方程组直接三角分解法(精选)
范数-摆脱课本繁琐的公式,比较好懂
p
范数的特殊情况。 注:前三种范数都是p—范数的特殊情况。其中 前三种范数都是 范数的特殊情况
|| X ||∞ = lim || X || p
p →∞
计算方法三 计算方法三⑤
向量范数的连续性: 向量范数的连续性
5/35
定理3.3 设f(X)=||X||为Rn上的任一向量范数 则f(X) 定理 为 上的任一向量范数,则 的分量x 的连续函数. 为X的分量 1,x2,…,xn的连续函数 的分量
lim x i = xi (i = 1,2,..., n)
(k ) k →∞
则称向量X= (x1,x2,...,xn)T为向量序列 则称向量 , {X(k)}的极限,或者说向量序列 (k)}收敛 的极限, 的极限 或者说向量序列{X 收敛 于向量X, 于向量 ,记为
lim X
k →∞
(k )
=X 或 X
(k )
→ X (k → ∞)
计算方法三 计算方法三⑤
计算方法三 计算方法三⑤
x1 (k ) ( k ) x2 X = ………… M x (k ) n (k ) x1 x1 (k ) x2 ( k ) x2 X = → = M M x (k ) x n n
几种常用的矩阵范数: 几种常用的矩阵范数:
n
13/35
a11 a21 设 A= ⋅⋅⋅ a n1
a12 ⋅⋅⋅ a1n A 1 = max∑aij 列范数 1≤j≤n i=1 n a22 ⋅⋅⋅ a2n A ∞ = max∑aij 行范数 ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ 1≤i≤n j=1 T an2 ⋅⋅⋅ ann A 2 = λ (A A) max AF =
用直接三角分解法解线性方程组
三角阵。等式左边是单位下三角阵,右边是上三角阵,要使等式
成则立L , L只1 ,能U等于U单1,位即矩此阵三I。角于分是解L唯1一L1。
UU
1 1
I,
1 2 1
1 2 1
例7 解:
设 A 3 7
1
,试将A进行三角分解。
1 1 3
由高斯消去法得到
m21
3 1
3,m31
1 1
1
m 32
L1
1 1
0 0 1 2
例:
求
0 1 2
0 1 0
3 0 1
103的PLU分 解 。
解:用1,2, ,n的排列表示n阶置换阵P,其中排列的第i个元素
j,表示P的i行非零元素位于j列。则分解过程如下:
1 0 0 1 2
3 1 1 0 1
3 1 1 0
2 0
43
1 2
0 1 0
3 0 1
0 1 3
Ux j y j
Ly
j
bj
n1
k
n(n 1)
n2
n 次乘法
k 1
2
22
Ux j y j n k n(n 1) n2 n 次乘除法
k 1
2
22
即共需n 2 次乘除法运算。
n 2 次 乘 除 法
三角分解法的存放元素的方法:
以A (a ij )33 为例,
a11 A a21
1 mk1,k 1
k,
Lk1
1 mk1,k 1
k
mnk
1
mn,k
1
A ( L11 L21
L1 n1
)U
LU,1
a (1) 11
三角分解法
ai j =
min( i , j ) k =1
∑l
ik
uk j
ai j =
min( i , j )
一般采用列主元 对换, 将 i ,j 对换,对 j = i, i+1, …, n 有 一般采用列主元 ii a ji = ∑ l jk uki + l ji u k= k =1 法增强稳定性. 法增强稳定性.但注意 v i 1 b 也必须做相应的 l ji = ( a ji ∑ l jk uki ) / uii b 行交换. 行交换. k =1
=I
Upper-triangular
Lower-triangular With diagonal entries 1
注: L 为一般下三角阵而 U 为单位上三角阵的分解称为 单位上三角阵的分解称为 Crout 分解. 分解. ~~ 分解, 实际上只要考虑 A* 的 LU 分解,即A* = L U ,则 ~ ~ A= U * L* 即是 A 的 Crout 分解. 分解. =
(
)
n1 Step 6 Set l = 运算量为2 O(n3/6), 比普通 ann ∑ k =1 lnk ; , 比普通LU nn Step 7 Output ( lij for j = 1, …, i and i = 1, …, n );A = LDLT 分解少一半, 次开方. 分解少一半,但有 n 次开方.用
mn1
v A b
( 2) (2)
(1 (1 ( a11) a12) ... a11) n Step n 1: (2 ( v a22) ... a22) n Ln1Ln2 ... L1 A b = ... . . . (n ann)
数值分析复习题(下)
线性代数方程组直接法题1.⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----710413221232321x x x 程组用直接三角分解法解方2.21,,4321A A A A ∞⎥⎦⎤⎢⎣⎡--=,求设 3.用顺序高斯消去法解⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛565331743532321x x x4.用列主元高斯消去法解⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-20111.0310********x x x5.用直接三角分解法解⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛7173530103421101002014321x x x x6.用追赶法求解方程组⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛022112111131124321x x x x7.试用平方根法解下列对称正定方程组⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--103422484548416321x x x8.用高斯-若当消去法求下列矩阵的逆⎪⎪⎪⎭⎫ ⎝⎛---=112221111A作业1.用追赶法解三对角方程组Ax=b,其中A=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------2100012100012100012100012,b=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛00001 作业2.用改进的平方根法解方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---654131*********x x x 作业3.设A=⎪⎪⎭⎫⎝⎛3.01.05.06.0,计算21A A A ,,∞ 作业4.设A 为非奇异矩阵,求证:∞∞≠∞-=yAy Ay 01min1作业5.下述矩阵能否分解为LU (其中L 为单位下三角阵,U 为上三角阵)?若能分解,那么分解是否是唯一?⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=461561552621,133122111,764142321C B A解线性方程组的迭代法1.设方程组Ax=b,⎪⎪⎪⎭⎫⎝⎛-=122111221A ,试讨论解此方程组的J 法和GS 法的收敛性。
5.3 矩阵的三角分解法
8
解: (1)分解A LU,令 2 5 6 1 4 13 19 l 21 6 3 6 l31 0 1 l32 0 u11 0 1 u12 u22 u13 u23 u33
24
由A L( DLT ) 1 l 21 l31 ... l n1 1 l32 ... ln 2 1 ... ... lnn 1 1 d1 ... d1l21 d2 ... d1l31 d 2 l32 d3 ... ... ... ... d1 l n1 d 2 ln2 d 3 ln 3 dn
25
由 i j时aij = l ik d k l jk l ij d j , 知
k =1
j -1
L, D元素计算公式
lij =
aij lik d k l jk
k =1
j -1
dj
j -1
( j 1, 2, ,i 1)
2 d i =aii l ik d k ( i 1, 2, , n) k =1
y1 b1 i -1 y y b l i ij i j j 1
i 2, 3, , n
( i n 1, , 1)
7
或 用 Doolittle 分解法
例:用矩阵的直接三角分解法解方程组
5 6 x1 10 2 4 13 19 x 19 2 6 3 6 30 x3
27
d1 a11
改进平方根法解方程组
1. 分解计算A=LDLT ,
d1 a11 对于i 2, 3, ..., n j 1 c a cik l jk ij ij k 1 cij ( j 1, 2, ..., i 1) lij dj i 1 d i aii cik l ik k 1
三角分解法解线性方程组
三角分解法解线性方程组线性方程组是数学中一类重要的方程组,它包含了一系列线性方程。
在实际问题中,线性方程组有时需要通过三角分解法进行求解。
三角分解法是一种常用的线性方程组求解方法,它通过将方程组转化为上、下三角形矩阵进行分解,从而求解出未知数的值。
本文将详细介绍三角分解法的步骤及实际案例。
首先,我们来介绍三角矩阵的概念。
上三角矩阵是指除了主对角线上方的元素均为0的矩阵,下三角矩阵则是指除了主对角线下方的元素均为0的矩阵。
我们的目标是将线性方程组转化为上、下三角形矩阵进行求解。
步骤1:将线性方程组表示为矩阵形式,即AX=B,其中A为系数矩阵,X为未知数向量,B为常数向量。
步骤2:进行三角分解,将系数矩阵A分解为一个上三角矩阵U和一个下三角矩阵L,即A=LU。
其中L为下三角矩阵,U为上三角矩阵。
步骤3:将方程组AX=B进行变量代换,令Y=UX。
此时,方程组变为LY=B。
步骤4:解得矩阵Y,再通过回代法求解出未知数向量X。
下面我们通过一个实际案例来详细说明三角分解法的应用。
案例:有三个变量x,y,z的线性方程组:2x+y+z=4x+3y+2z=133x+2y+3z=15首先将该方程组表示为矩阵形式:⎛211⎛⎛x⎛⎛4⎛⎛132⎛⎛y⎛=⎛13⎛⎛323⎛⎛z⎛⎛15⎛然后进行三角分解,将系数矩阵A分解为上三角矩阵U和下三角矩阵L:A=⎛211⎛=⎛100⎛⎛211⎛⎛132⎛⎛110⎛⎛021⎛⎛323⎛⎛321⎛⎛001⎛接下来,将方程组AX=B进行变量代换,令Y=UX,即LY=B:⎛100⎛⎛Y₁⎞⎛4⎛⎛110⎛⎛Y₂⎟=⎛13⎛⎛021⎛⎛Y₃⎠⎝15⎛我们可以通过高斯消元法求解上述方程组,得到Y的解:Y₁=4Y₂=9Y₃=-2最后,通过回代法求解未知数向量X:X₃=Y₃=-2X₂=Y₂-2X₃=9-2(-2)=13X₁=Y₁-X₂=4-13=-9因此,该线性方程组的解为:x=-9,y=13,z=-2三角分解法是一种常用且有效的线性方程组求解方法。
(整理)线性方程组的直接法
第二章线性方程组的直接法在近代数学数值计算和工程应用中,求解线性方程组是重要的课题。
例如,样条插值中形成的关系式,曲线拟合形成的法方程等,都落实到解一个元线性方程组,尤其是大型方程组的求解,即求线性方程组(2.1)的未知量的数值。
(2.1)其中ai j,bi为常数。
上式可写成矩阵形式Ax = b,即(2.2)其中,为系数矩阵,为解向量,为常数向量。
当detA=D0时,由线性代数中的克莱姆法则,方程组的解存在且惟一,且有为系数矩阵的第列元素以代替的矩阵的行列式的值。
克莱姆法则在建立线性方程组解的理论基础中功不可没,但是在实际计算中,我们难以承受它的计算量。
例如,解一个100阶的线性方程组,乘除法次数约为(101·100!·99),即使以每秒的运算速度,也需要近年的时间。
在石油勘探、天气预报等问题中常常出现成百上千阶的方程组,也就产生了各种形式方程组数值解法的需求。
研究大型方程组的解是目前计算数学中的一个重要方向和课题。
解方程组的方法可归纳为直接解法和迭代解法。
从理论上来说,直接法经过有限次四则运算,假定每一步运算过程中没有舍入误差,那么,最后得到方程组的解就是精确解。
但是,这只是理想化的假定,在计算过程中,完全杜绝舍入误差是不可能的,只能控制和约束由有限位算术运算带来的舍入误差的增长和危害,这样直接法得到的解也不一定是绝对精确的。
迭代法是将方程组的解看作某种极限过程的向量极限的值,像第2章中非线性方程求解一样,计算极限过程是用迭代过程完成的,只不过将迭代式中单变量换成向量而已。
在用迭代算法时,我们不可能将极限过程算到底,只能将迭代进行有限多次,得到满足一定精度要求的方程组的近似解。
在数值计算历史上,直接解法和迭代解法交替生辉。
一种解法的兴旺与计算机的硬件环境和问题规模是密切相关的。
一般说来,对同等规模的线性方程组,直接法对计算机的要求高于迭代法。
对于中等规模的线性方程组,由于直接法的准确性和可靠性高,一般都用直接法求解。
三角分解解线性方程组的公式47页
8/30/2019
6
平方根法(Cholesky分解)
续1
AT ALT D R T D R T L T R T ( D T ) L ( D ) R
由Doolittle分解的唯一性有
R T L DLT DR
(D可逆)
L R
9
平方根法(Cholesky分解)
k1
aikk1lim lk m
l11 l21 ln1
l22
ln1
lnn
lnn
第一步 : a11l121l11 a11
ai1 l11li1li1 ai1/l11
i2,3 n
设L前k-1列元素已求出,则 第k步
n
k1
ak k lk m lk m lk2mlk2k
续2
L LD
这时 L 为一般的下三角矩阵,故 ALLT,若 L 的对角 元全为正时,由Doolittle分解的唯一性及上述分解 的推理过程,可以得到Cholesky分解的唯一性。
8/30/2019
8
平方根法(Cholesky分解): 分解公式
l11
Al21 l22
8/30/2019
5
平方根法(Cholesky分解) 定理证明
证明:因为 A对称正定,故其顺序主式 k0 k 1 ,2 , n,
1
u11 u1n
Al21
ln1 1
m1
m1
k1
lkk akk lk2m m1
i k n
a ik lim l km m 1
第三章 解线性方程组的直接法
第三章 解线性方程组的直接法3.1 引言许多科学技术问题要归结为解含有多个未知量x 1, x 2, …, x n 的线性方程组。
例如,用最小二乘法求实验数据的曲线拟合问题,三次样条函数问题,解非线性方程组的问题,用差分法或有限元法解常微分方程、偏微分方程的边值等,最后都归结为求解线性代数方程组。
关于线性方程组的数值解法一般有两类:直接法和迭代法。
1. 直接法直接法就是经过有限步算术运算,可求得线性方程组精确解的方法(假设计算过程中没有舍 入误差)。
但实际计算中由于舍入误差的存在和影响,这种方法也只能求得线性方程组的近似解。
本章将阐述这类算法中最基本的高斯消去法及其某些变形。
2. 迭代法迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法,迭代法需要的计算机存储 单元少、程序设计简单、原始系数矩阵在计算过程中不变,这些都是迭代法的优点;但是存在收敛性和收敛速度的问题。
迭代法适用于解大型的稀疏矩阵方程组。
为了讨论线性方程组的数值解法,需要复习一些基本的矩阵代数知识。
3.1.1 向量和矩阵 用nm ⨯R表示全部n m ⨯实矩阵的向量空间,nm C⨯表示全部n m ⨯复矩阵的向量空间。
()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⇔∈⨯nn n n n n ij nm a a aa a aa a a a212222111211A R A 此实数排成的矩形表,称为m 行n 列矩阵。
⎪⎪⎪⎪⎪⎭⎫⎝⎛=⇔∈n n x x x 21x R x x 称为n 维列向量矩阵A 也可以写成)(n 21a ,,a ,a A = 其中 a i 为A 的第i 列。
同理⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=T T T n 21b b b A其中T i b 为A 的第i 行。
矩阵的基本运算:(1) 矩阵加法 )( ,n m n m R C ,R B ,R A B A C ⨯⨯⨯∈∈∈+=+=n m ij ij ij b a c . (2) 矩阵与标量的乘法 ij j a ci αα== ,A C (3) 矩阵与矩阵乘法 p nk kjik b acij ⨯⨯⨯=∈∈∈==∑m p n n m R C ,R B ,R A AB C ( ,1(4) 转置矩阵 ji ij T nm a c ==∈⨯ , ,A C RA(5) 单位矩阵 ()n n ⨯∈=R e ,,e ,e I n 21 ,其中 ()Tk e 0,0,1,0,0 = k=1,2,…,n(6) 非奇异矩阵 设nn ⨯∈RA ,nn ⨯∈RB 。
研究生数值分析(8)分解
b1 bk
k 1
lkj
yj
j 1
(k 2,3,
(5)
, n)
xn
xk
yn / unn (yk
n
ukj xj ) / ukk
j k 1
(6)
(k n 1,n 2, ,1)
杜利特尔矩阵分解 求解线性方程组的过程为: 10 实现A=LU分解,即
(a)按计算公式(1),(2)依次计算U的第1行元素
(i k, k 1, , n) (3)
k 1
lik (aik liju jk ) / ukk j 1
(i k 1, , n; k n) (4)
在我们利用杜利特尔矩阵分解解线性方程 组AX=b时,只要实现矩阵分解A=LU,依次解三角 形方程组LY=b与UX=Y即可。
计算公式:
y1
yk
u1i (i 1, 2, , n) 与L的第1列元素 li1 (i 2,3, , n)
(b) 对k+2,3,…,n 按计算公式(3),(4)依次
计算U的第k行元素 uki (i k, k 1, , n) 与L的第
k列元素 lik (i k 1, , n; k n)
20 求解三角形方程组LY=b,即按计算公
若U为单位上三角阵(对角元都是1的上三角阵),
L为下三角阵,则称为克劳特(Crout)分解。
下面分析实现矩阵杜利特尔(Doolittle)分解和克 劳特(Crout)分解的条件,讨论这些分解的唯一性。
定理2 (矩阵三角分解基本定理)
设 A Rnn 。若A的顺序主子式
det( Ak ) 0
(k 1, 2, , n)
li,k 1
lik
ln,k 1
三角分解
列主元素高斯消去法相当于先进行一系列行交换后再对 PAX Pb 应用顺序高斯消去法.
定理8(列主元三角分解) 若A为非奇异矩阵, 则存在排列 矩阵P使得 PA LU 其中L为单位下三角矩阵,U为上三角矩阵. 说明: L, U, Ip的存贮.
§7.4
高斯消去法的变形
设有线性方程组:AX=b
a11 a12 a1n x1 b1 a x b a22 a2 n 21 , X 2 , b 2 . A 如何简单的实现三 a x 角分解? bn an 2 ann n1 n
本节主要内容
1、回顾高斯消去法与三角分解的关系 2、三角分解的条件、方法与应用
下面用矩阵描述列主元消去法
L1I1,i1 A(1) A( 2) , L1I1,i1b(1) b( 2) ,, Lk I k ,ik A( k ) A( k 1) , Lk I k ,ik b( k ) b( k 1) .
其中I k ,ik 为初等置换阵.
于是 Ln 1I n 1,in1 L2 I 2,i2 L1I1,i1 A A( n ) U . ~ ~ P为排列矩阵 即 P A U , P b b( n ) . ~ L为单位下三角矩阵 下面就n 4考察P .
UA
( 4)
L3 I3,i3 L2 I 2,i2 L1I1,i1 A
PA 选主元三角分解算法: A, 整型Ip(n)记录主行, x b.
1. 对r 1,2,, n, r 1 (1) 计算si : air si air lik ukr (i r ,, n). k 1 (2) 选主元:取ir 使得 sir max si ,Ip(r ) ir
第2章解线性方程组的直接方法5_6
~ ~ ~ = ∏ uii ⋅ ukk = det Ak −1 ⋅ u kk det Ak
i =1
k −1
~ = det Ak > 0 u kk det Ak −1
(记 det A0 = 1)
以上 k = 1 ,2 , ⋯ , n
2
因此 ~ u11 ~ U= ~ u11 =
4. 解LTx = y:
4.1 xn = yn / ann
4.2 for i=n-1,n-1,…,1 do
xi = ( yi −
k = i +1
∑a
n
ki k
x ) / aii
11
例1.
用平方根法解对称正定方程组
6 7 5 x1 9 7 13 8 x2 = 10 5 8 6 x 9 3
事实上,对称正定方程组也可以用顺序Gauss消去法求解 而不必加入选主元步骤
16
§2.6
对角占优矩阵: 对角占优矩阵
追赶法(Thomas算法 算法) 追赶法 算法 补充
i = 1 ,2 ,⋯ , n
若矩阵A = ( aij )n× n 满足
|aii |> ∑|aij |
j =1 j ≠i
n
则称A为严格对角占优矩阵. 若矩阵A = ( aij )n× n 满足
|aii | ∑|aij | ≥
j =1 j ≠i
n
i = 1 ,2 ,⋯ , n
17
则称A为弱对角占优矩阵.
有一类方程组,在今后要学习的插值问题和边值问题中 有一类方程组 在今后要学习的插值问题和边值问题中 有着重要的作用,即三对角线方程组 其形式为: 即三对角线方程组,其形式为 有着重要的作用 即三对角线方程组 其形式为
方程组直接三角分解法
如果U的第1至k-1列和L的第1至k-1列已经算出,则由
ak1 lk1 , k 2,3, u11
k r 1
, n.
(4.2.2)
a l u ,j k , k 1 , , n , kj kr rj
可得U的第k行元素
ukj =akj 同理,由
k
k 1 r 1
l kr u rj
用向后回代的方法即可求得x。设x=(x1 ,x2, · · · xn) T, y=(y1, y2, · · · yn) T,b= (b1 ,b2, · · · bn) T, 则有计算公式
y b 1 1 i 1 (4.2.5) y b l y 1 , 2 ,..., n i i ir r ,i r 1
(4.2.8)
利用(4.2.7)和(4.2.7)可得
u1 b 1 n li ai / ui1, i 2,3,... u b l c , i 2,3,... n i i i1 i
(4.2.9)
由此可求得L和U的所有元素.。解原方程组Ax=b可分为两步Ly=d 和Ux=y,计算公式为
由于方车程组的右端参与了消元计算,所以Ly=Pb的解为y=b(3)= (20,14/3,216/39) T 。解Ux=y得x=(1,2,3) T
4.2.2
三对角方程组的追赶法
b a1 A c1 b c2 a n1 bn1 an c n1 bn
(k ) akk
uk 1,k 1 l k , k 1 l n , k 1
(k ) ank
u1n u2 n uk 1,n (k ) akn (k ) ann
研究生数值分(8)直接三角分解法
(b) 对k+2,3,…,n 按计算公式(3),(4)依次
计算U的第k行元素 uki (i k, k 1, , n) 与L的第
k列元素 lik (i k 1, , n; k n)
20 求解三角形方程组LY=b,即按计算公
(i k, k 1, , n) (3)
k 1
lik (aik liju jk ) / ukk j 1
(i k 1, , n; k n) (4)
在我们利用杜利特尔矩阵分解解线性方程 组AX=b时,只要实现矩阵分解A=LU,依次解三角 形方程组LY=b与UX=Y即可。
计算公式:
y1
yk
对那些明确是1或是0的元素不再求。 由矩阵乘法规则与相等条件,
利用 aij 在上述计算过程中,
导出计算 lij 或 uij 的公式。
例如
第一步计算由 ai1 li1u11 得
u1i a1i (i 1,2, ,n)
第二步计算由 a1i u1i 得 li1 ai1 / u11 (i 2,3, ,n)
, n 1)
因此有 1 c1 / a1且0 1 1 由 a2 b2 a21 b2 a2 1 b2 a2 c2 0 有 2 c2 / a2且0 2 1
一般地,用归纳法可以证明
ai ci 0 (即0 i 1) (i 1, 2, , n 1)
因此我们从关系式(2)解出待定系数为
5 3 2, 2 3 5
3
2
3
4
b 7
1
0
2、用追赶法求方程组的解
4 1 0 0 x1 3
1
4
1
矩阵直接三角分解法
矩阵直接三角分解法算法将方程组Ax=b 中的A 分解为A=LU ,其中L 为单位下三角矩阵,U 为上三角矩阵,则方程组Ax=b 化为解2个方程组Ly=b ,Ux=y 。
具体算法:○1对j=1,2,3,…,n 计算 U 1j =a 1j对i=2,3,…,n 计算L i1=a i1/a 11○2对k=2,3…,n: a . 对j=k ,k+1,…,n 计算U kj=a kj -∑LkqUqj k−1q=1b.对i=k+1,k+2,…,n 计算l ik =(a ik -)∑LiqUqk k−1q=1/u kk○3y 1=b 1对k=2,3…,n 计算 Y k =b k -∑LkqUq k−1q=1○4X n =y n /U nn ,对k=n -1,n -2,…2,1计算 X k =(y k -∑UkqXq n q=k+1/U kk注:注由于计算u 的公式与计算y 的公式形式上一样,故可直接对增广矩阵[A|b]=[ a11 a12…a1n a1,n +1a21 a22…a2n a2,n +1:: ::an1 an2…ann an,n +1]施行算法○2○3,此时U 的第n+1列元素即为y 。
程序与实例求方程组Ax=bA=[1 2 −12 85 4 7 −2−3 7 9 56 −12 −8 3],b=[2741149]程序#include<stdio.h>void main(){float x[4];int i;float a[4][5]={1,2,-12,8,27,5,4,7,-2,4,-3,7,9,5,11,6,-12,-8,3,49};void DirectLU(float*,int,float[]);DirectLU(a[0],4,x);for(i=0;i<=3;i++)printf("x[%d]=%f\n",i,x[i]);}void DirectLU(float *u,int n,float x[]){int i,r,k;for(r=0;r<=n-1;r++){for(i=r;i<=n;i++)for(k=0;k<=r-1;k++)*(u+r*(n+1)+i)-=*(u+r*(n+1)+k)*(*(u+k*(n+1)+i));for(i=r+1;i<=n-1;i++){for(k=0;k<=r-1;k++)*(u+i*(n+1)+r)-=*(u+i*(n+1)+k)*(*(u+k*(n+1)+r));*(u+i*(n+1)+r)/=*(u+r*(n+1)+r);}}for(i=n-1;i>=0;i--){for(r=n-1;r>=i+1;r--)*(u+i*(n+1)+n)-=*(u+i*(n+1)+r)*x[r];x[i]=*(u+i*(n+1)+n)/(*(u+i*(n+1)+i));}}运行结果。
直接三角分解法
• 直接三角分解法简介 • 直接三角分解法的算法原理 • 直接三角分解法的实现过程 • 直接三角分解法的应用案例 • 直接三角分解法的优化与改进
01
直接三角分解法简介
定义与特点
定义
高效
直接三角分解法是一种线性代数中的方法 ,用于将一个矩阵分解为一个下三角矩阵 和一个上三角矩阵的乘积。
计算分解矩阵
根据所选方法计算出左奇 异矩阵、右奇异矩阵和奇 异值矩阵。
提取关键信息
从分解矩阵中提取关键信 息,如主成分或特征向量, 用于后续分析。
结果
可视化结果
将分解结果以图表、图像等形式呈现,便于直观 理解。
量化分析
对分解结果进行量化分析,如计算各主成分的贡 献率或方差解释率。
决策建议
根据分析结果提供决策建议,指导后续工作。
图像修复
通过直接三角分解法,可以将图像中的损坏或缺失部分进行修复或替 换,从而得到完整的图像。
05
直接三角分解法的优化与改进
算法优化
减少计算量
通过选择合适的算法和数据结构,减少不必要的计算和重复计算, 提高算法的效率。
并行化处理
将算法中的计算任务分解为多个子任务,并利用多核处理器或多 线程技术并行处理,加快计算速度。
利用三角分解法,可以方便地计算矩阵的逆和行列式,对于解决一些数学问题具有重要意义。
在机器学习中的应用
矩阵分解
在推荐系统和协同过滤等机器学习算法中,矩阵分解是一种常见的方法。通过直接三角分 解法,可以将矩阵分解成低秩矩阵和稀疏矩阵,从而更好地表示用户和物品之间的关系。
降维处理
在处理高维数据时,直接三角分解法可以用于降维处理,将高维数据投影到低维空间,保 留主要特征,降低计算复杂度。
三角分解法解方程组
三角分解法解方程组三角分解法是一种用于求解线性方程组的数值方法。
这种方法通常被称为高斯消元法,它是由卡尔·高斯在19世纪提出的。
在三角分解法中,我们首先将线性方程组转化为一个三角矩阵的形式,然后使用递推的方法求解方程组。
假设我们有一个n元线性方程组,其中有n个未知数,则线性方程组可以表示为:a11x1 + a12x2 + … + a1n xn = b1 a21x1 + a22x2 + … + a2n xn = b2 … an1x1 + an2x2 + … + ann*xn = bn要使用三角分解法求解这个方程组,我们需要将方程组转化为一个三角矩阵的形式,并使用递推的方法求解。
首先,我们要使用高斯消元法将方程组转化为上三角矩阵的形式,这样就可以使用递推的方法求解了。
具体来说,我们需要进行如下步骤:1.对于第一个方程,我们将a11变为1,然后将其余的系数除以a11。
2.对于第二个方程,我们将a22变为1,然后将其余的系数除以a22,并将a21乘上第一个方程的系数a12。
3.对于第三个方程,我们将a33变为1,然后将其余的系数除以a33,并将a31和a32乘上第一个和第二个方程的系数a12和a22。
以此类推,直到我们消去了所有的系数,并使得方程组的系数矩阵变为一个上三角矩阵。
这样,我们就可以使用递推的方法来求解方程组了。
具体来说,我们从最后一个方程开始递推,并使用已知的xn的值来解出xn-1的值,然后再使用xn-1的值来解出xn-2的值,以此类推,直到解出x1的值。
例如,假设我们已经将方程组转化为了如下形式:a11x1 + a12x2 + a13x3 = b1 0x1 + a22x2 + a23x3 = b2 0x1 + 0x2 + a33*x3 = b3那么我们可以使用递推的方法求解方程组,具体来说:使用已知的x3的值来解出x2的值:x2 = (b2 - a23*x3) / a22使用已知的x2的值来解出x1的值:x1 = (b1 - a12x2 - a13x3) / a11这样,我们就可以使用三角分解法求解方程组了。
三角分解法解线性方程组
三角分解法解线性方程组#include<iostream.h>#include<iomanip.h>#include<stdlib.h>//----------------------------------------------全局变量定义区 const int Number=15; //方程最大个数doublea[Number][Number],b[Number],copy_a[Number][Number],copy_b[Number]; // 系数行列式int A_y[Number]; //a[][]中随着横坐标增加列坐标的排列顺序,如a[0][0],a[1][2],a[2][1]...则A_y[]={0,2,1...}; int lenth,copy_lenth;//方程的个数char * x; //未知量a,b,c的载体int i,j;//----------------------------------------------函数声明区 voidinput(); //输入方程组void print_menu(); //打印主菜单int Doolittle_check(double a[][Number],double b[Number]); //判断是否行列式>0,若是,调整为顺序主子式全>0void xiaoqu_u_l(); //将行列式Doolittle分解 void calculate_u_l(); //计算Doolittle结果 void exchange(int m,int i); //交换A_y[m],A_y[i] void exchange_lie(int j); //交换a[][j]与b[]; void exchange_hang(int m,int n);//分别交换a[][]和b[]中的m与n两行 void exchange_a_lie(int m,int n); //交换a[][]中的m和n列 void exchange_x(int m,int n); //交换x[]中的x[m]和x[n] //函数定义区void print_menu(){system("cls");cout<<"------------方程系数和常数矩阵表示如下:\n"; for(intj=0;j<lenth;j++)cout<<"系数"<<j+1<<" ";cout<<"\t常数";cout<<endl;for(int i=0;i<lenth;i++){for(j=0;j<lenth;j++)cout<<setw(8)<<setiosflags(ios::left)<<a[i][j];cout<<"\t"<<b[i]<<endl; }}void input(){int i,j;cout<<"方程的个数:";cin>>lenth;if(lenth>Number){cout<<"It is too big.\n";return;}x=new char[lenth];for(i=0;i<lenth;i++)x[i]='a'+i;//输入方程矩阵//提示如何输入cout<<"====================================================\n";cout<<"请在每个方程里输入"<<lenth<<"系数和一个常数:\n"; //输入每个方程for(i=0;i<lenth;i++){cout<<"输入方程"<<i+1<<":";for(j=0;j<lenth;j++)cin>>a[i][j];cin>>b[i];}}void Doolittle() //Doolittle消去法计算方程组 {double temp_a[Number][Number],temp_b[Number];int i,j,flag;for(i=0;i<lenth;i++)for(j=0;j<lenth;j++)temp_a[i][j]=a[i][j]; flag=Doolittle_check(temp_a,temp_b);if(flag==0) cout<<"\n行列式为零.无法用Doolittle求解."; xiaoqu_u_l();calculate_u_l();cout<<"用Doolittle方法求得结果如下:\n";for(i=0;i<lenth;i++) //输出结果{for(j=0;x[j]!='a'+i&&j<lenth;j++);cout<<x[j]<<"="<<b[j]<<endl;}}void calculate_u_l() //计算Doolittle结果{ int i,j;double sum_ax=0; for(i=0;i<lenth;i++){for(j=0,sum_ax=0;j<i;j++)sum_ax+=a[i][j]*b[j];b[i]=b[i]-sum_ax;}for(i=lenth-1;i>=0;i--){for(j=i+1,sum_ax=0;j<lenth;j++)sum_ax+=a[i][j]*b[j];b[i]=(b[i]-sum_ax)/a[i][i]; }}void xiaoqu_u_l() //将行列式按Doolittle分解{ int i,j,n,k;double temp; for(i=1,j=0;i<lenth;i++)a[i][j]=a[i][j]/a[0][0]; for(n=1;n<lenth;n++){ //求第n+1层的上三角矩阵部分即Ufor(j=n;j<lenth;j++){ for(k=0,temp=0;k<n;k++)temp+=a[n][k]*a[k][j];a[n][j]-=temp;}for(i=n+1;i<lenth;i++) //求第n+1层的下三角矩阵部分即L{ for(k=0,temp=0;k<n;k++)temp+=a[i][k]*a[k][n];a[i][n]=(a[i][n]-temp)/a[n][n];}}}int Doolittle_check(double temp_a[][Number],double temp_b[Number]) //若行列式不为零,将系数矩阵调整为顺序主子式大于零{int i,j,k,maxi;double lik,temp;for(k=0;k<lenth-1;k++){j=k;for(maxi=i=k;i<lenth;i++)if(temp_a[i][j]>temp_a[maxi][j]) maxi=i;if(maxi!=k){ exchange_hang(k,maxi);for(j=0;j<lenth;j++){ temp=temp_a[k][j];temp_a[k][j]=temp_a[maxi][j];temp_a[maxi][j]=temp;}}for(i=k+1;i<lenth;i++){lik=temp_a[i][k]/temp_a[k][k];for(j=k;j<lenth;j++)temp_a[i][j]=temp_a[i][j]-temp_a[k][j]*lik;temp_b[i]=temp_b[i]-temp_b[k]*lik;}}if(temp_a[lenth-1][lenth-1]==0) return 0;return 1;}void exchange_hang(int m,int n) //交换a[][]中和b[]两行 { int j; double temp;for(j=0;j<lenth;j++){ temp=a[m][j];a[m][j]=a[n][j];a[n][j]=temp;}temp=b[m];b[m]=b[n];b[n]=temp;}void exchange(int m,int i) //交换A_y[m],A_y[i] { int temp;temp=A_y[m];A_y[m]=A_y[i];A_y[i]=temp;}void exchange_lie(int j) //交换未知量b[]和第i列 { double temp;int i; for(i=0;i<lenth;i++){ temp=a[i][j];a[i][j]=b[i];b[i]=temp;}}void exchange_a_lie(int m,int n) //交换a[]中的两列{ double temp;int i; for(i=0;i<lenth;i++) { temp=a[i][m];a[i][m]=a[i][n];a[i][n]=temp;}}void exchange_x(int m,int n) //交换未知量x[m]与x[n] { char temp;temp=x[m];x[m]=x[n];x[n]=temp;}//主函数void main(){int flag=1;input(); //输入方程while(flag){print_menu(); //打印主菜单cout<<"用Doolittle方法求得结果如下:\n";for(i=0;i<lenth;i++) //输出结果{for(j=0;x[j]!='a'+i&&j<lenth;j++);cout<<x[j]<<"="<<b[j]<<endl;}}}。