不相等,请说明理由.例3.如图,AB=CD ,AE=CF ,BO=DO ,EO=FO .求证:OC=OA .斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL ”。
时全等三角形判定角边角
∴ △ABD≌△ACE(AAS) B D
A=B,AOC与BOD全等吗?
为什么?
两角和夹边对应 相等
C
A
O
B
在 AOC和BOD 中 D A B (已知) AO BO (中点的定义) AOC BOD (对顶角相等)
AOC BOD (( ASA))
第16页/共20页
已知如图,∠1 = ∠2,∠C = ∠D, 求证:AC = AD
D
证明:在△ABC和△ABD中
∠1 = ∠2 ∠C = ∠D
AB = AB
2
A1
B
∴△ABC≌△ABD(AAS) ∴AC = AD(全等三角形对应边相等)C
第17页/共20页
请说出目前判定三角形全等的3种方法:
SAS,ASA,AAS.
C
C'
全等
B
A
B'
A'
第5页/共20页
如果两个三角形有两个角及其夹边分别对应相等,
那么这两个三角形全等.简记为
(或角边角).
A
D
用符号语言表达为:
在△ABC和△DEF中,
B E BC EF C F
∴ △ABC≌△DEF
B
\
CE
\
F
第6页/共20页
练习
练 习 如图,要证明△ACE≌ △BDF,根据给定的条件和
不全等。因为虽然有两组 内角相等,且BC=BC, 但不都是两个三角形两组 内角的夹边,所以不全等。
(第 1 题)
第9页/共20页
如图:如果两个三角形有两个角及其中一个角的对 边分别对应相等,那么这两个三角形是否一定全等?
已知:∠A=∠A′, ∠B=∠B′, AC=A′C′ 求证: △ABC≌△A′B′C′ 证明∵ ∠A=∠A′, ∠B=∠B′ 又∠A+∠B+∠C=180° (三角形的内角和等于180°) 同理∠A′+∠B′+∠C′=180° ∴ ∠C=∠C′. 在△ABC和△A′B′C′中 ∵ ∠A=∠A′ AC=A′C′ ∠C=∠C′ ∴ △ABC≌△A′B′C′()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形(三)AAS 和ASA
【知识要点】
1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.
2.角角边定理(AAS ):有两角和其中一角的对边对应相等的两个三角形全等. 【典型例题】
例1.如图,AB ∥CD ,AE=CF ,求证:AB=CD
例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.
例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD. 例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E ,F.求证:AE=CF.
例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.
A
F
A
B
D
C E
O
1
2 3
例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征?
【经典练习】
1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,'
,C C '∠=∠则△ABC 与△C B A ''' . 2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .
3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( ) ①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个 D. 4个
4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )
A . N M ∠=∠ B. AB=CD
C . AM=CN D. AM ∥CN
5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:
①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN
其中正确的结论是_________ _________。
(注:将你认为正确的结论填上)
A
B
C D
O
图2 图3
6.如图3所示,在△ABC 和△DCB 中,AB =DC ,要使△ABO ≌DCO ,请你补充条件________________(只填写一个你认为合适的条件).
7. 如图,已知∠A=∠C ,AF=CE ,DE ∥BF ,求证:△ABF ≌△CDE.
A
F
D
O
B
E
C
1
2
B
D
M
N C
B
A
E
21
F C
D
8.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 交CD 于F ,且AD=DF ,求证:AC= BF 。
B
A
E
F
C
D
9.如图,AB ,CD 相交于点O ,且AO=BO ,试添加一个条件,使△AOC ≌△BOD ,并说明添加的条件是正确的。
(不少于两种方法)
10.如图,已知:BE=CD ,∠B=∠C ,求证:∠1=∠2。
11.如图,在Rt △ABC 中,AB=AC ,∠BAC=90º,多点A 的任一直线AN ,BD ⊥AN 于D , CE ⊥AN 于E ,你能说说DE=BD-CE 的理由吗?
A E
D
B
C O
1 2 C A
D
B O
如图,∠E=∠F=90°,∠1=∠2 ,AE=AF,证明:△AEB≌△AFC.。